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Time series appear  frequently  in several  domains such as in  multimedia,  business,
industry or medicine. A multivariate time series dataset  is a set  of  co-evolving time
series that relates to a specific object (e.g. the motion of a person). The increasing need
for analyzing efficiently the huge amount of this information leads to the application of
data mining techniques. At the core of these techniques lies the concept of similarity
since most of them require searching for similar patterns, such as in query by content,
clustering  or  classification.  Nevertheless,  when dealing  with  multivariate  time  series
datasets, similarity should be sought between the whole datasets and not only between
the individual time series, since there are usually important correlations among them
that shouldn’t be lost. In this paper, we discuss the application of Principal Component
Analysis (PCA) on multivariate time series datasets for the purpose of similarity search.
PCA is applied in order to reduce the high dimensionality of such data while retaining as
much as possible of the variation present in the data. We provide a thorough description
of the pre-processing phase with respect to PCA assumptions and limitations, as well
as, to the most frequently appeared distortions in data. Furthermore, we experimentally
explore the potential usefulness of incorporating Piecewise Aggregate Approximation
into this phase. Finally, we discuss the various aspects of the proposed PCA-based
similarity (dissimilarity) measures. 

1. Introduction

Several procedures generate huge amounts of data in the form of time series in
almost every domain such as in business, industry,  medicine and multimedia. A
time series is a collection of observations made sequentially through time. At each
time point one or more measurements may be monitored corresponding to one or
more attributes under consideration. The resulting time series is called univariate or
multivariate  respectively.  The  increasing  need  for  analyzing  efficiently  the  huge
amount of this information leads to the application of data mining techniques [5]. At
the core of these techniques lies the concept of similarity since most of them require
searching  for  similar  patterns,  such  as  in  query  by  content,  clustering  or
classification.
In the case of univariate time series, there has been a lot of research covering all
aspects of  similarity search,  namely,  pre-processing  [6],  indexing  [1][4],  distance
measures [7][12] and representation  [11]. The similarity is measured between two
1-dimensional time series, that is, there is one attribute of consideration measured
for two objects sequentially through time (e.g. the daily closing price of two stocks
during the last 90 days).  However, the case of multivariate time series has not been
extensively explored with respect to all aspects mentioned previously. In this case,
the similarity is measured between two p-dimensional time series, that is, there are
p attributes of consideration measured for two objects sequentially through time



(e.g. the daily closing price, the volume and the daily change in closing price of two
stocks during the last  90 days).  One approach in  dealing with  multivariate  time
series is to consider (concatenate) them as long univariate time series and apply
respective techniques [10]. This approach, although simple, ignores the correlations
that usually exist among attributes. Another approach is to consider a multivariate
time  series  as  a  whole,  retaining  the  information  that  might  be  hidden  in  the
correlations among the attributes. This approach is more complicated and usually
requires  expensive  computations,  however,  it  may  improve  similarity  search
providing at the same time useful information for post hoc analysis  [18]. For this
purpose, Principal  Component  Analysis (PCA) seems to be an appropriate tool,
since  it  is  often  applied  for  the  purpose  of  reducing  the  high  dimensionality  of
multivariate datasets (i.e. improve the computation cost), while retaining as much as
possible of the variation present in the data. 
In this paper, we discuss the application of PCA on multivariate time series for the
purpose of similarity search. A thorough description of the pre-processing phase is
provided with respect to PCA assumptions and limitations, as well as, to the most
frequently  appeared  distortions  in  data,  namely,  offset  translation,  amplitude
scaling, time warping and noise. We explore the potential usefulness of applying a
common representation scheme in the time series data mining literature, Piecewise
Aggregate Approximation (PAA)  [13][19], during the pre-processing phase on the
purpose  of  reducing  the  expensive  cost  that  PCA  incurs.  Experiments  were
performed on a dataset, which relates to the Australian Sign Language (AUSLAN)
and has been extensively utilized in the literature. 
In Section 2 we briefly provide the background of Principal Component Analysis
(PCA).  Section 3 discusses the various aspects of  pre-processing and distance
measures.  Furthermore,  Piecewise  Aggregate  Approximation  is  presented  and
proposed as a further step in the pre-processing phase. In Section 4, we describe
the dataset, the methods and the results of the conducted experiments. Finally, a
conclusion and future work is presented in Section 5. 

2. Background on Principal Component Analysis

Suppose there is an object for which p variables (attributes) Xi are being measured
sequentially through time for n time instances. The corresponding dataset X = [x1,
x2, …, xp] consists of  p vectors xi, where xi = [x1i, x2i, …, xni]΄ is a column vector that
contains the n measurements of the variable Xi (i.e. xi comprises a univariate time
series).  Each  row of  X corresponds  to  the  measurements  of  all  variables  at  a
specific time instance. Therefore, each row of X can be considered as a point in p-
dimensional space. 
Principal  Component Analysis derives a new set of  orthogonal and uncorrelated
composite variates Y(j), which are called principal components: 

Y(j) = a1j X1 +  a2j X2  + … + apj Xp , where j = 1, 2,…, p (1)
As it is shown from Equation 1, each principal component is a linear combination of
the  original  variables  and it  is  derived in  such  a  manner  that  each successive
component will  account for a smaller portion of variation in  X.  The derivation of
principal components is based on Σ, where Σ denotes the covariance matrix of  X.
Another approach is to obtain the principal components from the correlation matrix
and that has the advantage of dealing with the problem of variables measured in



different units. A thorough comparison between the two methods can be found in
[8].The results from the application of PCA can be presented in matrix forms. In
particular, the component weights aij define component’s position in the space and
they form a matrix of size p x p. Let C denote the matrix of component weights, with
each  column  corresponding  to  a  principal  component.   Y (j)’s   can  be  used  to
compute component scores, i.e., the representation of X in the principal component
space. Let Y denote the matrix of size n x p, which comprises of these scores. In
addition  to  these  matrices,  variances  of  the  principal  components  in  increasing
order form a matrix S of size p x 1. 
Intuitively,  Principal  Component  Analysis  transforms a dataset  X by rotating the
original axes of a p-dimensional space and deriving a new set of axes (components)
in such a manner that the first axis accounts for the maximum variance, the second
axis accounts for the maximum of the remaining variance and so on. Hopefully, the
first few (k) components will retain most of the variation present in all of the original
variables (p) and thus, an essential dimensionality reduction may be achieved by
projecting the original data on this new k-dimensional space, as long as, k << p.  

3. PCA-based Similarity Search

3.1 Pre-processing   

Considering univariate time series, similarity search is based on shapes, meaning
that two time series are considered similar when their shapes are considered to be
“close enough”. Apparently, the notion of “close enough” depends heavily on the
application itself, a fact that affects the decision of the pre-processing steps to be
followed. The pre-processing phase in similarity search aims at dealing with several
commonly appeared distortions in raw data, namely, offset translation, amplitude
scaling, noise, and time warping.  Distance measures may be affected seriously by
the presence of  any of  these distortions, resulting most  of  the times in missing
similar shapes. For example, two time series may have identical shapes where the
first one is vertically shifted (offset translation) and/or is of different scale (amplitude
scaling)  with  respect  to  the  second  one.  Offset  translation  can  be  handled  by
subtracting the corresponding mean from their values, whereas amplitude scaling
can be handled by dividing the values by the corresponding standard deviations.
Another case is when two time series exhibit similar patterns at different rates. This
compressions or decompressions in time should be taken into account. Dynamic
Time Warping (DTW)  [2] has been successfully applied in order to accommodate
this distortion, providing at the same time a distance measure. Finally, noise can be
handled  in  various  ways  with  the  most  common  one  to  be  applying  a  moving
average method.
Considering multivariate time series and Principal Component Analysis, the offset
translation is inherently handled, since principal components are derived from the
covariance matrix Σ of the original dataset X for which Equation 2 holds: 

cov(Xi , Yj) = cov((Xi – mean(Xi)) (Yj – mean(Yj)))  (2)
Amplitude scaling, as mentioned before, can be handled by dividing each value by
the corresponding standard deviation.  In PCA, this transformation in conjunction
with the previous one is equivalent to deriving the principal components from the
correlation matrix.  Therefore, there are two options: utilize the covariance matrix
(handle  offset  translation)  or  utilize  the  correlation  matrix  (handle  both  offset



translation and amplitude scaling). Moreover, both matrices by definition capture the
existing  dispersion  in  variables,  a  fact  that  intuitively  seems  to  deal  with  time
warping [18]. Finally, noise can be handled as in the univariate case.
Another  issue  in  the  pre-processing  phase  is  analyzing  time  series  of  different
lengths. In the univariate case there are two approaches: either to transform the
time  series  to  be  of  equal  length  (e.g.  by  linear  interpolation)  or  to  handle  it
algorithmically  during  the phase of  similarity  search  [3].  PCA requires  variables
(time series) of equal length for the same object, therefore, this is a limitation of this
technique. However, similarity search is performed on objects, and thus, it is based
on covariance or correlation matrices, which are all of the same size p x p (as long
as the same p variables are being measured from each object).

3.2 Distance Measures  

Similarity search requires a measure that quantifies the similarity or dissimilarity
between two objects. In the multivariate case, an object is represented by a matrix
of  size  n x  p and  thus,  the  corresponding  measure  should  be  based  on  the
differences between matrices. In this paper we discuss distance measures based
on Principal Component Analysis. We assume that PCA is applied on two objects
and based on these results we wish to quantify their similarity. As it was stated in
section 2, these results that may be presented in a matrix form are the component
weights (Cpxp), variances (Spx1) and scores (Ynxp). Utilizing C and/or S for determining
a  distance  measure,  an  essential  dimensionality  reduction  can  be  achieved,
especially if k components  (k << p) are to be retained [14][15][16][18]. On the other
hand, it is more difficult to determine a distance measure based only on the score
matrix  Y,  since  scores  from  different  objects  map  to  different  spaces.  In  the
remainder of this section, we will present two similarity measures, as examples of
utilizing component weights (C) and/or variances (S).
Krzanowski [14] proposed a similarity measure between two objects represented by
the  matrices  A  and  B  of  the  same  number  (p)  of  columns  (variables)  but  not
necessarily the same number of rows (time instances). This approach, first, applies
PCA separately on both matrices and retains  k principal  components from each
one. The selection of k can be based on any criterion, for example, the latent root or
variance criterion [8]. Thereafter, the similarity measure proposed, that in this paper
will be denoted by Sim, is defined as in Equation 3:

,  0  Sim(A,B)  k (3)

where, CA and CB are the component weights matrices of A and B respectively, and
θij is  the  angle  between  the  ith principal  component  of  A  and  the  j th principal
component of B. Intuitively,  Sim measure is based on the angles between all the
combinations of the first k components from the two matrices A and B.
Another similarity measure based on both Sim and Frobenius norm is proposed by
Yang  &  Shahabi  [18].  Contrary  to  Sim,  all  components  are  retained from each
matrix and their variances (eigenvalues) form a weight vector w.  This measure is
called Eros and it is defined as in Equation 4:

 (4)



where, θi   is the angle between the ith principal components of A and B. Intuitively,
the  Eros measure  is  based  on  the  acute  angles  between  the  corresponding
components from the two matrices A and B, taking into account their variances.

3.3 Our Approach  

We  propose  a  further  step  in  the  pre-processing  phase  that  reduces  the
dimensionality  of  the  raw data  by  applying  Piecewise  Aggregate  Approximation
(PAA) [13][19]. PAA divides a time series into segments of equal length and records
the mean of the corresponding values of each one. Then PCA can be applied on
these mean values. In the multivariate case, PAA can be applied extremely fast on
each variable (time series) of the matrix Xnxp separately, resulting into a new matrix
PXmxp,  where  m equals  the  number  of  segments.  The  main  advantage  of  this
approach  is  that  the  number  of  measurements  is  greatly  reduced  and  the
subsequent analysis can have a much lower cost.  In addition to that,  the noise
distortion may lessen. The disadvantage is that a new parameter m is added in the
process and needs to be tuned. Moreover, this parameter requires  n/m to be an
integer and an adjustment is needed to accommodate this case. Tanaka et al. [17]
utilize PCA in conjunction with PAA within motif discovery. PCA is applied first on
the purpose of converting a multivariate time series to a univariate one (by retaining
only the first component) and afterwards PAA is applied on this univariate series. 

4. Experiments

4.1 Dataset - Methods  

The  experiments  have  been  conducted  on  a  real-world  dataset  relating  to  the
Australian  Sign  Language  (AUSLAN),  which  has  been  used  extensively  in  the
literature. The AUSLAN dataset  contains sensor data gathered from 22 sensors
placed on the hands of a native AUSLAN speaker. There are 95 distinct signs each
one performed 27 times. More technical information can be found in [9]. 
We perform nearest neighbor classification and evaluate it by means of predictive
accuracy. We use 9-fold cross validation, by dividing the dataset into 9 subsets.
Each subset contains 3 examples of each one of the 95 signs. In total, there are
285 objects in each subset. The classification is tested 9 times, each time leaving
out one of the 9 subsets and using it as a testing dataset while the other 8 subsets
comprise the training dataset.  Classification error rates are recorded for each test
and corresponding statistics are computed. The observed differences in the error
rates among the various methods were statistically tested. Due to the small number
of subsets and to the violation of normality assumption in some cases, Wilcoxon
Signed-Rank  tests  were  performed  at  5%  significance  level.  All  the  necessary
codes  and  experiments  were  developed  in  MATLAB,  whereas  the  statistical
analysis was performed in SPSS. 
As  distance  measures,  we  selected  the  two  PCA-based  similarity  measures
presented in section 3, namely,  Sim and  Eros. For comparison reasons, we also
included  in  the  experiments  the  Euclidean  Distance  (ED)  between two  objects.
However,  Euclidean distance requires objects of equal size. In order to produce
comparable results, we decided to transform the original dataset in order for the
time series to be of equal length (60). For this purpose, linear interpolation was
applied and all experiments were performed on this transformed dataset. For the



similarity measure Sim, the evaluation procedure was followed 4 times by retaining
1, 2, 3 or 4 principal components. A prior exploration of the dataset showed that
when 4 principal  components  were  retained,  at  least  95% of  the  variance was
accounted  by  them.  Regarding  Eros,  the  weight  vector  w was  computed  by
averaging  the  variances  of  each  component  across  the  objects  of  the  training
dataset and normalizing them so that Σwi = 1, for i = 1, 2, …22.
Principal  Component  Analysis  is  performed  on  the  covariance  matrices.  Prior
exploration  showed that  when the  correlation  matrix  was  used,  meaning  that  a
rescaling was performed on data, there were poor classification results. It seems
that, in this specific dataset, different scales contribute to the identification of similar
objects and thus, the distortion of amplitude scaling should not be handled. 
In  order  to  investigate  the  effects  of  incorporating  Piecewise  Aggregate
Approximation (PAA) into the pre-processing phase, the evaluation procedure was
followed twice. First, the nearest neighbor algorithm is applied on raw data and then
it is applied on PAA compressed data. Two values (6 and 10) of the parameter m
have been tested. This setting was decided in order to achieve more than 80%
compression. 

4.2 Results  

Statistics for the classification error rates are presented in Tables 1 and 2. The
results of the statistical tests are not presented due to limited space; however, the
corresponding p-values are reported whenever it is necessary. 
In Table 1, the first observation is that the Sim measure appears to provide better
results when only one component was retained.  It would be expected that as the
number of retained components was increasing, the error rate would be decreasing.
However, this does not hold in our case, probably because the first component has
better  discriminator  power  alone and not  in  conjunction  with  other  components.
Also,  exploration  of  the  data  prior  to  these  experiments  showed  that  the  first
component  accounts  for  more  than  80% of  the  variance  almost  in  all  objects.
Another observation is that Eros performance is better than its competitors with an
average error rate of  9.43% and the corresponding differences were statistically
significant with both  Sim (p-value = 0.008) and  ED (p-value = 0.008). Moreover,
there was one test at which the error rate was only 4.21%, the smallest percentage
that appeared in all the experiments. The Sim measure provided the second best
results with an average error rate of  11.89%. Although  Euclidean distance (ED)
comes third (13.76%), it seems to perform relatively well, considering the fact that it
has  lower  error  rates  than  the  Sim measures,  which  retain  more  than  one
component.  Moreover,  the difference with  Sim cannot be considered statistically
significant (p-value = 0.063). 
Table  2  presents  the  statistics  for  the  classification  error  rates,  after  applying
Piecewise  Aggregate  Approximation  (PAA)  during  the  pre-processing  phase.  In
these experiments, we tested the same three measures, but for  Sim we kept only
the “best” one from the previous experiments. By observing the results in Table 2, it
is clear that PAA had very similar effects in classification error rates when different
compression rates were used (p-values > 0.05). By comparing the three measures
after PAA was applied, the results are similar with the ones drawn from Table 1.
When m = 10, Eros provides statistically better results than Sim (p-value = 0.007)
and ED (p-value = 0.007), whereas for Sim and ED it may be considered that they



provide statistically  similar  results  (p-value = 0.858).  Almost the same statistical
results were obtained in the case of m = 6.

Sim(k) Mean St. Dev. Min. Max.
1 11.89 4.05 8.42 18.95
2 21.83 2.49 18.25 25.26
3 18.87 4.30 11.58 23.86
4 16.61 2.31 14.74 21.4

Eros 9.43 4.16 4.21 15.79
ED 13.76 3.05 9.12 17.54

Table 1. Classification Error Rates

PAA(10) PAA(6)
Mean S.D. Min. Max. Mean S.D. Min. Max.

Sim (1) 12.05 3.89 8.77 19.30 12.08 3.60 8.42 17.54
Eros 9.01 3.62 5.61 14.74 9.24 3.92 4.21 14.74
ED 12.01 3.50 7.37 17.54 12.79 4.02 8.42 21.05

Table 2. Classification Error Rates After Pre-processing with PAA

The  most  important  observation  emerges  from  the  comparison  of  the  results
between Table 1 and Table 2. The classification rates are very similar, meaning that
the  pre-processing with  PAA did not  affect  the  corresponding accuracies.  More
specifically  in  the  case  of  m =  10,  the  differences  in  error  rates  cannot  be
considered  statistically  significant  either  for  Eros (p-value  =  0.149)  or  for  Sim 
(p-value = 0.673), whereas for ED there was a statistically significant improvement
(p-value = 0.013). This improvement may due to the smoothing effect that PAA
imposes on data. Similar statistical results are obtained in the case of m = 6 except
from the  ED, where the improvement cannot be considered statistically significant
(p-value = 0.213). The implication of this observation is that it is probable to apply
Principal Component Analysis on compressed data (saving time and space) without
sacrificing  classification  accuracy.  Apparently,  more  experiments  should  be
performed in order to obtain more evidence to support that claim. 

5. Conclusion

In this paper, we discussed the application of Principal Component Analysis (PCA)
on multivariate time series datasets for the purpose of similarity search. Emphasis
was given in the pre-processing phase in two directions. First, we investigated the
relation  between  PCA  and  the  most  frequently  appeared  distortions  in  data.
Second,  we  experimentally  explored  the  effect  that  a  dimensionality  reduction
technique, such as the Piecewise Aggregate Approximation (PAA), may have on a
data mining task, specifically, on classification. These experiments were conducted
on a dataset and three similarity (dissimilarity) measures were utilized in the nearest
neighbor  algorithm,  namely,  Sim,  Eros and  the  Euclidean  distance.  Finally,  we
discussed  the  various  aspects  of  PCA-based  similarity  (dissimilarity)  measures.
There were two key observations with respect to the results of the experiments.
First,  Eros performed statistically better than Sim and ED. However, all measures
provided classification error rates within a narrow range, meaning that the practical
significance of this result is application depended.  A second and probably most



important  observation  was  that  classification  error  rates  were  not  affected  by
applying PCA on data that was first compressed by PAA. The implication of this
observation could be of great importance within data mining context, since there
could be an essential reduction in computation and space costs. 
Future work will focus on developing a framework for the pre-processing phase in
similarity  search with  PCA and on conducting experiments on more datasets in
order to further validate the key observations of this paper. Principal Component
Analysis has not been extensively explored in the context of similarity search in
multivariate time series and hence, it has the potential to offer more in the Data
Mining field. 
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