
30 INTEGRATED INFORMATION

Improving Query Efficiency in High Dimensional Point Indexes

Evangelos Outsios and Georgios Evangelidis

University of Macedonia, Department of Applied Informatics, 54006, Thessaloniki, Greece

{outsios, gevan} (at) uom.gr

Abstract: In this paper, we focus on the leaf level

nodes of tree-like k-dimensional indexes that store the

data entries, since those nodes represent the majority of

the nodes in the index. We propose a generic node

splitting approach that defers splitting when possible

and instead favors merging of a full node with an ap-

propriate sibling and then re-splitting of the resulting

node. Our experiments with the hB-tree, show that the

proposed splitting approach achieves high average

node storage utilization regardless of data distribution,

data insertion patterns and dimensionality.

Keywords: K-dimensional point indexing,

Optimizing data node storage utilization, Range query

performance

I. INTRODUCTION

Lately, with the increased interest in Data Mining, in-

dexing of k-dimensional vectors has become essential

when dealing with kNN classification. Brute force ap-

plication of kNN classification on large databases in-

volves as many computations of distances as the size of

the database, since one has to find the k closest points to

the query point. Data reduction and/or data di-

mensionality reduction techniques are used to reduce

the computational cost, but they usually decrease the

accuracy of the kNN classifier. Alternatively, indexing

can be used to reduce the linear cost of searching to

logarithmic. Unfortunately, all high-dimensional in-

dexes su er from the “dimensionality curse” problem. It

has been shown that above 8 dimensions, most indexes

perform no better than the exhaustive sequential search

of the whole database when answering kNN queries

(Berchtold et al., 1998).

For very large high-dimensional datasets, the most

sensible approach to kNN classification is a combina-

tion of a data dimensionality reduction technique, to

reduce the dimensions down to 8 to 16, and then, the

use of a high dimensional point index. That is why the

quest for e cient indexes in medium to low dimensions

has regained the interest of the research community.

E cient indexes should not be a ected by the

cardinality of the dataset, the data distribution, the

dimensionality, and the insertion patterns. Since the

kNN classifier is a model-free classifier, new insertions

in the dataset should dynamically update the model, i.e.,

the index, without a ecting its performance.

Indexes with guarantees in node storage utilization,

obviously, lead to better query performance, since fewer

nodes (disk pages) are visited to answer a query. kNN

queries are a specialization of range queries and require

visiting of multiple leaf or data level nodes of the index,

where rids of the points or the points themselves are

stored.

In this paper, we deal with tree-like k-dimensional

indexes that partition the space in non-overlapping

subspaces, like the KDB-tree (Robinson, 1981) or the

hB-tree (Lomet and Salzberg, 1990; Evangelidis et al.,

1997). The hB-tree and the hB-pi* tree (Zhou and

Salzberg, 2008), a variation that also indexes empty

space, have been recently shown to outperform the R*-

tree (Beckmann et al., 1990), the most well known

spatial index. We focus on their leaf or data level index

nodes since those nodes represent the majority of the

index nodes. We propose a generic node splitting

approach that delays data node splitting when possible

and instead favors redistribution of the contents of a full

node with an appropriate sibling. Our experiments with

the hB-tree, show that the proposed splitting approach

achieves high node storage utilization and good range

query performance.

In Section II, we present related work in improving

data node storage utilization and provide a short de-

scription of the KDB-tree and the hB-tree. We also

present a policy for selecting the splitting attribute in

high dimensional indexes. We propose a new data node

splitting method in Section III, and we present

experimental results in Section IV. Finally, we conclude

the paper in Section V.

II. RELATED WORK

In this section, we review the approaches that have been

proposed in the literature for improving storage

utilization. First, we discuss the 1-dimensional case with

the B+tree, and then, we briefly describe the structure of

the hB-tree and the KDB-tree. Finally, we give some

insight on how splitting attribute selection policies can

improve storage utilization and range query

performance, when splitting data nodes.

A. Data node storage utilization

For the B+tree, there are many ways to increase node

storage utilization (Comer, 1979). For example, Knuth

(1973), proposes to delay splitting by locally

redistributing the contents of nodes until two sibling

nodes become full. Then the two full nodes are split into

three nodes with a node storage utilization of at least

66%, an improvement over the 50% storage utilization

of the B+tree. Although the average node storage

utilization remains una ected and about 69% (� ln2)

for uniform data distributions (Yao, 1978), this

approach achieves better storage utilization for non-

uniform data distributions.

ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 31

In addition, even for uniform data distributions, in-

dex performance is a ected by the way data points are

inserted in the index. For random (uniform) insertion

patterns there is no di erence on the way nodes are

split. As long as nodes are split in a 1:1 ratio, average

storage utilization is close to 69%. But under di erent

patterns of insertion, for example, block insertions,

where incoming points are inserted to a particular node

until that node splits, average storage utilization can

degrade considerably.

The picture is quite di erent when indexing in high

dimensions. Almost all of the proposed k-dimensional

indexes do not provide such guarantees. Only the hB-

tree, that splits its nodes in a 1:2 ratio in the worst case,

achieves a comparable to the B+tree average node

storage utilization (about 67%) and worst node storage

utilization of 33%. But under certain patterns of record

insertions, even the hB-tree can have average node

utilization close to 50%. In the k-dimensional paradigm,

it is not always possible to merge and re-split nodes as

in the 1-dimensional case of the B+tree, because the

notions of the “next” and “previous” sibling nodes

cannot be defined. Redistribution of entries among

nodes is much more complicated, and, depending on the

index at hand, involves complicated updates on the

corresponding index terms of the participating nodes.

B. KDB-tree and hB-tree

In both the KDB-tree and the hB-tree, data nodes, i.e.,

leaf level index nodes, contain the k-dimensional points

or data terms for those points (in the case of secondary

indexes). In a way analogous to the B+tree, when a data

node becomes overfull because of insertions of new

points, it has to be split. After the split we end up with

two data nodes, the initial one occupying the same disk

page and a new one occupying a new disk page. This

process is repeated continuously, every time a data node

becomes overfull.

The KDB-tree splits data nodes always using a

single attribute, thus all data nodes are hyper-rectangles

(or bricks). Also, internal nodes, i.e., index nodes above

the leaf level, are split either at the root of their internal

kd-tree, thus by a hyperplane, or by using some other

splitting attribute to achieve balanced splits at the cost

of downward propagation of splits. The KDB-tree does

not have any guarantees on node storage utilization.

The hB-tree is an improvement of the KDB-tree,

since it guarantees an average node storage utilization of

67% by splitting nodes at a 1:2 ratio in the worst case

(compare this with B+tree’s 1:1 ratio). This can be

achieved both in the internal nodes that contain index

terms in the form of kd-trees and in the data nodes that

contain data entries. In Lomet and Salzberg (1990), it is

shown that a 1:2 split ratio is always possible. In

internal nodes, an appropriate kdsubtree is extracted

from the overfull node. In data nodes, it may be

necessary to use more than one attributes to achieve

such a split. The overfull node and the newly extracted

node can be hyper-rectangles from which smaller hyper

Figure 1: An example hB-tree

rectangles have been extracted, thus the name holey-

Brick-tree (hB-tree). -

In Figure 1, an hB-tree with two levels is shown. It

contains 5 data nodes and an internal node R, that is the

root of the hB-tree. R contains the index terms for its 5

children in the form of a kd-tree. Let’s assume that the

last split that happened was the one that extracted node

E from node A. Before the split, kdtree node x7 in R

had a left pointer to data node A. The index term

consisting of kd-tree node x3 (namely, the attribute and

attribute value that were used to split A and extract E)

was merged in the kd-tree of R to describe the new

space decomposition.

C. Splitting attribute selection policy

When splitting overfull data nodes the goal is (a) to

minimize the cost of future range queries, and, (b) to

maximize average node storage utilization. The second

goal, although it creates smaller trees, it may conflict

with the first goal. This is because, good node storage

utilization can lead to poor k-dimensional space

partitioning.

For good space partitioning, the obvious approach is

to split the space of the data node in half along the

longest edge (attribute) and to ignore the distribution of

the points in the node. The resulting data nodes will

index the same amount of space and will have regular

shapes, i.e., edges of similar lengths. Thus, they will

have the same probability of receiving new insertions of

points or of being visited by subsequent range queries.

The drawback of this approach is that we may end up

having nodes with low or zero storage utilization.

Alternatively, one may choose to achieve the best

possible node storage utilization by always trying to

achieve 1:1 point splits, at the cost of bad space

partitioning.

In Outsios and Evangelidis (2010), we experimented

with various splitting attribute selection policies for data

nodes. In this paper we choose the policy that uses the

best attribute for even point split and best possible space

split. This works as follows. Choose the attribute that

achieves the most even point split. In case of ties,

choose the attribute that splits along the longest edge.

By splitting along the longest edge, we favor hyper-

rectangles that are as close as possible to hyper-cubes.

The goal is to minimize the cost of range queries by

avoiding peculiar shaped subspaces.

32 INTEGRATED INFORMATION

III. NEW SPLITTING APPROACH

We focus our attention to the leaf level of the index,

since the data nodes are the majority of the nodes in the

tree index.

When splitting data nodes we should aim at:

1. Splitting the data node as evenly as possible

both in terms of points (to improve node

storage utilization) and space (to improve

range query performance). We achieve this by

using the best attribute for even point split,

and, at the same time, the best possible space

split.

2. Posting the most compact index term possible

to minimize the number of the internal index

nodes. We achieve this by always performing

hyperplane splits. Thus, we minimize the size

of the index terms, and the resulting data nodes

are always hyper-bricks.

To further improve the performance under non-

uniform data insertion patterns, we propose a new way

for dealing with overfull nodes. We first define the

terms paired and single data nodes. To illustrate the

term paired, we examine Figure 1. Data nodes E and A

are paired since they are pointed by the same kd-tree

node in the kd-tree of their parent R. Data nodes C and

D are also paired, whereas, data node B is considered to

be single.

The idea is to exploit the structure of the kd-tree in

the internal index nodes right above the data nodes, in

order to identify data nodes that can re-distribute their

contents. Following such an approach, leads to delayed

splits of overfull nodes until their paired node becomes

overfull, too.

IV. EXPERIMENTAL EVALUATION

We tested our splitting approach against the standard

splitting algorithm of the hB-tree. The tested variations

were the following:

m1 Original hB-tree data node splitting algorithm: do

not use any redistribution scheme. When a node

becomes full, split it.

m2 Redistribute among paired nodes and eventually

split: Paired nodes delay splitting by redistribut-

ing their contents with their paired sibling. Only

when both nodes in a pair become full, the one

that overflows, splits. Single nodes split when

full.

Table 1: Experiment parameters and values

Table 1 lists the parameters of the experiments and

the values we used.

We used relatively small node sizes in order to build

hB-trees with many levels and stress our algorithms.

Notice that the data node size is a ected by the di-

mensionality of the points, i.e., 10 2-dim points occupy

1/10th of the space occupied by 10 20-dim points.

Also, we assumed that there are no deletions of

points. The index only grows in time. To achieve the

desired range query windows, we generated hypercube

queries that covered 0.01% of the k-dimensional space.

Thus, for 100K uniformly distributed points, we expect

the query window to contain 10 points.

In Table 2, we compare the splitting methods m1

and m2 on average data node storage utilization and

range query e ciency (in terms of average number of

visited pages to answer 100 random queries with 0.01%

selectivity).

We use 100K uniformly distributed points with uni-

form insertion pattern and we vary dimensionality. Us-

ing small node sizes we build trees with 7 levels. We

observe that m1 and m2 have comparable node storage

utilization across dimensions, but, as expected, m2

builds slightly smaller trees, i.e., with fewer data nodes.

Thus, m2 performs slightly better in terms of average

data node storage utilization and average number of

accessed nodes per range query.

Next, we focus on node storage utilization when us-

ing a block insertion pattern, i.e., when a random data

node is chosen and all incoming points target that node

until the node splits. Then, another random data node is

chosen, and so on. In this experiment, we fix the di-

mensionality to 6 and we vary the node sizes. Table 3,

demonstrates that m1 achieves a node storage utilization

slightly above 50%, whereas, m2 achieves very good

average data node storage utilization. Thus, the average

number of accessed nodes per range query is

considerably lower.

V. CONCLUSION

We proposed a new data node splitting method for the

hB-tree or the KDB-tree. Since data nodes comprise the

majority of nodes in a tree index, higher data node

storage utilization can improve search performance.

There is a need for indexes in medium dimensionality

that can e ciently answer kNN queries.

Parameter Values

attribute value range [0, 1]

k=dimensionality 2 – 15

database size 100K points

DNS=data node sizes 10 – 100 points

INS=internal node sizes 5 – 50 kd-tree nodes

insertion patterns uniform and block

range query space selectivity 0.01%

ADVANCES ON INFORMATION PROCESSING AND MANAGEMENT 33

Table 2: Node storage utilization and query efficiency per splitting method for uniform data and insertion pattern and varying dimensionality

Table 3: Node storage utilization per splitting method for uniform data, block insertion pattern and varying node sizes

So, we examined whether our splitting method

improves the performance of the above mentioned

indexes.

We defined the notion of paired data nodes, and we

used this notion to propose the new splitting method.

Our experiments show that redistribution works really

well and improves data node storage utilization and

range query performance.

REFERENCES

Beckmann, N., Kriegel, H.-P., Schneider, R., and

Seeger, B. (1990). The r*-tree: an e cient and ro-

bust access method for points and rectangles. In

Proceedings of the 1990 ACM SIGMOD interna-

tional conference on Management of data,

SIGMOD ’90, pages 322–331, New York, NY,

USA. ACM.

Berchtold, S., Bohm, C., and Kriegal, H.-P. (1998). The

pyramid-technique: towards breaking the curse of

dimensionality. In Proceedings of the 1998 ACM

SIGMOD international conference on Management

of data, SIGMOD ’98, pages 142–153, New York,

NY, USA. ACM.

Comer, D. (1979). Ubiquitous b-tree. ACM Comput.

Surv., 11:121–137.

Evangelidis, G., Lomet, D., and Salzberg, B. (1997).

The hb
7

-tree: a multi-attribute index supporting

concurrency, recovery and node consolidation. The

VLDB Journal, 6:1–25.

Knuth, D. E. (1973). The Art of Computer Program-

ming, Vol 3, Sorting and Searching. Addison-

Wesley Publ. Co., Reading, MA, USA.

Lomet, D. B. and Salzberg, B. (1990). The hb-tree: a

multiattribute indexing method with good guar-

anteed performance. ACM Trans. Database Syst.,

15:625–658.

Outsios, E. and Evangelidis, G. (2010). Achieving

optimal average data node storage utilization in k-

dimensional point data indexes. In Proceedings of

the 5th International Scientific Conference, eRA:

The Contribution of Information Technology to

Science, Economy, Society and Education, Piraeus,

Greece.

Robinson, J. T. (1981). The k-d-b-tree: a search struc-

ture for large multidimensional dynamic indexes.

In Proceedings of the 1981 ACM SIGMOD

international conference on Management of data,

SIGMOD ’81, pages 10–18, New York, NY, USA.

ACM.

Yao, A. C.-C. (1978). On random 23 trees. Acta In-

formatica, 9:159–170. 10.1007/BF00289075.

Zhou, P. and Salzberg, B. (2008). The hb-pi* tree: An

optimized comprehensive access method for

frequent-update multi-dimensional point data. In

Proceedings of the 20th international conference on

Scientific and Statistical Database Management,

SSDBM ’08, pages 331–347, Berlin, Heidelberg.

Springer-Verlag.

splitting

method k INS DNS nodes per tree level

utilization

(%)

average nodes

accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64

m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65

m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72

m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39

m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38

m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81

m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87

m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting

method k INS DNS nodes per tree level

utilization

(%)

average nodes

accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64

m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65

m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72

m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39

m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38

m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81

m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87

m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting

method k INS DNS nodes per tree level

utilization

(%)

average nodes

accessed

m1 2 5 10 1,2,8,36,173,730,3211,13946 71,71 4,64

m2 2 5 10 1,2,8,37,160,720,3118,13606 73,5 4,65

m1 3 5 10 1,2,9,42,173,743,3212,13956 71,65 9,72

m2 3 5 10 1,2,9,40,166,719,3157,13591 73,58 9,39

m1 10 5 10 1,2,8,33,163,757,3284,13929 71,79 877,38

m2 10 5 10 1,2,8,33,153,701,3144,13599 73,53 860,81

m1 15 5 10 1,2,8,39,184,808,3396,14171 70,57 14005,87

m2 15 5 10 1,2,9,39,178,794,3364,14183 70,51 13859,64

splitting

method k INS DNS nodes per tree level

utilization

(%)

average nodes

accessed

m1 6 5 10 1,4,15,57,231,974,3954,16666 54,55 1254,37

m2 6 5 10 1,2,8,35,151,640,2821,12352 73,6 1038,52

m1 6 25 50 1,15,219,3920 51,03 447,47

m2 6 25 50 1,8,156,2841 70,41 372,11

m1 6 50 100 1,2,62,1980 50,52 284,84

m2 6 50 100 1,43,1422 70,34 243,26

