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Abstract: In this paper, we focus on the leaf level 

nodes of tree-like k-dimensional indexes that store the 

data entries, since those nodes represent the majority of 

the nodes in the index. We propose a generic node 

splitting approach that defers splitting when possible 

and instead favors merging of a full node with an ap-

propriate sibling and then re-splitting of the resulting 

node. Our experiments with the hB-tree, show that the 

proposed splitting approach achieves high average 

node storage utilization regardless of data distribution, 

data insertion patterns and dimensionality.  
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I. INTRODUCTION  

Lately, with the increased interest in Data Mining, in-

dexing of k-dimensional vectors has become essential 

when dealing with kNN classification. Brute force ap-

plication of kNN classification on large databases in-

volves as many computations of distances as the size of 

the database, since one has to find the k closest points to 

the query point. Data reduction and/or data di-

mensionality reduction techniques are used to reduce 

the computational cost, but they usually decrease the 

accuracy of the kNN classifier. Alternatively, indexing 

can be used to reduce the linear cost of searching to 

logarithmic. Unfortunately, all high-dimensional in-

dexes su er from the “dimensionality curse” problem. It 

has been shown that above 8 dimensions, most indexes 

perform no better than the exhaustive sequential search 

of the whole database when answering kNN queries 

(Berchtold et al., 1998).  

For very large high-dimensional datasets, the most 

sensible approach to kNN classification is a combina-

tion of a data dimensionality reduction technique, to 

reduce the dimensions down to 8 to 16, and then, the 

use of a high dimensional point index. That is why the 

quest for e cient indexes in medium to low dimensions 

has regained the interest of the research community. 

E cient indexes should not be a ected by the 

cardinality of the dataset, the data distribution, the 

dimensionality, and the insertion patterns. Since the 

kNN classifier is a model-free classifier, new insertions 

in the dataset should dynamically update the model, i.e., 

the index, without a ecting its performance.  

 

 

Indexes with guarantees in node storage utilization, 

obviously, lead to better query performance, since fewer 

nodes (disk pages) are visited to answer a query. kNN 

queries are a specialization of range queries and require 

visiting of multiple leaf or data level nodes of the index, 

where rids of the points or the points themselves are 

stored.  

In this paper, we deal with tree-like k-dimensional 

indexes that partition the space in non-overlapping 

subspaces, like the KDB-tree (Robinson, 1981) or the 

hB-tree (Lomet and Salzberg, 1990; Evangelidis et al., 

1997). The hB-tree and the hB-pi* tree (Zhou and 

Salzberg, 2008), a variation that also indexes empty 

space, have been recently shown to outperform the R*-

tree (Beckmann et al., 1990), the most well known 

spatial index. We focus on their leaf or data level index 

nodes since those nodes represent the majority of the 

index nodes. We propose a generic node splitting 

approach that delays data node splitting when possible 

and instead favors redistribution of the contents of a full 

node with an appropriate sibling. Our experiments with 

the hB-tree, show that the proposed splitting approach 

achieves high node storage utilization and good range 

query performance.  

In Section II, we present related work in improving 

data node storage utilization and provide a short de-

scription of the KDB-tree and the hB-tree. We also 

present a policy for selecting the splitting attribute in 

high dimensional indexes. We propose a new data node 

splitting method in Section III, and we present 

experimental results in Section IV. Finally, we conclude 

the paper in Section V.  

II. RELATED WORK  

In this section, we review the approaches that have been 

proposed in the literature for improving storage 

utilization. First, we discuss the 1-dimensional case with 

the B+tree, and then, we briefly describe the structure of 

the hB-tree and the KDB-tree. Finally, we give some 

insight on how splitting attribute selection policies can 

improve storage utilization and range query 

performance, when splitting data nodes.  

A. Data node storage utilization  

For the B+tree, there are many ways to increase node 

storage utilization (Comer, 1979). For example, Knuth 

(1973), proposes to delay splitting by locally 

redistributing the contents of nodes until two sibling 

nodes become full. Then the two full nodes are split into 

three nodes with a node storage utilization of at least 

66%, an improvement over the 50% storage utilization 

of the B+tree. Although the average node storage 

utilization remains una ected and about 69% (� ln2) 

for uniform data distributions (Yao, 1978), this 

approach achieves better storage utilization for non-

uniform data distributions.  
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In addition, even for uniform data distributions, in-

dex performance is a ected by the way data points are 

inserted in the index. For random (uniform) insertion 

patterns there is no di erence on the way nodes are 

split. As long as nodes are split in a 1:1 ratio, average 

storage utilization is close to 69%. But under di erent 

patterns of insertion, for example, block insertions, 

where incoming points are inserted to a particular node 

until that node splits, average storage utilization can 

degrade considerably.  

The picture is quite di erent when indexing in high 

dimensions. Almost all of the proposed k-dimensional 

indexes do not provide such guarantees. Only the hB-

tree, that splits its nodes in a 1:2 ratio in the worst case, 

achieves a comparable to the B+tree average node 

storage utilization (about 67%) and worst node storage 

utilization of 33%. But under certain patterns of record 

insertions, even the hB-tree can have average node 

utilization close to 50%. In the k-dimensional paradigm, 

it is not always possible to merge and re-split nodes as 

in the 1-dimensional case of the B+tree, because the 

notions of the “next” and “previous” sibling nodes 

cannot be defined. Redistribution of entries among 

nodes is much more complicated, and, depending on the 

index at hand, involves complicated updates on the 

corresponding index terms of the participating nodes.  

B. KDB-tree and hB-tree  

In both the KDB-tree and the hB-tree, data nodes, i.e., 

leaf level index nodes, contain the k-dimensional points 

or data terms for those points (in the case of secondary 

indexes). In a way analogous to the B+tree, when a data 

node becomes overfull because of insertions of new 

points, it has to be split. After the split we end up with 

two data nodes, the initial one occupying the same disk 

page and a new one occupying a new disk page. This 

process is repeated continuously, every time a data node 

becomes overfull.  

The KDB-tree splits data nodes always using a 

single attribute, thus all data nodes are hyper-rectangles 

(or bricks). Also, internal nodes, i.e., index nodes above 

the leaf level, are split either at the root of their internal 

kd-tree, thus by a hyperplane, or by using some other 

splitting attribute to achieve balanced splits at the cost 

of downward propagation of splits. The KDB-tree does 

not have any guarantees on node storage utilization.  

The hB-tree is an improvement of the KDB-tree, 

since it guarantees an average node storage utilization of 

67% by splitting nodes at a 1:2 ratio in the worst case 

(compare this with B+tree’s 1:1 ratio). This can be 

achieved both in the internal nodes that contain index 

terms in the form of kd-trees and in the data nodes that 

contain data entries. In Lomet and Salzberg (1990), it is 

shown that a 1:2 split ratio is always possible. In 

internal nodes, an appropriate kdsubtree is extracted 

from the overfull node. In data nodes, it may be 

necessary to use more than one attributes to achieve 

such a split. The overfull node and the newly extracted 

node can be hyper-rectangles from which smaller hyper  

Figure 1: An example hB-tree 

 

rectangles have been extracted, thus the name holey-

Brick-tree (hB-tree). -  

In Figure 1, an hB-tree with two levels is shown. It 

contains 5 data nodes and an internal node R, that is the 

root of the hB-tree. R contains the index terms for its 5 

children in the form of a kd-tree. Let’s assume that the 

last split that happened was the one that extracted node 

E from node A. Before the split, kdtree node x7 in R 

had a left pointer to data node A. The index term 

consisting of kd-tree node x3 (namely, the attribute and 

attribute value that were used to split A and extract E) 

was merged in the kd-tree of R to describe the new 

space decomposition.  

C. Splitting attribute selection policy  

When splitting overfull data nodes the goal is (a) to 

minimize the cost of future range queries, and, (b) to 

maximize average node storage utilization. The second 

goal, although it creates smaller trees, it may conflict 

with the first goal. This is because, good node storage 

utilization can lead to poor k-dimensional space 

partitioning.  

For good space partitioning, the obvious approach is 

to split the space of the data node in half along the 

longest edge (attribute) and to ignore the distribution of 

the points in the node. The resulting data nodes will 

index the same amount of space and will have regular 

shapes, i.e., edges of similar lengths. Thus, they will 

have the same probability of receiving new insertions of 

points or of being visited by subsequent range queries. 

The drawback of this approach is that we may end up 

having nodes with low or zero storage utilization. 

Alternatively, one may choose to achieve the best 

possible node storage utilization by always trying to 

achieve 1:1 point splits, at the cost of bad space 

partitioning.  

In Outsios and Evangelidis (2010), we experimented 

with various splitting attribute selection policies for data 

nodes. In this paper we choose the policy that uses the 

best attribute for even point split and best possible space 

split. This works as follows. Choose the attribute that 

achieves the most even point split. In case of ties, 

choose the attribute that splits along the longest edge. 

By splitting along the longest edge, we favor hyper-

rectangles that are as close as possible to hyper-cubes. 

The goal is to minimize the cost of range queries by 

avoiding peculiar shaped subspaces.  
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III. NEW SPLITTING APPROACH  

We focus our attention to the leaf level of the index, 

since the data nodes are the majority of the nodes in the 

tree index.  

When splitting data nodes we should aim at:  

1. Splitting the data node as evenly as possible 

both in terms of points (to improve node 

storage utilization) and space (to improve 

range query performance). We achieve this by 

using the best attribute for even point split, 

and, at the same time, the best possible space 

split.  

2. Posting the most compact index term possible 

to minimize the number of the internal index 

nodes. We achieve this by always performing 

hyperplane splits. Thus, we minimize the size 

of the index terms, and the resulting data nodes 

are always hyper-bricks.  

To further improve the performance under non-

uniform data insertion patterns, we propose a new way 

for dealing with overfull nodes. We first define the 

terms paired and single data nodes. To illustrate the 

term paired, we examine Figure 1. Data nodes E and A 

are paired since they are pointed by the same kd-tree 

node in the kd-tree of their parent R. Data nodes C and 

D are also paired, whereas, data node B is considered to 

be single.  

The idea is to exploit the structure of the kd-tree in 

the internal index nodes right above the data nodes, in 

order to identify data nodes that can re-distribute their 

contents. Following such an approach, leads to delayed 

splits of overfull nodes until their paired node becomes 

overfull, too.  

IV. EXPERIMENTAL EVALUATION  

We tested our splitting approach against the standard 

splitting algorithm of the hB-tree. The tested variations 

were the following:  

m1 Original hB-tree data node splitting algorithm: do  

not use any redistribution scheme. When a node  

becomes full, split it.  

m2 Redistribute among paired nodes and eventually 

split: Paired nodes delay splitting by redistribut-

ing their contents with their paired sibling. Only 

when both nodes in a pair become full, the one 

that overflows, splits. Single nodes split when 

full.  

 

 

 

 

 

Table 1: Experiment parameters and values  

 

Table 1 lists the parameters of the experiments and 

the values we used.  

We used relatively small node sizes in order to build 

hB-trees with many levels and stress our algorithms. 

Notice that the data node size is a ected by the di-

mensionality of the points, i.e., 10 2-dim points occupy 

1/10th of the space occupied by 10 20-dim points.  

Also, we assumed that there are no deletions of 

points. The index only grows in time. To achieve the 

desired range query windows, we generated hypercube 

queries that covered 0.01% of the k-dimensional space. 

Thus, for 100K uniformly distributed points, we expect 

the query window to contain 10 points.  

In Table 2, we compare the splitting methods m1 

and m2 on average data node storage utilization and 

range query e ciency (in terms of average number of 

visited pages to answer 100 random queries with 0.01% 

selectivity).  

We use 100K uniformly distributed points with uni-

form insertion pattern and we vary dimensionality. Us-

ing small node sizes we build trees with 7 levels. We 

observe that m1 and m2 have comparable node storage 

utilization across dimensions, but, as expected, m2 

builds slightly smaller trees, i.e., with fewer data nodes. 

Thus, m2 performs slightly better in terms of average 

data node storage utilization and average number of 

accessed nodes per range query.  

Next, we focus on node storage utilization when us-

ing a block insertion pattern, i.e., when a random data 

node is chosen and all incoming points target that node 

until the node splits. Then, another random data node is 

chosen, and so on. In this experiment, we fix the di-

mensionality to 6 and we vary the node sizes. Table 3, 

demonstrates that m1 achieves a node storage utilization 

slightly above 50%, whereas, m2 achieves very good 

average data node storage utilization. Thus, the average 

number of accessed nodes per range query is 

considerably lower.  

V. CONCLUSION  

We proposed a new data node splitting method for the 

hB-tree or the KDB-tree. Since data nodes comprise the 

majority of nodes in a tree index, higher data node 

storage utilization can improve search performance. 

There is a need for indexes in medium dimensionality 

that can e ciently answer kNN queries. 

 

Parameter  Values  

attribute value range  [0, 1]  

k=dimensionality  2 – 15  

database size  100K points  

DNS=data node sizes  10 – 100 points  

INS=internal node sizes  5 – 50 kd-tree nodes  

insertion patterns  uniform and block  

range query space selectivity  0.01%  
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Table 2: Node storage utilization and query efficiency per splitting method for uniform data and insertion pattern and varying dimensionality 

 

 

 

 

 

Table 3: Node storage utilization per splitting method for uniform data, block insertion pattern and varying node sizes 

So, we examined whether our splitting method 

improves the performance of the above mentioned 

indexes.  

We defined the notion of paired data nodes, and we 

used this notion to propose the new splitting method. 

Our experiments show that redistribution works really 

well and improves data node storage utilization and 

range query performance.  
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splitting 

method  k  INS  DNS  nodes per tree level  

utilization 

(%)  

average nodes 

accessed  

m1  2  5  10  1,2,8,36,173,730,3211,13946  71,71  4,64  

m2  2  5  10  1,2,8,37,160,720,3118,13606  73,5  4,65  

m1  3  5  10  1,2,9,42,173,743,3212,13956  71,65  9,72  

m2  3  5  10  1,2,9,40,166,719,3157,13591  73,58  9,39  

m1  10  5  10  1,2,8,33,163,757,3284,13929  71,79  877,38  

m2  10  5  10  1,2,8,33,153,701,3144,13599  73,53  860,81  

m1  15  5  10  1,2,8,39,184,808,3396,14171  70,57  14005,87  

m2  15  5  10  1,2,9,39,178,794,3364,14183  70,51  13859,64  

splitting 

method  k  INS  DNS  nodes per tree level  

utilization 

(%)  

average nodes 

accessed  

m1  2  5  10  1,2,8,36,173,730,3211,13946  71,71  4,64  

m2  2  5  10  1,2,8,37,160,720,3118,13606  73,5  4,65  

m1  3  5  10  1,2,9,42,173,743,3212,13956  71,65  9,72  

m2  3  5  10  1,2,9,40,166,719,3157,13591  73,58  9,39  

m1  10  5  10  1,2,8,33,163,757,3284,13929  71,79  877,38  

m2  10  5  10  1,2,8,33,153,701,3144,13599  73,53  860,81  

m1  15  5  10  1,2,8,39,184,808,3396,14171  70,57  14005,87  

m2  15  5  10  1,2,9,39,178,794,3364,14183  70,51  13859,64  

splitting 

method  k  INS  DNS  nodes per tree level  

utilization 

(%)  

average nodes 

accessed  

m1  2  5  10  1,2,8,36,173,730,3211,13946  71,71  4,64  

m2  2  5  10  1,2,8,37,160,720,3118,13606  73,5  4,65  

m1  3  5  10  1,2,9,42,173,743,3212,13956  71,65  9,72  

m2  3  5  10  1,2,9,40,166,719,3157,13591  73,58  9,39  

m1  10  5  10  1,2,8,33,163,757,3284,13929  71,79  877,38  

m2  10  5  10  1,2,8,33,153,701,3144,13599  73,53  860,81  

m1  15  5  10  1,2,8,39,184,808,3396,14171  70,57  14005,87  

m2  15  5  10  1,2,9,39,178,794,3364,14183  70,51  13859,64  

splitting 

method  k  INS  DNS  nodes per tree level  

utilization 

(%)  

average nodes 

accessed  

m1  6  5  10  1,4,15,57,231,974,3954,16666  54,55  1254,37  

m2  6  5  10  1,2,8,35,151,640,2821,12352  73,6  1038,52  

m1  6  25  50  1,15,219,3920  51,03  447,47  

m2  6  25  50  1,8,156,2841  70,41  372,11  

m1  6  50  100  1,2,62,1980  50,52  284,84  

m2  6  50  100  1,43,1422  70,34  243,26  


