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Abstract: The problem of indexing large volumes of 

high dimensional data is an important and popular 

issue in the area of database management. There are 

many indexing methods that behave well in low 

dimensional spaces, but, in high dimensionalities, the 

phenomenon of the curse of dimensionality renders all 

indexes useless. For example, when issuing range 

queries almost all of the index pages have to be 

retrieved for answering these queries. In this paper we 

review the state-of-the-art research regarding high 

dimensional spaces and we demonstrate the 

dimensionality curse phenomenon using the TPIE KDB-

tree implementation. 
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I.INTRODUCTION 

The term “curse of dimensionality” describes the rapid 

deterioration in the performance of high dimensional 

indexes as the number of variables (or dimensions) 

increases. When range or k-nearest neighbor queries are 

issued in high dimensional spaces, most (if not all) of 

the pages of the indexing structures that are employed to 

store the high dimensional points are visited, and the 

good performing in low dimensional spaces indexing 

methods, end up behaving as the plain sequential scan.  

 One of the classical indexing methods is the 

KDB-tree (Robinson, 1981) with TPIE (Arge et al, 

2002) being one of his most efficient implementations. 

The KDB-tree combines some of the properties of the 

adaptive k-d-tree (Bentley, 1975) and the B-tree to 

handle multidimensional points. Each interior node 

corresponds to an interval-shaped region. Regions 

corresponding to nodes at the same tree level are 

mutually disjoint; their union is the complete universe. 

The leaf nodes store the data points that are located in 

the corresponding partition. Like the B-tree, the KDB-

tree is a perfectly balanced tree that adapts well to the 

distribution of data. 

 In Section II, we present some observations 

regarding the dimensionality curse phenomenon. In 

Section III, we discuss the concentration phenomenon 

and in Section IV, we demonstrate the behavior of the 

KDB-tree in high dimensions. We conclude in Section 

V. 

II.THE CURSE OF DIMENSIONALITY 

The following phenomena give an insight to the notion 

of the dimensionality curse. See Weber et al. (1998) for 

further details. 

 1. The partitioning schemes usually split the 

data space in each dimension in two halves. With d 

dimensions there are 2
d 
partitions. With d<=10 and N on 

the order of 10
6 

such a partition makes sense. However 

if d is larger, say d=100, there are around 10
30

 partitions 

for only 10
6
 points. An overwhelming number of 

partitions are empty. 

 

 2. If we consider a hypercube range query with 

length s in all d dimensions the probability that a point 

lies within that range query is given by P
d
[s]=s

d
. This 

probability function is plotted in Fig. 1 below. From the 

formula, directly follows that even very large range 

queries are not likely to contain a point. At d=100 a 

range query with length 0.95 selects 0,59% of the data 

points. This hypercube range query can be placed 

anywhere in the data space Ω. Thus, we conclude that 

the data space is sparsely populated. 

 

 

 3. The largest spherical query that fits entirely 

within the data space is the query sp
d
(Q,0.5) where Q is 

the centroid of the data space. The probability that an 

arbitrary point R lies within this sphere is given by the 

sphere volume 

 

The relative volume of the sphere shrinks markedly as 

the dimensionality grows and it increasingly becomes 

improbable that any point will be found within this 

sphere at all. Table 1 shows this probability for various 

numbers of dimensions. 

 

 4. From the probability equation given above, 

one can determine a size a data set would have to have 

Figure 1. Plotting the probability that a hypercube query with side s 

contains a point. 
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such that on average at least one point falls into the 

sphere sp
d
(Q,0.5) (for even d). This is given in the 

following equation: 

 

 

 

Table 1 enumerates this function for various numbers of 

dimensions. The number of points needed explodes 

exponentially. At d=20, a database must contain at least 

40 million points in order to ensure that on average at 

least one point lies within this sphere. 

 

D P[R ε sp
d
(Q,0.5)] N(d) 

2 0.785 1.273 

4 0.308 3.242 

10 0.002 401.5 

20 2.461 * 10-8 40,631,627 

40 3.278 * 10-21 3.050 * 1020 

100 1.868 * 10-70 5.353 * 1069 

Table 1. Probability that a point is in the largest hyper-sphere 

  

 5. The expected Nearest Neighbor distance 

between two points in a data space Ω is given by the 

following formula 

 

 

 

 

where Q is the query point. Based on this formula, and 

if one estimates it with the Monte Carlo method, one 

finds that NN distance grows steadily with d, and except 

trivially small data sets, the objects are widely scattered 

and the probability of being able to identify a good 

partitioning of the data space diminishes. 

 

 6. Finally, due to the dimensionality curse 

phenomenon, as we will demonstrate in our experiments 

with the KDB-tree, when a range query is performed 

nearly all data pages have to be accessed in order to 

obtain the answer. This equals almost to a sequential 

scan. 

III.CONCENTRATION PHENOMENON 

The concentration phenomenon can be stated as follows 

(Ledoux, 2001): in high dimensional spaces all pairwise 

distances between points seem identical. Here, we'll 

study the concentration of the distances through the 

concentration of the norm. If we have n points with d 

dimensions each, taking values from the unit cube [0,1]
d
 

and we then consider their norms ||x||, the values of ||x|| 

are bounded in the interval [0,M], where M=||(1,1,....1)||.  

 Let us consider the euclidean norm M=sqrt(d). 

If we plot the minimum observed value and the 

maximum observed value, we observe that in low 

dimensions these values are close to the bounds of the 

domain of the norm, respectively 0 and sqrt(d). Also, 

the average value of the norm increases with the 

dimension, whereas the standard deviation seems rather 

constant. When the dimension is large (above 10) the 

minimum and maximum observed values tend to move 

away from the bounds. When the number of points are, 

for example, 100000 all the observed norms seem to 

concentrate in a small portion of their domain. In 

addition this portion gets smaller and smaller as the 

dimension grows when compared to the size of the total 

domain. 

 The Minkowski norms form a family of norms 

parametrized by their exponent p=1,2,3.... 

 

 

 

 

 

When 0<p<1, the triangle inequality does not hold so 

these norms are called prenorms or fractional norms. 

Actually, the inequality is reversed. A consequence is 

that the straight line is no longer the smallest path 

between two points. Fig. 2 depicts 2D unit balls (that is 

the set of x
j
 for which ||x

j
||=1) for various values of p. 

We see that for p>=1 the balls are convex and for 0<p<1 

they are not. 

 

A. Concentration of the euclidean norm 

If X is in R
d
 and is a random vector with independent 

and identically distributed components, and Xi follows 

distribution F, then  

 

 

where 

a and b 

are constants that do not depend on the dimension 

(François et al., 2007; Aggarwal, 2001). This holds for 

 
Figure 2. 2D-Unit Balls. 
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any kind of distribution. Different distributions will lead 

to different values for a and b but the asymptotic results 

remain.  

 This shows that the expectation of the 

euclidean norm of random vectors increases as the 

square root of the dimension, whereas its variance is 

constant and independent of the dimension. Therefore, 

when the dimension is large the variance of the norm is 

very small compared with its expected value. Also when 

the dimension is large vectors seem normalized. The 

relative error made while considering E(||X||2) instead of 

the real value of ||X||2 becomes negligible. As a 

consequence, high dimensional vectors appear to be 

distributed on a sphere of radius E(||X||2).  

 Since the euclidean distance is the norm of the 

difference between two random vectors, it's expectation 

and variance follow the two above laws and pairwise 

distances between points in high dimensional spaces 

seem to be all identical. Finally, if Xi are not 

independent the results are still valid provided that we 

replace d with the actual number of degrees of freedom.

 In contrast to the work of Demartines (1994), 

where a data set X consists of n independent draws x
j 

from a single random vector X, Beyer (1999) considers 

n random vectors P
j
 where a dataset is made of one 

realization of each random vector. Beyer’s theorem 

states that if P
j
 1<=j<=n are n d-dimensional 

independent and identically distributed random vectors 

and if 

 

 

 

 

 

 then for any ε>0 

 

 

 

 

 

This is explained as follows. Suppose there are a set of n 

data points randomly distributed in the d-dimensional 

space and some query points are supposed to be located 

at the origin without loss of generality. Then, if the 

above hypothesis is satisfied, independent of the 

distribution of the components of the Pj, the difference 

between the largest and smallest distances to the query 

point becomes smaller and smaller when compared with 

the smallest distance when the dimension increases. The 

ratio 

 

 

 

 

is called the relative contrast. 

 So, Beyer concluded that all points are located 

at approximately the same distance from the query 

point. Thus, the concept of NN in a high dimensional 

space is less intuitive than in a lower dimensional one. 

B. Concentration of Minkowski norms 

There is the theorem of Hinneburg (François et al., 

2007; Aggarwal et al., 2001), that states the following: 

let P
j
 1<=j<=n, n d-dimensional independent and 

identically distributed random vectors and ||.||p the 

Minkowski norm with exponent p. If the P
j 

are 

distributed in [0,1]
d
 then there exists a constant Cp 

independent of the distribution of the P
j 
such that 

 

Then, there is the suprising fact that on average the  

 

 

 

contrast grows 

as d
1/p-1/2

. As a result, the contrast converges to a 

constant when the dimension increases and when the 

euclidean distance is used. For the L1 norm, it increases 

as sqrt(d), for the euclidean norm (p=2) it remains 

constant and for norms with p>=3 it tends towards zero. 

Thus, the conclusion is that for Lp metrics with p>=3 the 

NN search in a high dimensional space tends to be 

meaningless. In other words, distance loses its 

discriminative power between the notions of close and 

far. So, on average the ratio between the contrast and 

d
1/p-1/2

 is bounded and these bounds depend on the value 

of p. Furthermore, if the number of points n is large, the 

upper bound may be very large too. This value is much 

closer though to the lower bound than to the upper 

bound. 

C. Concentration of fractional norms 

Aggarwal extended Hinneburg's result to fractional p-

norms (François et al., 2007; Aggarwal et al., 2001). 

The theorem states that if P
j
 1<=j<=n are n d-

dimensional independent random vectors distributed 

over [0,1]
d
 then there exists a constant C independent of 

p and d such that 

Aggarwal notes that the constant sqrt(1/(2p+1)) may 

play a valuable role in affecting the relative contrast and 

confirmed it experimentally with synthetic data sets. It 

was also concluded that on average fractional norms 

provide better contrast than Minkowski norms in terms 

of relative distance. Finally, Skala (2005) showed that 

the ratio 
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increases linearly with the dimension d. Here X is a 

random vector whose components are independent and 

identically distributed. 

IV.EXPERIMENTS 

Figures 3 and 4 demonstrate how the TPIE KDB-tree 

(Arge et al., 2002) behaves when the data set size is 

20,000 and 1,000,000 points and we perform range 

queries that contain the number of points shown (of 

course with the relevant side length in each dimension).  

 As low as in 8 dimensions TPIE KDB-tree 

must visit all the created nodes in order to find the 

desired number of points. This result demonstrates the 

appearance of the dimensionality curse phenomenon, 

since a plain sequential scan is more efficient than using 

the KDB-tree. When the dataset is 1,000,000 points this 

phenomenon occurs when the dimensionality is 16. 

 

Figure 3. Percentage of visited pages for varying query selectivity and 
dimensionality (N=20000) 

 
Figure 4. Percentage of visited pages for varying query selectivity and 

dimensionality (N=1,000,000) 

V. CONCLUSIONS 

In this paper we reviewed in depth the current findings 

on the study of high dimensional spaces. We gave many 

different explanations of the notion of the 

dimensionality curse. Finally, we demonstrated how the 

KDB-tree behaves in low to medium dimensions and 

how the dimensionality curse appears even in low 

dimensions and small database sizes.  

REFERENCES 

Charu C. Aggarwal: Re-designing Distance Functions 

and Distance-Based Applications for High 

Dimensional Data. SIGMOD Record 30(1): 13-18 

(2001a) 

Charu C. Aggarwal, Alexander Hinneburg, Daniel A. 

Keim: On the Surprising Behavior of Distance 

Metrics in High Dimensional Spaces. ICDT 2001: 

420-434 

Lars Arge, Octavian Procopiuc, Jeffrey Scott Vitter: 

Implementing I/O-efficient Data Structures Using 

TPIE. ESA 2002:88-100 

Jon Louis Bentley: Multidimensional Binary Search 

Trees Used for Associative Searching. Commun. 

ACM (CACM) 18(9):509-517 (1975) 

Kevin S. Beyer, Jonathan Goldstein, Raghu 

Ramakrishnan, Uri Shaft: When Is ''Nearest 

Neighbor'' Meaningful? ICDT 1999: 217-235 

Pierre Demartines, “Analyse de Donnees par Reseaux 

de Neurones Auto-Organises,” PhD dissertation, 

Institut Nat’l Polytechnique de Grenoble, Grenoble, 

France, 1994 (in French) 

Damien François, Vincent Wertz, Michel Verleysen: 

The Concentration of Fractional Distances. IEEE 

Trans. Knowl. Data Eng. 19(7): 873-886 (2007) 

Michel Ledoux: The Concentration of Measure Pheno-

menon. American Mathematical Society 2001 

John Robinson: The K-D-B-tree: a search structure for 

large multidimensional dynamic indexes, Sigmod 

1981  

M. Skala, “Measuring the Difficulty of Distance-Based 

Indexing,”Proc. 12th Int’l Conf. String Processing 

and Information Retrieval (SPIRE ’05), M.P. 

Consens and G. Navarro, eds., pp. 103-114, 

Nov.2005 

Roger Weber, Hans-Jörg Schek, Stephen Blott: A 

Quantitative Analysis and Performance Study for 

Similarity-Search Methods in High-Dimensional 

Spaces. VLDB 1998: 194-205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


