
S-Index Implementation and Performance for

Textbases

Ilias Nitsos1, Dimitris Dervos2, Georgios Evangelidis1

1 Department of Applied Informatics, University of Macedonia, Thessaloniki,
Pcode, GREECE

2 Department of Information Technology, TEI, Thessaloniki,
Pcode, GREECE

Abstract. In the present study we implement an improved, compressed varia-
tion of S-Index and consider its performance against a 130 MB textbase. S-Index,
where ”S” stands for signature and ”Index” implies the inverted file index, is
a hybrid indexing scheme found to combine advantages from two popular in-
dexing methods: the inverted file and the signature file/bitmap. We present
the file structure and consider implementation details relating to the improved
compressed variation of S-Index. The results obtained are compared to those of
the self-indexed compressed variation of the inverted file index. With minimal
configuration/tuning effort, S-Index is measured to occupy less than 5% of the
indexed textbase corpus. The latter implies performance comparable to that of
file inversion.

1 Introduction

In today’s Internet based world of information exchange and dissemination, data are
registered in structures that support the underlying model of information representa-
tion and processing. Information processing systems range from the traditional database
management system (DBMS) [7] [7], to textbase and hypertext Information Retrieval
(IR) systems [3, 17] [17, 3], as well as systems which process complex and multimedia
data [1, 15] [1, 15]. The modern object relational database system includes extenders
that manage complex data and offer advanced query-processing services [12] [12]. Com-
mon to all, is the need to apply and utilize appropriate information indexing schemes
at the physical level.
File inversion [2, 11] [2, 11] and signature files [8, 16] [8, 16] comprise the two most

popular indexing methodologies today. Each one method has its pros and cons, with
the inverted index excelling in query processing efficiency (single terms queries, in par-
ticular), and the signature files being most efficient in the evaluation of set predicates,
often required in handling complex objects in Object Oriented database systems [13]
[13]. In the IR bibliography, a number of research papers report on variations that im-
prove the performance of either method. For text indexing in particular, a self-indexing
inverted index variation [14] [14] is reported to outperform the superimposed coding
based signature file (SC-SF), both in storage utilization as well as in query processing
efficiency [18] [18].



The self-indexing inverted index variation in [14] [14] is based on the fact that
the inverted list identifiers are stored sorted and can therefore be represented using
variable-length codes. This allows for the inverted lists to be compressed. Compressed
inverted files are reported to utilize around 5-10% of the size of the textbase being
indexed. The reduction in the required disk space for the index is significant, since the
corresponding figure for plain inverted files is 30-60% [18] [18].
The S-Index method comprises a hybrid-indexing scheme reported to combine ad-

vantages from both worlds, namely: file inversion and signature files [6] [6]. More specif-
ically, it integrates gracefully the indexing of some textbase sections via file inversions
and of some others via bitmaps. As it is explained in the sequel, the latter constitute
a special case of SC-SF type block signatures. In this respect, S-Index comprises a
unifying index structure and this is the reason why it has been given the specific name:
’S’ refers to signature, whereas ’Index’ implies the inverted index.
The Bitmap or Exactly Reversible Signature File (ERSF) constitutes a particular

instance of SC-SF having m = 1, F = V plus the restriction that distinct words corre-
spond to distinct signatures [4] [4]. Using a minimal perfect hash function (MPHF) [9,
10] [9, 10], or a B+ tree, a unique number in [0,...,V-1] can be assigned to each distinct
word of the vocabulary. Then, the signature of the word that corresponds to number
k (k in [0,...,V-1]) is a unique V-bit signature having only its kth bit set to 1 and the
remaining V-1 bits set to 0. The signature for an entire block is created by OR-ing the
unique signatures of the D distinct words of the block. In the end, the block signature
has D bits set to 1 and V-D bits set to 0. An evident and less complex way for con-
structing the signature for a block is to set the D bits, that correspond to the D distinct
numbers assigned to each of the D distinct words in the block, to 1 and the remaining
V-D bits to 0 (see Table 1 for an example). For a single word query the number k
corresponding to the word is retrieved with the help of a B+ tree or an MPHF. If a
block signature has its kth bit set to one then the block is retrieved, otherwise it is
rejected. By construction, all blocks retrieved qualify for the given query, i.e., there are
no false drops.

Word Word Number

free 3

text 9

database 12

example 0

Block Signature 1001000001001000

Table 1. A Bitmap example having V = 16 and D = 4.

The main principle behind S-Index (the structure and the functionality of which are
to be presented in Section 2 which follows) is that ERSF is found to achieve maximum
information compression when D (also called the blocking factor) is equal to or greater
than half the size of the vocabulary V. Figure 1 illustrates the ERSF storage utilization
curve next to the one of Perfect Encoding (PE) for various D values in the case of a



sample textbase of N=1000 words that utilizes a vocabulary of V=400 distinct words.
Perfect encoding was introduced in [5] [5], where it is found to achieve the maximum
possible information compression for bitmaps.
In short, for each D (distinct) word logical block of text an ERSF signature is

generated. This signature is not registered as such, but it is partitioned into fixed
length partitions each one of which is taken to propagate down the levels of a (backbone)
binary tree structure. Signature sections are appended to various nodes of this structure
in such a way so that the number of 1s in each such section equals to or exceeds the
number of 0s. In this respect, the scheme stores signature sections in accordance with
the principle illustrated in Figure 1.

Fig. 1. ERSF and PE storage overhead for different values of D when (V,N)=(400,1000).

Up until today, S-Index has been studied by means of analytical calculations (with
certain assumptions on the distributions of ”terms” in the ”textbase”), as well as by
utilizing a relational database management system to simulate its performance on a
synthetic textbase as well as on real text [4, 6] [4, 6]. In the sections that follow we
introduce a variation of S-Index which compresses the size of the index by reducing
the size of the tree structure by one level, plus by avoiding to store signature patterns
at the new lowest leaf level. The data structure and the functionality of new variation
are considered in detail as well as by means of an example (Section 2). Next, we report
on the measurements we have obtained by considering the storage utilization efficiency
of the new variation of S-Index, next to the original version as well as to the inverted
index (Section 3). Finally, Section 4 concludes this work.



2 The Compressed S-Index Variation

S-Index can be represented by a tree structure. Out of a number of alternative tree-
structures considered (trees with different fanouts), the scheme achieving the best per-
formance was found to be the binary tree [6] [6]. Section 2.1 describes the construction
of the tree and the contents of its nodes for S-Index. Section 2.2 explains how all the
text blocks containing a search word can be retrieved with the help of S-Index. A
detailed example is provided in Section 2.3.

2.1 Signature Insertion

In the S-Index schema, each distinct, non-common word is mapped to a unique number
in [0,...,V-1], where V is the total number of distinct words in the textbase, through
the use of a B+ tree or a MPHF. The textbase is then divided into logical blocks, each
containing D distinct words. For every block an ERSF type signature is created. The
size of a signature is M = 2log2V (the first power of 2 which is equal to or greater than
V). This means that a signature has its bits numbered in the [0,...,V-1,V,...,M-1] range.
Since only D of the bits [0,...,V-1] can be set to 1 in a signature, bits in [V,...,M-1] are
always set to 0 and are reserved for future vocabulary expansion.
Once an ERSF type signature is created for a text block b, it has to be inserted into

the S-Index (binary) tree structure. Starting from the root, if the number of 1s in the
signature of block b is greater than or equal to the number of 0s, then the signature is
stored under the root node, alongside with the corresponding block identifier b, and the
algorithm terminates. On the other hand, if the number of 1s is less than the number of
0s, the signature is divided into two equally sized signatures. The first half contains the
left M/2 bits and the second half the right M/2 bits of the original signature. The two
halves are inserted recursively into the left and right subtrees of the root. The recursive
pseudo-code for the insertion of an ERSF type signature of a block in S-Index is shown
in Table 2.
Because an S-Index tree is a full binary tree, if V is not a power of 2, then some of the

nodes exist but are not used. The full binary tree contains log2M levels of nodes, since
this is the number of levels needed, so that it is impossible for a signature to be further
divided. A block signature may be divided all the way up to the point where two-bit
sub-patterns are produced. The only possible combinations for such two-bit patterns
are 01 and 10. This is because 00 is not stored and 11 implies that the corresponding
signature would have been appended as a four bit pattern, one level up from the current
one. By convention, the root level is at level 0 and the leaf level is at level log2M − 1.

2.2 Single term query processing

Block signatures appended under the root node utilize the whole of the textbase vo-
cabulary. The left child of the root utilizes the left (lower) half of the vocabulary
[0,...,M/2-1], because only the left (lower) part of an ERSF signature can be stored
under that node. Similarly, the right child of the root registers information on blocks
containing words with codes in [M/2,...,V-1], because only the right part of an ERSF
signature can be stored there, and so on.



PROCEDURE Insert Signature Into Subtree(signature, node)
BEGIN

IF (size of signature < 2 bits long) THEN EXIT this procedure;
IF (number of 1s ≥ number of 0s in the signature) THEN

append a new record under the current node;
ELSE

signature L = left half of signature;
signature R = right half of signature;
node L = left child of node;
node R = right child of node;
CALL Insert Signature Into Subtree(signature L, node L);
CALL Insert Signature Into Subtree(signature R, node R);

END
END

CALL Insert Signature Into Subtree(ERSF Type Signature For Block, root);

Table 2. Pseudo-code for inserting a signature into S-Index

When attempting to find all the blocks that qualify for a given single term query,
one has to start from the root node and follow a single path down to the leaf level.
Along this path, all signatures under each one of the nodes encountered are fetched and
examined. If the appropriate bit is set to 1, then the block number is retrieved. The
block numbers retrieved are then mapped to addresses on the disk, with the help of an
address table constructed during the partitioning of the textbase into logical blocks.
The actual text may then be fetched from the disk, by following the corresponding
address pointers.

2.3 Detailed Example

As an example, let us consider the following text: ”This is an example for a small
text database with common words. Common words in the text are not
indexed.” The size of the vocabulary in this textbase is V=7, so M=8 (1 bit is wasted).
The mapping of the words indexed is presented below.

example 0

small 1

text 2

database 3

common 4

words 5

indexed 6

The textbase is divided into logical blocks, each containing D=3 distinct words:



Block number Block context Block signature

0 This is an example for a small text S0 = 11100000

1 database with common words. S1 = 00011100

2 Common words in the text S2 = 00101100

3 are not indexed S3 = 00000010

The empty and populated S-Index structures appear in Figure 2 and Figure 3.

Fig. 2. Empty S-Index structure.

Fig. 3. Populated S-Index structure.

Let’s see how block signature S1 is inserted into the index. S1 cannot be placed under
the root because it has three 1s and five 0s. Thus, it is divided into two signatures S1 L

(0001), and S1 R (1100). S1 L cannot be placed under node L1,1 because it contains
one 1 and three 0s. S1 L is therefore divided into S1 L L (00) and S1 L R (01). S1 L L

is not stored under node L2,1 because it contains no 1s. S1 L R is stored under node
L2,2, alongside with its block identifier, since it contains one 1 and one 0. In a similar
way, S1 R and block number 1 are appended to the list under node L1,2, because half
of the signature bits are set to 1.
In the course of processing the single term query ”find all the occurrences of the

word text in the textbase”, first the word text has to be mapped to its corresponding
code, which is number 2. This is achieved with the help of a B+ tree or a MPHF.



Next, we consider the root of the S-Index tree. For the example in question, no records
are stored under the root node, thus the search algorithm chooses a child node to
continue. The latter is node L1,1 and is determined by considering the word code (2,
in this case). All of the signature records stored under the given node are retrieved
and checked. When the appropriate bit position (here, bit position 3) is set to 1, the
corresponding block identifier is retrieved. In this case, block number 0 is retrieved.
The next child node to be considered is L2,2. Bit position 1 of all the signatures stored
under this node is checked. The algorithm retrieves block number 2 from node L2,2

and terminates because a leaf node has been reached. It is now clear that the word
text appears in blocks 0 and 2. This can be confirmed by scanning the corresponding
textbase blocks.

3 Storage Utilization Efficiency

In this section we examine the strategy we followed in order to implement S-Index, the
implementation environment and the results we obtained.

3.1 Implementation strategy

This subsection covers the implementation details for S-Index. As shown in Figure 4, S-
Index consists of two main parts: (a) the skeleton which is a full binary tree containing
the nodes, and (b) under each node a list of records, each being of the (block identifier,
block signature) type. In the following we describe the way this structure is organized
on disk.

Root level (level 0). All records under the root node are stored in a linked list
on the disk. A typical root record stores a signature of size M and a block number.
The signature utilizes dM/8e bytes on the disk and the text block number is stored as
a two-byte integer. A pointer to the first record of the root’s record list on the disk is
stored in the first row of a look-up table containing log2M rows. A traversal of the list
retrieves the remaining records.

Intermediate level (level i, where 0 < i < log2M − 1). All records, in all lists,
under all nodes in level i, are stored on the disk in a combined linked list - a structure
that consists of many individual linked lists. A typical record, in the list under any
node at level i, consists of a M/2i bit signature, a text block number and a pointer
to the next record in the list. The signature utilizes dM/2i+3e bytes on the disk. In
addition, two bytes are used for the block number and four are reserved for the next
record pointer.

The combined linked list is constructed with the help of the following algorithm: At
first, space for 2i records is allocated sequentially on the disk. Each one of these empty
records is the head record to the list of each of the 2i nodes in level i, and initially has
the next record pointer and the text block identifier field set to NULL. In the (i+1)th
row of the lookup table, a pointer to the first record of the combined linked list is
stored. Once the head record of a list has been used, new records are appended right
after it.



In the example below we demonstrate the implementation of the combined linked
list for the third level (level 2) of an S-Index tree having M = 16. The size of a signature
for level 2 is dM/2ie = d16/22e = 4 bits. Figure 4 illustrates the four nodes at level 2,
and the corresponding combined linked list of records.

Fig. 4. The empty structure and the combined linked list for level 2 of an S-Index when M =
16.

Record 0 is the empty head record for node L2,1, record 1 is the empty head record
for node L2,2 and so on. Space for four empty head records has been allocated serially
on the disk.
After four insertions, the S-Index schema and the corresponding combined linked

list at level 2 are shown in Figure 5.

Fig. 5. The tree structure and the combined linked list after four record insertions.

Suppose now that record (1110,9) is to be inserted into the list under node L2,3.
Figure 6 illustrates the updated tree and combined linked list structures for this case.
In order to traverse the entire list under node j of level i (Li,j where 0 < i <

log2M − 1 and 1 ≤ j ≤ 2i) we should: (a) go to the combined linked list with the help
of the (i + 1)th row of the look-up table, (b) jump to the jth record of the combined



linked list, which is the head record to the list under node Li,j , and (c) retrieve the
whole list by following the next record pointer, until a NULL value is encountered.

Fig. 6. The tree and the combined linked list after the insertion of (1110, 9) under L2,3.

Leaf level (level log2M − 1). The leaf level is stored with the help of a combined
linked list, like any intermediate level. The differentiation has to do with the signatures
it registers. In the case of S-Index, the possible combinations for the two bit signatures
in the leaf nodes are 01 and 10. Thus, for each one node we maintain two record lists,
one for each one of the two (possible) 2-bit signature patterns. Evidently, each one
record of the two lists in question stores a (block identifier, next record pointer) pair.
From the discussion above, it follows that the binary tree structure (skeleton) is

neither saved on the disk nor is maintained in main memory. The only structure that
needs to be stored is the look-up table that directs to the combined linked lists and
allows for efficient retrieval of the records stored under the S-Index nodes.

3.2 Implementation environment

We developed S-Index and conducted experiments on a single processor (Intel Pentium
III 866MHz) PC with 256 megabytes of main memory. The operating system was
Linux. For an I-Index environment, we used the MG system1 [18] [18], which utilizes

1 MG is available via ftp from ftp://munnari.oz.au/pub/mg.



compressed inverted files for indexing textbases. The textbases used for the experiments
are document collections that were generated with FINNEGAN2 [18] [18]. Their profile
is outlined in Table 3. FINNEGAN is a textbase generator that can create synthetic
textbases of any size, with statistical properties analogous to those of real text. The
1.2 MB textbase is used to compare our implementation of S-Index with a simulation
of the original variation that was conducted on the same textbase [4] [4]. The 130 MB
collection is used to compare our implementation of S-Index with I-Index, focusing on
storage utilization.

Collection Size 1.2 MB 130 MB

Filter Size (number of common words) 434 598

Vocabulary Size (number of distinct words) 15922 128727

Table 3. The textbase profile

In our implementation of S-Index, the mapping of the distinct words to unique code
numbers is achieved with the help of a B+ tree. The numbers are assigned to the words
sequentially. This means, that the number code assigned to the first distinct word of
the textbase is 0, the number assigned to the second distinct word is 1, and so on.

3.3 Experimental results

Figure 7 presents the results obtained by considering several blocking factor (D) values
for S-Index, and includes the curve of the compressed I-Index scheme [18] [18]. The
size of S-Index decreases as the value of the blocking factor (D) increases. For a par-
ticular range of D values, S-Index requires much less space on disk, than I-Index. For
the textbase considered, for D = 4500 then S-Index and I-Index produced indexes of
the same size. Nevertheless, upon increasing the value of D, S-Index produced more
compact indexes. For D = 12000, S-Index was measured to be only 4.28% the size of
the indexed textbase. This implies an improvement of about 57% over the I-Index.
Finally, we compared our implementation of S-Index with the originally proposed

S-Index. We used the same textbase (a 1.2 MB collection created by FINNEGAN) as
in [4] [4]. Figure 8, shows that the implementation of S-Index proposed in this paper
produces smaller indexes.

4 Conclusion

In this paper we presented in detail the schema and implementation of an improved
variation of S-Index. The storage utilization efficiency of S-Index was considered next
to a 130 MB textbase. The experimental results obtained indicate that the improved
variation may be configured to utilize an index size that is less than 5% the size of the

2 FINNEGAN is available via ftp from ftp://munnari.oz.au/pub/finnegan.



Fig. 7. Disk space requirements for S-Index and I-Index.

Fig. 8. Disk space requirements for the two variations of S-Index.



indexed textbase corpus. This in turn implies performance comparable to that of the
compressed inverted index.
This study emphasizes on measuring the performance of S-Index with regard to

storage utilization efficiency. In the future stages of our research, we intent to focus
on the S-Index query processing efficiency. It is worth noting that the scheme allows
for further improvement with regard to storage utilization efficiency: the list of records
stored under the leaf nodes are of the same type as those of the inverted index. In this
respect, S-Index is expected to benefit from implementing compression, analogous to
that of the self-indexing inverted files, reported to reduce the size of each one inverted
list identifier record down to one byte [14] [14].
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