
Compact-binary: An efficient non-parameterized
code for index compression

Ilias Nitsos1, Georgios Evangelidis1, and Dimitris Dervos2

1 Department of Applied Informatics, University of Macedonia
156 Egnatia Str., 54006 Thessaloniki, Greece

{nitsos, gevan}@uom.gr
2 Department of Information Technology, TEI
P.O. Box 14561, 54101 Thessaloniki, Greece

dad@it.teithe.gr

Abstract. Inverted file indexes are nowadays the most popular method for in-
dexing text databases. Integer number compression codes are applied on the
inverted document id lists to produce compact inverted file indexes. A class of
index compression codes that are insensitive to the variations in the statistics of
dynamic text collections are the non-parameterized codes. In the present study,
we introduce compact-binary (cb): a new non-parameterized coding scheme that
combines the Golomb code and the binary representation of integers. The per-
formance of the new code is compared to that of existing popular codes. Ex-
perimental results obtained from a number of TREC document collections re-
veal an overall 7,7% improvement over the most efficient of the existing non-
parameterized codes. The outcome is backed by analysis and comprises a sig-
nificant gain when one considers the large sizes of the target text database
collections.

1 Introduction

The dramatic growth in the sizes of electronic text databases and the increasing use of
the internet as a means for storing and retrieving textual data have given rise to the
problem of manipulating huge sources of text. The main objective is to guarantee fast
response to user posed queries.

Several indexing schemes have been developed for speeding up the search operations
in text databases. The most popular one is the inverted file [3], [9], [17], [15], where
much progress has been made due to great advances in the field of integer compression
codes [6], [2], [5], [16], [8]. Several such codes exist, that allow the average pointer
(integer) inside the inverted file to utilize less than 1 byte of storage space [15], thus,
producing very compact indexes. Compressed indexes are also fast, because fewer disk
I/O operations are required at retrieval time and the decompression cost is not very
important [13].

In the present paper, we examine some of the compression codes and introduce a
new one that is suitable for indexing dynamic document collections and achieves better
performance when compared to the popular existing codes. Three variations of the new



code are discussed. Each newly introduced variation improves the performance of the
previous one.

In Section 2 we examine several codes that have been developed for compressing
integers inside the inverted files and the models they are based on. The γ[2] and the
Golomb code [5] are analyzed thoroughly. The proposed code and its three variations
are described in Section 3. In Section 4, we consider the analysis of the third and
best performing variation of the proposed code. The profile of the collections used for
the experiments and the results obtained are described in Section 5. We conclude in
Section 6.

2 Codes for Compressing Inverted Files

A very efficient index structure used in full-text retrieval systems is the inverted file
index [3], [9], [17], [15]. Let us suppose, that we have a text database consisting of
N documents, each represented by a positive integer d ∈ [1, . . . , N ]. For each distinct
word t, an inverted list is created, that stores all the document numbers d containing
t. All those inverted lists are stored in a single file, known as the inverted file [3].

The compression codes presented in this section are some of the most popular
ones for compressing the integers stored in an inverted file and they utilize run length
coding [5]. Instead of storing the absolute numbers d of the documents containing a
word, they store their differences. For example, for word t, instead of storing the d
list {2, 9, 10, 15, 16, 20}, the corresponding d-gap list {2, 7, 1, 5, 1, 4} is constructed and
stored. In general, this results in storing smaller and more frequent numbers. The initial
list can be easily recomputed by adding the d-gaps.

The codes discussed in the subsections that follow, are based on models that con-
sider the probability distribution of d-gap sizes and assign small bit codes to frequent
d-gap sizes and larger bit codes to rare ones. In general, codes are divided into parame-
terized and non-parameterized, depending on whether statistical information, concern-
ing the document collection being indexed, is used or not.

2.1 Non-parameterized codes

Unary code. In the unary coding scheme any positive integer x is represented by x-1
one bits followed by a zero. For example, number 5 in unary will be stored as 11110.
This means that the bit length of integer x in unary is lenu(x) = x. A list of the unary
codes for the first ten positive integers is shown in Table 1.

The unary code is equivalent to assigning a probability of 2−x to gaps of length
x [15].

Elias codes. A popular non-parameterized code for compressing integers, that results
in significant savings, is the γ code described by Elias in [2]. This code suggests that
any positive integer x should be stored according to the following encoding scheme:

– store number 1 + blog2xc in unary
– store the remainder x− 2blog2xc in binary using blog2xc bits.



Table 1. Examples of codes for integers

Golomb
x unary γ code δ code b=2 b=3 b=6 b=7

1 0 0 0 00 00 000 0000
2 10 100 1000 01 010 001 0001
3 110 101 1001 100 011 0100 0010
4 1110 11000 10100 101 100 0101 0011
5 11110 11001 10101 1100 1010 0110 0100
6 111110 11010 10110 1101 1011 0111 0101
7 1111110 11011 10111 11100 1100 1000 0110
8 11111110 1110000 11000000 11101 11010 1001 10000
9 111111110 1110001 11000001 111100 11011 10100 10001

10 11111111110 1110010 11000010 111101 11100 10101 10010

It follows that the bit length of integer x in γ code is lenγ(x) = 2blog2xc+ 1. The
γ code is equivalent to assigning a probability of 1/2x2 to gap x [15].

Given the bitstream 111000111011 and knowing that it is encoded using the γ code,
decoding proceeds as follows: Count all the one bits until the first zero is encountered;
in this case 3 one bits. Ignore this first zero bit. Proceed by reading in a binary number
consisting of as many of the following binary bits as the number of the ones originally
read. In this example, the binary number is number 1, corresponding to the bitstream
001 (the 3-bit sequence after the first zero). The number retrieved is 23 + 1 = 9. In
general, if k one bits are read until the first zero bit is encountered, then k bits must
be read in binary after the first zero bit, to produce the remainder r. The number
retrieved will then be x = 2k + r. Returning to the initial example, there are bits
in the bitstream that have not been decoded. Working in the same way, number 7 is
produced and there are no more bits left to continue. To visualize the decoding stages
of the algorithm, the initial bitstream may be represented as 1110001,11011.

Another popular integer encoding scheme also introduced by Elias in [2] is the δ-
code. In the case of the δ-code each positive integer number x is stored according to
the following scheme:

– store number 1 + blog2xc using γ code.
– store the remainder x− 2blog2xc in binary using blog2xc bits.

The bit length of integer x in δ is lδ(x) = blog2xc+ 2blog2(1 + blog2xc)c+ 1 and a
probability of 1

2x(log2x)2 is assigned to it [15].
A list of the γ and δ codes for the first ten positive integers is shown in Table 1.

Golomb code. According to this code, for a given parameter b, any positive integer
x can be stored according to the following scheme:

– store number q + 1 in unary, where q = b(x− 1)/bc
– store the remainder r = x− q × b− 1 in binary using either blog2bc bits or dlog2be

bits for some values of b and dlog2be bits for some other values of b.



It follows that the bit length of integer x in Golomb is at most leng(x) = b(x −
1)/bc+ 1 + dlog2be.

A list of the Golomb codes for the first ten positive integers, for some values of the
parameter b, is shown in Table 1. Different b values result in different groups of Golomb
codes. For b = 1, the resulting Golomb code is identical to the unary code.

At the decompression process a number is calculated as x = r + q × b + 1.
Let us see how the remainder r is stored. It is obvious that r receives values smaller

than b: r ∈ [0 . . . b− 1]. In other words, there are b distinct values for r. Normally, one
needs dlog2be bits to encode b distinct values. But, we can do much better if we observe
that we can encode b distinct values using few = blog2bc bits for some of the values
and many = dlog2be for the rest, when 2few−1 + 2many−1 ≥ b. Let us suppose that
we use few bits to store the first 2few−1 distinct b values. The first bit is set to 0, to
indicate that few bits are used to encode the value. The rest few − 1 can be used to
encode the actual number, and thus, 2few−1 distinct numbers can be encoded using
few bits. We use many bits to store the rest 2many−1 distinct b values. The first bit is
set to 1, to indicate that many bits are used to encode the value. The rest many − 1
bits are used to encode the actual number, and thus, 2many−1 distinct numbers can
be encoded using many bits. In total max = 2few−1 + 2many−1 distinct values can be
encoded, using few bits for the first 2few−1 of them and many bits for the rest 2many−1

of them. If b ≤ max, then the remainder can be stored using this strategy. If b > max
then we can use many bits to encode the remainder. That is, 2many distinct numbers
can be encoded, since the first bit for the remainder is no longer used to indicate its
size.

In the decoding phase, if either few or many bits are used, then if the first bit of
the binary part is zero (i.e., few bits are being used), the value for r equals to the value
of binary number corresponding to the remaining few − 1 bits. If the first bit of the
binary part is one, and the binary number corresponding to the remaining many − 1
bits is rpart, then r = 2few−1 + rpart. When just many bits are used for the coding
of the binary part, r equals to the value of the binary part fetched.

Given the bitstream 101001001001 and knowing that it is encoded using the Golomb
code with b = 6, the decoding process is the following: Count all the one bits until the
first zero is encountered; in this case q = 1 one bits. Because max = 6 ≤ b, the binary
part uses either few = 2 or many = 3 bits. The first bit of the binary part is 1. This
means that many bits have been used, thus, 2 more bits have to be fetched (in total
many = 3). Those bits are 00, and so we have rpart = 0 and r = 2few−1 + rpart =
21 + 0 = 2. Finally, the number is calculated as x = r + q × b + 1. In this case x = 9.
More bits are left in the bitstream. The rest of the decoding process results in the list
of integers {9,8,2}. To visualize the decoding algorithm, the initial bitstream can be
represented as 10100,1001,001.

2.2 Parameterized codes

Golomb code for the global Bernoulli model. Let us suppose, that we have a
text database consisting of N documents that contains n distinct words and f index
pointers (i.e., f distinct “document, word” pairs).



The global Bernoulli model assumes that large text databases are homogeneous
and the words are scattered uniformly across the N documents. This means that the
probability that any randomly selected word appears in any randomly selected docu-
ment is p = f/(N × n). This assumption leads to the conclusion that the probability
of occurrence of a gap x for any word is (1− p)x−1p. This is in fact the probability of
having x − 1 nonoccurrences of a particular word, each of probability 1 − p, followed
by one occurrence of probability p.

The Golomb coding method can satisfy the probabilities generated by the global
Bernoulli model when b is chosen to be b = d log2(2−p)

−log2(1−p)e [4].

Golomb code for the local Bernoulli model. The difference between the global
and the local Bernoulli model [1], [14], is that in the latter, each d-list is associated with
a different b value. The value of the parameter for the d-gap list of word t is calculated
as b = d log2(2−p)

−log2(1−p)e, with p = ft/N , where ft is the number of documents in the text
database containing t. This means, that for each distinct word t in the text database,
the value for ft must also be stored together with the inverted list of the word, so that
the b value is calculated at decoding time. The value for ft can be stored at the head
of each list, using the γ code [15]. When decompressing an inverted list, the ft value is
first decoded, then the b parameter is calculated, and d-decompression continues with
the rest of the d-list. It has to be mentioned at this point that the Golomb code for the
local Bernoulli model is much more efficient when compared to the global Bernoulli
model. The latter produces indexes that are twice as large in size [15].

Other coding methods. Many other models and methods have been developed for
coding gaps, like the skewed Bernoulli model [12], [8], the local hyperbolic model [11],
the interpolative method [7], and the uγ-Golomb [10] but we will not get into details
for those methods here.

In general, the local Bernoulli model and the Golomb code for the representation of
d-gaps is the preferred choice in the case of static document collections because it com-
bines acceptable compression with fast decoding. Unfortunately, in the case of dynamic
document collections, parameterized codes are not suitable because they make use of
statistical information concerning the collection being indexed. A non-parameterized
compression code should be used instead.

3 Compact-binary

In this Section, we present three variations for a new non-parameterized method for
storing integers. We call the new method compact-binary (cb) and the three variations
will be referred to as cb1, cb2 and cb3. The main idea behind cb is to store the exact
binary representation of an integer and to select a compact method for storing the
length of the representation, so that decoding is possible. Analysis and experimental
measurements conducted on the fifth volume of the TREC collection, confirm that
suitable codes for storing the above length, are the Golomb codes for b = 2 or 3. More
specifically, as it will be explained in Section 4 the choice of b = 1 or b > 3 causes cb
to produce less efficient codes.



Table 2. Compact-binary codes for integers

cb1 cb2 cb3

x b=2 b=3 b=2 b=3 b=2 b=3

1 0000 0000 00001 00001 00001 00001
2 0001 0001 0001 0001 001 001
3 001 001 001 001 0001 0001
4 0100 01000 0100 01000 0100 01000
5 0101 01001 0101 01001 0101 01001
6 0110 01010 0110 01010 0110 01010
7 0111 01011 0111 01011 0111 01011
8 100000 011000 100000 011000 100000 011000
9 100001 011001 100001 011001 100001 011001

10 100010 011010 100010 011010 100010 011010

3.1 First variation: cb1

According to the cb1 scheme, any positive integer x ≥ 3 consists of two parts. The
second part (p2) is the exact binary representation of integer x, except for the most
significant bit, that is known beforehand to be 1. The first part (p1) is the length of
p2 encoded using a suitable Golomb code (b = 2 or 3). This is what we call the basic
cb rule. We present the cb1 codes (b = 2 and 3) for the first ten positive integers in
Table 2.

The selection of 0000 and 0001 for the encoding of integers 1 and 2 requires special
consideration. The basic cb rule for storing an integer is not applicable in the case
of integer number 1. The binary representation of integer number 1 is 1 and if the
most significant bit is to be omitted, then length 0 has to be stored as the length of
the binary representation. Unfortunately no Golomb codes exist for number 0. On the
other hand, using the basic cb rule, number 2 would be stored as 000. The problem of
storing number 1 can be solved if 2 is to be stored as 0001, because then we can use
the bit sequence 0000 for encoding number 1. During decoding, four zeros stand for
integer number 1 and three zeros followed by a 1, stand for integer number 2. When,
during decoding, the bit sequence does not start with 3 or 4 zeros, we use the basic cb
rule.

Let us now explain the coding and decoding process using the d-gap list 16, 2, 9,
8, 1, 2, 5 as an example with b = 3. The corresponding exact binary representations
of the above integers are, respectively: 10000, 10, 1001, 1000, 1, 10, 101. As expected,
the first bit in all the representations is 1. Number 16 is to be stored as 100,0000. We
make use of the comma only as a visual aid, in order to distinguish the first part from
the second one. The first part is number 4 using the Golomb coding method for b = 3
(see Table 1 and it stands for the length of the second. The second part is the binary
representation of integer number 16, after omitting the most significant bit. On the
other hand number 2 is encoded as 0001, because of the exception that was discussed
earlier. According to the basic cb rule, number 9 is stored as 011,001 and so on. The
entire list, after the encoding process is over, will be stored as 100,0000(16)-0001(2)-
011,001(9)-011,000(8)-0000(1)-0001(2)-010,01(5).



The process for decoding the above list is described next. The first number has been
encoded using the basic cb rule, because the bit sequence does not start with 3 or 4
zeros. As a result, two parts must be calculated. The first part is a number stored using
Golomb (b = 3). In this case, we follow the decoding rules for the Golomb code and
it turns out that the encoded number takes up 3 bits and corresponds to number 4.
The second part consists of the four bits that follow (0000). The actual number stored
can be reconstructed by adding bit 1 as the most significant bit of the second part. In
this case, the actual number stored is number 10000 (16). In the case of the second
number, three zeros are encountered followed by a bit that is set to one. This means
that the actual number stored is number 2, because of the exception discussed earlier.
The same procedure is applied on the entire bit sequence and the original initial d-gap
list is reconstructed in the end.

3.2 Second variation: cb2

A drawback for cb1 is that it uses 4 bits to store integer number 1. When common and
function words such as “a”, “the”, “of” are indexed in a document collection (and in
some languages, e.g., German and Hebrew, function words need to be included into the
index), a frequently occurring d-gap in the d-gap lists is integer number 1, since these
words tend to occur in almost every document. Other codes, such as the γ and the δ
codes use a single bit to store number 1 (see Table 1).

In the case of cb2, the encoding of 1 is treated differently. When a d-gap equal to 1 is
encountered, the bit sequence 0000 is used to encode it. If the next, consecutive, d-gap
is also 1, then a single extra 0 bit is used to indicate that the sequence of 1 d-gaps is
not over yet, and so on. A final bit equal to 1 is appended to the bit sequence, in order
to indicate that the d-gap sequence of 1s is over. The above modification suggests that
a single d-gap equal to 1 is stored as 00001, two subsequent d-gaps equal to 1 are stored
as 000001, three consecutive ones are stored as 0000001 and so on. It is expected that
the performance of the code will be improved, since many d-gap lists tend to contain
groups of consecutive 1s corresponding to common and function words present in the
text database. The experimental results, presented in Section 5 reveal the improvement
in cb2 next to cb1.

3.3 Third variation: cb3

The cb3 scheme is an attempt to further improve the cb2 scheme, by swapping the codes
for numbers 2 and 3. The first ten positive integers for the cb3 scheme are presented in
Table 2. In general, smaller d-gaps tend to appear more often in a document collection
and they should receive smaller codes. The experimental results, presented in Section 5
reveal the improvement in cb3 next to cb2.

4 Analysis

In all compact-binary variations, the length of the code for any integer number x > 3
can be calculated by adding the lengths of p1 and p2. This means that:



lencb(x) = lenp1 + lenp2 (1)

According to the definition of cb, the second part of the code is the binary rep-
resentation of number x without its most significant bit. This means that lenp2 =
blog2(x)c. The first part of the code is the length of the second part encoded in Golomb.
This means that the length of the first part adds up to at most leng(blog2(x)c) =
b(blog2(x)c−1)/bc+1+dlog2(b)e bits (see Section 2). After the substitutions Equation
(1) becomes:

lencb(x) = b(blog2(x)c − 1)/bc+ 1 + dlog2(b)e+ blog2(x)c (2)

Utilizing Equation (2) we calculated and compared the lengths between the different
groups of cb codes produced for different values of b. When the b parameter took values
greater than 3, relatively small integers received longer codes, whereas large integers
received shorter codes. We note that most of the d-gaps stored in an inverted file
are relatively small integer numbers, because they correspond to lists of frequently
occurring words. On the other hand, large d-gaps appear in the lists of rare words
and they do not appear often inside the inverted file. An efficient code should take
into consideration these facts. We experimented with many text databases and applied
many different groups of cb codes. For each group, the average number of bits required
to store a pointer was calculated. The results we obtained were the ones we expected.
As the value of the b parameter increased above 3 or became equal to 1, the efficiency
of the code degraded. The most efficient groups of codes were the ones produced for b
= 2 or 3 and they are the ones included in our presentation.

Below, we compare the bit lengths for integers coded using the δ code and cb3 for b
= 2 (referred to as cb3−2) or 3 (referred to as cb3−3). We do not compare our codes over
the γ code, because it has been shown that the latter is outperformed by the δ code [8].
Moreover, we focus mainly on the the third variation of cb because it is designed to
improve the performance of cb1 and cb2. The experimental results presented in Section 5
confirm that cb3 performs better than cb1 and cb2.

For any integer x > 3 the bit length difference between the δ code and cb3−2 is
exactly:

lenδ(x)− lencb(x) = 2blog2(1 + blog2xc)c − b(blog2(x)c − 1)/2c − 1 (3)

This is an exact case equivalent for cb3−2 because b = 2 and dlog22e = many = 1
bits are used for r (see Section 2).

In the case of the δ code and cb3−3, the bit length difference is at least:

lenδ(x)− lencb(x) = 2blog2(1 + blog2xc)c − b(blog2(x)c − 1)/3c − 2 (4)

This is a worst case equivalent for cb3−3 because b = 3 and we use either blog23c =
few = 1 bits, or dlog23e = many = 2 bits to encode the number.

We can substitute 1+blog2xc, that is equal to the number of bits used for the binary
representation of number x, with y. The above equations are respectively transformed
into



lenδ(x)− lencb(x) = 2blog2(y)c − b(y − 2)/2c − 1 (5)

lenδ(x)− lencb(x) = 2blog2(y)c − b(y − 2)/3c − 2 (6)

Apparently, the latter equations are functions of y, i.e., the number of bits that are
used for the binary representation of the integers. Table 3 lists bit length differences
for Equations 5 and 6.

Table 3. Bit length differences

Bit length difference Bit length difference
Number δ-cb3−2 δ-cb3−3 Number δ-cb3−2 δ-cb3−3

1 -4, 0 consequent -4, 0 consequent 17-bit numbers 0 1
2 1 1 18-bit numbers -1 1
3 0 0 19-bit numbers -1 1
3-bit numbers 1 0 20-bit numbers -2 0
4-bit numbers 2 2 21-bit numbers -2 0
5-bit numbers 2 1 22-bit numbers -3 0
6-bit numbers 1 1 23-bit numbers -3 -1
7-bit numbers 1 1 24-bit numbers -4 -1
8-bit numbers 2 2 25-bit numbers -4 -1
9-bit numbers 2 2 26-bit numbers -5 -2
10-bit numbers 1 2 27-bit numbers -5 -2
11-bit numbers 1 1 28-bit numbers -6 -2
12-bit numbers 0 1 29-bit numbers -6 -3
13-bit numbers 0 1 30-bit numbers -7 -3
14-bit numbers -1 0 31-bit numbers -7 -3
15-bit numbers -1 0 32-bit numbers -6 -2
16-bit numbers 0 2

The results demonstrate (see Table 3) that the cb3−2 compression efficiency is equal
to or better than that of the δ code for all integers in [2 . . . 213−1] or [2 . . . 8191]. When
the value of the b parameter is set to 3, then the particular variation of cb has equal
or better compression efficiency than the δ code for all integers in [2 . . . 222 − 1] or
[2 . . . 4194303]. Especially in the case of integer number 1, cb3 utilizes four bits of
storage more than the δ code. To overcome this problem, the cb3 algorithm utilizes
only one extra bit when storing d-gaps of consecutive 1 values (see Section 3).

It is important for a compression method to assign small compression codes to small
d-gaps, because the latter appear many times inside the inverted lists that correspond to
frequent terms. Therefore, the decreased efficiency of cb3−2 and cb3−3 for large numbers
has no negative implications in practice. As a final comment, concerning the slightly
increased efficiency of cb3−3 over cb3−2 (see section 5): In general cb3−3 is found to
generate smaller codes for very large numbers (210 = 1024 and larger ones), but one
must keep in mind, that this is the worst case equivalent for cb3−3. For example the



actual bit-difference between the δ code (110010011) and the cb3−3 code (1000011) for
number 19 is two, whereas the worst case equivalent, estimates a difference of just one
bit (see Table 3).

5 Experimental Results

The document collection used for the experiments presented in this paper, was the fifth
volume of the TREC collection, that contains 475MB of articles from the Los Angeles
Times (LAT) in the two year period from January 1, 1989 – December 31, 1990 and
470MB of documents from the Foreign Broadcast Information Service (FBIS) for the
year 1994. The profile for the three collections LAT, FBIS and the concatenation of
both, noted as LATFBIS is shown in Table 4.

Table 4. Testbed collections’ profiles

Collection Size Distinct words (n) Total documents (N) Total pointers (f)

LAT 475MB 288823 130472 31193292
FBIS 470MB 247563 131167 34982316
LATFBIS 945MB 437864 261639 66175608

The following compression codes were considered:

– Elias γ code for all the gaps in all the lists of the inverted file. This code is referred
to as “γ code”.

– Elias δ code for all the gaps in all the lists of the inverted file. This code is referred
to as “δ code”.

– Golomb code for local Bernoulli model. An inverted list is created for every word in
the collection. The list also stores the value for ft using the γ code. The ft overhead
for each word is included in the final results. This code is referred to as “Golomb”.

– The first, the second and the third variation of cb for all the gaps in all the lists of
the inverted file, with the b parameter set to 2. These codes will be referred to as
“cb1−2”, “cb2−2” and “cb3−2” respectively.

– The first, the second and the third variation of cb for all the gaps in all the lists of
the inverted file, with the b parameter set to 3. These codes will be referred to as
“cb1−3”, “cb2−3” and “cb3−3” respectively.

The results obtained are expressed in bits per pointer and they are listed in Table 5.
A first observation is that the compression code with the best performance is the

“Golomb” code. This was expected, because the “Golomb” code is a local, parame-
terized code. This means that it makes use of statistical information concerning the
document collection being indexed. This is the reason that this method is not suitable
for dynamic environments. On the other hand, the rest of the codes appearing in Ta-
ble 5, are non-parameterized and are easily applied on dynamic collections. Another,



Table 5. Experimental results expressed in bits per pointer

Compression method Bits per pointer

LAT FBIS LATFBIS

“γ code” 7.92 6.97 7.49
“δ code” 7.36 6.58 7.02
“Golomb” 6.14 6.07 6.32
“cb1−2” 7.19 6.62 6.94
“cb1−3” 7.15 6.62 6.92
“cb2−2” 6.83 6.16 6.54
“cb2−3” 6.79 6.17 6.51
“cb3−2” 6.81 6.14 6.51
“cb3−3” 6.77 6.14 6.48

expected, result is that the “γ code” is outperformed by the “δ code”. Similar results
are presented in [8].

Commenting on the results obtained, all cb variations are seen to outperform the
rest of the non-parameterized codes, with the exception of “cb1−2” and “cb1−3” for the
FBIS collection. When applied on the latter collection, the cb code variations performed
slightly worse than the “δ code”. This means that the first cb variation can produce
larger indexes compared to existing codes, probably because of its poor performance in
the case of encoding d-gaps equal to 1. On the other hand, the rest of the cb variations,
always produce significantly smaller indexes compared to existing non-parameterized
codes and cb1. The cb-algorithm enhancement for treating groups of consecutive 1s in
the d-gap lists appears to have paid off.

Another observation is that cb produces better results when the value of b is equal
to 3. This finding confirms the validity of the analysis made in Section 4. We have
experimented with many values for the b parameter. The scheme was found to perform
poorly when the b parameter obtained values above 4 and they are not included in our
presentation. The most efficient codes were the ones produced for b = 2 or 3.

One final result is that the third variation performs slightly better than the second
one. This was expected, because the third variation enhances the second by swapping
the codes for numbers 2 and 3. The third variation assigns the smaller code to number
2 and the larger one to number 3. In general, the experimental results obtained, reveal
that the best cb variation is “cb3−3” (about 7.7% better than the delta code). It is a
non-parameterized code with efficiency that comes close to the one of the “Golomb”
code for the local Bernoulli model (about 2.5% worse).

Having experimented with many other text database collections, we have obtained
results similar to the ones presented.

6 Conclusion

A new non-parameterized code (cb: compact-binary) is introduced and it is shown to
improve the performance of inverted index file compression. The efficiency of the new
code is considered by utilizing the 945 MB TREC-LATFBIS documents collection. The



experimental results obtained reveal that the cb code comprises a 7,7% improvement
over the δ code. Being of the non-parameterized type, the new code is applicable to
dynamic document collections. Its performance is measured to fall behind that of the
local Bernoulli model by only 2,5%: a most encouraging outcome, considering that the
local Bernoulli model leads to a parameterized code that is applicable only to static
document collections. Three variations of the proposed compression code are presented
and the experimental results obtained are confirmed/backed by the corresponding an-
alytical calculations.

References

1. Bookstein, A., Klein, S.T., Raita, T.: Model based concordance compression. In Storer
and Cohn. (1992) 82–91

2. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, IT-21. (1975) 194–203

3. Fox, E., Harman, D., Baeza-Yates, R., Lee, W.: Inverted Files. In: Frakes, W., Baeza-
Yates, R. (eds): Information Retrieval: Data Structures and Algorithms. Prentice-Hall,
Englewood Cliffs, NJ, Chapter 3. (1992) 28–43

4. Gallager, R.G., van Voorhis, D.C.: Optimal source codes for geometrically distributed
alphabets. IEEE Transactions on Information Theory, IT-21. (1975) 228–230

5. Golomb, S.W.: Run-length Encodings. IEEE Transactions on Information Theory, IT-21.
(1966) 399–401

6. Huffman, D.A: A method for the construction of minimum redundancy codes. Procedures
IRE, 40(9). (1952) 1098–1101

7. Moffat, A., Stuiver, L.: Exploiting clustering in inverted file compression. In Storer and
Cohn. (1996) 82–91

8. Moffat, A., Zobel, J.: Paremeterised Compression for Sparse Bitmaps. 15th Ann Int’l
SIGIR, Denmark (1992) 274–285

9. Moffat, A., Zobel, J.: Self-Indexing Inverted Files for Fast Text Retrieval. ACM Transac-
tions on Database Systems, 14. (1996) 349–379

10. Nitsos, I., Evangelidis, G., Dervos, D. : uγ-Golomb: A new Golomb Code Variation for the
Local Bernoulli Model. To appear in Proceedings of the 7th East-European Conference
on Advances in Databases and Informations Systems (ADBIS 2003), Dresden, Germany,
September 3–6, 2003

11. Schuegraf, E.J.: Compression of large inverted files with hyperbolic term distribution.
Information Processing and Managemant 12. (1976) 377–384

12. Teuhola, J.: A compression method for clustered bit-vectors. Information Processing Let-
ters, 7(2). (1978) 308–311

13. Williams, H. E., Zobel, J.: Compressing Integers for Fast File Access. The Computer
Journal, 42. (1999) 193–201

14. Witten, I.H., Bell T.C., Nevill C. G.: Indexing and compressing full-text databases for
CD-ROM. Journal of Information Science, 17. (1992) 265–271

15. Witten, I.H., Moffat A., Bell T.C.: Managing Gigabytes. Compressing and Indexing Doc-
uments and Images. Academic Press (1999)

16. Witten, I.H., Neal, R., Cleary, J.G.: Arithmetic coding for data compression. Communi-
cations of the ACM, 30(6). (1987) 520–541

17. Zobel, J., Moffat, A., Ramamohanarao K.: Inverted Files Versus Signature Files for Text
Indexing. ACM Transactions on Database Systems, 23. (1999) 369–410


