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Abstract. Several compression codes exist today that have been devel-
oped to reduce the size of inverted file indexes used widely in informa-
tion retrieval implementations targeting text databases. In the present
study, we examine some of the most significant integer compression codes
and propose uγ − Golomb, a variation of the most popular scheme: the
Golomb code for the local Bernoulli model. As a test-bed, we utilize text
databases from the TREC collection that take up almost 1GB on disk.
The proposed new variation does not introduce any additional compu-
tational overhead when it is compared to the original compression code.
With regard to storage utilization efficiency, experimental results reveal
a considerable improvement over the original compression code in the
case of non-uniform text databases.

1 Introduction

Several schemes have been developed for indexing text databases, during the
past decades. The most popular, nowadays, are the signature files [4], [5] and
the inverted files [6], [17], [16]. In the case of inverted files, much progress has
been made, due to great advances in the field of integer compression codes [9], [3],
[8], [11], [1], [12]. Several such codes exist that allow the average pointer (integer)
inside an inverted file to be stored in less than 1 byte [16], thus producing very
compact indexes. Compressed indexes are also fast, because fewer disk accesses
are required and the decompression CPU cost is low [15].

In the present paper we consider a number of compression codes and fo-
cus mainly on the most popular one, the Golomb code for the local Bernoulli
model [11], [8], [17], [12]. We introduce uγ − Golomb, a new variation for the
latter, one that produces similar results in the case of uniform text databases
and improves the compression in the case of non-uniform text databases. A
text database consisting of many documents is characterized as uniform or non-
uniform depending on whether the words are scattered uniformly in its docu-
ments or not.
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In Section 2 we examine several codes that have been developed for compress-
ing integers inside the inverted files and the models they are based on. A new
Golomb code variation, uγ −Golomb is proposed in Section 3. The performance
of the new variation in the case of some selected TREC collections is considered
in Section 4. Section 5 concludes on the proposed variation and includes issues
for further research.

2 Codes for Compressing Inverted Files

A very efficient index structure used in full-text retrieval systems is the inverted
file index [6], [17], [16]. Let us suppose that we have a text database consisting
of N documents, each represented by a positive integer d ∈ [1, . . . , N ]. For each
distinct word t, an inverted list is created that stores all the document numbers
d containing t. All those inverted lists are stored in a single file, known as the
inverted file [6].

The compression codes presented in this section are some of the most popular
for compressing the integers that are stored in an inverted file and utilize run
length encoding [8]. Instead of storing the absolute numbers d of the documents
containing a word, inverted lists store their differences. For example, instead of
storing the d list {2, 9, 10, 15, 16, 20}, for word t, we could store the corresponding
d-gap list {2, 7, 1, 5, 1, 4}. In general, this results in storing smaller and more
frequently occurring integers. The initial list is easily reconstructed from the
d-gap list.

The codes discussed in the subsections that follow are based on models that
take into consideration the probability distribution of d-gap sizes and assign
small bit codes to frequent d-gap sizes and larger bit codes to rare ones. De-
pending on whether each inverted list in the inverted file is compressed using
the same (global) or different (local) parameters, the models and their codes
are categorized as non-parameterized and parameterized, respectively. The in-
terested reader should consult [16] for a detailed discussion.

2.1 Non-parameterized codes

The most popular non-parameterized codes are:
Unary code: In the unary coding scheme each positive integer x is repre-

sented by x-1 “one” bits followed by a “zero”. For example, the number 5 in
unary will be stored as 11110. A list of the unary codes for the first ten positive
integers is shown in Table 1.

The unary code is equivalent to assigning a probability of 1
2x

to gaps of length
x [16].

Elias γ code: This is a code that achieves significant savings by encoding
each positive integer as follows [3]:

– store number 1 + ⌊log2x⌋ in unary,
– store the remainder x − 2⌊log2x⌋ in binary using ⌊log2x⌋ bits.
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Table 1. Examples of codes for integers

Golomb

x unary γ code b=2 b=3 b=4 b=6 b=7

1 0 0 00 00 000 000 0000
2 10 100 01 010 001 001 0001
3 110 101 100 011 010 0100 0010
4 1110 11000 101 100 011 0101 0011
5 11110 11001 1100 1010 1000 0110 0100
6 111110 11010 1101 1011 1001 0111 0101
7 1111110 11011 11100 1100 1010 1000 0110
8 11111110 1110000 11101 11010 1011 1001 10000
9 111111110 1110001 111100 11011 11000 10100 10001

10 1111111110 1110010 111101 11100 11001 10101 10010

A list of the γ codes for the first ten positive integers is shown in Table 1.
The γ code is equivalent to assigning a probability of 1

2x2 to gap x [16].
Golomb code for the global Bernoulli model: Let us suppose that we

have an N document text database that contains n distinct words and f index
pointers (i.e., f distinct “document, word” pairs).

The global Bernoulli model assumes that large text databases are uniform,
i.e. the words are distributed uniformly across the N documents. This, in turn,
implies that the probability of any one randomly selected word to appear in
any one randomly selected document is p = f/(N × n). It has been shown
that the d-gaps in this case can be efficiently represented by the Golomb code
[8]. According to this code, for a given parameter b, each positive integer x is
encoded as follows:

– store number q + 1 in unary, where q = ⌊(x − 1)/b⌋,
– store the remainder r = x−q×b−1 in binary using either ⌊log2b⌋ or ⌈log2b⌉

bits.

A list of Golomb codes for the first ten positive integers, for some values of
the parameter b, is shown in Table 1. At the decompression phase, the original
number is computed as x = r + q × b + 1. For a given value of p, b is calculated

as follows: b = ⌈ log2(2−p)
−log2(1−p)⌉ [7].

2.2 Parameterized codes

The most popular parameterized codes are:
Golomb code for the local Bernoulli model: The difference between the

global and the local Bernoulli model is that in the latter each list is associated
with a different b parameter [2]. The value of the parameter for the d-gap list of

word t is calculated as b = ⌈ log2(2−p)
−log2(1−p)⌉, with p = ft/N , where ft is the number
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of documents in the text database containing t. This means that for each distinct
word t in the text database, the value for ft must also be stored alongside with
the inverted list of the word for the b parameter to be computed at decoding time.
The value for ft is stored at the head of each list, using γ code [16]. During the
inverted list decompression, the ft value is decoded first, then the b parameter
is calculated and the decompression continues with the rest of the list.

Golomb code for the skewed Bernoulli model: The local Bernoulli
model assumes that every word is scattered uniformly across the N documents.
When indexing actual text collections, a lot of words tend to appear many times
in some parts of the collection and not so often in other parts. A compression
code that could be applied in this situation and produce more compact indexes,
is the Golomb code for the skewed Bernoulli model [14], [11]. Nevertheless, in the
case of inverted lists involving uniformly distributed d-gaps, the latter is slightly
outperformed by the plain local Bernoulli model [16].

Other coding methods: Many other models and methods have been de-
veloped for coding gaps, like the local hyperbolic model that has low decoding
performance [13] and the interpolative method [10] that takes advantage of the
locality inside the inverted lists. Moreover, new algorithms have been developed
recently that reorder the documents in a collection, in order to create high lo-
calities inside the inverted lists. The interpolative method utilizes the latter to
achieve maximum compression [1].

The Golomb code for the local Bernoulli model is the preferred scheme be-
cause it combines acceptable compression, fast encoding/decoding, and simplic-
ity of implementation [16], [17], [12]. For each inverted list, it is only the value
for ft that is stored in the head of the list and this value is also used for im-
plementing ranking. The skewed Bernoulli model and the interpolative method
produce more compact indexes in the case of non-uniform databases but they
are slightly outperformed by the Golomb code for the local Bernoulli model in
the case of uniform text databases [16]. Moreover, these models do not involve
storing the values for ft in each inverted list. Thus, additional space would be
required in this case, in order to implement ranking.

3 uγ − Golomb

In this section we introduce uγ−Golomb, a new variation of the Golomb code for
the local Bernoulli model. The aim is to improve the performance of this popular
encoding method in the case of non-uniform text databases. The gain comes
without producing larger indexes or introducing any additional computational
overhead in the case of uniform text database collections. The main idea behind
this variation is to reduce the number of bits used to store large values of q.

The plain Golomb code, for a given q, stores q+1 in unary and the remainder
r in binary. When q becomes excessively large, a common situation for non-
uniform collections, the unary code is not suitable because it uses many bits to
store q + 1. The use of γ code should be preferred for large values of q, instead
of the unary code.
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We select a threshold value of q, let us call it q0. During the coding process,
when q is less than or equal to q0 we store q+1 in unary (i.e., we use plain Golomb
coding). On the other hand, when q is greater than q0, instead of encoding q +1
in unary, we encode q using γ code. In this case, a constant number of “ones” is
prefixed to the γ code representation, so that there is no confusion during the
decoding process as to whether the value being read is q + 1 encoded in unary
code or q encoded in γ code. The following lemma determines the necessary
“ones” that have to be prefixed.

Lemma 1. If q0 is the selected threshold value, then at least q0+1−⌊log2(q0+1)⌋
“ones” must be prefixed to the γ code representation of q, for q > q0.

Proof. Let u1 be the number of leading “ones” in the largest unary representation
of q. This occurs when q = q0, in which case we store q0+1 in unary, thus u1 = q0.
Let γ1 be the number of leading “ones” in the smallest γ-code representation of
q. This occurs when q = q0 + 1, thus γ1 = ⌊log2(q0 + 1)⌋.

Clearly, in order to distinguish between the above two representations we
must prefix x “ones” to the γ-code representation so that γ1 + x > u1. Thus,
x > u1 − γ1 or x > q0 − ⌊log2(q0 + 1)⌋. The smallest x that satisfies the above
condition is x = q0 − ⌊log2(q0 + 1)⌋ + 1. ⊓⊔

The codes generated by this method for integers [1 . . . 20] when q0 = 4 and
b = 2 are shown in Table 2.

Table 2. uγ − Golomb (b=2), for q0 = 4

x code x code x code x code

1 (q = 0) 00 6 (q = 2) 1101 11 (q = 5) 111,11001,0 16 (q = 7) 111,11011,1
2 (q = 0) 01 7 (q = 3) 11100 12 (q = 5) 111,11001,1 17 (q = 8) 111,1110000,0
3 (q = 1) 100 8 (q = 3) 11101 13 (q = 6) 111,11010,0 18 (q = 8) 111,1110000,1
4 (q = 1) 101 9 (q = 4) 111100 14 (q = 6) 111,11010,1 19 (q = 9) 111,1110001,0
5 (q = 2) 1100 10 (q = 4) 111101 15 (q = 7) 111,11011,0 20 (q = 9) 111,1110001,1

Let us examine these codes in detail. When x ∈ [1 . . . 10], the codes are the
plain Golomb codes for b = 2 (Table 1), because for these values q ≤ q0. When
x ∈ [11 . . . 20], then q > q0, and the actual value of q is stored using γ code
(shown between the two commas). The value after the second comma is the
value for r stored in binary. The first q0 + 1 − ⌊log2(q0 + 1)⌋ = 3 “ones” that
appear before the first comma are necessary, so that when at least q0 + 1 = 5
consecutive “ones” are encountered in the beginning of a code at decoding time,
the first q0+1−⌊log2(q0+1)⌋ = 3 “ones” are ignored and what follows is treated
as the γ code for q.

Several variations can be created by assigning different values to q0. When q0

is small, more values of q are being stored using γ code plus a constant prefix of
q0 + 1−⌊log2(q0 + 1)⌋ “ones”, and as q0 increases the number of q values stored
in γ code decreases.
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4 Experimental Results

The document collection used as a testbed was the fifth volume of the TREC
collection. The volume contains 475MB of articles from the Los Angeles Times
(LAT), published during the January 1, 1989 – December 31, 1990 period, plus
470MB of documents of the Foreign Broadcast Information Service (FBIS) from
1994. The profiles for the LAT and FBIS collections as well as of their concate-
nation (LATFBIS) are shown in Table 3.

Table 3. Testbed collections’ profiles

Collection Size Distinct words (n) Total documents (N) Total pointers (f)

LAT 475MB 288823 130472 31193292
FBIS 470MB 247563 131167 34982316

LATFBIS 945MB 437864 261639 66175608

We compared the following four codes:

– Elias γ code for all the gaps in all the lists of the inverted file. This code will
be referred to as “γ − Code”.

– Golomb code for the local Bernoulli model. An inverted list is created for
every word in the collection. Each list also stores the value for ft (document
frequency for term t) using γ code. The ft overhead for each word is included
in the final results. This code will be referred to as “Golomb”.

– Golomb code for the local Bernoulli model with q + 1 encoded using γ code
instead of unary code. The ft overhead for each word is included in the final
results. This code will be referred to as “γ − Golomb”.

– The Golomb code for the local Bernoulli model variation we propose (see
Section 3). The ft overhead for each word is once again included in the final
results. This code will be referred to as “uγ − Golomb”.

Figures 1 and 2 illustrate the results obtained for the LAT, FBIS, and LATF-
BIS collections. In each figure, the average number of bits per pointer is plotted
as a function of q0 and this is why the curves for “γ − Code”, “Golomb” and
“γ − Golomb” are horizontal lines.

A first observation is that the “γ − code” line is always above the “Golomb”
line. This means that the γ code produces larger indexes than the Golomb code
for the local Bernoulli model. These results confirm similar results presented in
[11]. Another observation is that the “γ −Golomb” line is also always above the
“Golomb” line. This means that if one of the two codes (γ or unary respectively)
should be preferred for storing the values of q+1, then the unary code should be
preferred. Indeed the unary code is preferred for the Golomb codes, as described
in [11].
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Fig. 1. The results for the LAT and the FBIS collections.

The results demonstrate that the compression achieved by “uγ −Golomb” is
low for small values of q0, it is maximized for values near 7 and 8, it keeps de-
creasing as q0 increases beyond 9 and approaches asymptotically the compression
of “Golomb”. In the case of Figure 1 the difference between the “uγ −Golomb”
and the “Golomb” curves is very small. The two curves overlap or remain very
close to each other in the case of LAT and FBIS for values of q0 > 3. This is
probably because LAT and FBIS are uniform collections. Similar results have
been obtained by using uniform synthetic collections generated by FINNEGAN
[17]. In Figure 2 the average “uγ − Golomb” pointer utilizes nearly 0.1 fewer
bits than the Golomb code pointer when q0 = 7. This is a significant gain for
our variation method. This is due to the fact that LATFBIS is a non-uniform
collection, consisting of two different text database collections. Many words tend
to appear often in one collection and not so often in the other. In this respect,
we have relaxed the assumption for uniform distribution of the words in the
documents. In fact, the more non-uniform a collection is, the more the two lower
curves in Figure 2 tend to decline.

Having experimented with many other text database collections, uniform
and non-uniform, we have obtained results similar to the ones presented. When
q0 = 7, uγ − Golomb was found to achieve maximum compression and never
perform worse than the plain Golomb code for the local Bernoulli model. In the
case of non-uniform databases, the gain came without imposing any kind of ad-
ditional overhead, including computational overhead. Namely, the plain Golomb
and the proposed uγ−Golomb with q0 = 7 involve the same decompression CPU
overhead.
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Fig. 2. The results for the LATFBIS collection.

5 Conclusion

In the present study we consider the issue of integer number encoding in the
context of index compression for uniform and non-uniform document collections.
The relevant research literature suggests that the Golomb code for the local
Bernoulli model comprises the preferred choice for index compression.

We introduce uγ−Golomb, a new Golomb code variation, whereby a tunable
threshold value q0 (of the q = ⌊(x − 1)/b⌋ number used in the Golomb code for
the local Bernoulli model) determines which d-gap values are (partially) encoded
via the unary and which via the Elias γ-code scheme. Experimental runs of the
proposed variation conducted against two TREC collections reveal Golomb code
for the local Bernoulli model performance in the case of uniform collections and
an increased compression efficiency for non-uniform collections. By construction,
the uγ − Golomb code does not introduce any additional CPU overhead during
the encoding/decoding phase.

In the future stages of our research we intent to exploit the effect document
reordering algorithms have to the performance of the proposed uγ − Golomb
code.
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