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Abstract 

We present two variations of S-Index and consider 
their storage utilization efficiency against a 130MB 
textbase. S-Index is a hybrid-indexing scheme that 
combines advantages from two popular indexing 
methods: the inverted file and the signature file. We 
introduce a new variation of the method and 
describe the file structure plus the implementation 
details for both the original as well as for the new 
variation of S-Index. The performance results 
obtained are used to compare the two variations. 
The improved variation of S-Index is measured to 
utilize less than 5% of the storage utilized by the 
corresponding indexed textbase corpus, under 
certain circumstances. The original S-Index involves 
slightly worse space requirements, but the 
performance of both variations is comparable to that 
of the compressed inverted file. 

1. Introduction 
There are two popular approaches for indexing textbases: 
Inverted Files and Signature Files or Bitmaps. Both 
approaches index all the distinct words that belong to a 
given vocabulary V. Stopwords, i.e., common and 
function words, such as articles and prepositions, are 
excluded from the vocabulary and the index. 

 

 

In the Inverted File index (I-Index) [6] the textbase is 
divided into blocks. Each distinct word of the vocabulary 

is associated with an inverted list that contains sorted 
block identifiers. An address table that maps block 
identifiers to physical block addresses is used to locate 
and fetch the actual text from the disk. An efficient and 
popular structure for storing the vocabulary and the 
inverted lists is the B+ tree. The inverted lists can be 
compressed with the use of variable-length codes. The 
resulting Compressed Inverted File [8, 9] takes up around 
5-10% of the size of the textbase being indexed. The 
reduction in the required disk space for the index is 
significant, as the above percentage for plain inverted 
files is 30-60% [9]. 

Signature Files [3] store signatures (bit-strings) that 
correspond to words, or blocks of words, of the textbase. 
A popular variation is the Superimposed Coding - 
Signature File (SC-SF) [3]. In SC-SF, an F-bit signature 
is assigned to every word, having m bits set to 1 and the 
rest set to 0. The textbase is divided into logical blocks, 
each block containing D distinct words. The signature of 
a block is generated by OR-ing the signatures of the D 
distinct words (see Table 1). 

Table 1:  An SC-SF example having m = 4, F = 16 and 
D = 4 

Word Signature 
free 0010001100100000 
text 0000101010010000 
database 0000100010010001 
example 0000001010010010 
Block Signature 0010101110110011 

 

The Signature File for the textbase is the concatenation of 
all the block signatures. For a single word query the 
signature of the word is created and all block signatures 
are searched. A text block is retrieved only if its block 
signature has at least the same bits set to 1 with the word 
signature. Next, the text block is scanned for the 
possibility of the word to still not be contained. A 
situation where the word signature complies with that of 
the block but the word does not appear in the latter is 



 

called a false drop [3]. The text blocks that qualify are the 
ones that are retrieved and found to not correspond to 
false drops. 

A particular instance of SC-SF having m = 1, F = V plus 
the restriction that distinct words correspond to distinct 
signatures, is called Bitmap or Exactly Reversible 
Signature File (ERSF) [1]. Using a minimal perfect hash 
function (MPHF) [4, 5], or a B+ tree, a unique number in 
[0,...,V-1] can be assigned to each distinct word of the 
vocabulary. Then, the signature of the word that 
corresponds to number k (k in [0,...,V-1]) is a unique V-
bit signature having only its kth bit set to 1 and the 
remaining V-1 bits set to 0. The signature for an entire 
block is created by OR-ing the unique signatures of the D 
distinct words of the block. In the end, the block signature 
has D bits set to 1 and V-D bits set to 0. An evident and 
less complex way for constructing the signature for a 
block is to set the D bits, that correspond to the D distinct 
numbers assigned to each of the D distinct words in the 
block, to 1 and the remaining V-D bits to 0 (see Table 2 
for an example). For a single word query the number k 
corresponding to the word is retrieved with the help of a 
B+ tree or an MPHF. If a block signature has its kth bit set 
to one then the block is retrieved, otherwise it is rejected. 
By construction, all blocks retrieved qualify for the given 
query, i.e., there are no false drops. 

Table 2: A Bitmap example with V = 16 and D = 4 

Word Word number  
free 3 
text 9 
database 12 
example 0 
Block Signature 1001000001001000 

 

Both approaches (Inverted Files and Signature Files) 
allow for fast query processing, but each one has certain 
advantages and disadvantages. Unlike Signature Files, 
Inverted Files are not suitable for set oriented processing 
and multi-term queries [7]. Signature Files, on the other 
hand, require serial scanning and produce false drops [3]. 
S-Index, where ‘S’ stands for signature and ‘Index’ 
implies the inverted file index, is a hybrid indexing 
scheme combining advantages from the two popular 
indexing approaches presented above. 

The structure and construction of two variations of S-
Index are described in Section 2. Section 3 focuses on the 
physical implementation of the variations considered in 
Section 2. In Section 4 we present experimental results 
and compare the performance of the two variations of S-
Index and the compressed I-Index. In Section 5 we 
conclude on the subject and comment on the next stages 
of the research work in question.  

2. The S-Index Schema 
Two variations of S-Index are presented: the original [2] 
and a new improved one. From now on, the former will 
be referred to as S-Index1 and the latter as S-Index2. 

S-Index can be represented by a tree structure. Out of a 
number of alternative tree-structures considered (trees 
with different fanouts), the scheme achieving the best 
performance was found to be the binary tree [2]. Section 
2.1 describes the construction of the tree and the contents 
of its nodes for S-Index2. Section 2.2 explains how all the 
text blocks containing a search word can be retrieved with 
the help of S-Index2. A full example is provided in 
Section 2.3. Section 2.4 describes S-Index1, by focusing 
on the differences of the two variations. 

2.1 Signature Inser tion 
In S-Index2, each distinct, non-common word is mapped 
on to a unique number in [0,...,V-1], where V is the total 
number of distinct words in the textbase, through the use 
of a B+ tree or a MPHF. The textbase is then divided into 
logical blocks, each containing D distinct words. For 
every block an ERSF type signature is created. The size 

of a signature is M=2log2(V) (the first power of 2 which is 
equal to or greater than V). This means that a signature 
has its bits numbered in the [0,...,V-1,V,...,M-1] range. 
Since only D of the bits [0,...,V-1] can be set to 1 in a 
signature, bits in [V,...,M-1] are always set to 0 and are 
reserved for future vocabulary expansion.  

Once an ERSF type signature is created for a text block b, 
it is inserted into the S-Index2 (binary) tree structure. 
Starting from the root, if the number of 1s in the signature 
of block b is greater than or equal to the number of 0s, 
then the signature is stored under the root node, alongside 
with the corresponding block identifier b, and the 
algorithm terminates. On the other hand, if the number of 
1s is less than the number of 0s, the signature is divided 
into two equally sized signatures. The first half contains 
the left M/2 bits and the second half the right M/2 bits of 
the original signature. The two halves are inserted 
recursively into the left and right subtrees of the root. The 
recursive pseudo-code for the insertion of an ERSF type 
signature of a block in S-Index2 is shown in Figure 1. 

Because an S-Index2 tree is a full binary tree, if V is not a 
power of 2, then some of the nodes exist but are not used. 
The full binary tree contains log2(M) levels of nodes, 
since this is the number of levels needed, so that it is 
impossible for a signature to be further divided. A block 
signature may be divided all the way up to the point 
where two-bit sub-patterns are produced. The only 
possible combinations for such two-bit patterns are 01 
and 10. This is because 00 is not stored and 11 implies 
that the corresponding signature would have been 
appended as a four bit pattern, one level up from the 
current one. By convention, the root level is at level 0 and 
the leaf level is at level log2(M) - 1. 



  

PROCEDURE Insert_Signature_Into_Subtree(signature, node) 
BEGIN 
 number_of_1s = number of 1s in signature; 
 number_of_0s = number of 0s in signature; 
 IF number_of_1s = 0 THEN exit(); 
 
 IF (number_of_1s  number_of_0s in the signature) 
 THEN 
 BEGIN 
  append a new record under the current node; 
  exit from this procedure; 
 END 
 ELSE 
 BEGIN 
  signature_L = left half of signature; 
  signature_R = right half of signature; 
  node_L = left child of node; 
  node_R = right child of node; 
  CALL Insert_Signature_Into_Subtree(signature_L, node_L); 
  CALL Insert_Signature_Into_Subtree(signature_R, node_R); 
 END 
END. 
 
CALL 
Insert_Signature_Into_Subtree(ERSF_Type_Signature_For_Block, 
root); 

Figure 1:  Pseudo-code for  inser ting a signature into 
S-Index2 

2.2  Single term query processing with S-
Index2 

Block signatures appended under the root node utilize the 
whole of the textbase vocabulary. The left child of the 
root utilizes the left (lower) half of the vocabulary 
[0,...,M/2-1], because only the left (lower) part of an 
ERSF signature can be stored under that node. Similarly, 
the right child of the root registers information on blocks 
containing words with codes in [M/2,...,V-1], because 
only the right part of an ERSF signature can be stored 
there, and so on. 

When attempting to find all the blocks that qualify for a 
given single term query, one has to start from the root 
node and follow a single path down to the leaf level. 
Along this path, all signatures under each one of the 
nodes encountered are fetched and examined. If the 
appropriate bit is set to 1, then the block number is 
retrieved. The block numbers retrieved are then mapped 
to addresses on the disk, with the help of an address table 
constructed during the partitioning of the textbase into 
logical blocks. The actual text may then be fetched from 
the disk, by following the corresponding address pointers. 

2.3 Detailed example 
As an example, let us consider the following text: “This is 
an example for  a small text database with common 
words. Common words in the text are not indexed.” 
The size of the vocabulary in this textbase is V=7, so 
M=8 (1 bit is wasted). The mapping of the words indexed 
is presented below. 

example 0 
small 1 
text 2 
database 3 
common 4 
words 5 
indexed 6 

 

The textbase is divided into logical blocks, each 
containing D=3 distinct words: 

Block 
number  

Block context Block signature 

0 This is an example 
for a small text 

S0 = 11100000 

1 database with 
common words. 

S1 = 00011100 

2 Common words in 
the text 

S2 = 00101100 

3 are not indexed S3 = 00000010 
 

The empty and populated S-Index2 structures appear in 
Figure 2 and Figure 3, respectively. 

 

Figure 2: Empty S-Index2 structure 

 

Figure 3: Populated S-Index2 structure 

 
Let’s see how block signature S1 is inserted into the 
index. S1 cannot be placed under the root because it has 
three 1s and five 0s. Thus, it is divided into two signatures 
S1_L (0001), and S1_R (1100). S1_L cannot be placed under 
node L1,1 because it contains one 1 and three 0s. S1_L is 
therefore divided into S1_L_L (00) and S1_L_R (01). S1_L_L is 
not stored under node L2,1 because it contains no 1s. 



 

S1_L_R is stored under node L2,2, alongside with its block 
identifier, since it contains one 1 and one 0. In a similar 
way, S1_R and block number 1 are appended to the list 
under node L1,2, because half of the signature bits are set 
to 1. 

In the course of processing the single term query "find all 
the occurrences of the word text in the textbase", first the 
word text has to be mapped to its corresponding code, 
which is number 2. This is achieved with the help of a B+ 
tree or a MPHF. Next, we consider the root of the S-
Index2 tree. For the example in question, no records are 
stored under the root node, thus the search algorithm 
chooses a child node to continue. The latter is node L1,1 
and is determined by considering the word code (2, in this 
case). All of the signature records stored under the given 
node are retrieved and checked. When the appropriate bit 
position (here, bit position 3) is set to 1, the 
corresponding block identifier is retrieved. In this case, 
block number 0 is retrieved. The next child node to be 
considered is L2,2. Bit position 1 of all the signatures 
stored under this node is checked. The algorithm retrieves 
block number 2 from node L2,2 and terminates because a 
leaf node has been reached. It is now clear that the word 
text appears in blocks 0 and 2. This can be confirmed by 
scanning the corresponding textbase blocks. Figure 4 
illustrates the main points of the example considered. 

 

 

Figure 4: Answer ing a single term query on text 

2.4 S-Index1:  Differences and Similar ities 
with S-Index2 

We now present S-Index1. We clarify its details by 
focusing on the signature insertion and the single-term 
query processing algorithms. 

Signature inser tion. The signature insertion algorithm 
remains the same. The only difference is that a record is 
stored under a node only when the number of 1s in a 
signature is greater than the number of 0s. This has the 
following consequences: Level log2(M)-1 now stores the 
signature pattern 11. Patterns 01 and 10 cannot be stored 

under the nodes in level log2(M)-1, because the number of 
1s is equal to the number of 0s. Thus, a new level has to 
be created, level log2(M), in order to store the one-bit 
patterns generated by the division of the above two-bit 
patterns. It is obvious, that there is no need to store 
signature patters under the nodes at levels log2(M)-1 and 
log2(M), because only one pattern corresponds to each of 
them, namely, pattern 11 for level log2(M)-1 and pattern 1 
for level log2(M). 

Single term query processing. The only difference in the 
search algorithm is that no bit comparison needs to be 
made for records stored under nodes in the last (lower) 
two levels of the tree. It is by construction that all block 
identifiers stored under a node at these levels correspond 
to blocks known to qualify for the query in question.  

Detailed example. The textbase used for this example is 
the same as the one used in subsection 2.3. It is 
partitioned into the same logical blocks and the same 
ERSF type signatures are created. The corresponding 
empty and populated tree structures are shown in Figure 5 
and Figure 6, respectively. Figure 7 summarizes on the 
search algorithm for S-Index1. 

 

 

 

Figure 5: Empty S-Index1. Note that a new level 
(level 3) has been created 

 

Figure 6:  Populated S-Index1. Note that no 
signatures are stored in the last two levels 

 



  

 

Figure 7:  Answer ing a single term query on text. 
Note that no bit compar ison is necessary 
for  the lower  two levels 

3. Implementation 
This section covers the implementation details for S-
Index1 and S-Index2, and focuses on the latter. As shown 
in Figure 3, S-Index2 consists of two main parts: (a) the 
skeleton which is a full binary tree containing the nodes, 
and (b) under each node a list of records, each being of 
the (block identifier, block signature) type. In the 
following we describe the way this structure is organized 
on disk. 

Root level (level 0). All records under the root node are 
stored in a linked list on the disk. A typical root record 
stores a signature of size M and a block number. The 
signature utilizes M/8 bytes on the disk and the text 
block number is stored as a two-byte integer. A pointer to 
the first record of the root's record list on the disk is 
stored in the first row of a look-up table containing 
log2(M) rows. A traversal of the list retrieves the 
remaining records. 

Intermediate level (level i, where 0  i  log2(M) - 1). 
All records, in all lists, under all nodes in level i, are 
stored on the disk in a combined linked list - a structure
that consists of many individual linked lists. A typical 
record, in the list under any node in level i, consists of a 
M/2i bit signature, a text block number and a pointer to 
the next record in the list. The signature utilizes M/2i+3 
bytes on the disk. In addition, two bytes are used for the 
block number and four are reserved for the next record 
pointer.  

The combined linked list is constructed with the help of 
the following algorithm: At first, space for 2i records is 
allocated sequentially on the disk. Each one of these 
empty records is the head record to the list of each of the 
2i nodes in level i, and initially has the next record pointer 
and the text block identifier field set to NULL. In the 
(i+1)th row of the lookup table, a pointer to the first record 
of the combined linked list is stored. Once the head record 

of a list has been used, new records are appended right 
after it. 

In the example below we demonstrate the implementation 
of the combined linked list for the third level (level 2) of 
an S-Index2 tree having M = 16. The size of a signature 
for level 2 is M/2i = 16/22 = 4 bits. Figure 8 illustrates 
the four nodes at level 2, and Figure 9 illustrates the 
corresponding combined linked list of records. 

 

Figure 8:  The empty structure for  level 2 of  S-
Index2 when M = 16 

 

 

Figure 9: The empty combined linked list 

 
Record 0 is the empty head record for node L2,1, record 1 
is the empty head record for node L2,2 and so on. Space 
for four empty head records has been allocated serially on 
the disk. 

After four insertions, the S-Index2 schema and the 
corresponding combined linked list at level 2 are shown 
in Figure 10 and Figure 11, respectively. 

 

 

Figure 10:  The tree structure after  four  record 
inser tions 

 

 

Figure 11:  The combined linked list after  four  record 
inser tions 

 
Suppose now that record (1110,9) is to be inserted into 
the list under node L2,3. Figure 12 and Figure 13 illustrate 
the updated tree and combined linked list structures for 
this case. 



 
Figure 12:  The tree after  the inser tion of (1110, 9) 

under  L2,3 

 

 

Figure 13:  The combined linked list after  the 
inser tion of (1110, 9) under  L2,3 

 
In order to traverse the entire list under node j of level i 
(Li,j where 0  i  log2(M)-1 and 1  j  2i) we need to: (a) 
go to the combined linked list with the help of the (i+1)th 

row of the look-up table, (b) jump to the jth record of the 
combined linked list, which is the head record to the list 
under node Li,j, and (c) retrieve the whole list by 
following the next record pointer, until a NULL value is 
encountered.  

Leaf level (level log2(M)-1). The leaf level is stored with 
the help of a combined linked list, like any intermediate 
level. The differentiation has to do with the signatures it 
registers. In the case of S-Index2, the possible 
combinations for the two bit signatures in the leaf nodes 
are 01 and 10. Thus, for each one node we maintain two 
record lists, one for each one of the two (possible) 2-bit 
signature patterns. Evidently, each one record of the two 
lists in question stores a (block identifier, next record 
pointer) pair.  

From the discussion above, it follows that the binary tree 
(backbone) structure is neither saved on the disk nor is 
maintained in main memory. The only structure that 
needs to be stored is the look-up table that directs to the 
combined linked lists and allows for efficient retrieval of 
the records stored under the S-Index2 nodes. 

The implementation of S-Index1 is along the same lines. 
The difference lies in the two lower levels of S-Index1. As 
explained in subsection 2.4, no signature patterns have to 
be stored under the nodes of the lower two levels. This 
means that a typical record in the combined linked lists of 
the two last levels of the tree is of the (block identifier, 
next record pointer) type. At its lowest (leaves) level, S-
Index1 turns into an I-Index type structure. It is in this 
respect that S-Index is said to comprise a hybrid-indexing 
scheme.  

4. Exper imental Results 
In order to compare the performance of S-Index1 with that 
of S-Index2 and the I-Index, a series of experiments were 
conducted. We developed a version of S-Index that can be 
tuned to perform either like S-Index1 or like S-Index2. For 
an I-Index environment, we used the MG system1 [9], 
which utilizes compressed inverted files for indexing 
textbases. The textbase used for the experiments is a 130 
MB (synthetic) document collection that was generated 
with FINNEGAN2 [9]. Its profile is outlined in Table 3. 
FINNEGAN is a textbase generator that can create 
synthetic textbases of any size with statistical properties 
analogous to those of real text. The experimental results 
obtained are used to compare the two variations of S-
Index with regard to their storage utilization efficiency. S-
Index has been found to achieve a performance 
comparable to that of file inversion. 

Table 3: The textbase profile 

Collection Size 130 MB 
Filter Size (number of common 
and function words) 

598 

Vocabulary Size (number of 
distinct words) 

128727 

 

In our implementation of S-Index, the mapping of the 
distinct words to unique code numbers is achieved with 
the help of a B+ tree. The numbers are assigned to the 
words sequentially. This means, that the number code 
assigned to first distinct word of the textbase is 0, the 
number assigned to the second distinct word is 1, and so 
on. The ERSF type signatures generated for each block 
are 131072 (= 217) bits long, because the vocabulary size 
was measured to be 128727 words. The binary positions 
utilized during block signature construction range from 
bit position 0 to bit position 128726. The remaining 2345 
bits may be used for future vocabulary expansion. 

Figure 14 presents the results obtained by considering 
several blocking factor (D) values for S-Index1 and S-
Index2, and includes the curve of the compressed I-Index 
scheme [9]. The size of the S-Index1 and S-Index2 indexes 
decreases as the value of the blocking factor (D) 
increases. S-Index1 is seen to require more space on disk 
than S-Index2, for the same D values. Moreover, for a 
particular range of D values, S-Index requires much less 
space on disk, than I-Index. For the textbase considered, 
if D = 4500 then S-Index2 and I-Index produced indexes 
of the same size. S-Index1 and I-Index produced indexes 
of about the same size for a value of D around 5500. 
Nevertheless, upon increasing the value of D, the S-Index 

 
1 MG is available via ftp from 
ftp://munnari.oz.au/pub/mg. 
2 FINNEGAN is available via ftp from 
ftp://munnari.oz.au/pub/finnegan. 



  

variations produced more compact indexes. For D = 
12000, S-Index2 was measured to be only 4.28% the size 
of the indexed textbase and S-Index1 5.21%. For S-
Index2, this implies an improvement of about 18% over S-
Index1, and 57% over the I-Index.  

 

Figure 14:  Disk space requirements for  S-Index1, S-
Index2 and I-Index 

The cost for increasing the size of the blocking factor in 
S-Index is an increase in the size of the logical blocks, 
into which the textbase is partitioned. The curve in  

Figure 15 illustrates the impact that different values of D 
have on the average text block size. Large text blocks 
slow down the query processing speed, because each 
block has to be scanned, so that the exact position of the 
word in question is found. This means that the choice of 
D is important in order to achieve the desirable 
performance with regard to disk space requirements and 
query processing efficiency. S-Index2 appears to be a 
better choice over S-Index1, since it has been measured to 
produce more compact indexes. 

 

Figure 15:  The average block size is affected by the 
blocking factor  

5. Conclusion 
In this paper we presented in detail the schemata and the 
implementation of the basic and of an improved variation 

of S-Index. The storage utilization efficiency of the two 
S-Index variations was considered next to a 130 MB 
textbase. The experimental results obtained indicate that 
the improved variation may be configured to utilize an 
index size that is less than 5% the size of the indexed 
textbase corpus. This in turn implies performance 
comparable to that of the compressed inverted index. For 
S-Index, the decrease in the index size is achieved at the 
cost of increasing the average logical text block size. The 
latter implies a decrease in query processing efficiency.  

This study emphasizes on measuring the performance of 
S-Index with regard to storage utilization efficiency. In 
the future stages of our research, we intent to focus on the 
S-Index query processing efficiency. It is worth noting 
that the scheme allows for further improvement with 
regard to storage utilization efficiency: the list of records 
stored under the leaf nodes are of the same type as those 
of the inverted index. In this respect, S-Index is expected 
to benefit from implementing compression, analogous to 
that of the self-indexing inverted files, reported to reduce 
the size of each one record down to one byte [8].  
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