

Improving on S-Index: A Hybr id Indexing Scheme for Textbases

Ilias Nitsos Dimitris A. Dervos Georgios Evangelidis
Dept. of Applied Informatics Dept. of Information Technology Dept. of Applied Informatics

University of Macedonia T.E.I. University of Macedonia
Thessaloniki, Greece Thessaloniki, Greece Thessaloniki, Greece

nitsos@uom.gr dad@it.teithe.gr gevan@uom.gr

Abstract

We present two variations of S-Index and consider
their storage utilization efficiency against a 130MB
textbase. S-Index is a hybrid-indexing scheme that
combines advantages from two popular indexing
methods: the inverted file and the signature file. We
introduce a new variation of the method and
describe the file structure plus the implementation
details for both the original as well as for the new
variation of S-Index. The performance results
obtained are used to compare the two variations.
The improved variation of S-Index is measured to
utilize less than 5% of the storage utilized by the
corresponding indexed textbase corpus, under
certain circumstances. The original S-Index involves
slightly worse space requirements, but the
performance of both variations is comparable to that
of the compressed inverted file.

1. Introduction
There are two popular approaches for indexing textbases:
Inverted Files and Signature Files or Bitmaps. Both
approaches index all the distinct words that belong to a
given vocabulary V. Stopwords, i.e., common and
function words, such as articles and prepositions, are
excluded from the vocabulary and the index.

In the Inverted File index (I-Index) [6] the textbase is
divided into blocks. Each distinct word of the vocabulary

is associated with an inverted list that contains sorted
block identifiers. An address table that maps block
identifiers to physical block addresses is used to locate
and fetch the actual text from the disk. An efficient and
popular structure for storing the vocabulary and the
inverted lists is the B+ tree. The inverted lists can be
compressed with the use of variable-length codes. The
resulting Compressed Inverted File [8, 9] takes up around
5-10% of the size of the textbase being indexed. The
reduction in the required disk space for the index is
significant, as the above percentage for plain inverted
files is 30-60% [9].

Signature Files [3] store signatures (bit-strings) that
correspond to words, or blocks of words, of the textbase.
A popular variation is the Superimposed Coding -
Signature File (SC-SF) [3]. In SC-SF, an F-bit signature
is assigned to every word, having m bits set to 1 and the
rest set to 0. The textbase is divided into logical blocks,
each block containing D distinct words. The signature of
a block is generated by OR-ing the signatures of the D
distinct words (see Table 1).

Table 1: An SC-SF example having m = 4, F = 16 and
D = 4

Word Signature
free 0010001100100000
text 0000101010010000
database 0000100010010001
example 0000001010010010
Block Signature 0010101110110011

The Signature File for the textbase is the concatenation of
all the block signatures. For a single word query the
signature of the word is created and all block signatures
are searched. A text block is retrieved only if its block
signature has at least the same bits set to 1 with the word
signature. Next, the text block is scanned for the
possibility of the word to still not be contained. A
situation where the word signature complies with that of
the block but the word does not appear in the latter is

called a false drop [3]. The text blocks that qualify are the
ones that are retrieved and found to not correspond to
false drops.

A particular instance of SC-SF having m = 1, F = V plus
the restriction that distinct words correspond to distinct
signatures, is called Bitmap or Exactly Reversible
Signature File (ERSF) [1]. Using a minimal perfect hash
function (MPHF) [4, 5], or a B+ tree, a unique number in
[0,...,V-1] can be assigned to each distinct word of the
vocabulary. Then, the signature of the word that
corresponds to number k (k in [0,...,V-1]) is a unique V-
bit signature having only its kth bit set to 1 and the
remaining V-1 bits set to 0. The signature for an entire
block is created by OR-ing the unique signatures of the D
distinct words of the block. In the end, the block signature
has D bits set to 1 and V-D bits set to 0. An evident and
less complex way for constructing the signature for a
block is to set the D bits, that correspond to the D distinct
numbers assigned to each of the D distinct words in the
block, to 1 and the remaining V-D bits to 0 (see Table 2
for an example). For a single word query the number k
corresponding to the word is retrieved with the help of a
B+ tree or an MPHF. If a block signature has its kth bit set
to one then the block is retrieved, otherwise it is rejected.
By construction, all blocks retrieved qualify for the given
query, i.e., there are no false drops.

Table 2: A Bitmap example with V = 16 and D = 4

Word Word number
free 3
text 9
database 12
example 0
Block Signature 1001000001001000

Both approaches (Inverted Files and Signature Files)
allow for fast query processing, but each one has certain
advantages and disadvantages. Unlike Signature Files,
Inverted Files are not suitable for set oriented processing
and multi-term queries [7]. Signature Files, on the other
hand, require serial scanning and produce false drops [3].
S-Index, where ‘S’ stands for signature and ‘Index’
implies the inverted file index, is a hybrid indexing
scheme combining advantages from the two popular
indexing approaches presented above.

The structure and construction of two variations of S-
Index are described in Section 2. Section 3 focuses on the
physical implementation of the variations considered in
Section 2. In Section 4 we present experimental results
and compare the performance of the two variations of S-
Index and the compressed I-Index. In Section 5 we
conclude on the subject and comment on the next stages
of the research work in question.

2. The S-Index Schema
Two variations of S-Index are presented: the original [2]
and a new improved one. From now on, the former will
be referred to as S-Index1 and the latter as S-Index2.

S-Index can be represented by a tree structure. Out of a
number of alternative tree-structures considered (trees
with different fanouts), the scheme achieving the best
performance was found to be the binary tree [2]. Section
2.1 describes the construction of the tree and the contents
of its nodes for S-Index2. Section 2.2 explains how all the
text blocks containing a search word can be retrieved with
the help of S-Index2. A full example is provided in
Section 2.3. Section 2.4 describes S-Index1, by focusing
on the differences of the two variations.

2.1 Signature Inser tion
In S-Index2, each distinct, non-common word is mapped
on to a unique number in [0,...,V-1], where V is the total
number of distinct words in the textbase, through the use
of a B+ tree or a MPHF. The textbase is then divided into
logical blocks, each containing D distinct words. For
every block an ERSF type signature is created. The size

of a signature is M=2log2(V) (the first power of 2 which is
equal to or greater than V). This means that a signature
has its bits numbered in the [0,...,V-1,V,...,M-1] range.
Since only D of the bits [0,...,V-1] can be set to 1 in a
signature, bits in [V,...,M-1] are always set to 0 and are
reserved for future vocabulary expansion.

Once an ERSF type signature is created for a text block b,
it is inserted into the S-Index2 (binary) tree structure.
Starting from the root, if the number of 1s in the signature
of block b is greater than or equal to the number of 0s,
then the signature is stored under the root node, alongside
with the corresponding block identifier b, and the
algorithm terminates. On the other hand, if the number of
1s is less than the number of 0s, the signature is divided
into two equally sized signatures. The first half contains
the left M/2 bits and the second half the right M/2 bits of
the original signature. The two halves are inserted
recursively into the left and right subtrees of the root. The
recursive pseudo-code for the insertion of an ERSF type
signature of a block in S-Index2 is shown in Figure 1.

Because an S-Index2 tree is a full binary tree, if V is not a
power of 2, then some of the nodes exist but are not used.
The full binary tree contains log2(M) levels of nodes,
since this is the number of levels needed, so that it is
impossible for a signature to be further divided. A block
signature may be divided all the way up to the point
where two-bit sub-patterns are produced. The only
possible combinations for such two-bit patterns are 01
and 10. This is because 00 is not stored and 11 implies
that the corresponding signature would have been
appended as a four bit pattern, one level up from the
current one. By convention, the root level is at level 0 and
the leaf level is at level log2(M) - 1.

PROCEDURE Insert_Signature_Into_Subtree(signature, node)
BEGIN
 number_of_1s = number of 1s in signature;
 number_of_0s = number of 0s in signature;
 IF number_of_1s = 0 THEN exit();

 IF (number_of_1s  number_of_0s in the signature)
 THEN
 BEGIN
 append a new record under the current node;
 exit from this procedure;
 END
 ELSE
 BEGIN
 signature_L = left half of signature;
 signature_R = right half of signature;
 node_L = left child of node;
 node_R = right child of node;
 CALL Insert_Signature_Into_Subtree(signature_L, node_L);
 CALL Insert_Signature_Into_Subtree(signature_R, node_R);
 END
END.

CALL
Insert_Signature_Into_Subtree(ERSF_Type_Signature_For_Block,
root);

Figure 1: Pseudo-code for inser ting a signature into
S-Index2

2.2 Single term query processing with S-
Index2

Block signatures appended under the root node utilize the
whole of the textbase vocabulary. The left child of the
root utilizes the left (lower) half of the vocabulary
[0,...,M/2-1], because only the left (lower) part of an
ERSF signature can be stored under that node. Similarly,
the right child of the root registers information on blocks
containing words with codes in [M/2,...,V-1], because
only the right part of an ERSF signature can be stored
there, and so on.

When attempting to find all the blocks that qualify for a
given single term query, one has to start from the root
node and follow a single path down to the leaf level.
Along this path, all signatures under each one of the
nodes encountered are fetched and examined. If the
appropriate bit is set to 1, then the block number is
retrieved. The block numbers retrieved are then mapped
to addresses on the disk, with the help of an address table
constructed during the partitioning of the textbase into
logical blocks. The actual text may then be fetched from
the disk, by following the corresponding address pointers.

2.3 Detailed example
As an example, let us consider the following text: “This is
an example for a small text database with common
words. Common words in the text are not indexed.”
The size of the vocabulary in this textbase is V=7, so
M=8 (1 bit is wasted). The mapping of the words indexed
is presented below.

example 0
small 1
text 2
database 3
common 4
words 5
indexed 6

The textbase is divided into logical blocks, each
containing D=3 distinct words:

Block
number

Block context Block signature

0 This is an example
for a small text

S0 = 11100000

1 database with
common words.

S1 = 00011100

2 Common words in
the text

S2 = 00101100

3 are not indexed S3 = 00000010

The empty and populated S-Index2 structures appear in
Figure 2 and Figure 3, respectively.

Figure 2: Empty S-Index2 structure

Figure 3: Populated S-Index2 structure

Let’s see how block signature S1 is inserted into the
index. S1 cannot be placed under the root because it has
three 1s and five 0s. Thus, it is divided into two signatures
S1_L (0001), and S1_R (1100). S1_L cannot be placed under
node L1,1 because it contains one 1 and three 0s. S1_L is
therefore divided into S1_L_L (00) and S1_L_R (01). S1_L_L is
not stored under node L2,1 because it contains no 1s.

S1_L_R is stored under node L2,2, alongside with its block
identifier, since it contains one 1 and one 0. In a similar
way, S1_R and block number 1 are appended to the list
under node L1,2, because half of the signature bits are set
to 1.

In the course of processing the single term query "find all
the occurrences of the word text in the textbase", first the
word text has to be mapped to its corresponding code,
which is number 2. This is achieved with the help of a B+
tree or a MPHF. Next, we consider the root of the S-
Index2 tree. For the example in question, no records are
stored under the root node, thus the search algorithm
chooses a child node to continue. The latter is node L1,1
and is determined by considering the word code (2, in this
case). All of the signature records stored under the given
node are retrieved and checked. When the appropriate bit
position (here, bit position 3) is set to 1, the
corresponding block identifier is retrieved. In this case,
block number 0 is retrieved. The next child node to be
considered is L2,2. Bit position 1 of all the signatures
stored under this node is checked. The algorithm retrieves
block number 2 from node L2,2 and terminates because a
leaf node has been reached. It is now clear that the word
text appears in blocks 0 and 2. This can be confirmed by
scanning the corresponding textbase blocks. Figure 4
illustrates the main points of the example considered.

Figure 4: Answer ing a single term query on text

2.4 S-Index1: Differences and Similar ities
with S-Index2

We now present S-Index1. We clarify its details by
focusing on the signature insertion and the single-term
query processing algorithms.

Signature inser tion. The signature insertion algorithm
remains the same. The only difference is that a record is
stored under a node only when the number of 1s in a
signature is greater than the number of 0s. This has the
following consequences: Level log2(M)-1 now stores the
signature pattern 11. Patterns 01 and 10 cannot be stored

under the nodes in level log2(M)-1, because the number of
1s is equal to the number of 0s. Thus, a new level has to
be created, level log2(M), in order to store the one-bit
patterns generated by the division of the above two-bit
patterns. It is obvious, that there is no need to store
signature patters under the nodes at levels log2(M)-1 and
log2(M), because only one pattern corresponds to each of
them, namely, pattern 11 for level log2(M)-1 and pattern 1
for level log2(M).

Single term query processing. The only difference in the
search algorithm is that no bit comparison needs to be
made for records stored under nodes in the last (lower)
two levels of the tree. It is by construction that all block
identifiers stored under a node at these levels correspond
to blocks known to qualify for the query in question.

Detailed example. The textbase used for this example is
the same as the one used in subsection 2.3. It is
partitioned into the same logical blocks and the same
ERSF type signatures are created. The corresponding
empty and populated tree structures are shown in Figure 5
and Figure 6, respectively. Figure 7 summarizes on the
search algorithm for S-Index1.

Figure 5: Empty S-Index1. Note that a new level
(level 3) has been created

Figure 6: Populated S-Index1. Note that no
signatures are stored in the last two levels

Figure 7: Answer ing a single term query on text.
Note that no bit compar ison is necessary
for the lower two levels

3. Implementation
This section covers the implementation details for S-
Index1 and S-Index2, and focuses on the latter. As shown
in Figure 3, S-Index2 consists of two main parts: (a) the
skeleton which is a full binary tree containing the nodes,
and (b) under each node a list of records, each being of
the (block identifier, block signature) type. In the
following we describe the way this structure is organized
on disk.

Root level (level 0). All records under the root node are
stored in a linked list on the disk. A typical root record
stores a signature of size M and a block number. The
signature utilizes M/8 bytes on the disk and the text
block number is stored as a two-byte integer. A pointer to
the first record of the root's record list on the disk is
stored in the first row of a look-up table containing
log2(M) rows. A traversal of the list retrieves the
remaining records.

Intermediate level (level i, where 0  i  log2(M) - 1).
All records, in all lists, under all nodes in level i, are
stored on the disk in a combined linked list - a structure
that consists of many individual linked lists. A typical
record, in the list under any node in level i, consists of a
M/2i bit signature, a text block number and a pointer to
the next record in the list. The signature utilizes M/2i+3
bytes on the disk. In addition, two bytes are used for the
block number and four are reserved for the next record
pointer.

The combined linked list is constructed with the help of
the following algorithm: At first, space for 2i records is
allocated sequentially on the disk. Each one of these
empty records is the head record to the list of each of the
2i nodes in level i, and initially has the next record pointer
and the text block identifier field set to NULL. In the
(i+1)th row of the lookup table, a pointer to the first record
of the combined linked list is stored. Once the head record

of a list has been used, new records are appended right
after it.

In the example below we demonstrate the implementation
of the combined linked list for the third level (level 2) of
an S-Index2 tree having M = 16. The size of a signature
for level 2 is M/2i = 16/22 = 4 bits. Figure 8 illustrates
the four nodes at level 2, and Figure 9 illustrates the
corresponding combined linked list of records.

Figure 8: The empty structure for level 2 of S-
Index2 when M = 16

Figure 9: The empty combined linked list

Record 0 is the empty head record for node L2,1, record 1
is the empty head record for node L2,2 and so on. Space
for four empty head records has been allocated serially on
the disk.

After four insertions, the S-Index2 schema and the
corresponding combined linked list at level 2 are shown
in Figure 10 and Figure 11, respectively.

Figure 10: The tree structure after four record
inser tions

Figure 11: The combined linked list after four record
inser tions

Suppose now that record (1110,9) is to be inserted into
the list under node L2,3. Figure 12 and Figure 13 illustrate
the updated tree and combined linked list structures for
this case.

Figure 12: The tree after the inser tion of (1110, 9)

under L2,3

Figure 13: The combined linked list after the
inser tion of (1110, 9) under L2,3

In order to traverse the entire list under node j of level i
(Li,j where 0  i  log2(M)-1 and 1  j  2i) we need to: (a)
go to the combined linked list with the help of the (i+1)th

row of the look-up table, (b) jump to the jth record of the
combined linked list, which is the head record to the list
under node Li,j, and (c) retrieve the whole list by
following the next record pointer, until a NULL value is
encountered.

Leaf level (level log2(M)-1). The leaf level is stored with
the help of a combined linked list, like any intermediate
level. The differentiation has to do with the signatures it
registers. In the case of S-Index2, the possible
combinations for the two bit signatures in the leaf nodes
are 01 and 10. Thus, for each one node we maintain two
record lists, one for each one of the two (possible) 2-bit
signature patterns. Evidently, each one record of the two
lists in question stores a (block identifier, next record
pointer) pair.

From the discussion above, it follows that the binary tree
(backbone) structure is neither saved on the disk nor is
maintained in main memory. The only structure that
needs to be stored is the look-up table that directs to the
combined linked lists and allows for efficient retrieval of
the records stored under the S-Index2 nodes.

The implementation of S-Index1 is along the same lines.
The difference lies in the two lower levels of S-Index1. As
explained in subsection 2.4, no signature patterns have to
be stored under the nodes of the lower two levels. This
means that a typical record in the combined linked lists of
the two last levels of the tree is of the (block identifier,
next record pointer) type. At its lowest (leaves) level, S-
Index1 turns into an I-Index type structure. It is in this
respect that S-Index is said to comprise a hybrid-indexing
scheme.

4. Exper imental Results
In order to compare the performance of S-Index1 with that
of S-Index2 and the I-Index, a series of experiments were
conducted. We developed a version of S-Index that can be
tuned to perform either like S-Index1 or like S-Index2. For
an I-Index environment, we used the MG system1 [9],
which utilizes compressed inverted files for indexing
textbases. The textbase used for the experiments is a 130
MB (synthetic) document collection that was generated
with FINNEGAN2 [9]. Its profile is outlined in Table 3.
FINNEGAN is a textbase generator that can create
synthetic textbases of any size with statistical properties
analogous to those of real text. The experimental results
obtained are used to compare the two variations of S-
Index with regard to their storage utilization efficiency. S-
Index has been found to achieve a performance
comparable to that of file inversion.

Table 3: The textbase profile

Collection Size 130 MB
Filter Size (number of common
and function words)

598

Vocabulary Size (number of
distinct words)

128727

In our implementation of S-Index, the mapping of the
distinct words to unique code numbers is achieved with
the help of a B+ tree. The numbers are assigned to the
words sequentially. This means, that the number code
assigned to first distinct word of the textbase is 0, the
number assigned to the second distinct word is 1, and so
on. The ERSF type signatures generated for each block
are 131072 (= 217) bits long, because the vocabulary size
was measured to be 128727 words. The binary positions
utilized during block signature construction range from
bit position 0 to bit position 128726. The remaining 2345
bits may be used for future vocabulary expansion.

Figure 14 presents the results obtained by considering
several blocking factor (D) values for S-Index1 and S-
Index2, and includes the curve of the compressed I-Index
scheme [9]. The size of the S-Index1 and S-Index2 indexes
decreases as the value of the blocking factor (D)
increases. S-Index1 is seen to require more space on disk
than S-Index2, for the same D values. Moreover, for a
particular range of D values, S-Index requires much less
space on disk, than I-Index. For the textbase considered,
if D = 4500 then S-Index2 and I-Index produced indexes
of the same size. S-Index1 and I-Index produced indexes
of about the same size for a value of D around 5500.
Nevertheless, upon increasing the value of D, the S-Index

1 MG is available via ftp from
ftp://munnari.oz.au/pub/mg.
2 FINNEGAN is available via ftp from
ftp://munnari.oz.au/pub/finnegan.

variations produced more compact indexes. For D =
12000, S-Index2 was measured to be only 4.28% the size
of the indexed textbase and S-Index1 5.21%. For S-
Index2, this implies an improvement of about 18% over S-
Index1, and 57% over the I-Index.

Figure 14: Disk space requirements for S-Index1, S-
Index2 and I-Index

The cost for increasing the size of the blocking factor in
S-Index is an increase in the size of the logical blocks,
into which the textbase is partitioned. The curve in

Figure 15 illustrates the impact that different values of D
have on the average text block size. Large text blocks
slow down the query processing speed, because each
block has to be scanned, so that the exact position of the
word in question is found. This means that the choice of
D is important in order to achieve the desirable
performance with regard to disk space requirements and
query processing efficiency. S-Index2 appears to be a
better choice over S-Index1, since it has been measured to
produce more compact indexes.

Figure 15: The average block size is affected by the
blocking factor

5. Conclusion
In this paper we presented in detail the schemata and the
implementation of the basic and of an improved variation

of S-Index. The storage utilization efficiency of the two
S-Index variations was considered next to a 130 MB
textbase. The experimental results obtained indicate that
the improved variation may be configured to utilize an
index size that is less than 5% the size of the indexed
textbase corpus. This in turn implies performance
comparable to that of the compressed inverted index. For
S-Index, the decrease in the index size is achieved at the
cost of increasing the average logical text block size. The
latter implies a decrease in query processing efficiency.

This study emphasizes on measuring the performance of
S-Index with regard to storage utilization efficiency. In
the future stages of our research, we intent to focus on the
S-Index query processing efficiency. It is worth noting
that the scheme allows for further improvement with
regard to storage utilization efficiency: the list of records
stored under the leaf nodes are of the same type as those
of the inverted index. In this respect, S-Index is expected
to benefit from implementing compression, analogous to
that of the self-indexing inverted files, reported to reduce
the size of each one record down to one byte [8].

References
1. Dervos D., Linardis P. and Manolopoulos Y.: "Perfect

Encoding: A Signature Method for Text Retrieval",
Proc. International Workshop on Advances in
Databases and Information Systems (ADBIS), pp.176-
182, Moscow, Sept. 1996.

2. Dervos D., Linardis P. and Manolopoulos Y.: "S-
Index: A Hybrid Structure for Text Retrieval", Proc.
First East European Symposium on Advances in
Databases and Information Systems (ADBIS), pp.204-
209, St. Petersburg, Sept. 1997.

3. Faloutsos C.: "Signature Files: Design and
performance comparison of some signature extraction
methods", Proc. ACM SIGMOD, pp.63-82, 1985.

4. Fox E.A., Chen Q.F., DAOUD A.M. and Heath L.S.:
"Order-Preserving Minimal Perfect Hash Functions
and Information Retrieval", ACM Transactions on
Information Systems, Vol.9, No.3, pp.281-308, July
1991.

5. Fox E.A., Chen Q.F. and Heath L.S.: "A Faster
Algorithm for Constructing Minimal Perfect Hash
Functions", Proc. ACM SIGIR Conference, pp.266-
273, Copenhagen, June 1992.

6. Harman D., Fox E., Baeza-Yates R.A., and Lee W.:
"Inverted Files", in Information Retrieval: Data
Structures and Algorithms, by Frakes W. and Baeza-
Yates R. (Eds.), Prentice Hall, pp.28-43, 1992.

7. Jagadisch H. and Faloutsos C.: "Hybrid Index
Organizations for Text Databases", Proceedings of
The Extending Database Technology Conference
(EDBT), pp.310-327, March 1992.

8. Moffat A. and Zobel J.: "Self-Indexing Inverted Files
for Fast Text Retrieval", ACM Transactions on
Information Systems, Vol.14, No.4, pp.349-379, Oct.
1996.

9. Zobel J., Moffat A. and Ramamohanarao K.: "Inverted
Files Versus Signature Files for Text Indexing", ACM
Transactions on Database Systems, Vol.23, No.4,
pp.453-490, Dec. 1998.

