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ABSTRACT 

As an application of Knowledge Discovery from Meteorological Databases, we 

attempt to relate recorded precipitation data from the Mikra Meteorological Station in 

Thessaloniki, Greece, to the recorded data of the closest to the station ERA-40 node 

(i.e., node with latitude 40
0
N and longitude 22.5

0
E). We use the daily values of the 

ERA-40 meteorological data from the European Centre for Medium-Range Weather 

Forecasts (four times a day at 00h, 06h, 12h and 18h) for a period of 42 years (1960-

2001). We examine different scenarios in the pre-processing phase of the input data and 

we study their impact on the performance of data mining algorithms designed to predict 

the occurrence of precipitation in Mikra Meteorological Station. The goal is to 

determine the appropriate pre-processing on the input file that can ensure effective 

application of data mining techniques. 
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ΠΔΡΗΛΖΦΖ 

Υνδζζιμπμζμφκηαζ μζ διενήζζεξ ηζιέξ ηςκ ιεηεςνμθμβζηχκ παναιέηνςκ ηςκ 

δεδμιέκςκ ΒRA-40 ημο Βονςπασημφ Κέκηνμο Μεζμπνυεεζιςκ Πνμβκχζεςκ Καζνμφ 

(ηέζζενζξ θμνέξ ηδκ διένα ζηζξ 00h, 06h, 12h ηαζ 18h), ημο πθδζζέζηενμο ηυιαμο ζημ 

Μεηεςνμθμβζηυ ΢ηαειυ Μίηναξ Θεζζαθμκίηδξ βζα ιζα πενίμδμ 42 εηχκ (1960-2001). 

Βπζπεζνείηαζ δ ζοζπέηζζδ ηςκ δεδμιέκςκ ημο ημιαζημφ ζδιείμο ιε βεςβναθζηυ πθάημξ 

40
0
ΐ ηαζ ιήημξ 22.5

0
Ώ, ιε ηδκ ηαηαβναθή οεημφ ζημ Μ.΢ Μίηναξ, ςξ ιζα εθανιμβή 

ηδξ Ώκαηάθορδξ Γκχζδξ απυ Μεηεςνμθμβζηέξ ΐάζεζξ Αεδμιέκςκ. Βλεηάγμκηαζ 

δζαθμνεηζηά ζεκάνζα ζημ ζηάδζμ πνμ-επελενβαζίαξ ηςκ δεδμιέκςκ εζζυδμο ηαζ 

ιεθεηάηαζ δ επίδναζή ημοξ ζηδκ απυδμζδ Ώθβμνίειςκ Βλυνολδξ Γκχζδξ πμο ζημπυ 

έπμοκ ηδκ πνυαθερδ ηδξ ειθάκζζδξ οεημφ ζημ Μ.΢ Μίηναξ. ΢ηυπμξ είκαζ κα οπμδεζπεεί 

δ ιέεμδμξ δζαιυνθςζδξ ημο ανπείμο εζζυδμο πμο ιπμνεί κα ελαζθαθίζεζ ηδκ 

απμηεθεζιαηζηυηενδ εθανιμβή ηεπκζηχκ Βλυνολδξ Γκχζδξ.  

 

 

1. INTRODUCTION 
 

―Knowledge Discovery in Databases (KDD) is an interactive, iterative procedure 

that attempts to extract implicit, previously unknown, and potentially useful knowledge 

from data‖ (Roiger et al., 2003). Once a specific problem has been defined, an 
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appropriate dataset is chosen and goes through a pre-processing and transformation 

phase. The resulting dataset is analyzed by applying various data mining algorithms on 

it. The output is interpreted and evaluated and decisions are made about whether to 

repeat previous steps or take action incorporating and applying the extracted knowledge 

directly to appropriate problems (Roiger et al., 2003).  

Knowledge Discovery has become a very popular scientific discovery tool during 

the past decade. Problems from diverse application fields, like, Astronomy, Athletics, 

Meteorology, Marketing, etc., can be seen as interesting data mining applications that 

involve interdisciplinary collaboration.  

In this paper we address the problem of data preparation in the context of the 

application of data mining algorithms on Meteorological Databases. We combine two 

datasets, the ERA-40 data from the reanalysis project of the European Centre for 

Medium-Range Weather Forecasts (ECMWF), and the weather observations data from 

the Meteorological Station of Mikra (Thessaloniki, Greece). Our goal is to predict the 

occurrence of precipitation in the station. This can be addressed as a classification 

problem, i.e., how to assign a set of ERA-40 parameter values to one of a set of well-

defined classes. More specifically, we are interested in the presence or absence of 

precipitation on the ground (i.e., we have a binary class variable). We apply five 

different data mining algorithms to design models for predicting our class variable. The 

model evaluation is performed using a training/test set method, where the output 

consists of the evaluation metrics. 

Experiments have shown that redundant attributes as input variables are responsible 

for significant losses of performance in standard classifiers (Roiger et al., 2003). Input 

attributes highly correlated with other input attributes are redundant, as it happens in the 

ERA-40 dataset. We address this issue by using the Principal Component Analysis 

(PCA) extraction method as a data reduction technique on our original data. 

A second question that we address is whether data transformation can improve the 

performance of data mining algorithms. We experiment with three different scenarios 

for preparing the dataset as input to the algorithms in order to find the most appropriate 

for the ERA-40 data. In addition, when classes are imbalanced, many learning 

algorithms can suffer from the perspective of reduced performance (Jo et al., 2004). In 

our problem, the positive class (recorded precipitation) is only 16.1% of the cases. As 

an attempt to overcome this issue of skewed data, we apply the common solution of 

sampling the data randomly to achieve a balanced distribution (Jo et al., 2004; Weiss, 

2004; Batista et al., 2004). 

The remainder of the paper is organized as follows. Section 2 describes the datasets 

we used for applying the data mining algorithms. Section 3 discusses the methodology 

used in the experiments. In Section 4 we present the analysis and the results, and, 

finally, we conclude in Section 5. 

 

 

2. DATASETS 
 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis ERA-40 is a global atmospheric analysis of many conventional observations 

and satellite data streams for the period September 1957 to August 2002. Over the past 

decade, reanalyses of multi-decadal series of past observations have become an 

important and widely utilized resource for the study of atmospheric and oceanic 

processes and predictability (ECMWF). Since reanalyses are produced using fixed, 
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modern versions of the data assimilation systems developed for numerical weather 

prediction, they are more suitable than operational analyses for use in studies of long-

term variability in climate. Reanalysis products are used increasingly in many fields that 

require an observational record of the state of either the atmosphere or its underlying 

land and ocean surfaces. The main objective of the reanalysis project ERA-40 is to 

promote the use of global analyses of the state of the atmosphere, land and surface 

conditions over the period 1957-2002 (ECMWF). 

There are numerous data products that are separated into dataset series based on 

resolution, vertical coordinate reference, and likely research applications. In this study, 

we used the ERA-40 2.5 degree latitude-longitude gridded upper air analysis on 

pressure surfaces. This dataset contains 11 variables on 23 pressure surfaces on an 

equally spaced global 2.5 degree latitude-longitude grid. All variables are reported four 

times a day at 00, 06, 12 and 18UTC for the entire period.  

We created our initial dataset choosing the values of 10 variables on 7 pressure 

surfaces on one node. We used only the data from node with geographical coordinates 

40
0
N latitude and 22.5

0
E longitude, which is the closest node to the Meteorological 

Station of Mikra, Thessaloniki, Greece. The 10 variables are the geopotential in m
2
∙s

-2
, 

temperature in K, U velocity in m∙ s
-1

, V velocity in m∙ s
-1

, specific humidity in kg∙kg
-1

, 

relative humitidy as percentage (%), vorticity (relative) in s
-1

, potential vorticity in 

K∙m
2
∙kg

-1
∙s

-1
, divergence in s

-1
, and vertical velocity in Pa∙s

-1
. We omit the 11

th
 Ozone 

mass mixing ratio. The 1000hPa, 925hPa, 850hPa, 700hPa, 500hPa, 300hPa and 200hPa 

are the 7 pressure surfaces we chose, because these are the ones that are mainly used by 

the meteorology forecasters operationally. In addition, the values of the barometric 

pressure on mean sea level in Pa, supplement the initial dataset that consists of 71 

variables. 

Furthermore, the initial values of most of the variables for each pressure surface 

and the pressure on mean sea level were transformed to make them easier to understand. 

More specifically, specific humidity was converted to g∙kg
-1

 and vertical velocity to hPa∙ 

h
-1

. The relatively small values of both vorticity (relative) and divergence were 

multiplied by 10
6
, and the value of potential vorticity by 10

8
. Regarding the wind, wind 

direction in azimuth degrees and wind speed in knots were calculated using the U and V 

velocities. Also, the azimuth degrees for the wind direction were assigned into the eight 

discrete values of north (N), northeast (NE), etc., used in meteorology. The geopotential 

was divided by the World Meteorological Organization (WMO) defined gravity 

constant of 9.80665m∙s
-2

, thus, it was transformed to geopotential height in gpm. 

Finally, the values of barometric pressure on mean sea level were expressed in hPa, and 

only the values of temperature and relative humidity on pressure surfaces remained 

unchanged. 

The 6-hourly main synoptic surface observation data of the Mikra Meteorological 

Station, located at 40.52
0
N, 22.97

0
E and altitude of 4m, completed our initial dataset. 

More specifically, we collected the recorded precipitation data of the period 1/1/1960 

00UTC – 31/12/2001 18UTC. We assigned the value ‗yes‘ to the 6-hourly records of 

rain, drizzle, sleet, snow, shower at the station or the records of thunderstorm at the 

station or around it, and the value ‗no‘ to the rest of the records, thus, creating the class 

variable of our study. We mention that the determination of the recorded precipitation is 

taking into account both the present and past weather of the synoptic observation and 

that snow or thunder have priority over rain. Table 1 depicts the distribution of the 
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precipitation types that had been recorded in the Mikra Meteorological Station 

according to the defined subclusters. 

 
TABLE 1. Natural distribution of values within the precipitation class variable 

Precipitation ‘yes’ Precipitation ‘no’ 

Rain, Drizzle Snow, Sleet Thunder Total Fog Fair, Cloudy Total 

11.66% 0.89% 3.55% 16.1% 2.27% 81.62% 83.9% 

 

 

3. METHODOLOGY 
 

We applied data reduction using the Principal Component Analysis (PCA) 

extraction method to remove highly correlated variables from the ERA-40 dataset. We 

used the SPSS statistical software package to process the entire ERA-40 dataset (SPSS). 

We applied PCA and we selected components with eigenvalues greater than one. Then, 

we examined the component matrix of loadings. Component loadings represent the 

degree of association, correlation, of each variable with each component. To identify the 

significant loadings for each variable, the lower threshold of the absolute value of 0.4 

was used due to the relatively large dataset size. In addition, the communalities of the 

variables, which were calculated as the sum of the squared component loadings, were 

examined to identify variables that explain more than 50% of the variance in each 

variable.  

Furthermore, we employed the Varimax with Kaiser normalization orthogonal 

rotation method to achieve simpler and more meaningful component solutions, reducing 

some of the ambiguities that often accompany initial unrotated solutions. When a 

variable is found to have no significant loadings or just one significant loading, the 

variable‘s communality is deemed to be too low or to have a cross-loading. Then, the 

variable is candidate for deletion and the model is respecified. A variable has a cross-

loading when it has more than one significant loadings (Hair et al., 2006; SPSS). 

Common operational practice for meteorologists in weather forecasting is the 

calculation of the differences between successive values of the meteorological variables. 

According to this practice and after the application of data reduction, we experimented 

with two extra scenarios in addition to the one that uses the regular values of the 

selected variables. In the second scenario, the values at each synoptic hour were 

replaced by the past 24-hourly differences, and, in the third scenario, in addition to the 

24-hourly differences we kept the regular values of the variables that express the wind 

elements. We express the differences in the case of wind direction by using values -1, -

2, -3 and -4 when the wind turns counter clock-wise, 1, 2 and 3 when it turns clock-

wise, and 0 when the wind direction remains the same. For example, when a western 

wind turns to southwest the difference is –1, when it turns to south the difference is –2, 

when it turns to northwest the difference is 1, etc.  

In a concept-learning problem, we have class imbalance in our data if some classes 

have a much larger number of instances than the rest. Such a situation poses challenges 

for typical classifiers, such as decision tree induction systems or multilayer perceptrons, 

since they are designed to optimize overall accuracy without taking into account the 

relative distribution of each class. As a result, these classifiers tend to ignore small 

classes while concentrating on accurately classifying the large ones. Such problems 

occur in a large number of practical domains and especially in our dataset, where only 

16.1% of the instances correspond to precipitation. In an effort to improve the 
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performance of classifiers it is common to use the re-sampling process of manipulating 

the distribution of the training instances. More specifically, the random under-sampling 

method is applied to randomly remove instances in the majority class and to reduce 

them to the size of the minority class, thus, producing a completely balanced 

distribution (Jo et al., 2004; Weiss, 2004; Batista et al., 2004). 

 

4. EXPERIMENTS AND RESULTS 
 

4.1. Feature selection 
 

After applying PCA and examining the component matrix of loadings and the 

variable communalities, we deleted a total of 36 variables from our initial dataset that 

consisted of 71 variables. The component model was respecified six times with a final 

outcome of 35 variables and 9 components with eigenvalues greater than 1. The 

analysis reveals that the first component is most highly correlated with the geopotential 

height on 200hPa, and, generally, is highly correlated with the geopotential height in the 

upper levels, the temperature almost in all levels, and the specific humidity in low levels 

of the atmosphere. The second component is most highly correlated with the relative 

vorticity on 1000hPa, and, generally, it is highly correlated with the relative vorticity in 

low levels, the geopotential height on 925hPa, and the pressure at mean sea level. The 

third component is highly correlated with the wind direction in middle and upper levels 

and especially on 300hPa. The fourth component is highly correlated with the wind 

speed in upper levels and especially on 300hPa. The fifth component is highly 

correlated with the wind speed in low levels and especially on 925hPa. The sixth 

component is most highly correlated with the divergence on 300hPa and also the 

vertical velocity in the upper levels. The seventh component is highly correlated with 

the temperature and relative vorticity on 200hPa. The eighth component is most highly 

correlated with the potential vorticity on 500hPa and also the relative vorticity in the 

same level. Finally, the ninth component is highly correlated with the wind direction in 

low levels and especially on 925hPa. 

Table 2 displays the variance explained by the rotated components and additionally 

the corresponding nine most highly correlated variables. The Total column gives the 

eigenvalue, or amount of variance in the original variables accounted for by each 

component. The % of Variance column gives the ratio, expressed as a percentage, of the 

variance accounted for by each component to the total variance in all of the variables. 

The Cumulative % column gives the percentage of variance accounted for by the first 9 

components (SPSS). They explain nearly 85.2% of the variability in the original 

variables and it is possible to considerably reduce the complexity of the data set by 

using these components, with a 14.8% loss of information. As a result, we can reduce 

the size of the ERA-40 dataset by selecting the 9 most highly correlated variables with 

the 9 principal components. 

 
TABLE 2. Variance explained by rotated components and the representative variables 

Component Variable Total % of Variance Cumulative % 

1 geopotential height 200hPa 9.8 28.0 28.0 

2 relative vorticity 1000hPa 4.2 11.9 39.9 

3 wind direction 300hPa 2.9 8.4 48.3 

4 wind speed 300hPa 2.6 7.5 55.7 

5 wind speed 925hPa 2.4 7.0 62.7 
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6 divergence 300hPa 2.3 6.7 69.4 

7 Temperature 200hPa 2.1 6.0 75.4 

8 potential vorticity 500hPa 1.8 5.0 80.4 

9 wind direction 925hPa 1.7 4.8 85.2 

 

4.2. Data transformation 
 

The reduced ERA-40 dataset with the 9 chosen variables, as predictors, and the 

precipitation, as class variable, comprise our experimental dataset (Dataset1). As 

explained in the previous section, we formed a second dataset by replacing the regular 

values of the 9 predictors with the past 24-hourly differences (Dataset2). We also 

formed a third dataset with 13 predictors by replacing the regular values of the 9 

predictors with the past 24-hourly differences plus the regular values of the wind 

direction on 300hPa and 925hPa and the wind speed on 300hPa and 925hPa (Dataset3). 

 The three datasets were the input to five data mining algorithms that were run 

and evaluated using WEKA. The algorithms were the decision tree C4.5 with unpruning 

and Laplace estimate, the k-Nearest Neighbours with k=3 and Euclidean distance, the 

RIPPER, the Naïve Bayesian, and the Multilayer Perceptron neural network with 

backpropagation. The last three algorithms were run using the default settings of 

WEKA (Hall et al., 2009; Witten et al., 2005). 

As an evaluation metric, we used the Area Under the ROC (Receiver Operating 

Characteristics) curve or simply AUC that measures the performance of the algorithms 

as a single scalar. ROC graphs are two-dimensional graphs in which the True Positive 

Rate (the percentage of positive cases correctly classified as belonging to the positive 

class) is plotted on the Y axis and the False Positive Rate (the percentage of negative 

cases misclassified as belonging to the positive class) is plotted on the X axis. A ROC 

graph depicts relative tradeoffs between benefits (true positives) and costs (false 

positives). The AUC is a reliable measure especially for imbalanced datasets to get a 

score for the general performance of a classifier and to compare it to that of another 

classifier (Weiss, 2004; Batista et al., 2004). 

 The training/test set method was used to build and evaluate the models. Each 

one of the three initial datasets (scenarios) with 61364 examples or instances was 

divided into 10 non-overlapping folds. By taking each one of the 10 folds as test set and 

the rest 9 as a pool of instances for choosing the training sets, we formed 10 groups with 

55228 training instances and 6136 test instances. Then, from the training instances of 

each group, we randomly took 10 samples with replacement consisting of 17788 

instances. Thus, we formed 100 training/test datasets with 23924 instances (17788 

training and 6136 test instances, 74.35% - 25.65%) for each scenario for a total of 300 

datasets. Every fold or sample was chosen randomly, but it followed the natural 

distribution according to the clusters within the precipitation class variable, as shown in 

Table 1. 

 Moreover, for each one of the 10 groups, we formed 10 balanced training sets, 

where the number of ‗yes‘ was equal to the number of ‗no‘. These datasets comprised of 

8894 randomly with replication selected instances of ‗no‘, and all the 8894 available 

instances of ‗yes‘. We used the same 10 test folds that cover all the initial 61364 

instances, to evaluate the built models. It is noted that every sample of the ‗no‘ cluster 

of precipitation taken randomly, follows the natural distribution according to its 

subclusters as shown in Table 1. 
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To recap, we test each one of the three scenarios with 100 training/test datasets that 

follow the natural distribution and 100 training/test datasets that follow the balanced 

distribution, for a total of 600 training/test datasets. These datasets comprise the input to 

the five data mining algorithms. Thus, we performed 3000 runs in the WEKA 

environment and we show the results in Table 3 and Figure 1. Table 3 presents the mean 

value and the standard deviation of AUC of the 100 runs for each dataset, distribution 

and algorithm. 

 
TABLE 3. Mean value and standard deviation of AUC 

 Natural distribution Balanced distribution 

 Dataset1 Dataset2 Dataset3 Dataset1 Dataset2 Dataset3 

Algorithm x  S.D. x  S.D. x  S.D. x  S.D. x  S.D. x  S.D. 

D. Tree .728 .011 .641 .009 .679 .009 .737 .008 .653 .009 .683 .010 

k-NN .679 .009 .588 .009 .639 .011 .734 .007 .623 .010 .693 .011 

MPbp .786 .009 .703 .008 .727 .011 .803 .008 .716 .005 .758 .009 

N. Bayes .773 .008 .703 .007 .736 .007 .774 .008 .704 .006 .737 .007 

RIPPER .586 .014 .538 .007 .546 .009 .732 .010 .656 .009 .684 .011 

  

Figure 1 depicts the boxplots of the corresponding AUC values. The white boxplots 

correspond to Dataset1, the light grey to Dataset2, and the dark grey to Dataset3. The 

boxplots for the balanced datasets have a pattern consisting of black dots, whereas, the 

boxplots for the natural datasets have no pattern. We notice that the balanced 

distribution strategy performs better than the natural one, especially for the k-Nearest 

Neighbour, the RIPPER and the Multilayer Perceptron, whereas, it performs slightly 

better for the Decision Tree and almost the same for the Naïve Bayesian. Concerning 

the three different scenarios for each distribution and algorithm, Dataset1 (with the 

regular values) performs better than the other two, and, Dataset3 (with the differences 

plus the regular values) performs better than Dataset2 (with only the differences). 

Finally, in the natural distribution strategy the algorithm ranking is Multilayer 

Perceptron, Naïve Bayesian, Decision Tree, k- Nearest Neighbour and RIPPER. In the 

case of the balanced distribution strategy the performance of k- Nearest Neighbour and 

RIPPER vastly increases and it is almost equal to that of Decision Tree, whereas the 

performance of Multilayer Perceptron is the best one and of Naïve Bayesian the second 

best. 

 

5. CONCLUSIONS 
 

We applied Principal Component Analysis to reduce the 71 initial chosen variables 

of the ERA-40 dataset to 9 uncorrelated to each other variables. The variables that could 

represent the 9 principal components explaining nearly 85.2% of the variability in the 

original variables were the following: geopotential height on 200hPa, relative vorticity 

on 1000hPa, wind direction on 300hPa, wind speed on 300hPa and on 925hPa, 

divergence on 300hPa, temperature on 200hPa, potential vorticity on 500hPa and wind 

direction on 925hPa. 

The reduced ERA-40 dataset and the historical precipitation records of the 

Meteorological Station of Mikra were the input into five data mining algorithms we 
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used to build models that predict the occurrence of precipitation at the station. 

 
FIGURE 1. Boxplots of AUC values for each algorithm, dataset and distribution.  

 

The dataset with the regular values of the ERA-40 variables (Dataset1) achieved 

better performance than the one with the past 24-hourly differences of the ERA-40 

variables (Dataset2), and the one with the differences plus the regular values of the 

variables expressing the wind elements (Dataset3). In addition, when using balanced 

rather than natural distribution training sets, according to the values of precipitation, all 

algorithms perform better on all three datasets with the exception of the Naïve Bayesian 

algorithm. Finally, the Multilayer Perceptron neural network with backpropagation 

algorithm outperforms all other algorithms, revealing the most effective data mining 

algorithm in this meteorological domain. 
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