
A Framework for the Development and
Deployment of Evolving Applications

Georgios Voulalas and Georgios Evangelidis

University of Macedonia, Thessaloniki, GR-54006, Greece
{voulalas, gevan}@uom.gr

Abstract. Software development is an area in which there exist many
major problems one has to struggle with. Model-driven development im-
proves productivity by introducing formal models that can be understood
by computers. Through these models the problems of portability, inter-
operability, maintenance, and documentation are also successfully ad-
dressed. However, the problem of evolving requirements, which is more
prevalent within the context of business applications, additionally calls
for efficient mechanisms that ensure consistency between models and
code, and enable seamless and rapid accommodation of changes without
interrupting severely the operation of the deployed application. This pa-
per introduces a framework that supports rapid development and deploy-
ment of evolving web-based applications and is based on an integrated
database schema.

1 Introduction and Motivation

Software development is an area in which we are struggling with a number of
major problems. The most important ones are [7]:

The Productivity, Documentation, and Maintenance Problem. The
software development process includes a number of phases: (a) Conceptualization
and requirements elicitation and gathering, (b) Analysis and functional descrip-
tion, (c) Architectural specification and design, (d) Implementation, (e) Testing,
and, (f) Deployment. Whether we use an incremental and iterative process or
the traditional waterfall process, documents and diagrams are produced during
phases (a) through (c). Practically speaking, analysis and design artifacts are
required, but to be really productive they should not be just static, paper rep-
resentations. They have to stay in high cohesion with the code throughout the
software lifecycle, elevate technologists above the lower level complexities and
be eligible as input in forward-engineering operations.

The Portability Problem. Each year, and sometimes even faster, new
technologies are being invented and becoming popular. The new technologies
offer concrete benefits for companies and many of them can not afford to lag
behind.

The Interoperability Problem. Software systems rarely live isolated. Most
systems need to communicate with other, often legacy, systems.



The Evolution Problem The management of evolution in information
systems is a dominant requirement. This is even stronger in business applications,
due to the dynamic nature of business domains [11].

In order for evolution to be handled efficiently the following objectives should
be met: (a) changes should be seamlessly incorporated without the need of re-
structuring the existing application, (b) analysis and design artifacts should be
updated in order for changes to be reflected, (c) the operation of the deployed
application should not be interrupted, or at least interruption should be mini-
mal, and, (d) access to old business objects within their right context should be
supported, i.e., at any time one should be able to easily retrieve and examine an
old business object through the specific version of the application that produced
and manipulated it, in order for a user to be able to trace back to former business
data.

The remainder of the paper is structured as follows. In Section 2, we present
the Model Driven Architecture (MDA) and the modern practices brought out
by Microsoft. In Section 3, the deficiencies of the MDA are discussed along with
some key thoughts. In section 4, a new framework for the development and
deployment of web-based business applications is introduced. The last section
provides a conclusive summary of the paper and identifies our future research
plan.

2 MDA & Microsoft Software Factories

The Model Driven Architecture [8, 9, 7] is a framework for software development
defined by the OMG. The MDA development lifecycle is not very different from
the traditional lifecycle; they both involve the same phases. One of the major
differences has to do with the nature of the artifacts that are produced during
the development process. The artifacts are formal models, i.e., models that can
be understood and processed by computers. The following three models are at
the heart of the MDA.

Platform Independent Model (PIM). This model is the first to be de-
fined and is a model with a high level of abstraction that is independent of any
implementation technology. Within a PIM, the system is modeled from the as-
pect of how it best supports the business requirements. Whether a system will
be implemented using the .NET or the J2EE framework plays no role.

Platform Specific Model (PSM). In the next step, the PIM is trans-
formed into one or more PSMs. A PSM specifies the system (or part of the
system) in terms of the implementation details that are defined by one specific
implementation technology.

Code. The final step in the development is the transformation of each PSM
to code. Because a PSM fits its technology rather closely, this transformation is
relatively straightforward.

MDA transformations, in contrast to traditional development, are always
executed by tools. Many tools are able to transform a PSM into code; there is



nothing new to that. What is innovative in MDA is that the transformation from
PIM to PSM is automated as well.

Let us now clarify how MDA responds to the challenges presented in the
previous section.

Productivity, Documentation and Maintenance: In MDA the focus for
a developer shifts to the development of a PIM. The PSMs and the code are gen-
erated automatically. The PIM fulfills the function of high-level documentation,
and is not frozen after writing, since changes made to the system will eventually
be realized by changing the PIM and regenerating the PSMs and the code.

Portability: Portability is achieved by focusing on the development of PIMs
that are by definition platform independent.

Interoperability: When PSMs are targeted at different platforms, they can
not directly talk to each other. Concepts from one platform should be trans-
formed into concepts used in another platform. MDA addresses this problem by
generating not only the PSMs, but the necessary bridges between them as well.

Evolution Management: The PIM is a live artifact that depicts precisely
the system throughout its lifecycle. Changes to the system are made by changing
the PIM and regenerating the PSMs and the code.

At the same time Microsoft is working on Domain Specific Languages (DSLs).
DSL’s [4] are programming languages dedicated to specific problems and consist-
ing of their own built-in abstractions and notations. DSLs underpin Microsoft’s
concept of software factories, that are planned modules of tools, content and
processes used to build applications in specific domains like healthcare, human
resources or enterprise resource planning. Narrowing the domain enables to more
precisely define the features of the target family and facilitates the definition of
languages, patterns, frameworks and tools that automate the development of
its members. One early backer of the DSL and Software Factories approach is
Borland.

3 Rethinking MDA

MDA is a complete framework that enables organizations to respond efficiently
to the augmentative requirements of modern software projects. However, the
current status of the framework, as it is mainly shaped by the availability of
support tools, presents the following deficiencies [7]:

– Though OMG has defined the mapping standards between the three models
(the PIM, the PSM and the code), it has yet to define how to implement the
models.

– Current tools are not sophisticated enough to fully provide the transforma-
tions from PIM to PSM and from PSM to code.

– The extent to which portability can be achieved depends on the automated
transformation tools that are available. For popular platforms, a large num-
ber of tools will undoubtedly be available. For less popular platforms, the
user may have to use add-on tools, or write proprietary transformation def-
initions.



– Cross-platform interoperability can be realized by tools that not only gen-
erate PSMs but the bridges between them as well. Existing tools are not so
advanced to cope with this requisite.

Undoubtedly, it is a matter of time before software vendors overcome the
above-mentioned limitations. However, there exist a number of shortcomings
that are inherent with the core principles of MDA. Specifically, MDA suffers
from:

– Inability to ensure consistency between the produced code and
the preceding models. Even if vendors succeed in building transformation
tools that fully generate the required code based on the specifications mod-
eled in the PSMs, one can not guarantee that developers will not interfere
manually with the generated code. Consequently, the consistency between
the three cornerstone models is unstable.

– Weakness to cope efficiently with the problem of evolving require-
ments. In MDA, every new change requires code to be regenerated and
recompiled, and the final application to be redeployed. Even worse, the ar-
bitrary realization of changes may create gaps between the three models.
Last but not least, MDA can provide access to data that have been manip-
ulated by previous versions of the application, only by maintaining different
installations of the applications, approach that is a neither practical, nor
elegant.

4 The Proposed Framework

Motivated by the deficiencies of the MDA paradigm, its core principles, and
the latest practices adopted by Microsoft and Borland, we introduce an innova-
tive alternative for the realization of a development and deployment framework
targeted to web-based business applications. The proposed framework will be
structured on the basis of a universal database schema (meta-model). Develop-
ment will be supported by components that will elicit functional specifications
from users and transform them in formal definitions, and by data structures
(part of the meta-model) that will be utilized for the storage of the definitions.
Deployment will be supported by generic components (meta-components) that
will be dynamically configured at run-time according to the functional spec-
ifications provided during development, and by application-independent data
structures (part of the meta-model) that will hold all application-specific data.
The following two statements outline the philosophy of the proposed solution:

– No code (SQL, Java, C++, JSP, ASP, etc.) will be generated for the pro-
duced applications; just run-time instances of generic components will be
created.

– There will always exist one deployed application, independently of the ac-
tual number of running applications. Application-specific behavior will be
rendered by this universal application according to the functional definitions



that are maintained in the database. In other words, functional and presen-
tation specifications are shifted from the middle and front tier respectively to
the database tier (we take as basis the 3-tier approach that is the most out-
standing architectural paradigm). Response to business changes is instant,
simply through the manipulation of data tuples.

More specifically, the proposed framework includes the following models.

4.1 Domain Model

The Domain Model is a business-oriented model that maps to the MDA Platform
Independent Model (PIM). It defines the structure of the data that the applica-
tion is working on (objects, attributes, and associations), along with their behav-
ioral aspect (methods) and business rules. It is mainly structured on the basis of
the Object-Oriented paradigm, augmented with the extensions introduced by the
Object Constraint Language [10, 3] for the description of constraints that govern
the modeled objects, plus elements from an acceptable business rules classifica-
tion scheme [1, 2, 6], with the Ross method [1] being the prevalent. Therefore, its
main entities are: Business Object, Status, Attribute, Method, Association, Ar-
gument, Term, Fact, Computation Rule, Pre-condition, Post-condition, Guard,
Invariant Constraint.

Besides business rules and data processing logic, every business applica-
tion incorporates mechanisms for enterprise modeling, business relationships
establishment, role assignment, and personnel administration. Thus, the Do-
main Model embraces an additional component, named Enterprise Model, which
covers inter-organizational and intra-organizational aspects. The main entities
of this sub-model are: Business Role, Enterprise, Business Units, Partnership,
Partner, Employee, Role, User.

Although the entities included in the Enterprise model can be implemented
as instances of the meta-entities of the core Domain Model, we have selected
to handle them separately for reasons of performance. Thus, instead of dynami-
cally configuring the meta-entities to render the desired functionality, we utilize
standard entities. This differentiation stems from the fact that the mechanisms
implemented by the Enterprise Model can be specified in advance, as they are
common among all business applications.

Specifications included in the Domain Model will be stored in a database.
The database schema should embrace the proposed structure and include all
identified entities (Business Object, Method, Rule, etc.).

4.2 Application Model

The Application Model maps to the MDA Platform Specific Model (PSM) and
focuses on the targeted platform. The Application Model contains the following
three sub-models:

Presentation Model: It pictures the overall structure of the presentation
elements. Display pages are defined for every business object based on the identi-
fied attributes. Input pages that elicit the information required for the execution



of the methods are defined based on the specified methods and arguments. Pages
are interrelated according to the identified object associations.

Business Logic Model: Suppose that we select J2SE as target platform.
All objects and terms will be mapped to the ‘java.lang.Object’ class. Alphanu-
meric attributes will be mapped to ‘java.lang.String’ class. A method (or piece
of a method) that returns part of an alphanumeric will be mapped to the ‘sub-
string’ method that is implemented by the ‘java.lang.String’ class. Similarly, a
computation rule will be mapped to a set of primitive methods supported by
the target platform that will be invoked in specific order in order for the rule to
be propagated. In general, all elements included in the Domain Model will be
mapped to fundamental elements of the target programming language.

Data Model: Based on the identified objects, their attributes and the way
they are associated, a data model is structured. Only persistent objects (i.e.
objects that need to “survive”) are mapped to database structures. The dis-
crimination between persistent and transient objects is captured in the domain
model.

4.3 Operation Model

The Operation model consists of the following building blocks.
Presentation Model Instance: Run-time instances of generic presentation

elements (e.g., Java Server Pages or Active Server Pages that obey to specific
Cascading Style Sheets).

Business Logic Model Instance: Run-time instances of the generic func-
tional components (meta-objects) that render the behavior of an application-
specific object. The exact process is the following: application specifications are
retrieved from the database at run-time and the generic components are con-
figured dynamically in order to expose the specified functionality by utilizing
reflectional adaptation techniques (reflection is the process by which a program
can modify its own behavior and is supported by many object-oriented program-
ming languages). For each different technology utilized at the Application Level
(J2SE, .NET, J2EE), different components should exist. Practically speaking,
every programming language that supports reflectional behavior can be utilized.

Data Model Instance: This is the part of the unified database schema
that will hold the realizations of the business object instances (e.g., realizations
of the travel applications, orders, products, etc.). The database schema will be
independent of the applications, i.e., its structure will be fixed. In [14, 15, 13] a
framework for dynamically evolving database environments is introduced. Simi-
lar to our approach it is based upon a database structure that is independent of
applications. Changes to the data structure of the application result to record
modifications, instead of changing the schema itself. In comparison to our ap-
proach the specific research effort focuses only to the data side of applications.

Note that the three sub-models included in the Application Model are not
transformed to code at operation level, except for the part of the Business Logic
Model that originates from the Enterprise Model. Instead, the definitions that
they include are coupled with the generic components (presentation elements,



functional components, and database) in order for the required functionality to
be rendered.

The proposed framework responds to the challenges identified in Section 3
as follows:

Consistency between the produced code and the preceding models.
Since no code is generated and the middle model is generated automatically in
its entirety, all changes are realized through the Domain Model.

Efficient handling of evolving requirements. Having shifted the func-
tional and presentation specifications from the middle and front tier respectively
to the database tier we can easily achieve evolution management by applying
standard data versioning techniques. In case the static (attributes) or dynamic
(methods) definition of a business object is modified this results in modifications
to the underlying data instances, i.e., we can deal with changes at deployment
time without recompiling and redeploying the application. What’s more we can,
at anytime, refer to a previous version of an application and examine old data
in their real context by retrieving the corresponding data instances from the
database, without the need of maintaining multiple installations.

5 Conclusions and Further Research

In this paper we examine the development and deployment of web-based busi-
ness applications through a different perspective: our main aim is to elaborate on
and limit the side-effects that are induced by the continuously changing require-
ments, while conforming to the principles introduced by the MDA paradigm and
retaining its advantages. For this reason, we suggest transferring the functional
specifications of the application from the components to the database and utiliz-
ing them at run-time in order to configure generic components that will render
the application-specific functionality. The development and deployment platform
will be based upon a unified database schema. The generic components will be
built with the use of a programming language that supports reflection. Dynamic
functional specifications will let end-users deal with changes at deployment time.
The operation of previous versions of an application will be feasible through the
same, unique installation. Last but not least, the consistency between the three
cornerstone models will not be compromised.

It should be clear that our goal is to present an interesting alternative that
it could somehow be absorbed by the MDA initiative. Reviewing the proposed
framework against the MDA framework, we identify the following drawbacks:

– The proposed framework has narrower scope, since it focuses on web-based
business applications. This constraint is enforced by the fact that is practi-
cally infeasible to create a generator that can potentially produce any appli-
cation [5, 13] and is in compliance with the latest developments as pictured
by the initiatives undertaken by major software players.

– MDA handles efficiently cross-platform interoperability in terms of integra-
tion with other systems, while the current formulation of the proposed frame-
work supplants the specific coordinate.



– Indisputably, a solution that is build upon a meta-model and extensively uti-
lizes reflection requires increased computational resources compared to a tra-
ditional one. However, the availability of powerful computational resources
encourages the elaboration of sophisticated solutions. Working towards a
“lighter” solution, we will consider adopting partial behavioral reflection
[12].

Future research will focus on extending the framework with a coordinate
that will cover the need for cross-platform interoperability and implementing
the required infrastructure.

References

1. Business Rules Forum 2004 Practitioners’ Panel: The DOs and
DON’Ts of Business Rules. Business Rules Journal. 6(4) (April2005).
http://www.BRCommunity.com/a2005/b230.html

2. Butleris, R., Kapocius, K.: The Business Rules Repository for Information Systems
Design. ADBIS Research Communications (2002) 64–77

3. Coronato, A., Cinquegrani, M., Giuseppe, D.P.: Adding Business Rules and Con-
straints in Component Based Applications. CoopIS/DOA/ODBASE (2002) 948–964

4. Greenfield, J: Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. (November 2004).
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/softfact3.asp

5. Guerrieri, E.: Case Study: Digital’s Application Generator. IEEE Software, 11(5)
(1994) 95-96

6. Herbst, H.: Business Rules in Systems Analysis: a Meta-Model and Repository Sys-
tem. Inf. Syst. 21(2) (1996) 147–166

7. Kleppe, A., Warmer, S., Bast, W.: MDA Explained. The Model Driven Architecture:
Practice and Promise (Chapter One). Addison-Wesley. (April 2003)

8. Miller, J., Mukerji, J.: Model Driven Architecture A Technical Perspective.
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

9. Miller, J., Mukerji, J.: Technical Guide to Model Driven Architecture: The MDA
Guide v1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01

10. OMG: Object Constraint Language Specification. http://www.omg.org/cgi-
bin/doc?ptc/2003-10-14

11. Roddick, J.F., Al-Jadir, L., Bertossi, L.E., Dumas, M., Estrella, F., Gregersen,
H., Hornsby, K., Lufter, J., Mandreoli, F., Mannisto, T., Mayol, E., Wedemeijer,
L.: Evolution and Change in Data Management - Issues and Directions. SIGMOD
Record 29(1) (2000) 21–25

12. Tanter, E., Noye, J., Caromel, D., Cointe, P.: Partial behavioral reflection: spatial
and temporal selection of reification. OOPSLA (2003) 27–46

13. Wu, Jen-Her, Hsia, Tse-Chih, Chang, I-Chia, Tsai, Sun-Jen: Application Gen-
erator: A Framework and Methodology for IS Construction. 36th Annual Hawaii
International Conference on System Sciences (IEEE - HICSS) (2003) 263–272

14. Yannakoudakis, E. J., Tsionos, C. X., Kapetis, C. A.: A new framework for dy-
namically evolving database environments. Journal of Documentation. 55(2) (1999)
144–158

15. Yannakoudakis, E. J., Diamantis I. K.: Further improvements of the framework for
dynamically evolving database environments. HERCMA (2001) 213–218


