EDUCATION-LINE

The Interaction between ICT and Didactics

V. Dagdilelis
Aristotle University of Thessaloniki Faculty of Preschool Education, Florina

M. Satratzemi
University of Macedonia, Dept. of Applied Informatics

G. Evangelidis
University of Macedonia, Dept. of Applied Informatics

Paper presented at the European Conference on Educational Research Edinburgh, 20-23
September 2000

1. Introduction

Nowadays, ICT is being used i education more and more. The mvasion of ICT i education 18 happenng
from kindergarten to life long adult education in many varied ways. It is thus logical to conclude that this
continued mvasion of technology i education will lead to a situation where technology and education coexist.
This mteraction has also caused an mncrease i both ndividual and jomt research m this field. However, the
relevant research often focuses on technology rather than on teaching. We believe that technology is not an
end m itself but an mtermediary. To be more exact, technology must not only be a mtermediary but should
become the most appropriate tool for teaching. In other words, the didactic situations must determine the use
oftechnology and not vice versa.

In this paper, we argue that the development of new teaching environments and tools must be subjected to
didactic analysis m order to contribute substantially to teaching. As examples, we mention the concept of
recordability, i.e. the ability of a system to record the behavior of a user and the systems of automated
evaluation, 1.e. environments that automatically validate student output to given problems. In the first case a
teacher can exammne not only the final output of a student, but also his entire course. In the case of an
automated evaluator, specific sets of data can determine some of the student's misconceptions. Thus, both
can give us valuable results concerning those misconceptions.

2. Didactic and Technological Rationale

"No matter what technology is used, insights obtained from traditional courseware design both from
a pedagogical and content/form point of view must not be ignored", Maurer, 1997 [8].

Maurer's position summarizes our beliefs regarding the relationship between ICT and didactics. The role of
teaching is to educate, or according to the classic theory of Piaget, to help the student adapt to an ever
changing environment and absorb new mformation. Despite that, one often gets the feeling that the processes
of teaching and educating that rely heavily upon the new technologies, miss the pomnt and become margmal in
favor of other objectives.

There are many researchers and mtellectuals that pomt out the fact that the usage of a certain technology as

the foundation for teaching a course does not automatically mply the didactic effectiveness of the given
course. The hopes of the educational community for a better education are often based upon the advent of
the technological discoveries, like radio, television, or video. But, a quite large number of studies [11]
conclude that these hopes never come true, since there is no evidence that there is a difference among
students educated using new technologies and those educated m the traditional way.

Although not impossible, it is very difficult to pomnt out any one common characteristic in a series of events
over a 50-year period. However in the case of the usage of computers in education, the latest link in the chain
of technological discoveries that have greatly affected our civilization, we believe that the common
characteristic is the lack of a didactic questioning.

As an example of the Greek practice, which is usually attuned to international practice, we mention that the
calls for development of educational software describe technical rather than didactical specifications. These
calls often contam explicit requirements for multimedia software [12]. There is neither justification nor
analytical data however, to support the belief that multimedia educational software is didactically more
effective than other types of educational software, for example, software based on open microworlds.

We believe that didactic rationale and didactic needs should guide the development of educational software.
Then, the software can open up new possibilities and redefine to some degree the factors affecting the
didactic situations. This is fundamentally different than the practice of assigning the responsibility for essential
teaching to technology alone. For example, the dynamic nature of the mathematical objects in open
microworlds (numbers in Excel and geometric shapes in Cabri-Geometer [1]) allows the development of
didactic activities with mathematical content that were nconceivable in the traditional setting of pencil and
paper, where numbers and shapes are static. Relevant research shows that microworlds become didactically
effective only when they deal with "classic" didactic problems, such as the distinction between a drawing and
a geometric shape.

In the following, we describe two collaborating environments used to teach programming that were designed
taking nto consideration mamnly didactic problems that usually come up when teaching programming. We
believe that the capabilitics of these environments can become a model for designing educational
environments that consider didactic needs.

3. Two didactic proble ms

A usual didactic problem that is related to student activities in Mathematics, Computer Science, Physics and
other sciences, is the ability to record the history of the student activities, or in other words, the path followed
to a solution or no solution by the students for a given problem. In the traditional classroom, the teacher can
simply "see" snapshots of the path to the solution rather than the whole path. A rare exception occurs when
the teacher can have access to the draft pages used by the students m written exams, or when there is an
experimental setup where the actions of the subjects in this case students, are recorded in detail by an
observer either a human or a machine.

Knowing the path to the solution followed by the students is most of the times extremely valuable information
to someone who wants to explore the conceptions of the students. We believe that the capability to
systematically record the path to the solution followed by a particular student, can create mteresting new
possibilities for exploring the conceptions of students and for developing a clever on-line help in computer
programming environments.

In an educational software environment one could have the computer systematically record the actions of a
student, thus providing the teacher with invaluable information about the path to the solution followed by that

student, the steps backward, the repeated tries, the mistakes, as well as the hesitations. Educational software
can be designed to record and store what is didactically essential. The teacher can explore any snapshot of a
student's solution while the student is using the software or at any time later.

A related issue that is of great importance is the verification of the final solution given by a student to a given
problem. The approach to this didactic problem is relatively simple when the proposed problem is formulated
mn a way that it accepts a unique and predefined solution. All one has to do is ascertain whether the student's
solution coincides with the correct one, as in the case of multiple choice or closed type questions. The
problem, however, is much more complicated if the solutions of the students are "open", as in the case of the
creation of a geometric shape or a computer program. In these cases, the answers are not unique and
predefined but can nonetheless be described m a formal way. Therefore, there exists theoretically an
automated way to determine the correctness of the student's solution. We used such a method in an
environment for teaching Geometry and we had some enlightening results [5].

Based on the above didactic assumptions we developed two environments that can be of great assistance to
teachers of programming.

4. The environments AnimPascal and Telemachus

The first environment is a programming environment called AnimPascal [10], which includes an editor, a
compiler, and a visualizer of the source code. The essential feature of this environment is that it automatically
saves a snapshot of the program code each time a user executes it. This feature was implemented based on
the assumption that the student decides to execute the program code whenever he believes that an important
step in the process of developing his program has been reached. The gathered program code snapshots could
be useful n finding out the students' errors, and following that, their conceptions when they try to solve a
problem of an algorithmic or programming nature.

The later environment is a software tool called Telemachus [9] that tests and grades student programs and
provides reliable performance data that could give a reasonable gauge of student knowledge and in this way
contribute to teaching programming skills. Many errors in student programs have an element of chance and
are thus unpredictable [6]. There are some errors, however, which are more systematic and more persistent
and since they are due to student misconceptions they can be predicted. Students produce programs that are
correct for most of the cases but when these programs are tested for some data sets they beget incorrect
results since students do not take into consideration all the cases. Telemachus validates student programs,
running them against a number of predefined data sets rather than against random data sets, so as to detect
logical errors. We choose adequate data sets in such a way that a program with logical errors will produce an
mcorrect output or it will have an incorrect performance (infinite loop). Therefore, some data sets will cause
student programs to give incorrect outputs whereas other data sets will cause correct outputs. The
combinations of the chosen data sets give valuable insight into student conceptions.

5. Using the two environments together

AnimPascal was used in an experimental setup with first year students of the department of Applied
Informatics of the University of Macedonia, in an ntroductory course to programming. The course consisted
of'a 2-hour lecture and a 2-hour laboratory under the supervision of the teacher. In the laboratory course the
students used AnimPascal. The students were asked to solve the binary search problem. The algorithm had
been taught a month and a half before the laboratory course. The problem was formulated as follows:

You are given an array A with M elements (numbers) sorted in ascending order and a number K. You
are asked to develop a program that locates number K. If K appears in the array the program should

return the index of the array position that holds it, otherwise, it should return 0. You should use the
binary search algorithm.

The binary search algorithm was chosen because it is an algorithm well known to the computer science
community for its deceptive simplicity. While the algorithm appears to be simple, there are certain peculiarities
one has to take care of when trying to program it and verify its correctness [2]. Lesuisse [7] showed that
even published versions of the binary search algorithm contain errors, weaknesses, and special cases (for
example they require M to be a power of 2).

The students submitted ther completed programs to Telemachus. Telemachus tested all programs n an
automated, systematic way with input data prepared by the teachers.

The automated analysis of the results generated by Telemachus, in combination with the findings of
AminPascal, allowed us to get an overall idea of the student errors which we summarize in the following table:

1 [did nothing at all 1,4%
2 |solved it correctly 5,8%
3 |some syntactic errors 4,3%
4 | split the mitial array into two parts, then searched each part sequentially 4,3%
5 | did not use a loop 4,3%
6 |wrong termination condition (related to point 9) 17,4%

7 |computed the middle element once for the initial array but not for each resulting sub|1,4%

array
8 ||presumed that the element existed in the array 8,7%
9 |wrong computation of the index of the middle element 7,2%
10 ||wrong computation of the boundaries of each sub array 10,1%

11 |[confused the index of the array holding the number with the number itself 10,1%

12 ||correct termination condition, but wrong display condition 1,4%

13 |lused the "for" statement but computed anew its index values hoping to reduce the size of|| 1,4%
the array

14 ||difficulties in formulating the termination condition (used AND) that resulted in repeated |2,9%
modifications of the code

Table 1: Summary of student errors

Table 1 directed us to a more concise analysis of the paths to the solution followed by students. This analysis
provided us with qualitative data for each student. Table 2 shows a typical path followed by a student; the
timeline can provide a better understanding of the path followed by a student.

SYNTACTIC ERRORS LOGICAL SEMANTIC ERRORS
ERRORS
used used | error m || while | value Inttialization | confused || condition
parenthesis div | if..then...else | and assignment | of I, A[T] n while
mstead of statement AND LowLimut, statement
bracket HihglLimit
= - hirt - 'T

hirit

Table 2: Typical case of the path to a solution followed by a student and the corresponding
timeline.

The typical timeline presented in Table 2 helps us establish the following:

® The continuous movement of the timeline between the syntactic and logical
errors clearly demonstrates the difficulties posed to the novice student

programmer by the idiosyncratic nature of "real" programming languages [3,
4]. In particular, the repeated attempts of students to correct syntactic
errors shows that students should be mntroduced to programming through
languages with simple syntactic rules. Although the time spent in correcting
syntactic errors is not shown in Table 2, it is clear that the syntax of the
programming language can be a negative factor in problem solving.

e Similarly, it is clear that the error messages generated by the system can
play an important role in the process of problem solving. In our example, the
hint for using operator DIV is an effective help to the user, whereas the
message about the array boundaries is incomprehensible. The student
repeatedly attempts to correct his errors without understanding the meaning
of the error message produced by the compiler. The above observation
suggests that a systematic study of student errors and an mvestigation of the
reasons students cannot take advantage of the compiler error messages
could improve the produced error messages. Our empirical studies show
that this could be achieved by using more detailed and/or translated in to
Greek error messages.

e A study of the timelines brings to light the parts of the algorithm students find
hard to mplement. For example, regardless of their final solution, almost all
students had problems in determining the boundaries of the sub-array to
search next. The timelines indirectly indicate the way students think. It is
clear that most of the students use simulation to build their programs: they
"run" their code in a virtual machine in their minds.

6. Conclusions

The development of these environments does not only have a practical value but it is also paradigmatic. The
described tools offer us data of didactic interest not only in the area of teaching programming, but also in the
broader field. The results obtained from both environments support what we have claimed. Thus, both these
environments point out ways of using ICT with a didactic rationale. We maintain that what is usually missing
from the educational environments is not ICT but the didactic knowledge of the subject at hand, as well as a
formulated theory which could direct the use of ICT in teaching. This framework could consist of a general
guide not only for recognizing student conceptions but also for developing didactic situations of the various
subjects to be taught. We believe that intensive research is required in order to develop such kinds of tools
and better exploit the full potential of contemporary ICT.

6. References

1. Baulac Y., Bellemain F., Laborde J.M. (1988), Cabri-géometre, un logiciel d'aide a
l'apprentissage de la géometrie, Cedic-Nathan, Paris.

2. Bentley J., (1986), Programming Pearls, Addison-Wesley,.

3. Brusilovski, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A. & Miller P., (1997),
Mini-languages: a way to learn programming principles, Education and Information
Technologies 2, pp. 65-83.

4. du Boulay, B., (1989), Some Difficulties Of Learning To Program, In Studying The

Novice Programmer, Soloway, E., Sprohrer, J. (Eds.) Lawrence Erlbaum Associates,
pp- 283-300.

5. Dagdilkelis, V., (1993), Cabri and HyperCabri: An Intelligent Environment for Teaching
and Learning in Euclidean Geometry, (in Greek), Hellenic Conference on Informatics,
Athens, 1993.

6. Dagdilelis, V., (1996), Computer Science Didactics. Teaching Programming: student
conceptions on program development and verification and didactic situations that shape
them, Ph.D. Thesis, Department of Applied Informatics, University of Macedonia.

7. Lesuisse R., Some Lessons Drawn from the History of the Binary Search Algorithm, 7he
Computer Journal, Vol. 26, n. 2, 1983, pp. 154-163.

8. Maurer, H., "Necessary Ingredients of Integrated Network Based Learning
Environments", Proceedings of ED-MEDIA and ED-TELECOM 97 Conference,
AACE, Calgary, Canada, 1997.

9. Satratzemi M., Dagdilelis V., "Telemachus an Effective Electronic Marker of the
Students' Programming Assignments", poster presentation, Proceedings of the S5th

Annual Conference on Innovation and Technology into Computer Science
Education (ITiCSE"2000-ACM), Helsinki, Finland, July 11-13, 2000.

10. Satratzemi M., K. Chatziathanassiou, V. Dagdilelis, "AnimaPascal: An educational
environment to support teaching of introductory programming courses" (in Greek),
Proceedings of the Second Conference on Information and Communications
Technologies in Education, Patras, Greece,October 2000.

11. The non Significant Difference Phenomenon:
http://nova.teleeducation.nb.ca/nosignificantdifference/

12. http://odysseia.cti.or

This document was added to the Education-line database on 13 March 2001

