Optimization Letters
https://doi.org/10.1007/511590-022-01925-2

ORIGINAL PAPER

®

Check for
updates

General variable neighborhood search for the parallel
machine scheduling problem with two common servers

Abdelhak Elidrissi' @ - Rachid Benmansour?® - Angelo Sifaleras®

Received: 14 July 2021 / Accepted: 20 August 2022
© The Author(s) 2022

Abstract

We address in this paper the parallel machine scheduling problem with a shared
loading server and a shared unloading server. Each job has to be loaded by the load-
ing server before being processed on one of the available machines and unloaded
immediately by the unloading server after its processing. The objective function
involves the minimization of the overall completion time, known as the makespan.
This important problem raises in flexible manufacturing systems, automated mate-
rial handling, healthcare, and many other industrial fields, and has been little studied
up to now. To date, research on it has focused on the case of two machines. The
regular case of this problem is considered. A mixed integer programming formula-
tion based on completion time variables is suggested to solve small-sized instances
of the problem. Due to its A/P-hardness, we propose two greedy heuristics based
on the minimization of the loading, respectively unloading, server waiting time,
and an efficient General Variable Neighborhood Search (GVNS) algorithm. In the
computational experiments, the proposed methods are compared using 120 new and
publicly available instances. It turns out that, the proposed GVNS with an initial
solution-finding mechanism based on the unloading server waiting time minimiza-
tion significantly outperforms the other approaches.

Keywords Parallel machine scheduling - Scheduling with two common servers -
Mixed integer program - General variable neighborhood search - Greedy heuristics

>4 Angelo Sifaleras
sifalera@uom.gr

Abdelhak Elidrissi
abdelhak.elidrissi @uir.ac.ma

Rachid Benmansour

r.benmansour @insea.ac.ma

Rabat Business School, International University of Rabat, Rabat, Parc Technopolis,
Rabat-Shore, Morocco

National Institute of Statistics and Applied Economics (INSEA), Rabat, Morocco

Department of Applied Informatics, University of Macedonia, School of Information Sciences,
156 Egnatias Str., 54636 Thessaloniki, Greece

Published online: 10 September 2022 @ Springer

https://orcid.org/0000-0002-5024-6610
https://orcid.org/0000-0003-2553-4116
http://orcid.org/0000-0002-5696-7021
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01925-2&domain=pdf

A. Elidrissi et al.

1 Introduction

Parallel Machine Scheduling problem with a Single Server (PMSSS problem)
has been widely studied in the last two decades (see [6, 11, 16, 18, 27]). In the
PMSSS problem, a server which can represent a team of setup workers or a sin-
gle operator, etc, is considered to be in charge of the setup operation (or load-
ing operation) of jobs. The setup time resulting from the setup operation can be
defined as the time required to prepare the necessary resources to perform a task
[3]. The PMSSS problem has various applications, e.g., in supply chain [9, 35], in
plastic injection industry [6], in printing industry [24], in semiconductor industry
[27], and recently in health care [23].

Unlike the PMSSS problem, the problem considering both loading and unload-
ing operations has been less studied in the literature. Indeed, in the latter prob-
lem, each job has to be loaded by the server before being processed on one of
the machines, and unloaded immediately by the same server after its processing.
It can be noticed that, only few papers have been proposed in the literature for
this variant of the problem. Xie et al. [37] addressed a static parallel machine
scheduling problem with a single server in charge of loading and unloading
jobs on machines. The authors presented complexity results for some particular
cases of the problem. They derived some optimal properties that helped to prove
that the largest processing time heuristic generated a tight worst-case bound of
3/2 — 1/2m, where m is the number of available machines. Later, Jiang et al. [25]
addressed a dynamic scheduling problem on two identical parallel machines with
a single server. The authors assumed that, both the loading and unloading opera-
tions of jobs that are performed by the single server take one unit time. To solve
the problem, they proposed two online algorithms that have tight competitive
ratios.

For the case with several servers, Kravchenko and Werner addressed the problem
with k servers, where k > 1 in order to minimize the makespan [29]. They showed
that, the problem is unary A/P-hard for each k < m and developed a pseudo-polyno-
mial time algorithm. Later in 2010, the same authors showed that, the problem with
k servers with an objective function involving the minimization of the makespan
is binary A/P-hard [36]. In addition, they conducted a worst case analysis of two
list scheduling algorithms for makespan minimization. Furthermore, in the case of
unloading operations involving multiple servers it is assumed that, a job starts its
processing immediately on an available machine without prior setup and an unload-
ing server is needed to remove this job from the machine. It can be noticed that, only
one paper dealing with this problem is proposed in the literature. In this context,
Ou et al. [33] addressed the problem of scheduling m identical parallel machines
with multiple unloading servers. The objective function involved the minimization
of the total completion time. They showed that, the shortest processing time first
algorithm has a worst-case bound of two and proposed other heuristic algorithms as
well as a branch-and-bound algorithm to solve the problem. The authors stated that,
this problem was motivated by the milk run operations of a logistics company that
faces limited unloading docks at the warehouse.

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

In this paper, we address a non-preemptive parallel machine scheduling
problem with two dedicated servers by taking into account loading and unload-
ing operations. The objective is to minimize the makespan. It is assumed that,
the information about the problem is available before the scheduling starts (i.e.,
static case). Following the standard a|f|y classification scheme for schedul-
ing problems known as the Graham triplet [17], the considered problem can be
denoted as P, 52|sj, tj|Cmax, where P represents identical parallel machines, S2
represents two common servers, s; is the loading time of job j, #; is the unload-
ing time of job j and C,,,. is the objective to be minimised (i.e., the makespan).
We consider in this paper the regular case of the problem P, S2|s;, ;|C,,,,, where
Vi,j p; <s;+p;+1.Incontrast, a set of jobs is called general if it is not respect-
ing the regularity constraint (see [27] and [16]). It can be noticed that the regular-
ity constraint was studied for the parallel machine scheduling problem involving a
single server by [28] and [1].

In the scheduling literature, only a limited number of papers tackled the
problem P,S2|s;, ;|C,,,,. Among them, Jiang et al. [26] addressed the problem
P2, S2|sj = l,tj =1|C,,, with unit loading time, unit unloading time, and two
identical parallel machines. The authors showed that, the classical list schedul-
ing and largest processing time heuristics have worst-case ratios of 8/5 and 6/5,
respectively. Recently, Benmansour and Sifaleras [8] proposed an MIP formu-
lation and a general variable neighborhood search metaheuristic for the general
case of the problem P2,S2|s;,1;|C,,,, with only two identical parallel machines.
To the best of our knowledge, no solution methods have been proposed in the
literature for the regular case of problem P, §2|s;, 1;|C,,,, with an arbitrary number
of machines. We fill this important gap in the literature by making the following

contributions:

e we introduce a novel MIP formulation based on completion time variables for
the regular case of the studied problem, and we improve it with a valid ine-
quality.

e we propose four lower bounds and two greedy heuristics for the regular case
of the problem.

e we design an efficient general variable neighborhood search metaheuristic
with different initial solution-finding mechanisms for solving medium and
large-sized instances of the regular case of the problem.

e we provide numerical results for reasonable computing times (with respect to
the literature and to the industrial practice), including a comparison with the
MIP formulation using a well-known commercial solver.

The rest of the paper is organized as follows: Section 2 provides a formal descrip-
tion, a mixed-integer-programming formulation, as well as a lower bound for the
studied problem. Then, two greedy heuristics are presented in Sect. 3. In Sect. 4,
a general variable neighborhood search approach and the neighborhood structures
that are used, are described. Numerical experiments are performed in Sect. 5.
Finally, concluding remarks are made in Sect. 6.

@ Springer

A. Elidrissi et al.

2 Problem formulation and lower bounds
In the problem P, S2|s;, i |C,,,.ax We consider that, aset N = {1,2,...,n} of n independ-
ent jobs has to be processed on a set M = {1,2, ..., m} of m identical parallel machines
with two common servers. The first server (loading server) is dedicated to the loading
operation of jobs on the machines, while the second server (unloading server) is used
to unload the jobs after their processing. Each job j € N is available at the beginning
of the scheduling period and has a known integer processing time p; > 0. Before its
processing, each job j has to be loaded by the loading server, and the loading time is
s; > 0. After its processing, a job has to be unloaded from the machine by the unloading
server, and the unloading time is 7; > 0. The processing operation starts immediately
after the end of the loading operation, and the unloading operation starts immediately
after the end of the processing operation. During the loading (respectively unloading)
operation, both the machine and the loading server (respectively unloading server) are
occupied and after loading (respectively unloading) a job, the loading server (respec-
tively unloading server) becomes available for loading (respectively unloading) the
next job. Furthermore, there is no precedence constraints among jobs, and preemption
is not allowed. The objective is to find a feasible schedule that minimizes the makes-
pan. In this paper, we consider the regular case of the problem P, $2|s;, 1,|C,,,,, where
VijEN p;<s;+p;+i,.

2.1 Mixed integer programming formulation

In this section, we present a refined version of the MIP formulation proposed
in [8] which is based on Completion Time Variables (CSV) for the problem
P, 82ls;, 1;|C,,, With a regular job set. CSV formulation known also as natural-date
variables formulation was initially used by Balas [5] to model a job shop scheduling
problem. This formulation has been also used to model different A’P-hard schedul-
ing problems (see [4, 7]).

The decision variables are defined as follows:

= { 1 if job i is scheduled on machine k
ik =

0 otherwise

_J 1 ifjob i finishes its processing before job j (i # j)
%=\ 0 otherwise

C; be the completion time of job i.

Let L be a large positive integer, computed as L = Y.y (s; + p; + 1,).

The problem P, S2[s;, 1;|C,,,, With a regular job set can be formulated as the fol-
lowing MIP. We recall that in [8], the authors considered the general case of the
problem P2, SZ|SJ-, ;,|Cmax.

min C,,, (1)

st. Copu2C; VieN)

max —

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

m
D xp=1 VieN 3)
=1

C,>s;+p;+t; VieN 4)

Cit+s;+p+t; <C+LEB—xy—x3—z5) VijEN,i#jVkeEM (5

Citsitp+ysGrp+i+L1-z) VijeN.i#] ©®
Ci+1;,<Ci+L(1-z) Vi jEN,i#j @)
itz 21 VijeEN,i#]) ®)

x; €{0,1} VieN,VkeM (©)]

z; €{0,1} Vi,jEN,i#]j (10)

In this formulation, the objective function (1) indicates that the makespan has to be
minimized. Constraints (2) state that the makespan of an optimal schedule is greater
than or equal to the completion time of all executed jobs. In order to guarantee that
each job is scheduled on exactly one machine, constraint set (3) is added to the for-
mulation. The completion time C; which is at least greater than or equal to the sum
of the loading, the processing, and the unloading times of the job i is calculated
according to constraints (4). Constraints (5)—(8) show that a job can be processed
only if the loading server, the machines, and the unloading server are available. Con-
straints (5) indicate that no two jobs scheduled on the same machine, can overlap in
time. Constraints (6) state that the loading server can load at most one job at a time.
While, the set of constraints (7) states that the unloading server can unload at most
one job at a time. The constraints (8) impose that for each couple of jobs (i, j), one
must be processed before the other. Finally, constraints (9) and (10) define binary
variables x; and z;;.

2.2 Strengthening the formulation
Proposition 1 The following constraints

Conax 2 Z(Si +pitixy YkeM (11)
i=1

are valid for MIP.

@ Springer

A. Elidrissi et al.

Proof Assume the last job (denoted as job n) is executed on machine k.

The quantity Y, (s;+p; +1;)x; represents the total time of use of the
machine k (since time 0), without counting the idle times. So it is obvious that
C, = Chue = Xy (s; + p; + 1,)x;.. Hence inequalities (11) hold. O
Note that, we refer to Eqgs. (1)—(10) as MIP1 and by considering the set of con-
straints Eq. (11) we refer to Egs. (1)—(11) as MIP2.

2.3 lllustrative example

We now illustrate the previous formulation for an instance of n = 5 jobs and m = 3
machines. The processing time p;, the loading time s; and the unloading time ¢; are
given in Table 1. It takes 0.14 seconds to solve the instance using the above MIP1
formulation on IBM ILOG CPLEX 12.6. The optimal objective-function value is
20, and the obtained schedule of the problem is given in Fig. 1.

Tab|e31 Instance with n = 5 and Job 1 Job 2 Job 3 Job 4 Job 5
m=
p; 7 6 5
5j 1 1
t 1 2 3 2 3
0‘1‘2‘3‘4 5 6‘7‘8‘9‘10‘11‘12‘13‘14 15 16‘17‘18‘19‘20

ke

Machine 2| | 1 | Pa
Machine 3 s
Loading server[sa[s1] [s [ss] [sa]
Unloading server [t [] 5 | [s [ta]

Fig. 1 Optimal schedule for the considered instance with 5 jobs and 3 machines

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

2.4 Lower bounds

In this section, we present a lower bound (LB) on the optimal makespan value for
the problem P, S2|s;, ;| C,,,,. It can be useful in order to evaluate the quality of the
greedy heuristics and the metaheuristic suggested in Sects. 3 and 6, respectively.
LB = max(LB,,LB,, LB, LB,), where LB, LB,, LB;, and LB, are given in Proposi-
tions 2, 3, 4, and 5 , respectively.

Proposition 2

1 n
LB, = — E 4+ p.+t
1 m izl(Sl pi l)

is a valid lower bound for the problem P, S2|s;, 1;|C,,,-

Proof One can see that the total load to be executed by the m machines represents the
sum of all loading, processing, and unloading times (i.e., _,(s; + p; + 1;)). Then, it
is sufficient to divide this total load by the number of machines to obtain the aforemen-
tioned lower bound. O

Proposition 3

LB, = ; t;,+ rlrél]\l} (s; +py)
is a valid lower bound for the problem P, S2|sj, (iICmax.
Proof Let C* denote the objective function value of an optimal solution of the
problem P, S2[s;, ;| C,,,,. In addition, the unloading server waiting time of the job
in position i, corresponds to the time between the end of the unloading operation of
the job in position i and the start time of the unloading operation of the job in posi-
tion i + 1. Indeed, if there is no unloading server waiting time in an optimal schedule
of the problem P, S2|s;,1;|C,,,,, then C, will be equal to the sum of all unloading

max> max
times plus the shortest sum of the loading and processing times, which corresponds
to min,gy (s; + p;) . Hence, LB, is valid. O

Proposition 4

n

LB, = Zsi+r,%i1$1(pi+[i)

is a valid lower bound for the problem P, S2|s;, tjlcmax.

Proof Let start by defining the Loading Server Waiting Time (LSWT). LSWT of the
job in position i, corresponds to the time between the end of the loading operation
of the job in position i and the start time of the loading operation of the job in posi-
tion i + 1. Indeed, if there is no loading server waiting time in an optimal schedule of
the problem P, S2|s;, ;| C,,,,, then C;, | will be equal to the sum of all loading times

plus the shortest sum of the processing and unloading times, which corresponds to
min,cy (p; + ;). Hence, the aforementioned lower bound (LBj5) is valid. O

@ Springer

A. Elidrissi et al.

Proposition 5
LB, = rlnea}vx(sl- +p;+1t)

is a valid lower bound for the problem P, S2|s;, t;|C,,,,-
Proof One can see that the completion time of the job with the maximal duration of
the sum of loading, processing and unloading times, represents a valid lower bound
for the problem P, S2[s;, ;| C,,y- O

3 Greedy heuristics

In this section, we present two greedy heuristics that aim to minimize the loading/
unloading server waiting time for the problem P, $2[s;, 1;|C,,,, with a regular job
set. The basic objective at each step of the proposed heuristic is to avoid the gen-
eration of server loading/unloading waiting times. The idea of the proposed heu-
ristics relies on the works of [2, 22], and [14] for the problems P2, S1 |sj, plemax
and P, S1 |sj, pjlcmax, involving only one single server. Indeed, Abdekhodaee et al.
[2] proposed a forward and a backward heuristics to minimize the server waiting
time and the machine idle time, respectively for the problem P2,S llsj, plemax.
Also, Hasani et al. [22] suggested two other heuristics for the same problem. Later,
El Idrissi et al. [14] generalized the precedent suggested heuristics for the problem
P,S1 |sj, pjlcmax, with an arbitrary number of machines and a single server. It can be
noticed that, the unloading server has not been considered in the precedent works.

3.1 Greedy heuristic (USWT)

In this heuristic, jobs are scheduled according to the availability of machines, the loading
and the unloading servers. In addition, the job with the shortest sum of the loading and
processing times is considered as the first job to be scheduled in the final sequence. It
follows the structure of the lower bound LB, presented in Proposition 3. The steps of the
first proposed heuristic, called USWT (Unloading Server Waiting Time), are as follows.

Heuristic USWT

e Step 1: Sort the list of jobs 7 = {x,,..., 7, ..., m,} in increasing order of the
sum of loading and processing times.

e Step 2: Sequence the first job of the list 7 on the earliest available machine.

e Step 3: Set I to the difference between the end of the loading and the unload-
ing time of last sequenced job.

e Step 4: From the unsequenced jobs, find a job with a sum of the loading and pro-
cessing time less than or equal to I'. If there is no such job, select the first one from
the list 7. Schedule the selected job to the first available machine at the earliest
possible time taking in consideration the loading/unloading server constraints.

e Step 5: Repeat Steps 3 and 4 until all jobs are sequenced.

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

3.2 Greedy heuristic (LSWT)

Contrary to the heuristic USWT, in this section, we present a constructive heuris-
tic that aims to minimize the loading server waiting time. In this heuristic, the job
with the shortest sum of the processing and unloading time is considered as the
last job to be scheduled in the final list sequence. It follows the structure of the
lower bound (LB5;) presented in Proposition 4. The steps of the second proposed
heuristic, called LSWT (Loading Server Waiting Time), are as follows.

Heuristic LSWT

e Step 1: Sort the list of jobs z in increasing order of the sum of processing and
unloading times.

e Step 2: Sequence the first job of the list z in the final position, and sequence the
second job of the list z in the first position on the earliest available machine.

e Step 3: Set O to the difference between the end of the loading and the unloading
time of last sequenced job.

e Step 4: From the unsequenced jobs, find a job with a sum of the loading and
processing time greater than or equal to O. If there is no such job, select the first
one from the list z. Schedule the selected job to the first available machine at the
earliest possible time taking in consideration the loading/unloading server con-
straints.

e Step 5: Repeat Steps 3 and 4 until all jobs are sequenced.

Note that USWT and LSWT are both complementary, and are used to generate ini-
tial solutions for the metaheuristic presented in the next Sect. 4.

4 General variable neighborhood search (GVNS) metaheuristic

Variable Neighborhood Search (VNS) is a single solution metaheuristic method
proposed by Mladenovi¢ and Hansen [31] that uses local search procedure as its
basic building block. Basic variant of VNS (BVNS) involves three main steps: Shak-
ing, Local Search (LS), and Change Neighborhood (Move or Not). Shaking step
represents the diversification (perturbation) phase whose role is to ensure escap-
ing from local optima traps. It is always applied to the current best solution and
consists of random perturbation in the given neighborhood. The obtained (shaken,
perturbed) solution represents a starting point to the LS step. The role of LS is to
improve shaken solution by examining its neighbors (in one or more neighbor-
hoods). When a local optimum is obtained by LS, BVNS performs the final step
(Move or Not). Within this step local optimum is compared with the current best
solution. If an improvement is obtained, the search concentrates around the newly
found best solution which means that the current best solution and the neighborhood
index are properly updated. In the case that current best solution was not improved,
the search is expanded to wider part of solution space (if possible) by increasing the

@ Springer

A. Elidrissi et al.

neighborhood index for Shaking. The main BVNS steps are repeated until a pre-
specified stopping criterion is satisfied [19].

Since 1997, VNS has been widely used and many variants and successful appli-
cations can be found in the relevant literature [20, 32]. The simplest VNS variant is
Reduced VNS (RVNS), consisting only of Shaking and Move or Not Steps. In most
of the cases, it is applied to provide good initial solutions for other VNS variants. If
the Shaking step is omitted, the corresponding method is known as Variable Neigh-
borhood Descent (VND) [13]. It is a deterministic algorithm where LS is performed
along multiple neighborhoods. Skewed VNS (SVNS) represents a variant of VNS
that allows the acceptance of non-improving solutions in Move or Not step with a
given probability [10]. In SVNS an additional parameter « is introduced to control
the quality of these non-improving solutions, while General VNS (GVNS), contains
all three main steps and explores VND instead of LS [19].

Here, the GVNS metaheuristic is implemented for the problem P, S2|s;, ;|C,,,,
with a regular job set. The details about this implementation are provided in the
remainder of this section.

4.1 Implementation details

A solution of the considered scheduling problem P, $2[s;, ;| C,,,, can be represented
as a permutation 7 = {x,...,m,...,n,} of the job set N, where x; indicates the
job which is processed in the k" position. This representation is in fact indirect as it
requires actual scheduling of jobs to machines taking into consideration the servers
constrains (i.e., loading and unloading) in order to calculate value of the objective
function (C,,,,). Having in mind that jobs are independent, all permutations (n!) are

representing feasible solutions, and therefore, the search space is very large. On the
other hand, several neighborhood structures could be defined for this representation.

4.1.1 Neighborhood structures

To obtain an efficient VNS metaheuristic we have to decide about the neighborhood
structures to use. The following three neighborhood structures (/,,,. = 3) are pro-
posed to explore the solution space for the problem at hand.

— N, (x) = Swap(r). It consists of all solutions obtained from the solution = swap-
ping two jobs of z.

— N, (x) = Insert(r): It consists of all solutions obtained from the solution = by
reinserting one of its job somewhere else in the sequence.

— N;(n) = Reverse(r): It consists of all solutions obtained from the solution x
reversing a sub-sequence of z. More precisely, given two jobs r; and x;, we con-
struct a new sequence by first deleting the connection between x; and its succes-
sor r;,; and the connection between z; and its successor 7, ;. Next, we connect
7,y with z; and ; with ;..

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

Note that, these neighborhood structures have been successfully used in different
scheduling problems involving a single server (see [15, 21]).

4.1.2 Variable neighborhood descent

Now, we propose to use N;, A, and N5 within VND (Algorithm 1). It starts with an
initial solution 7, and continuously tries to construct a new improved solution from
the current solution 7 by exploring its neighborhood N(x). The search continues
to generate neighboring solutions until no further improvement can be made. Fur-
thermore, the performance of VND depends on the order in which neighborhoods
are explored, and on how to switch from one neighborhood to another during the
search. To switch from one neighborhood to another (Change neighborhood step),
we propose to use basic sequential, pipe, and cyclic strategies. They are given in
Algorithms 2—4, respectively. Exhaustive testing is performed in Sect. 5.3 in order to
identify the best order of neighborhoods with respect to the suggested change neigh-
borhood strategies.

Algorithm 1: Variable Neighborhood Descent

Data: 7, lmax
Result: ©

1 repeat

2 l+1
3 repeat
4

5

7’ «— Local Search(m, ;)
Change Neighborhood-type(w, 7', 1)

6 until | = lmazs
7 until there is no improvement
8 return 7w

Algorithm 2: Change Neighborhood-Sequential

if Crmaa (') < Cmagz(w) then
T 7'
I+ 1;
else
| I«1+1
end

[< B I VS

@ Springer

A. Elidrissi et al.

Algorithm 3: Change Neighborhood-Pipe

if Cmaz (') < Cmae () then
‘ w7l

else
| 1+1+1

end

(S I NIV VI

Algorithm 4: Change Neighborhood-Cyclic

Il 1+1

if Crmaz () < Cmaz(w) then
w75

end

B oW N

4.1.3 Shaking

For escaping local optimum solutions, a shaking procedure is proposed. It con-
sists of sequentially generating k& random jumps from the current solution =
using the neighborhood structure Nj. After preliminary experiments, the shaking
method with more neighborhood structures reduced the quality of the results. Its
pseudo-code is given in Algorithm 5.

Algorithm 5: Shaking

Data: 7, k

Result: m

for j =1 to k do
Select 7/ € N3(m) at random
T

end

return

LI NI I O

4.2 GVNS for the problem P, S2|s;, t;|C,,,,,

In this section, we present the overall pseudocode of GVNS as it is implemented
to solve the the problem P, S2|s;, ;|C,,,, with a regular job set (see Algorithm 6).
The diversification and intensification ability of GVNS relies on the shaking
phase and VND, respectively. Shaking step of GVNS consists of one neighbor-
hood structure A;. In the VND step, the three proposed neighborhood struc-
tures are used. The stopping criterion is a CPU time limit 7, ,,. Since GVNS is a

max*

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

trajectory-based metaheuristic, we need to start from a given solution. Therefore,
we refer to GVNS I as GVNS using USWT heuristic as initial solution, GVNS II
as GVNS using LSWT heuristic as initial solution, and GVNS III as GVNS using
a random initial solution. Note that all GVNS variants are compared in the next
Sect. 5.

Algorithm 6: General Variable Neighborhood Search

Data: 7, kmaz, Tmax
Result: ©
7 < Initial Solution()
repeat
k<1
while k < kyaz do
«' < Shaking(r, k)
7"+ VND(7')
if Crmaz(1”) < Cinaa () then
w7’
k+1
else
| k< k+1
end

o N oo AW N R

B oRmoR
N B O ©

end
until CPU > Thaz
return 7

BB
oo W

5 Computational results

In this section, the computational experiments carried out to evaluate the perfor-
mance of the MIP1 (1)-(10), MIP2 (1)-(11), USWT, LSWT, GVNS I, GVNS II, and
GVNS III for the problem P, S2[s;, 7;|C,,,, with a regular job set, are presented. The
MIP1 and MIP2 were solved using concert Technology library of CPLEX 12.6 ver-
sion with default settings in C++, whereas LSWT, USWT, GVNS I, GVNS II and
GVNS III were coded in the C++ language. We use a personal computer Intel(R)
Core(TM) with 17-4600M 2.90 GHz CPU and 16GB of RAM, running Windows 7.
Except for the small-sized instances for which one run is sufficient, the metaheuris-
tics were executed 10 times in all experiments reported in this section.

5.1 Benchmark instances

To the best of our knowledge, there are no publicly available benchmark instances
from the literature regarding the problem P, S2|s;, 1;|C,,,,, with a regular job set, so
we decided to generate a new set of instances. This set was created by generaliz-
ing the scheme previously proposed by Silva et al. [34] and Benmansour and Sifal-
eras [8]. Indeed, to generate a regular job set, first we generate a general job set,
where the processing time p;, loading time s;, and unloading time #; of each job j
were generated from the uniform distributions U[10, 100], U[S5, 25] and U[S, 25],

@ Springer

A. Elidrissi et al.

respectively. Then, we reduce this general job set into a regular one by adapting
the Koulama’s reduction algorithm (see Koulamas [28]) to our studied problem. In
our generation scheme, we adopted the following values: n € {10, 50, 100,250}, and
m € {2,3,5}. Thus, leading to a total of 12 groups of instances. For each group of
instances (2, m), ten instances were created, resulting in a total of 120 new instances.
These instances are publicly available at: https://sites.google.com/view/data-set-for-
thepmsssproblem/accueil.

5.2 Parameters setting

For the proposed GVNS metaheuristic, two parameters have to be tuned, k,,,, which
represents the maximum level of perturbation and T, which corresponds to the
maximum time allowed to be used by the GVNS. After some preliminary tests, we
decided to set k,,,, to 20 as it offered a reasonable trade-off between the quality of
the solution and CPU time. For small-sized instances (n = 10 and m € {2,3,5}),
T, 1s set to the computing time to find an optimal solution by CPLEX solver. For
medium-sized instances (n € {50,100} and m € {2,3,5}), T,,,,, 1s set to 100 sec-
onds. Finally, for large-sized instances (n = 250 and m € {2,3,5}),7,,,,, is set to 200
seconds. In addition, for all instances, the time limit for CPLEX is set to 1h.

5.3 Comparison of VND variants

Now, we present a detailed comparison of three VND variants, namely: sequen-
tial VND, pipe VND and cyclic VND. These VND variants have been widely used
for different optimization problems (see [12, 30]). The performance of the pro-
posed VND variants depends on the sequence of the three neighborhood structures
(N}, N,, N3), and also on the search strategy (first or best improvement). Therefore,
six different sequences of neighborhood structures are presented in Table 2. Note
that, in this comparison each VND variant starts with a random permutation of the
solution 7.

Furthermore, 30 instances of size n = 250 with m ranging from 2 to 5 (large-
sized instances), are used in this comparison. Table 3 presents the average results for
the first improvement strategy (i.e., in each iteration, stop the generation of neighbor
solutions as soon as the current solution can be improved), whereas Table 4 presents
the average results for the best improvement strategy (i.e., in each iteration, generate
all the neighbor solutions and pick up the best one). For each experiment, we indi-
cate the average value of C,,,. and the average computing time (in seconds).

Table 2 Possible sequences for the neighborhood structures

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6
Insert Insert Swap Swap Reverse Reverse
Swap Reverse Insert Reverse Insert Swap
Reverse Swap Reverse Insert Swap Insert

@ Springer

https://sites.google.com/view/data-set-for-thepmsssproblem/accueil
https://sites.google.com/view/data-set-for-thepmsssproblem/accueil

GVNS for the parallel machine scheduling problem with two dedicated servers

66'8 I"LLES 6111 L9'81%9 eLLT £8'97€9 LS8 6'LYE9 789 €6'9LY9 099 LSY9Y9 ANA d1PAD
Y911 £6°CrY9 79°6 £6'58Y9 6C¢El L0"09¢9 0s°ClI LL'EEE9 IL6 LS SSY9 98 £0°09t9 ANA odig
LTOl1 L9vv9 86'6 8°L8Y9 6901 £9'vEE9 111 €L°6EE9 6v'11 LL€9Y9 0911 £6'0LY9 ANA [enuanbog

ndo e ndo o) ndo o) ndo o) ndo o) ndo e

9 9ouanbog G oouanbag 4 9ouanbog ¢ oouanbag Z douanbog 1 Qouanbag

A3a1ens Juowaroxdur s.41f 9y} YIim s9ouanbas JUSIOPIP YIm SANA Jo uostredwo) € ajqel

pringer

As

A. Elidrissi et al.

clel LEEYY9 cL0C LE6EYI G881 9'LYY9 ¢S91 LEYIS9 L6°EC ELVLSY 8C°¢€C 81LS9 ANA d1PAD
9T Sl £9°CTr9 LSV LTT1EY9 Loy €5 v0r9 08¢y €959 L6°81 ¥'LSS9 68l €959 ANA odig
96°'1¢C £€9'1¥9 I¥'CC £0'9vY9 Iy 00¥9 LESE LSTSY9 9L'LT L6859 L9V LL 8859 ANA [enuanbog
ndo e ndo o) ndo o) ndo o) ndo o) ndo e

9 9ouanbog G oouanbag 4 9ouanbog ¢ oouanbag Z douanbog 1 Qouanbag

K311 Juawesoxdwl 152q o) YIIm S9ouINbas JUAIOPIP YIm SNA Jo uostredwo) ajqel

pringer

As

GVNS for the parallel machine scheduling problem with two dedicated servers

According to these results, we can observe that VND is sensitive to the neigh-
borhood-structure sequence and the searching strategy. It can be noticed that the
neighborhood-structure Cyclic, Sequence 4, combined with the first improvement
strategy leads to the best results, since it returns the minimum value of the average
makespan. Therefore, we will use these parameters within the proposed GVNS.

5.4 Results

Because of the A/P-hard nature of the problem P,S2|s;,#|C,,,, an optimal
solution was only obtained for small-sized instances with up to 10 jobs and 5
machines. Therefore, LSWT, USWT, GVNS I, GVNS II and GVNS III were
designed to solve medium and large-sized instances. Having in mind that in the
proposed GVNS I, the initial solution is obtained by the greedy heuristic USWT.
In GVNS 1I, the initial solution is obtained by the greedy heuristic LSWT.
Finally, in GVNS III the initial solution is randomly generated.

5.4.1 Exact approaches

In Table 5, we compare the performance of MIP1 and MIP2 for all groups of
instances (12 group of instances) for a time limit of 1 h. Each group of instances
is characterized by the following information: the group number; a number n of
jobs; a number m of machines. In addition, for each MIP formulation, the fol-
lowing information is given: i) the average time required to prove optimality,
CPU, ii) the average percentage gap to optimality, gap, z(%), iii) the average gap
between the formulation’s lower bound and the best upper bound, gap;z_;5(%),
and iv) the average gap between the linear programming (LP) relaxation lower
bound and the best upper bound, gap, (%). The following observations can be
made:

e Forn=10and m € {2,3,5}: Based on formulations MIP1 and MIP2, CPLEX
is able to produce an optimal solution for any instance. It can be noticed that
for the improved formulation MIP2, CPLEX is able to produce an optimal
solution in significantly less computational time in comparison with the orig-
inal formulation, except for group 2 and group 3.

e For n € {50,100,250} and m € {2,3,5}: Based on MIP1 and MIP2, CPLEX
is able to find a feasible solution for all groups. It can be noticed that the
improved formulation MIP2 produce much smaller gap; z(%) and gap; p_5(%)
in comparison with MIP1. In addition, MIP2 reduced significantly the value
of the linear programming relaxation.

The overall results showed that MIP2 outperforms, on average, the MIP1 for-
mulation on almost all instances. Furthermore, the impact of the strengthening
constraints in Eq. 11 is very positive as MIP2 produce more strict LP relaxation
bounds than MIP1. In the following of the paper, we compare only MIP2 with

@ Springer

A. Elidrissi et al.

9895 9896 aats 009¢ 8L°86 87°86 8766 009€ S 4
S9° Sy 901 901 009¢ 0066 8186 96'86 009¢ € 11
007T ¥191 Y191 009¢ 066 8L°86 0066 009€ 4 0ST o1
vty vSTh vSTh 009¢€ 66'S6 0T+6 SEV6 009€ S 6
81°G1 8I°GI 99°G1 009¢€ 8796 Y156 TTS6 009¢ € 8
61°€¢ 61°¢ 8I'v 009¢€ YT'L6 7196 ¥1°96 009€ 4 001 L
9I'TH 91'TH 1LTh 009¢ €026 96°'L8 €6'L8 009¢ S 9
0€'6 0€'6 16 009¢ ¥$'T6 vS'L8 96'L8 009€ € S
L60 L60 10'1 009¢€ S9'v6 60’16 16 009€ z 0S %
000 000 000 870 000 000 000 LY'9 S €
000 000 000 ¥S'8Y 000 000 000 ¥9°0€ € z
000 000 000 SEL9T 000 00°0 000 LL'689 4 01 I
(%)?1dv3 (%)~ 41dp3 (%)¥dv3 ndo (%) 1dvs (%)91~41dp3 (%)¥dv3 ndo

ZdIN 1dIN w u dnoip

SUOT)E[NULIOJ [EOTBWAYJEW JURIJIP dY) AQ punoy s)nsar a5e1ony ajqel

pringer

As

GVNS for the parallel machine scheduling problem with two dedicated servers

the other approaches, as it produce the best results. Note that MIP2 was not able
to prove optimality of 50-job instance, which is a limited size. Consequently,
there is a need for meta/heuristics able to find an approximate solution if pos-
sible of high quality in a short computational time.

5.4.2 Approximate approaches

In Table 6, we compare the performance of the all proposed methods for small-
sized instances (n = 10 and m € {2, 3,5}), where an optimal solution can be found
by MIP2 within one hour. Each instance is characterized by the following informa-
tion. First, an ID (the name of each instance, e.g., nXmYkZ denotes the Z™ instance
with n = X and m = Y); the lower bound LB computed as in Sect. 2.4; the optimal
value C» ~of C, . (found with the MIP2). Second, the obtained value of C,,,, is
given for USWT and LSWT (not the computing time, as it is always below 0.0001).
Finally, the computing time to find an optimal solution is given for the MIP2, GVNS
I, GVNS II, and GVNS III. The last line of the table indicates average results. The

following observations can be made :

e GVNS I, GVNSII, and GVNS III can reach an optimal solution for each instance
in significantly less computing time than the MIP2.

e USWT and LSWT are not able to generate an optimal solution for all instances.
On average, USWT produces solution of better quality than LSWT.
The theoretical lower bound LB is on average 6.17% bellow C’: .
GVNS I requires the smallest average computing time (0.70 second) to find opti-
mal solutions in comparison with MIP2, GVNS II, and GVNS III.

In addition, Table 7 presents the performance of the three metaheuristic
approaches in terms of the percentage deviation from the best-known solutions
for each group of instances (the best one over all the runs of all the metaheuris-
tics, and the one obtained by the considered metaheuristic). For each metaheuristic,
the following information is given: the minimum value of the percentage deviation
over all instance’s group, Min, the average value of the percentage deviation over
all instance’s group, Avg, and the maximum value of the percentage deviation over
all instance’s group, Max. The last line of the table indicates average results. The
results show that GVNS I, on average, obtained a superior performance in terms of
minimum, average and maximum gaps for each group of instance, when compared
to GVNS II and GVNS III.

Furthermore, the detailed results of the MIP2, the two greedy heuristics, and
the three metaheuristics for the remaining instances is given in Appendix 1.
Tables 8, 9, 10 present the performance of the all approaches for medium and large-
sized instances with n € {50, 100,250} and m € {2,3,5}, where only a feasible
solution can be found by MIP2 within one hour (the best results are indicated in
bold). The instance characteristics are first indicated. First for the MIP2, the fol-
lowing information is given: the lower bound LB,;p,, the upper bound UB,;p,, the

@ Springer

A. Elidrissi et al.

Table 6 Detailed results found by the proposed approaches for instances with n = 10 and m € {2,3,5}

Instance USWT LSWT MIP2 GVNSI GVNSI GVNSII
ID LB C:. Cou Cor CPU CPU CPU CPU
10n2m1 280 291 312 314 23499 0.01 0.01 0.00
10n2m2 3335 341 377 369 8390 0.02 0.01 0.00
10n2m3 3485 364 381 381 480.23 0.00 0.00 0.00
10n2m4 293 306 322 349 239.04 0.01 0.07 0.01
10n2m5 299 310 325 333 42174 0.00 0.00 0.00
1012m6 380 391 410 416 31458 0.12 0.19 0.19
10n2m7 26550 274 286 305 7397 0.00 0.00 0.00
10n2m8 323 334 364 365 691.69 0.11 0.07 0.00
10m2m9 358 367 387 406 68.83 277 245 2.11
10m2m10 302 310 339 349 6448 001 0.00 0.00
10n3m1 235 248 270 311 9272 0.90 0.39 1.48
10m3m2 216 246 272 300 2175 412 7.52 7.76
10n3m3 228 251 274 300 1328 173 0.58 271
10m3m24 209.67 236 270 293 13.63 0.6 0.33 0.19
10n3m25 240.33 283 304 310 61.89 0.07 0.02 0.17
10n3m6 249 271 303 294 7567 0.01 0.01 0.04
10m3m7 247 275 288 326 4169 0.7 0.01 0.01
10n3m8 219 239 282 264 3840 0.18 0.12 0.02
1013m9 219 253 273 299 89.87 136 0.54 0.44
1023m10 200 226 272 262 3652 0.06 0.01 0.02
10n5m1 242 251 293 322 5328 0.0l 0.01 0.01
10n5m2 232 235 245 298 7750 0.00 0.01 0.00
10n5m3 214 230 271 266 1823 727 9.16 7.42
10n5m4 214 238 263 304 5785 0.13 0.02 0.06
10n5m5 223 231 270 255 2584 0.01 0.11 0.02
10n5m6 211 225 254 300 2263 0.19 1.21 0.53
10n5m7 205 214 251 273 6679 0.07 0.20 0.01
10n5m8 192 216 264 237 3252 001 0.01 0.01
10n5m9 235 243 286 321 3069 040 0.92 0.10
10n5m10 212 228 262 286 119.46 0.64 0.40 0.52
Avg. 254.18 2709 299 3136 12212 0.70 0.81 0.79

percentage gap to optimality Gap,; z(%), and the time requested to prove optimal-
ity (CPU). Second, the obtained value of C,,, is given for USWT and LSWT (not
the computing time, as it is always below 0.001). Finally, for GVNS I, GVNS II
and GVNS III : the best (respectively average) objective-function value over 10 runs

denoted as Best (respectively Avg). In addition, the average computing times are

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

Table 7 Gap from the best solution found

Group n m Gap(%)
GVNS I GVNS I GVNS III

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

1 10 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 50 2 0.00 0.05 0.20 0.00 0.05 0.13 0.00 0.02 0.07
5 3 0.00 0.28 0.79 0.00 0.20 0.72 0.00 0.15 0.53
6 5 0.00 0.64 1.29 0.00 0.63 1.87 0.00 0.09 0.88
7 100 2 0.00 0.03 0.10 0.00 0.05 0.14 0.00 0.05 0.20
8 3 0.00 0.17 0.89 0.00 0.46 0.98 0.00 0.22 0.62
9 5 0.00 0.66 1.64 0.00 0.37 1.68 0.00 0.62 2.16
10 250 2 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.07 0.07
11 3 0.00 0.05 0.05 0.00 0.50 0.50 0.05 0.57 0.57
12 5 0.00 0.34 0.34 0.00 0.93 0.93 0.00 0.75 0.75
Avg. 0.00 0.19 0.44 0.00 0.27 0.59 0.00 0.21 0.49

also presented (computed over the 10 runs). Note that the computing time of a run
corresponds to the time at which the best visited solution is found. According to
these results, overall, out of 120 instances, GVNS I found 73 best solution (60.83%),
whereas GVNS II and GVNS III found only 42 (35%) and 71 (59.16%), respec-
tively. Figure 2 depicts the tradeoff between the quality of solution versus the time
expended, for 10 instances of size n = 250 and m = 5 for GVNS 1. We have chosen

4.50
4.00

3.50

Deviation (%)
L O S
o 0 o u o
& © & o o

0.50

0.00
10 20 30 40 50 60 70

Time (secs)

Fig.2 Average quality percent deviation from best found solutions versus computational effort for
GVNS 1

@ Springer

A. Elidrissi et al.

6865 6'L801 080T CE9v +'8801 €801 90°¢S 11601 7801 10€1 8F11 009¢ 6907 1011 €59 9201 puGUOS
60 T'8S0I 90T 19°0S €€901 LSOT 20T 6°€901 6501 0€T1 P11 009¢ SS'Iv L801 +'S€9 6001 €uguUOg
69°CS S001 066 LI'IS 9'8001 666 <T0TE SOI01 666 €eel 1011 009 €T 1201 6vS 176 TWISUOS
678 8201 €201 609 $'STOI Y101 L6'8Y $'ST01 0201 911 1011 009€ $8°6¢ 6v01 1€9 SL6 TuGuUOS
98°¢E 90L01 990T €S°0S 9'1L0I L90T 890 ¥'€LOI £901 €€Tl YEIT 009€ 00°8 9601 €£8001 £€'8001 QIWEUOS
€L L9YIL WIL 0T€h Lbvil SEIT S981 L¥II el YOET 1121 009¢ LETI POIT €EOV0I €E9P01 GUIEUQS
96TC 1'9€I1 TEIL 80'IS 6'EENl IEIT 0S'8S [HEIL 9711 68C1 601 009¢ Y6 L9TT €£°0901 €€0901 SuEUQS
€0'IC €0SIT WWIT 8S0F €0SII LPIT 8E€9F 80SII LYTT S6C1 1121 009¢ 0101 6811 €£°6901 €£6901 LuguOg
T8°€¢E laat! SEIT 0€'8S 8Phll OFIT 9T'8¢ L9VII or11 9I¢l 0€TI 009¢ 6911 90Z1 901 S901 uiguQg
169¢ +'SLIT OLIT €I'6v 6ELIT 6911 L6EE ¥ PLII 6911 €Tel SETI 009€ 8L'S L8IT €C8ITT €C8ITT Suguog
wLE 9sTIl 6IIT 186E SHTll 6111 S9Th L9TII (748! 88C1 T6I1 009¢ €0'8 IPIT €E6V01 €E6V01 puguQS
8¢S CIIII €OIT LELY 9SINI I L6€y 9PIIL LOT1 LLTT T811 009¢ LTI Wil €001 €001 guguQs
YoIE S8EIl SEIT 09TS 98¢l PEIT 9IS 9'6¢l1 pEIL (474! 8ICI 009¢ 869 9GIT €€SL0T €EGLOT TUIEUQS
196 TT601 980T ¢8'I¢ TI601 €801 6T¢r 17601 6801 89Z1 6511 009¢ ¥$'6 SITT £9'8001 L9'8001 [wgUQS
L8'8T €LST TLST 9I'6Y €TLSI ILST $L'9E €LSI 1LST IvL1 0291 009¢ 80'1 1851 981 Y9ST 01HTUOS
980 $0291 6191 €8°6E €0791 0291 8T'6T 60291 0291 ObLI €991 009¢ LO'T 0€91 STI9L STI91 6uITUOS
W6Tr ¥T0S1 00ST 8€9¢ 9°T0SI T0ST 0L'8E 8°€0SI €081 7691 89G1 009¢ (45! 8161 Sov1 S6v1 SwguQS
0£TE S6£91 6£91 6I'1F 9°6£91 6€91 9V'LT 6591 8€91 €TLl 1L91 009¢ ¥9°0 9T SIE9T STIE9T LuTuOS
Troe 749! WS I1S°IT 8°€TSI €Tl LOYE TETSI €81 €191 L9ST 009€¢ LT Test vISI YIST Quigu(g
S96E €PeLsI €SI SS'IE 64T €81 S9'LE 1°STSI 749! 0091 09ST 009¢ 60 87S1 PISI PIST Sugug
€8T 6°L6YI 96vT €0ty 9'L6YI L6V1 89°9¢ 6°L6¥I 96h1 S961 LTST 009€¢ L9°0 00S1 06¥1 061 puguOs
L¥9S T°€TST ST 167 €781 1281 TT¥T 9°TTsI TS €291 8LST 009 LT vEST SHIST SPIST guguQs
8¢€y §9991 9591 LEST 89591 9691 SL9Y 979591 9591 TSLI 9691 009¢ 660 9991 S'6v91 S6Y91 TUITUOS
S6'0S 1°9TSI STST +1'9¢ +'LTSI 9zS1 08'SE [I°LTSI 9781 0291 6951 009¢ 780 6cS1 SOISI S9IST [wguQs
ndo Say g NdD SAy g NdD SAy 150 i) o ndd (p)¥ldvg UWilgp UiNgg a1 ar

III SNAD II SNAD ISNAD IMST 1ImSN TdIN Qoue)suy

{c‘cz} 2w pue oG = u Y sooueysur Joj sayoeoirdde pasodoid oy) £q punoj synsar po[reIdq 8 d|qel

pringer

As

GVNS for the parallel machine scheduling problem with two dedicated servers

S6'EC €ETHTI 0T9ECI OF'Sh 6I°SHTI LESETI LY'6E L'€Yl €L'8ETI L666ET 09°SOST 009¢ ILLT LEE9TT TOOLOT TSTI6TT ‘Say
19C1 1°S001 L66 9€€9 ST101 9001 86’1+ 96001 L66 0821 6L01 009¢ 61Ty €201 t'16S 76 01uSUQS
€8°0¢ TESOT PPOL LP'0S 99501 SPOI 1S°0S TSSOI 1501 €eTl PITT 009€ SSHy 801 9°GLS 76 6HISUQS
€TIE LE10] S66 8¢6¢ 68101 YIOI 0TOv 9°S101 8001 €9T1 LOTT 009€ €LYy LTIT 9°¢6S €v6 SuGUOS
LISy T'$001 166 6S€S L9001 966 I+'I€ TII0I 1001 1€21 8801 009€ LT'6€ 0601 9979 9p6 LuGUQS
¥S0S LT60T €801 OI'LE 'T601 G801 88'Ly 1601 8801 T1€1 9%1T 009 8T €Y 0601 T8I9 8601 uIGUQOS
06'8C 8°¢H01 €01 8T'8E ¥'9H01 801 S80F THHOI €601 L6T1 W11 009¢ YTy 7801 $79 L6 SWSUQS
ndd 3ay 19 NdD 3ay 19 NdD 3ay 139g o) "o ndd (p)¥ldvg WiNgp uWiigg a1 al

III SNAD II SNAD ISNAD 1IMST 1mSN ZdIN oourjsuy

(ponunuoo) g s|qey

pringer

As

A. Elidrissi et al.

IL1€ TS60T — 690T I0LI'TE +680T 10T 90°ST 9'880C $90¢T 8T€T 691T 009¢ 00LF 6T2C #1811 €681 FWSUOQT
L98F L'8TOT 000T ITIOIE 1H€0CT 610C 69TC L920T SS61 5454 I¥1T 009¢ 6Svy 861T 81Tl VLY guGuOQ1
0T0T £000T LL6T €766'TY +'S00T 0961 SE€8E 1900 8L6I €1€T €LIT 009€ €Ty TTlt vLITI T8I TuGuUOOL
S0TS 8'8FIT 12Ic LIVOLE T'LEIT 60T 600v 96vIT 9€IT 00T €LTT 009€ W0vy LSTT t'E9Tl €561 1HGUQQT
9TIE TELTT TITT 6I0L'EE €SLTT v9TT 89'SE ISLTT €97 ¥8YT 6LET 009€ 8I°T1 10V L9TEIT L9TEIT OTwgUOOl
8Y'0F 8'9¢TC €1TT 88TO9S 9'1€TT 91T €T6T 90€TT LITT TIST LLET 009€ 0€61 LYST €€°SS0T €£6S0T 6HEUO0T
68'6T VELIT LSIT 18€8°6T +08IT 89IT STHT §8LIT +9IT OWPT 96TCT 009¢€ 98'81 TEVT ECEL6L E€EEL6T SWEUQQT
SI'6v 6'LSTC 9vTT €T0I'Stk 8STCT TELT 86'LT 8'65TC TSTT S0ST 9¥ET 009¢ 1€yl 09+C 80IC 80IT LuiguQ0l
16'S€ 1'99CC 0STT 178909 90LIC ¥9TC 61'LE TOLIT LSTT €IST 96T 009€ 8611 €9vT v60T v60T 9wguQOl
970S 61T 0ITC 860L'vE €9TCC 91T SE€TE €+IeC SO0TT TSHT 1€€C 009¢ 8L'SI STHT €ETHOT €ETHOT — SHgUQOL
SY'6y 96LTC TLTT 11S0TE 9LLTT 69T €69 9LTT 192C 00ST 68€C 009¢ 9¢°¢l 89VT €CECIT €CEEIT PMEUOOL
L86T STLIT 6STT TLIY6S LTLIT §9TT 6981 LOLTT TSTT TEST SSET 009€ (4%9! OLVT L9160T LY160T E€WEUOQT
9T¥y €0STC 6TCT 6IEYEE 9°TSTT vPCT 80°9¢ 9THIT TTIT IL¥C 0SE€T 009¢ 8061 8LVT €EVOIT €EY0IT TuEUQOT
1S9F TL6IT €81C €IvELy L10TC L6IT TTEE 8+6IT SLIT LEHT SIET 009€ 9781 T9YT €€TIOC €£TIOT Twguo0l
8Y'6€ €€91€ T9IE IE€LL9E L'€9IE T9IE 8I'ty €€9I1€ 09I€ 89T 9€TE 009¢ S6'¢ 8LT¢ S8FIE S8PIE O1TUOOL
6£T¢ 66867 9867 9TESTH 8066C 686C TUEE 9066C 98T 680¢ TTOE 009¢ Iy 001€ STL6T STL6T 6WTUOOT
6€1S 1'890€ 990€ 9S96'€€ 9'890€ L90€ TTEF I'890€ L90E SsIe 6I1€ 009¢ e 1L1€ £50¢ €50€ SuuQQ1
9TLT 9L6IE 96IE 661TSE SLEIE 961€ 86'VE I'L6IE B6IE €6CE 6¥CE 009€ 8¢'C 197€ S€81€ S€81¢ LwguQOl
€6'1S L'986T P86T TOVEOY +'886T G867 TO'8E 9986T ¥86T 6ElE €P0€ 009€ 9Ly LIIE S$'896T $'896T 9wguQQI
89°¢E 9°TE6T 1€6T 6Y61'6€ SE€E6T 6T6T 6S€E 80£6T ST6T LSOE 9€0E 009¢ 8L'¢ LT0E STI6T STI6T SwTupOl
18°0F 6'820¢ LT0S L8VL1Y 6LT0S PTOE YI'LL T6T0E LTOE €80 OIIE 009¢ ey 8plg 110€ 110§ U001
0TI S9¢Ie €€IE 9VLTLE 89€I€ vEIE TTTT ¥LEIE PEIE 9€T€ 661€ 009€ 98v ¥8TE SHTIE SYTIE gwguOl
86'Sk T86IE 961¢ PELI'TY L'S6IE S6IE 98°LI +'861¢ 96I¢ 8LT€ 99T€ 009¢ L6T €8C€ $S8IE $G8IE quguOOL
8TIY 6'EE6T 1€6C TOE9PE THE6T — 6T6T LILE €VE6T 1€6¢C §S0€ 910€ 009¢ 69 TEIE SPI6T SYI6T [wuQOl
ndo SAy 159g ndo 3ay g NdD 3ay 1s9g i) o ndd (p)ldvn WiNgp wWitgy a1 ar

111 SNAD 11 SNAD ISNAD IMST 1MmSn dIN Qouejsuy

{S‘c) D wpue o] = u yym soouesur 1oy soydeoidde pasodord oy £q punoj synsax po[reldq 6 ajqel

pringer

As

GVNS for the parallel machine scheduling problem with two dedicated servers

08°LE 8STSFT 09°8EFT 8€'8E Y ISHT 09°8EHT vITE 09TSHT LTSEFT 0THI9T LS'SSST 009€ 08°0C 01'909C 91'+TIT +91€€T Bay
[€0€ $'S80T YLOT 8T0¥'8T 9L0T 50T LE'8T ¥T80T 0S0T 6€€T 602T 009€ 0y TLIT 9°€6TT 8681 OTWSUQOT
96'¢E 1°TLOT 40T 91I+'€E +'SS0T T€0T T0°0T 090 9¢0¢ (4554 ¥ITT 009 690 9G1T 8'8LTI SL8T 6MSUOOT
0£'6l SSI0T 7861 9196'8T T0TOT Y661 ¥STE 8T€0T S10T Y6TT LLIT 009€ 8S°LE SeIT 9TEel 0981 guguoOl
€29¢ SEP0T 600T 98YI'Ty €9¢€0T 120T 6S°LE €70T 70T 6LET TLIT 009€ LTEY TLIT TTETD 8881 LwSuUQOT
80vE I'¥H0T 9¢0T SITE8T €€T0T 661 TI'SY 80T 120T S6€T 8¥IT 009€ €SSy S61T 96611 P8I 9uGuO01
S6'8C 61861 9S61 €LVS'TE T6LET €961 LT9Y T9861 9961 YheT 191C 009¢ 0L°6€ ovIT $06TI 1181 SwsuQO[
ndd 3ay 189g ndo 3ay 19 NdD Say 159g e 9 ndd (p)¥ldvy UiNgn wWigg a1 al

III SNAD 11 SNAD ISNAD 1IMST 1mSn TdIN oourjsuy

(ponunuoo) 6 3|qel

pringer

As

A. Elidrissi et al.

9I'TL LTSTS ¥8IS $9'8L TTITS G8IS LTTS ¥LSTS 1€ 0S8 #8¥S 009¢ 0SSy 89911 +'061¢ 108F HHISUOST
L6'L6 S8IIS LLOS 9798 600IS 0LOS 09vL L'€LOS 96¢ OVLS ¥IES 009€ I'0S 985 9'8L0¢ €LSY cuIGUOGT
78101 T'1TCS 9TIS 8€T6 ¥HTTS 6T1S 90'6v 1'11TS TLIS 7965 697S 009¢ 96°61 SL6S 960€ VYILY THISUOST
9TTL ¥'SHOS S96 #1601 £7T80S 6V0S 8878 8'8L0S £00S 6CLS 0LES 009¢ £9°8¥ §969 t'E0IE €19y TwgUOST
L6T8 YOYSS 10SS LS€L (4399 €SPS SO'6Y €VISS 9LKS 1819 [1LS 009¢ 16'8S L669 L9186V L9186V OIMEUOST
80°¢8 90198 €65 Iv'E6 1'1€9S 96SS 009 L'TI9S ISSS 9819 LO8S 009¢ 65°'8C G658 L9LIIS L9LIIS GUIEUOST
8T8L L'SYLS L69S LO'L8 V'IELS 669S 9079 I€LS 689S 00€£9 9¢65 009¢ 19°69 L9T8 EEEEES €EEEES QUICUNST
¥YT0Tl 6799 TH9S 6Y 101 §°SS9S YT9S TL'SY €YE9S 1098 709 ¥L8S 009¢ 19'6C L99L €€99IS €€99IS LUIEUOST
€8°6L €£189S SP9S 09°SET 1069 PP9S 98 1Y 8°6S9S 679S Sv19 6985 009¢ LEET Y8651 87€S 8TES QuICUOST
61°S9 1SLS YILS ST6L TOSLS OELS 8969 €TILS L99S +PE9 0€6S 009 Y66 SHSHl 097§ 097§ SWIEUQST
WL vLS9S LT9S $SOIT +'1L9S SY9S €€T1T 8'EHIS H09S LOT9 L85 009¢ L999 OVIL LY0OETS L90OLTS HUgUOST
6588 8°€09S 8LSS 8¥°S6 S196 §9SS L6'6F L '68SS 9¢sS 119 608S 009¢ LL'S9 ¥68F1 LTTS LTTS guiguOST
IL'L9 T6LSS LYSS 86'811 T'98SS €SS 19'1T +'LYSS 66bS STI9 ¥SLS 009€ 9¢ v £€08 $60S S60S TuEguUOST
¥SES 866C 6ISS L8€8 9ISSS 9ISS $L9S SPSS 5499 Y119 SLLS 009¢ 79°€C €011 90 S90S TwEUOST
18°SL STELL 8TLL SOSL €6TLL €TLL 91'61 80TLL SILL 8Y6L TT8L 009€ 95°8¢ 0996 889/ 889L 01UITUOST
6£96 6VI9L 809L TTEL 9919L 009L €T9¢ +'909L 86SL 8181 ITLL 009 16%1 €116 08SL 08SL GUTUOST
9’19 $'889L 089L 90011 8'889L S89L S9IT 1°€89L SLIL ST6L 808L 009¢ 9¢°6T 6898 $'8S9L $'8G9L SUITUOST
LO'S8 T688L T88L 18S9 L'688L V88L OS'LI 9°€88L 6L8L 9¥I8 YL6L 009 6191 86£6 098L 098L LMTUQOST
0899 119%L LSYL 6068 €9¥L SSPL OL'€T S'LSYL ¥SPL S69L ¥09L 009¢ w8l 8978 S'STPL S'8TYL QUITUOST
6V'vL $TOLL S69L TTOOI 9VOLL S69L 9¢+1 1'669L 969L 0S6L TESL 009 9I°GI 9026 YLIL YL9L SUITUOST
60011 89GL SSSL TOTL YOLSL Y9SL 8LLT €9SL 95SL 1€8L ¥L9L 009€ YLl Ob6L S€ESL SEESL HuITUOST
SP'6S 66SL 16SL 8TLOL TI09L S6SL ¥E61 LLSSL ISSL 6V8L 189L 009¢ Sree ¥296 €961 €9SL guiTUOST
L8LL YT6LL SSLL I€19 L'Y6LL T6LL 6€1E 9T6LL 98LL 6808 ¥68L 009¢ 0811 0T6IT ST9LL SI9LL — TTUOST
L8°6S 98GL 8LSL 86'¢8 06SL L8SL LU'L9 TISSL OLSL €Y8L 9ILL 009¢ S1°6C LS68 LYSL LYSL 1uguOST
ndo 3ay 19 NdD 3ay 19 NdD 8Av 159g e o ndd (p)¥ldpn WiNgp Wivgg a1 ar

III SNAD 11 SNAD ISNAD IMST LMSN ZdIN Qouejsuy

{G‘c 7} D w pue oGz = u ym sedurysur 10y seyoeordde pasodoid oy) Aq punoy s)nsar pafrereq 0L 3|qelL

pringer

As

GVNS for the parallel machine scheduling problem with two dedicated servers

7808 STTII9 €LSTI9 9T16 09°S919 €T8TI9 Y8y CLPI9 €SL0I9 0976599 €9°€HE9 009€ 69°6¢ 08 1LI6 +0LOES 9L'LT8S Bay
1006 L'LOTS 0S0S 9598 6'180S €€0S S8€L 180S 110S S6LS SLES 009€ 9¢'9y ¥I9ST 8§TTIE 09St 0TwSUOST
¥S'16 (4549 0LIS 006 6€9TS 60T PE'88 SLETS 981§ 7865 8ISS 009¢ 067t W9 SIvIE TILY 6WSUOST
19001 L'STTS 8816 1978 01TS YTIS 09'6S LPLIS 2018 v56S YOYS 009¢ 8TSL LYVL9 8'80I€ 0TLY SuGUOST
YO'IL 0ves SLIS 91'T01 $'8STS 681S 68°S8 T6ITS 911S 6065 1€SS 009€ €Y'Sh 7509 €eIg 0ILy LwGuQST
89Y8 9°¢SIS €0IS TT08 S'60TS 6915 T8€8 LLYIS LP0S S08$ 8IS 009¢ $6°¢S 6TL9 9°€S0€ 009% QuISUOST
STIL +'91TS TIIS STTIT L'S0TS S80S €9°Sy 8TLIS (4818 SI8¢ ¥9€S 009¢ 96°¢S 8IEL TPEOE 189 SWISUOST
ndo Say 19 NdD Say 19 NdD 3ay 189g o) o ndd (p)ldvg Uilgpn WiNgg a1 al

III SNAD 11 SNAD ISNAD IMST LIMSN TdIN oourjsuy

(ponunuoo) oL s|qey

pringer

As

A. Elidrissi et al.

to study these instances in particular because they are difficult to solve. On average,
the time to produce a solution within 4% of the best-found solution is equal to 10.7 s
over 10 instances.

As it was shown in the previous Tables 8, 9, 10, for GVNS I, GVNS II and
GVNS 111, the difference between Best and Avg grows with n and m, which is likely
to indicate the robustness degradation with the increase of the instance size. It can be
noticed that the proposed theoretical lower bound (LB) is equal to the MIP2 formu-
lation’s lower bound LB, for 90 instances. Furthermore, the proposed GVNS 1,
GVNS II, and GVNS III outperformed CPLEX in terms of quality (of the obtained
solutions) and speed (i.e., time needed to generate efficient solutions). In addition,
GVNS I produced, on average, better results is small computational time in compar-
ison with GVNS II, and GVNS III. This success can be explained by the quality of
the initial solution, as the unloading server waiting time minimization strategy con-
tribute significantly to the minimization of the makespan. Hence, one can conclude
that the GVNS I is the best method for computing good quality solutions in a small

amount of time for the problem P, S2|s;, ;| C,,,, with a regular job set.

6 Conclusions and future work

In this paper, the identical parallel machine scheduling problem with two com-
mon servers was addressed. Each job has to be loaded by a loading server and
unloaded by an unloading server, respectively, immediately before and after being
processed on one of the m available machines. The objective function involved
makespan minimization. The regular case of this problem is considered, where
Vi,j p;<s;+p;+1. A mixed-integer-programming (MIP) formulation based on
completion tlme varlables as well as a valid inequality were suggested to solve opti-
mally small-sized instances with up to 10 jobs and 5 machines. In addition, four
lower bounds are proposed. Due to the A’P-hard nature of the problem, two greedy
heuristics based on the minimization of the loading, respectively unloading server
waiting time, and a general variable neighborhood search (GVNS) algorithm with
different initial solution-finding mechanisms were designed to obtained solution for
large-sized instances with up to 250 jobs and 5 machines. Computational experi-
ments were carried out on 120 new instances, divided into 12 groups. For small-
sized instances, GVNS algorithm outperformed the MIP2 formulation in terms of
the computing time to find an optimal solution. However, for medium and large-
sized instances, the GVNS with an initial solution-finding mechanism based on the
unloading server waiting time minimization yielded better results than the other
approaches. The future work may include larger test instances with equal loading
times (s; = s) and/or equal unloading times (7; =), new neighborhood structures,
and 1mplementat10n of other metaheuristic methods for the problem P, S2|s;, ;| C,,,
with a general job set. Additional constraints could also be considered, especially
sequence-and-machine-dependent setup times and release dates.

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

Appendix

Detailed results of MIP2, USWT, LSWT, GVNS I, GVNS Il and GVNS Il
for each instance

In this Appendix 1 the detailed results, on entire data sets for all methods studied in
this paper, found by the proposed approaches for instances with m € {2,3,5} and
n = {50,100,250} are depicted in the following Tables 8, 9, and 10, respectively.

Funding Open access funding provided by HEAL-Link Greece.

Data availability The authors declare that, the data set used in this study is available within the supple-
mentary information files of the article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

1. Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server: some solvable
cases and heuristics. Comput. Oper. Res. 29(3), 295-315 (2002)

2. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Scheduling two parallel machines with a single server:
the general case. Comput. Oper. Res. 33(4), 994-1009 (2006)

3. Allahverdi, A., Soroush, H.: The significance of reducing setup times/setup costs. Eur. J. Oper. Res.
187(3), 978-984 (2008)

4. Baker, K.R., Keller, B.: Solving the single-machine sequencing problem using integer program-
ming. Comput. Ind. Eng. 59(4), 730-735 (2010)

5. Balas, E.: On the facial structure of scheduling polyhedra. In: Mathematical Programming Essays in
Honor of George B. Dantzig Part I, pp. 179-218. Springer (1985)

6. Bektur, G., Sarag, T,: A mathematical model and heuristic algorithms for an unrelated parallel
machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions
and a common server. Comput. Oper. Res. 103, 46-63 (2019)

7. Benmansour, R., Allaoui, H., Artiba, A., Hanafi, S.: Minimizing the weighted sum of maximum
earliness and maximum tardiness costs on a single machine with periodic preventive maintenance.
Comput. Oper. Res. 47, 106-113 (2014)

8. Benmansour, R., Sifaleras, A.: Scheduling in parallel machines with two servers: the restrictive
case. In: Variable Neighborhood Search: 8th International Conference, ICVNS 2021, Abu Dhabi,
United Arab Emirates, 21-25 March, 2021, Proceedings 8, pp. 71-82. Springer International Pub-
lishing (2021)

9. Bish, E.K.: A multiple-crane-constrained scheduling problem in a container terminal. Eur. J. Oper.
Res. 144(1), 83—-107 (2003)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. Elidrissi et al.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Brimberg, J., Urosevié, D., Mladenovié, N,: Variable neighborhood search for the vertex weighted
k-cardinality tree problem. Eur. J. Oper. Res. 171(1), 74-84 (2006)

Cheng, T., Kravchenko, S.A., Lin, B.M.: Complexity of server scheduling on parallel dedicated
machines subject to fixed job sequences. J. Oper. Res. Soc. 1-4 (2020)

Diana, R.O.M., de Souza, S.R.: Analysis of variable neighborhood descent as a local search opera-
tor for total weighted tardiness problem on unrelated parallel machines. Comput. Oper. Res. 117,
104886 (2020)

Duarte, A., Mladenovi¢, N., Sanchez-Oro, J., Todosijevi¢, R.: Variable Neighborhood Descent. In:
Marti, R., Panos, P., Resende, M.G. (eds.) Handbook of heuristics, pp. 1-27. Springer International
Publishing, Cham (2016)

El Idrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D.: Greedy heuristics for identical paral-
lel machine scheduling problem with single server to minimize the makespan. In: MATEC Web of
Conferences, vol. 200, p. 00001. EDP Sciences (2018)

Elidrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D.: Variable neighborhood search for iden-
tical parallel machine scheduling problem with a single server. In: International Conference on Vari-
able Neighborhood Search, pp. 112—125. Springer (2019)

Elidrissi, A., Benmansour, R., Benbrahim, M., Duvivier, D.: Mathematical formulations for the par-
allel machine scheduling problem with a single server. Int. J. Prod. Res. 59(20), 6166—6184 (2021)
Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in determin-
istic sequencing and scheduling: a survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287-326.
Elsevier (1979)

Hamzadayi, A., Yildiz, G.: Modeling and solving static m identical parallel machines scheduling
problem with a common server and sequence dependent setup times. Comput. Ind. Eng. 106, 287—
298 (2017)

Hansen, P., Mladenovié, N., Pérez, J.A.M.: Variable neighbourhood search: methods and applica-
tions. Ann. Oper. Res. 175(1), 367-407 (2010)

Hansen, P., Mladenovié¢, N., Todosijevi¢, R., Hanafi, S.: Variable neighborhood search: basics and
variants. EURO J. Comput. Optim. 5(3), 423—454 (2017)

Hasani, K., Kravchenko, S.A., Werner, F.: Simulated annealing and genetic algorithms for the two-
machine scheduling problem with a single server. Int. J. Prod. Res. 52(13), 3778-3792 (2014)
Hasani, K., Kravchenko, S.A., Werner, F.: Minimizing the makespan for the two-machine schedul-
ing problem with a single server: two algorithms for very large instances. Eng. Optim. 48(1), 173—
183 (2016)

Hsu, PY,, Lo, S.H., Hwang, H.G., Lin, B.M.: Scheduling of anaesthesia operations in operating
rooms. Healthcare 9(6), 640 (2021)

Huang, S., Cai, L., Zhang, X.: Parallel dedicated machine scheduling problem with sequence-
dependent setups and a single server. Comput. Ind. Eng. 58(1), 165-174 (2010)

Jiang, Y., Yu, F., Zhou, P., Hu, J.: Online algorithms for scheduling two parallel machines with a
single server. Int. Trans. Oper. Res. 22(5), 913-927 (2015)

Jiang, Y., Zhou, P., Wang, H., Hu, J.: Scheduling on two parallel machines with two dedicated serv-
ers. ANZIAM J. 58(3-4), 314-323 (2017)

Kim, M.Y., Lee, Y.H.: Mip models and hybrid algorithm for minimizing the makespan of parallel
machines scheduling problem with a single server. Comput. Oper. Res. 39(11), 2457-2468 (2012)
Koulamas, C.P.: Scheduling two parallel semiautomatic machines to minimize machine interfer-
ence. Comput. Oper. Res. 23(10), 945-956 (1996)

Kravchenko, S.A., Werner, F.: Scheduling on parallel machines with a single and multiple servers.
Otto-von-Guericke-Universitat Magdeburg 30(98), 1-18 (1998)

Mjirda, A., Todosijevi¢, R., Hanafi, S., Hansen, P., Mladenovié, N.: Sequential variable neighbor-
hood descent variants: an empirical study on the traveling salesman problem. Int. Trans. Oper. Res.
24(3), 615-633 (2017)

Mladenovié¢, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097-1100
(1997)

Mladenovi¢, N., Sleptchenko, A., Sifaleras, A., Omar, M. (eds.): Variable neighborhood search.
In: 8th International Conference, ICVNS 2021, Abu Dhabi, United Arab Emirates, 21-25 October,
2021, Revised Selected Papers, LNCS, vol. 12559. Springer, Cham (2021)

Ou, J., Qi, X., Lee, C.Y.: Parallel machine scheduling with multiple unloading servers. J. Sched.
13(3), 213-226 (2010)

@ Springer

GVNS for the parallel machine scheduling problem with two dedicated servers

34.

35.

36.

37.

Silva, J.M.P., Teixeira, E., Subramanian, A.: Exact and metaheuristic approaches for identical paral-
lel machine scheduling with a common server and sequence-dependent setup times. J. Oper. Res.
Soc. 72(2), 444-457 (2021)

Torjai, L., Kruzslicz, F.: Mixed integer programming formulations for the biomass truck scheduling
problem. CEJOR 24(3), 731-745 (2016)

Werner, F., Kravchenko, S.A.: Scheduling with multiple servers. Autom. Remote Control 71(10),
2109-2121 (2010)

Xie, X., Li, Y., Zhou, H., Zheng, Y.: Scheduling parallel machines with a single server. In: Pro-
ceedings of 2012 International Conference on Measurement, Information and Control, vol. 1, pp.
453-456. IEEE (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	General variable neighborhood search for the parallel machine scheduling problem with two common servers
	Abstract
	1 Introduction
	2 Problem formulation and lower bounds
	2.1 Mixed integer programming formulation
	2.2 Strengthening the formulation
	2.3 Illustrative example
	2.4 Lower bounds

	3 Greedy heuristics
	3.1 Greedy heuristic (USWT)
	3.2 Greedy heuristic (LSWT)

	4 General variable neighborhood search (GVNS) metaheuristic
	4.1 Implementation details
	4.1.1 Neighborhood structures
	4.1.2 Variable neighborhood descent
	4.1.3 Shaking

	4.2 GVNS for the problem

	5 Computational results
	5.1 Benchmark instances
	5.2 Parameters setting
	5.3 Comparison of VND variants
	5.4 Results
	5.4.1 Exact approaches
	5.4.2 Approximate approaches

	6 Conclusions and future work
	References

