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Abstract
We address in this paper the parallel machine scheduling problem with a shared 
loading server and a shared unloading server. Each job has to be loaded by the load-
ing server before being processed on one of the available machines and unloaded 
immediately by the unloading server after its processing. The objective function 
involves the minimization of the overall completion time, known as the makespan. 
This important problem raises in flexible manufacturing systems, automated mate-
rial handling, healthcare, and many other industrial fields, and has been little studied 
up to now. To date, research on it has focused on the case of two machines. The 
regular case of this problem is considered. A mixed integer programming formula-
tion based on completion time variables is suggested to solve small-sized instances 
of the problem. Due to its NP-hardness, we propose two greedy heuristics based 
on the minimization of the loading, respectively unloading, server waiting time, 
and an efficient General Variable Neighborhood Search (GVNS) algorithm. In the 
computational experiments, the proposed methods are compared using 120 new and 
publicly available instances. It turns out that, the proposed GVNS with an initial 
solution-finding mechanism based on the unloading server waiting time minimiza-
tion significantly outperforms the other approaches.
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1  Introduction

Parallel Machine Scheduling problem with a Single Server (PMSSS problem) 
has been widely studied in the last two decades (see [6, 11, 16, 18, 27]). In the 
PMSSS problem, a server which can represent a team of setup workers or a sin-
gle operator, etc, is considered to be in charge of the setup operation (or load-
ing operation) of jobs. The setup time resulting from the setup operation can be 
defined as the time required to prepare the necessary resources to perform a task 
[3]. The PMSSS problem has various applications, e.g., in supply chain [9, 35], in 
plastic injection industry [6], in printing industry [24], in semiconductor industry 
[27], and recently in health care [23].

Unlike the PMSSS problem, the problem considering both loading and unload-
ing operations has been less studied in the literature. Indeed, in the latter prob-
lem, each job has to be loaded by the server before being processed on one of 
the machines, and unloaded immediately by the same server after its processing. 
It can be noticed that, only few papers have been proposed in the literature for 
this variant of the problem. Xie  et  al. [37] addressed a static parallel machine 
scheduling problem with a single server in charge of loading and unloading 
jobs on machines. The authors presented complexity results for some particular 
cases of the problem. They derived some optimal properties that helped to prove 
that the largest processing time heuristic generated a tight worst-case bound of 
3∕2 − 1∕2m , where m is the number of available machines. Later, Jiang et al. [25] 
addressed a dynamic scheduling problem on two identical parallel machines with 
a single server. The authors assumed that, both the loading and unloading opera-
tions of jobs that are performed by the single server take one unit time. To solve 
the problem, they proposed two online algorithms that have tight competitive 
ratios.

For the case with several servers, Kravchenko and Werner addressed the problem 
with k servers, where k > 1 in order to minimize the makespan [29]. They showed 
that, the problem is unary NP-hard for each k < m and developed a pseudo-polyno-
mial time algorithm. Later in 2010, the same authors showed that, the problem with 
k servers with an objective function involving the minimization of the makespan 
is binary NP-hard [36]. In addition, they conducted a worst case analysis of two 
list scheduling algorithms for makespan minimization. Furthermore, in the case of 
unloading operations involving multiple servers it is assumed that, a job starts its 
processing immediately on an available machine without prior setup and an unload-
ing server is needed to remove this job from the machine. It can be noticed that, only 
one paper dealing with this problem is proposed in the literature. In this context, 
Ou  et  al. [33] addressed the problem of scheduling m identical parallel machines 
with multiple unloading servers. The objective function involved the minimization 
of the total completion time. They showed that, the shortest processing time first 
algorithm has a worst-case bound of two and proposed other heuristic algorithms as 
well as a branch-and-bound algorithm to solve the problem. The authors stated that, 
this problem was motivated by the milk run operations of a logistics company that 
faces limited unloading docks at the warehouse.
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In this paper, we address a non-preemptive parallel machine scheduling 
problem with two dedicated servers by taking into account loading and unload-
ing operations. The objective is to minimize the makespan. It is assumed that, 
the information about the problem is available before the scheduling starts (i.e., 
static case). Following the standard �|�|� classification scheme for schedul-
ing problems known as the Graham triplet [17], the considered problem can be 
denoted as P, S2|sj, tj|Cmax , where P represents identical parallel machines, S2 
represents two common servers, sj is the loading time of job j, tj is the unload-
ing time of job j and Cmax is the objective to be minimised (i.e., the makespan). 
We consider in this paper the regular case of the problem P, S2|sj, tj|Cmax , where 
∀i, j pi < sj + pj + tj . In contrast, a set of jobs is called general if it is not respect-
ing the regularity constraint (see [27] and [16]). It can be noticed that the regular-
ity constraint was studied for the parallel machine scheduling problem involving a 
single server by [28] and [1].

In the scheduling literature, only a limited number of papers tackled the 
problem P, S2|sj, tj|Cmax . Among them, Jiang  et  al. [26] addressed the problem 
P2, S2|sj = 1, tj = 1|Cmax with unit loading time, unit unloading time, and two 
identical parallel machines. The authors showed that, the classical list schedul-
ing and largest processing time heuristics have worst-case ratios of 8/5 and 6/5, 
respectively. Recently, Benmansour  and  Sifaleras [8] proposed an MIP formu-
lation and a general variable neighborhood search metaheuristic for the general 
case of the problem P2, S2|sj, tj|Cmax with only two identical parallel machines. 
To the best of our knowledge, no solution methods have been proposed in the 
literature for the regular case of problem P, S2|sj, tj|Cmax with an arbitrary number 
of machines. We fill this important gap in the literature by making the following 
contributions:

•	 we introduce a novel MIP formulation based on completion time variables for 
the regular case of the studied problem, and we improve it with a valid ine-
quality.

•	 we propose four lower bounds and two greedy heuristics for the regular case 
of the problem.

•	 we design an efficient general variable neighborhood search metaheuristic 
with different initial solution-finding mechanisms for solving medium and 
large-sized instances of the regular case of the problem.

•	 we provide numerical results for reasonable computing times (with respect to 
the literature and to the industrial practice), including a comparison with the 
MIP formulation using a well-known commercial solver.

The rest of the paper is organized as follows: Section 2 provides a formal descrip-
tion, a mixed-integer-programming formulation, as well as a lower bound for the 
studied problem. Then, two greedy heuristics are presented in Sect. 3. In Sect. 4, 
a general variable neighborhood search approach and the neighborhood structures 
that are used, are described. Numerical experiments are performed in Sect.  5. 
Finally, concluding remarks are made in Sect. 6.



	 A. Elidrissi et al.

1 3

2 � Problem formulation and lower bounds

In the problem P, S2|sj, tj|Cmax we consider that, a set N = {1, 2,… , n} of n independ-
ent jobs has to be processed on a set M = {1, 2,… ,m} of m identical parallel machines 
with two common servers. The first server (loading server) is dedicated to the loading 
operation of jobs on the machines, while the second server (unloading server) is used 
to unload the jobs after their processing. Each job j ∈ N is available at the beginning 
of the scheduling period and has a known integer processing time pj > 0 . Before its 
processing, each job j has to be loaded by the loading server, and the loading time is 
sj > 0 . After its processing, a job has to be unloaded from the machine by the unloading 
server, and the unloading time is tj > 0 . The processing operation starts immediately 
after the end of the loading operation, and the unloading operation starts immediately 
after the end of the processing operation. During the loading (respectively unloading) 
operation, both the machine and the loading server (respectively unloading server) are 
occupied and after loading (respectively unloading) a job, the loading server (respec-
tively unloading server) becomes available for loading (respectively unloading) the 
next job. Furthermore, there is no precedence constraints among jobs, and preemption 
is not allowed. The objective is to find a feasible schedule that minimizes the makes-
pan. In this paper, we consider the regular case of the problem P, S2|sj, tj|Cmax , where 
∀i, j ∈ N pi < sj + pj + tj.

2.1 � Mixed integer programming formulation

In this section, we present a refined version of the MIP formulation proposed 
in [8] which is based on Completion Time Variables (CSV) for the problem 
P, S2|sj, tj|Cmax with a regular job set. CSV formulation known also as natural-date 
variables formulation was initially used by Balas [5] to model a job shop scheduling 
problem. This formulation has been also used to model different NP-hard schedul-
ing problems (see [4, 7]).

The decision variables are defined as follows:

Let L be a large positive integer, computed as L =
∑

i∈N(si + pi + ti).
The problem P, S2|sj, tj|Cmax with a regular job set can be formulated as the fol-

lowing MIP. We recall that in [8], the authors considered the general case of the 
problem P2, S2|sj, tj|Cmax.

xik =

{
1 if job i is scheduled on machine k

0 otherwise

zij =

{
1 if job i finishes its processing before job j (i ≠ j)

0 otherwise

Ci be the completion time of job i.

(1)min Cmax

(2)s.t. Cmax ≥ Ci ∀i ∈ N
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In this formulation, the objective function (1) indicates that the makespan has to be 
minimized. Constraints (2) state that the makespan of an optimal schedule is greater 
than or equal to the completion time of all executed jobs. In order to guarantee that 
each job is scheduled on exactly one machine, constraint set (3) is added to the for-
mulation. The completion time Ci which is at least greater than or equal to the sum 
of the loading, the processing, and the unloading times of the job i is calculated 
according to constraints (4). Constraints (5)–(8) show that a job can be processed 
only if the loading server, the machines, and the unloading server are available. Con-
straints (5) indicate that no two jobs scheduled on the same machine, can overlap in 
time. Constraints (6) state that the loading server can load at most one job at a time. 
While, the set of constraints (7) states that the unloading server can unload at most 
one job at a time. The constraints (8) impose that for each couple of jobs (i, j), one 
must be processed before the other. Finally, constraints (9) and (10) define binary 
variables xik and zij.

2.2 � Strengthening the formulation

Proposition 1  The following constraints

are valid for MIP.

(3)
m∑

k=1

xik = 1 ∀i ∈ N

(4)Ci ≥ si + pi + ti ∀i ∈ N

(5)Ci + sj + pj + tj ≤ Cj + L(3 − xik − xjk − zij) ∀i, j ∈ N, i ≠ j,∀k ∈ M

(6)Ci + sj + pj + tj ≤ Cj + pi + ti + L(1 − zij) ∀i, j ∈ N, i ≠ j

(7)Ci + tj ≤ Cj + L(1 − zij) ∀i, j ∈ N, i ≠ j

(8)zij + zji ≥ 1 ∀i, j ∈ N, i ≠ j

(9)xik ∈ {0, 1} ∀i ∈ N,∀k ∈ M

(10)zij ∈ {0, 1} ∀i, j ∈ N, i ≠ j

(11)Cmax ≥

n∑

i=1

(si + pi + ti)xik ∀k ∈ M
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Proof  Assume the last job (denoted as job n) is executed on machine k.
The quantity 

∑n

i=1
(si + pi + ti)xik represents the total time of use of the 

machine k (since time 0), without counting the idle times. So it is obvious that 
Cn = Cmax ≥

∑n

i=1
(si + pi + ti)xik . Hence inequalities (11) hold. 	�  ◻

Note that, we refer to Eqs. (1)−(10) as MIP1 and by considering the set of con-
straints Eq. (11) we refer to Eqs. (1)–(11) as MIP2.

2.3 � Illustrative example

We now illustrate the previous formulation for an instance of n = 5 jobs and m = 3 
machines. The processing time pj , the loading time sj and the unloading time tj are 
given in Table 1. It takes 0.14 seconds to solve the instance using the above MIP1 
formulation on IBM ILOG CPLEX 12.6. The optimal objective-function value is 
20, and the obtained schedule of the problem is given in Fig. 1.

Table 1   Instance with n = 5 and 
m = 3

Job 1 Job 2 Job 3 Job 4 Job 5

pj 7 6 5 3 1
sj 1 1 1 4 5
tj 1 2 3 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Machine 1 p2 p3

Machine 2 p1 p4

Machine 3 p5

Loading server s2 s1 s5 s3 s4

Unloading server t2 t1 t5 t3 t4

Fig. 1   Optimal schedule for the considered instance with 5 jobs and 3 machines
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2.4 � Lower bounds

In this section, we present a lower bound (LB) on the optimal makespan value for 
the problem P, S2|sj, tj|Cmax . It can be useful in order to evaluate the quality of the 
greedy heuristics and the metaheuristic suggested in Sects.  3 and 6, respectively. 
LB = max(LB1, LB2, LB3, LB4) , where LB1 , LB2 , LB3 , and LB4 are given in Proposi-
tions 2, 3, 4, and 5 , respectively.

Proposition 2 

is a valid lower bound for the problem P, S2|sj, tj|Cmax.

Proof  One can see that the total load to be executed by the m machines represents the 
sum of all loading, processing, and unloading times (i.e., 

∑n

i=1
(si + pi + ti) ). Then, it 

is sufficient to divide this total load by the number of machines to obtain the aforemen-
tioned lower bound. 	�  ◻

Proposition 3 

is a valid lower bound for the problem P, S2|sj, tj|Cmax.

Proof  Let C∗
max

 denote the objective function value of an optimal solution of the 
problem P, S2|sj, tj|Cmax . In addition, the unloading server waiting time of the job 
in position i, corresponds to the time between the end of the unloading operation of 
the job in position i and the start time of the unloading operation of the job in posi-
tion i + 1 . Indeed, if there is no unloading server waiting time in an optimal schedule 
of the problem P, S2|sj, tj|Cmax , then C∗

max
 will be equal to the sum of all unloading 

times plus the shortest sum of the loading and processing times, which corresponds 
to mini∈N (si + pi) . Hence, LB2 is valid. 	�  ◻

Proposition 4

 

 is a valid lower bound for the problem P, S2|sj, tj|Cmax.

Proof  Let start by defining the Loading Server Waiting Time (LSWT). LSWT of the 
job in position i, corresponds to the time between the end of the loading operation 
of the job in position i and the start time of the loading operation of the job in posi-
tion i + 1 . Indeed, if there is no loading server waiting time in an optimal schedule of 
the problem P, S2|sj, tj|Cmax , then C∗

max
 will be equal to the sum of all loading times 

plus the shortest sum of the processing and unloading times, which corresponds to 
mini∈N (pi + ti) . Hence, the aforementioned lower bound ( LB3 ) is valid. 	� ◻

LB1 =
1

m

n∑

i=1

(si + pi + ti)

LB2 =

n∑

i=1

ti +min
i∈N

(si + pi)

LB3 =

n∑

i=1

si +min
i∈N

(pi + ti)
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Proposition 5 

is a valid lower bound for the problem P, S2|sj, tj|Cmax.

Proof  One can see that the completion time of the job with the maximal duration of 
the sum of loading, processing and unloading times, represents a valid lower bound 
for the problem P, S2|sj, tj|Cmax . 	�  ◻

3 � Greedy heuristics

In this section, we present two greedy heuristics that aim to minimize the loading/
unloading server waiting time for the problem P, S2|sj, tj|Cmax with a regular job 
set. The basic objective at each step of the proposed heuristic is to avoid the gen-
eration of server loading/unloading waiting times. The idea of the proposed heu-
ristics relies on the works of [2, 22], and [14] for the problems P2, S1|sj, pj|Cmax 
and P, S1|sj, pj|Cmax , involving only one single server. Indeed, Abdekhodaee et al. 
[2] proposed a forward and a backward heuristics to minimize the server waiting 
time and the machine idle time, respectively for the problem P2, S1|sj, pj|Cmax . 
Also, Hasani et al. [22] suggested two other heuristics for the same problem. Later, 
El Idrissi et al. [14] generalized the precedent suggested heuristics for the problem 
P, S1|sj, pj|Cmax , with an arbitrary number of machines and a single server. It can be 
noticed that, the unloading server has not been considered in the precedent works.

3.1 � Greedy heuristic (USWT)

In this heuristic, jobs are scheduled according to the availability of machines, the loading 
and the unloading servers. In addition, the job with the shortest sum of the loading and 
processing times is considered as the first job to be scheduled in the final sequence. It 
follows the structure of the lower bound LB2 presented in Proposition 3. The steps of the 
first proposed heuristic, called USWT (Unloading Server Waiting Time), are as follows.

Heuristic USWT

•	 Step 1: Sort the list of jobs � = {�1,… ,�k,… ,�n} in increasing order of the 
sum of loading and processing times.

•	 Step 2: Sequence the first job of the list � on the earliest available machine.
•	 Step 3: Set �  to the difference between the end of the loading and the unload-

ing time of last sequenced job.
•	 Step 4: From the unsequenced jobs, find a job with a sum of the loading and pro-

cessing time less than or equal to �  . If there is no such job, select the first one from 
the list � . Schedule the selected job to the first available machine at the earliest 
possible time taking in consideration the loading/unloading server constraints.

•	 Step 5: Repeat Steps 3 and 4 until all jobs are sequenced.

LB4 = max
i∈N

(si + pi + ti)
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3.2 � Greedy heuristic (LSWT)

Contrary to the heuristic USWT, in this section, we present a constructive heuris-
tic that aims to minimize the loading server waiting time. In this heuristic, the job 
with the shortest sum of the processing and unloading time is considered as the 
last job to be scheduled in the final list sequence. It follows the structure of the 
lower bound ( LB3 ) presented in Proposition 4. The steps of the second proposed 
heuristic, called LSWT (Loading Server Waiting Time), are as follows.

Heuristic LSWT

•	 Step 1: Sort the list of jobs � in increasing order of the sum of processing and 
unloading times.

•	 Step 2: Sequence the first job of the list � in the final position, and sequence the 
second job of the list � in the first position on the earliest available machine.

•	 Step 3: Set � to the difference between the end of the loading and the unloading 
time of last sequenced job.

•	 Step 4: From the unsequenced jobs, find a job with a sum of the loading and 
processing time greater than or equal to � . If there is no such job, select the first 
one from the list � . Schedule the selected job to the first available machine at the 
earliest possible time taking in consideration the loading/unloading server con-
straints.

•	 Step 5: Repeat Steps 3 and 4 until all jobs are sequenced.

Note that USWT and LSWT are both complementary, and are used to generate ini-
tial solutions for the metaheuristic presented in the next Sect. 4.

4 � General variable neighborhood search (GVNS) metaheuristic

Variable Neighborhood Search (VNS) is a single solution metaheuristic method 
proposed by Mladenović  and  Hansen [31] that uses local search procedure as its 
basic building block. Basic variant of VNS (BVNS) involves three main steps: Shak-
ing, Local Search (LS), and Change Neighborhood (Move or Not). Shaking step 
represents the diversification (perturbation) phase whose role is to ensure escap-
ing from local optima traps. It is always applied to the current best solution and 
consists of random perturbation in the given neighborhood. The obtained (shaken, 
perturbed) solution represents a starting point to the LS step. The role of LS is to 
improve shaken solution by examining its neighbors (in one or more neighbor-
hoods). When a local optimum is obtained by LS, BVNS performs the final step 
(Move or Not). Within this step local optimum is compared with the current best 
solution. If an improvement is obtained, the search concentrates around the newly 
found best solution which means that the current best solution and the neighborhood 
index are properly updated. In the case that current best solution was not improved, 
the search is expanded to wider part of solution space (if possible) by increasing the 
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neighborhood index for Shaking. The main BVNS steps are repeated until a pre-
specified stopping criterion is satisfied [19].

Since 1997, VNS has been widely used and many variants and successful appli-
cations can be found in the relevant literature [20, 32]. The simplest VNS variant is 
Reduced VNS (RVNS), consisting only of Shaking and Move or Not Steps. In most 
of the cases, it is applied to provide good initial solutions for other VNS variants. If 
the Shaking step is omitted, the corresponding method is known as Variable Neigh-
borhood Descent (VND) [13]. It is a deterministic algorithm where LS is performed 
along multiple neighborhoods. Skewed VNS (SVNS) represents a variant of VNS 
that allows the acceptance of non-improving solutions in Move or Not step with a 
given probability [10]. In SVNS an additional parameter � is introduced to control 
the quality of these non-improving solutions, while General VNS (GVNS), contains 
all three main steps and explores VND instead of LS [19].

Here, the GVNS metaheuristic is implemented for the problem P, S2|sj, tj|Cmax 
with a regular job set. The details about this implementation are provided in the 
remainder of this section.

4.1 � Implementation details

A solution of the considered scheduling problem P, S2|sj, tj|Cmax can be represented 
as a permutation � = {�1,… ,�k,… ,�n} of the job set N, where �k indicates the 
job which is processed in the kth position. This representation is in fact indirect as it 
requires actual scheduling of jobs to machines taking into consideration the servers 
constrains (i.e., loading and unloading) in order to calculate value of the objective 
function ( Cmax ). Having in mind that jobs are independent, all permutations (n!) are 
representing feasible solutions, and therefore, the search space is very large. On the 
other hand, several neighborhood structures could be defined for this representation.

4.1.1 � Neighborhood structures

To obtain an efficient VNS metaheuristic we have to decide about the neighborhood 
structures to use. The following three neighborhood structures ( lmax = 3 ) are pro-
posed to explore the solution space for the problem at hand.

–	 N1(�) = Swap(�) . It consists of all solutions obtained from the solution � swap-
ping two jobs of �.

–	 N2(�) = Insert(�) : It consists of all solutions obtained from the solution � by 
reinserting one of its job somewhere else in the sequence.

–	 N3(�) = Reverse(�) : It consists of all solutions obtained from the solution � 
reversing a sub-sequence of � . More precisely, given two jobs �i and �j , we con-
struct a new sequence by first deleting the connection between �i and its succes-
sor �i+1 and the connection between �j and its successor �j+1 . Next, we connect 
�i−1 with �j and �i with �j+1.
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Note that, these neighborhood structures have been successfully used in different 
scheduling problems involving a single server (see [15, 21]).

4.1.2 � Variable neighborhood descent

Now, we propose to use N1 , N2 and N3 within VND (Algorithm 1). It starts with an 
initial solution �0 and continuously tries to construct a new improved solution from 
the current solution � by exploring its neighborhood Nl(�) . The search continues 
to generate neighboring solutions until no further improvement can be made. Fur-
thermore, the performance of VND depends on the order in which neighborhoods 
are explored, and on how to switch from one neighborhood to another during the 
search. To switch from one neighborhood to another (Change neighborhood step), 
we propose to use basic sequential, pipe, and cyclic strategies. They are given in 
Algorithms 2–4, respectively. Exhaustive testing is performed in Sect. 5.3 in order to 
identify the best order of neighborhoods with respect to the suggested change neigh-
borhood strategies.
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4.1.3 � Shaking

For escaping local optimum solutions, a shaking procedure is proposed. It con-
sists of sequentially generating k random jumps from the current solution � 
using the neighborhood structure N3 . After preliminary experiments, the shaking 
method with more neighborhood structures reduced the quality of the results. Its 
pseudo-code is given in Algorithm 5.

4.2 � GVNS for the problem P, S2|sj, tj|Cmax

In this section, we present the overall pseudocode of GVNS as it is implemented 
to solve the the problem P, S2|sj, tj|Cmax with a regular job set (see Algorithm 6). 
The diversification and intensification ability of GVNS relies on the shaking 
phase and VND, respectively. Shaking step of GVNS consists of one neighbor-
hood structure N3 . In the VND step, the three proposed neighborhood struc-
tures are used. The stopping criterion is a CPU time limit Tmax . Since GVNS is a 
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trajectory-based metaheuristic, we need to start from a given solution. Therefore, 
we refer to GVNS I as GVNS using USWT heuristic as initial solution, GVNS II 
as GVNS using LSWT heuristic as initial solution, and GVNS III as GVNS using 
a random initial solution. Note that all GVNS variants are compared in the next 
Sect. 5.

5 � Computational results

In this section, the computational experiments carried out to evaluate the perfor-
mance of the MIP1 (1)-(10), MIP2 (1)-(11), USWT, LSWT, GVNS I, GVNS II, and 
GVNS III for the problem P, S2|sj, tj|Cmax with a regular job set, are presented. The 
MIP1 and MIP2 were solved using concert Technology library of CPLEX 12.6 ver-
sion with default settings in C++, whereas LSWT, USWT, GVNS I, GVNS II and 
GVNS III were coded in the C++ language. We use a personal computer Intel(R) 
Core(TM) with i7-4600M 2.90 GHz CPU and 16GB of RAM, running Windows 7. 
Except for the small-sized instances for which one run is sufficient, the metaheuris-
tics were executed 10 times in all experiments reported in this section.

5.1 � Benchmark instances

To the best of our knowledge, there are no publicly available benchmark instances 
from the literature regarding the problem P, S2|sj, tj|Cmax with a regular job set, so 
we decided to generate a new set of instances. This set was created by generaliz-
ing the scheme previously proposed by Silva et al. [34] and Benmansour and Sifal-
eras [8]. Indeed, to generate a regular job set, first we generate a general job set, 
where the processing time pj , loading time sj , and unloading time tj of each job j 
were generated from the uniform distributions U[10, 100], U[5, 25] and U[5, 25], 
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respectively. Then, we reduce this general job set into a regular one by adapting 
the Koulama’s reduction algorithm (see Koulamas [28]) to our studied problem. In 
our generation scheme, we adopted the following values: n ∈ {10, 50, 100, 250} , and 
m ∈ {2, 3, 5} . Thus, leading to a total of 12 groups of instances. For each group of 
instances (n, m), ten instances were created, resulting in a total of 120 new instances. 
These instances are publicly available at: https://​sites.​google.​com/​view/​data-​set-​for-​
thepm​ssspr​oblem/​accue​il.

5.2 � Parameters setting

For the proposed GVNS metaheuristic, two parameters have to be tuned, kmax which 
represents the maximum level of perturbation and Tmax which corresponds to the 
maximum time allowed to be used by the GVNS. After some preliminary tests, we 
decided to set kmax to 20 as it offered a reasonable trade-off between the quality of 
the solution and CPU time. For small-sized instances ( n = 10 and m ∈ {2, 3, 5} ), 
Tmax is set to the computing time to find an optimal solution by CPLEX solver. For 
medium-sized instances ( n ∈ {50, 100} and m ∈ {2, 3, 5} ), Tmax is set to 100 sec-
onds. Finally, for large-sized instances ( n = 250 and m ∈ {2, 3, 5} ), Tmax is set to 200 
seconds. In addition, for all instances, the time limit for CPLEX is set to 1h.

5.3 � Comparison of VND variants

Now, we present a detailed comparison of three VND variants, namely: sequen-
tial VND, pipe VND and cyclic VND. These VND variants have been widely used 
for different optimization problems (see [12, 30]). The performance of the pro-
posed VND variants depends on the sequence of the three neighborhood structures 
( N1,N2,N3 ), and also on the search strategy (first or best improvement). Therefore, 
six different sequences of neighborhood structures are presented in Table  2. Note 
that, in this comparison each VND variant starts with a random permutation of the 
solution �.

Furthermore, 30 instances of size n = 250 with m ranging from 2 to 5 (large-
sized instances), are used in this comparison. Table 3 presents the average results for 
the first improvement strategy (i.e., in each iteration, stop the generation of neighbor 
solutions as soon as the current solution can be improved), whereas Table 4 presents 
the average results for the best improvement strategy (i.e., in each iteration, generate 
all the neighbor solutions and pick up the best one). For each experiment, we indi-
cate the average value of Cmax and the average computing time (in seconds).

Table 2   Possible sequences for the neighborhood structures

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6

Insert Insert Swap Swap Reverse Reverse
Swap Reverse Insert Reverse Insert Swap
Reverse Swap Reverse Insert Swap Insert

https://sites.google.com/view/data-set-for-thepmsssproblem/accueil
https://sites.google.com/view/data-set-for-thepmsssproblem/accueil
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According to these results, we can observe that VND is sensitive to the neigh-
borhood-structure sequence and the searching strategy. It can be noticed that the 
neighborhood-structure Cyclic, Sequence 4, combined with the first improvement 
strategy leads to the best results, since it returns the minimum value of the average 
makespan. Therefore, we will use these parameters within the proposed GVNS.

5.4 � Results

Because of the NP-hard nature of the problem P, S2|sj, tj|Cmax , an optimal 
solution was only obtained for small-sized instances with up to 10 jobs and 5 
machines. Therefore, LSWT, USWT, GVNS  I, GVNS  II and GVNS  III were 
designed to solve medium and large-sized instances. Having in mind that in the 
proposed GVNS I, the initial solution is obtained by the greedy heuristic USWT. 
In GVNS  II, the initial solution is obtained by the greedy heuristic LSWT. 
Finally, in GVNS III the initial solution is randomly generated.

5.4.1 � Exact approaches

In Table  5, we compare the performance of MIP1 and MIP2 for all groups of 
instances (12 group of instances) for a time limit of 1 h. Each group of instances 
is characterized by the following information: the group number; a number n of 
jobs; a number m of machines. In addition, for each MIP formulation, the fol-
lowing information is given: i) the average time required to prove optimality, 
CPU, ii) the average percentage gap to optimality, gapLB(%) , iii) the average gap 
between the formulation’s lower bound and the best upper bound, gapLB−UB(%) , 
and iv) the average gap between the linear programming (LP) relaxation lower 
bound and the best upper bound, gapLP(%) . The following observations can be 
made:

•	 For n = 10 and m ∈ {2, 3, 5} : Based on formulations MIP1 and MIP2, CPLEX 
is able to produce an optimal solution for any instance. It can be noticed that 
for the improved formulation MIP2, CPLEX is able to produce an optimal 
solution in significantly less computational time in comparison with the orig-
inal formulation, except for group 2 and group 3.

•	 For n ∈ {50, 100, 250} and m ∈ {2, 3, 5} : Based on MIP1 and MIP2, CPLEX 
is able to find a feasible solution for all groups. It can be noticed that the 
improved formulation MIP2 produce much smaller gapLB(%) and gapLB−UB(%) 
in comparison with MIP1. In addition, MIP2 reduced significantly the value 
of the linear programming relaxation.

The overall results showed that MIP2 outperforms, on average, the MIP1 for-
mulation on almost all instances. Furthermore, the impact of the strengthening 
constraints in Eq. 11 is very positive as MIP2 produce more strict LP relaxation 
bounds than MIP1. In the following of the paper, we compare only MIP2 with 
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the other approaches, as it produce the best results. Note that MIP2 was not able 
to prove optimality of 50-job instance, which is a limited size. Consequently, 
there is a need for meta/heuristics able to find an approximate solution if pos-
sible of high quality in a short computational time.

5.4.2 � Approximate approaches

In Table  6, we compare the performance of the all proposed methods for small-
sized instances ( n = 10 and m ∈ {2, 3, 5} ), where an optimal solution can be found 
by MIP2 within one hour. Each instance is characterized by the following informa-
tion. First, an ID (the name of each instance, e.g., nXmYkZ denotes the Zth instance 
with n = X and m = Y  ); the lower bound LB computed as in Sect. 2.4; the optimal 
value C∗

max
 of Cmax (found with the MIP2). Second, the obtained value of Cmax is 

given for USWT and LSWT (not the computing time, as it is always below 0.0001). 
Finally, the computing time to find an optimal solution is given for the MIP2, GVNS 
I, GVNS II, and GVNS III. The last line of the table indicates average results. The 
following observations can be made :

•	 GVNS I, GVNS II, and GVNS III can reach an optimal solution for each instance 
in significantly less computing time than the MIP2.

•	 USWT and LSWT are not able to generate an optimal solution for all instances. 
On average, USWT produces solution of better quality than LSWT.

•	 The theoretical lower bound LB is on average 6.17% bellow C∗
max

.
•	 GVNS I requires the smallest average computing time (0.70 second) to find opti-

mal solutions in comparison with MIP2, GVNS II, and GVNS III.

In addition, Table  7 presents the performance of the three metaheuristic 
approaches in terms of the percentage deviation from the best-known solutions 
for each group of instances (the best one over all the runs of all the metaheuris-
tics, and the one obtained by the considered metaheuristic). For each metaheuristic, 
the following information is given: the minimum value of the percentage deviation 
over all instance’s group, Min, the average value of the percentage deviation over 
all instance’s group, Avg, and the maximum value of the percentage deviation over 
all instance’s group, Max. The last line of the table indicates average results. The 
results show that GVNS I, on average, obtained a superior performance in terms of 
minimum, average and maximum gaps for each group of instance, when compared 
to GVNS II and GVNS III.

Furthermore, the detailed results of the MIP2, the two greedy heuristics, and 
the three metaheuristics for the remaining instances is given in Appendix  1. 
Tables 8, 9, 10 present the performance of the all approaches for medium and large-
sized instances with n ∈ {50, 100, 250} and m ∈ {2, 3, 5} , where only a feasible 
solution can be found by MIP2 within one hour  (the best results are indicated in 
bold). The instance characteristics are first indicated. First for the MIP2, the fol-
lowing information is given: the lower bound LBMIP2 , the upper bound UBMIP2 , the 
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percentage gap to optimality GapLB(%) , and the time requested to prove optimal-
ity (CPU). Second, the obtained value of Cmax is given for USWT and LSWT (not 
the computing time, as it is always below 0.001). Finally, for GVNS  I, GVNS  II 
and GVNS III : the best (respectively average) objective-function value over 10 runs 
denoted as Best (respectively Avg). In addition, the average computing times are 

Table 6   Detailed results found by the proposed approaches for instances with n = 10 and m ∈ {2, 3, 5}

Instance USWT LSWT MIP2 GVNS I GVNS II GVNS III

ID LB C
∗
max

C
max

C
max

CPU CPU CPU CPU

10n2m1 280 291 312 314 234.99 0.01 0.01 0.00
10n2m2 333.5 341 377 369 83.90 0.02 0.01 0.00
10n2m3 348.5 364 381 381 480.23 0.00 0.00 0.00
10n2m4 293 306 322 349 239.04 0.01 0.07 0.01
10n2m5 299 310 325 333 421.74 0.00 0.00 0.00
10n2m6 380 391 410 416 314.58 0.12 0.19 0.19
10n2m7 265.50 274 286 305 73.97 0.00 0.00 0.00
10n2m8 323 334 364 365 691.69 0.11 0.07 0.00
10n2m9 358 367 387 406 68.83 2.77 2.45 2.11
10n2m10 302 310 339 349 64.48 0.01 0.00 0.00
10n3m1 235 248 270 311 92.72 0.90 0.39 1.48
10n3m2 216 246 272 300 21.75 4.12 7.52 7.76
10n3m3 228 251 274 300 13.28 1.73 0.58 2.71
10n3m24 209.67 236 270 293 13.63 0.66 0.33 0.19
10n3m25 240.33 283 304 310 61.89 0.07 0.02 0.17
10n3m6 249 271 303 294 75.67 0.01 0.01 0.04
10n3m7 247 275 288 326 41.69 0.07 0.01 0.01
10n3m8 219 239 282 264 38.40 0.18 0.12 0.02
10n3m9 219 253 273 299 89.87 1.36 0.54 0.44
10n3m10 200 226 272 262 36.52 0.06 0.01 0.02
10n5m1 242 251 293 322 53.28 0.01 0.01 0.01
10n5m2 232 235 245 298 77.50 0.00 0.01 0.00
10n5m3 214 230 271 266 18.23 7.27 9.16 7.42
10n5m4 214 238 263 304 57.85 0.13 0.02 0.06
10n5m5 223 231 270 255 25.84 0.01 0.11 0.02
10n5m6 211 225 254 300 22.63 0.19 1.21 0.53
10n5m7 205 214 251 273 66.79 0.07 0.20 0.01
10n5m8 192 216 264 237 32.52 0.01 0.01 0.01
10n5m9 235 243 286 321 30.69 0.40 0.92 0.10
10n5m10 212 228 262 286 119.46 0.64 0.40 0.52
Avg. 254.18 270.9 299 313.6 122.12 0.70 0.81 0.79
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also presented (computed over the 10 runs). Note that the computing time of a run 
corresponds to the time at which the best visited solution is found. According to 
these results, overall, out of 120 instances, GVNS I found 73 best solution (60.83%), 
whereas GVNS  II and GVNS  III found only 42 (35%) and 71 (59.16%), respec-
tively. Figure 2 depicts the tradeoff between the quality of solution versus the time 
expended, for 10 instances of size n = 250 and m = 5 for GVNS I. We have chosen 

Table 7   Gap from the best solution found

Group n m Gap(%)

GVNS I GVNS II GVNS III

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

1 10 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 50 2 0.00 0.05 0.20 0.00 0.05 0.13 0.00 0.02 0.07
5 3 0.00 0.28 0.79 0.00 0.20 0.72 0.00 0.15 0.53
6 5 0.00 0.64 1.29 0.00 0.63 1.87 0.00 0.09 0.88
7 100 2 0.00 0.03 0.10 0.00 0.05 0.14 0.00 0.05 0.20
8 3 0.00 0.17 0.89 0.00 0.46 0.98 0.00 0.22 0.62
9 5 0.00 0.66 1.64 0.00 0.37 1.68 0.00 0.62 2.16
10 250 2 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.07 0.07
11 3 0.00 0.05 0.05 0.00 0.50 0.50 0.05 0.57 0.57
12 5 0.00 0.34 0.34 0.00 0.93 0.93 0.00 0.75 0.75
Avg. 0.00 0.19 0.44 0.00 0.27 0.59 0.00 0.21 0.49

Fig. 2   Average quality percent deviation from best found solutions versus computational effort for 
GVNS I
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to study these instances in particular because they are difficult to solve. On average, 
the time to produce a solution within 4% of the best-found solution is equal to 10.7 s 
over 10 instances.

As it was shown in the previous Tables  8,  9,  10, for GVNS  I, GVNS  II and 
GVNS III, the difference between Best and Avg grows with n and m, which is likely 
to indicate the robustness degradation with the increase of the instance size. It can be 
noticed that the proposed theoretical lower bound (LB) is equal to the MIP2 formu-
lation’s lower bound LBMIP2 for 90 instances. Furthermore, the proposed GVNS I, 
GVNS II, and GVNS III outperformed CPLEX in terms of quality (of the obtained 
solutions) and speed (i.e., time needed to generate efficient solutions). In addition, 
GVNS I produced, on average, better results is small computational time in compar-
ison with GVNS II, and GVNS III. This success can be explained by the quality of 
the initial solution, as the unloading server waiting time minimization strategy con-
tribute significantly to the minimization of the makespan. Hence, one can conclude 
that the GVNS I is the best method for computing good quality solutions in a small 
amount of time for the problem P, S2|sj, tj|Cmax with a regular job set.

6 � Conclusions and future work

In this paper, the identical parallel machine scheduling problem with two com-
mon servers was addressed. Each job has to be loaded by a loading server and 
unloaded by an unloading server, respectively, immediately before and after being 
processed on one of the m available machines. The objective function involved 
makespan minimization. The regular case of this problem is considered, where 
∀i, j pi < sj + pj + tj . A mixed-integer-programming (MIP) formulation based on 
completion time variables, as well as a valid inequality were suggested to solve opti-
mally small-sized instances with up to 10 jobs and 5 machines. In addition, four 
lower bounds are proposed. Due to the NP-hard nature of the problem, two greedy 
heuristics based on the minimization of the loading, respectively unloading server 
waiting time, and a general variable neighborhood search (GVNS) algorithm with 
different initial solution-finding mechanisms were designed to obtained solution for 
large-sized instances with up to 250 jobs and 5 machines. Computational experi-
ments were carried out on 120 new instances, divided into 12 groups. For small-
sized instances, GVNS algorithm outperformed the MIP2 formulation in terms of 
the computing time to find an optimal solution. However, for medium and large-
sized instances, the GVNS with an initial solution-finding mechanism based on the 
unloading server waiting time minimization yielded better results than the other 
approaches. The future work may include larger test instances with equal loading 
times ( sj = s ) and/or equal unloading times ( tj = t ), new neighborhood structures, 
and implementation of other metaheuristic methods for the problem P, S2|sj, tj|Cmax 
with a general job set. Additional constraints could also be considered, especially 
sequence-and-machine-dependent setup times and release dates.
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Appendix

Detailed results of MIP2, USWT, LSWT, GVNS I, GVNS II and GVNS III 
for each instance

In this Appendix 1 the detailed results, on entire data sets for all methods studied in 
this paper, found by the proposed approaches for instances with m ∈ {2, 3, 5} and 
n = {50, 100, 250} are depicted in the following Tables 8, 9, and 10 , respectively.
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