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Abstract: Complete surgical cytoreduction (R0 resection) is the single most important prognosticator
in epithelial ovarian cancer (EOC). Explainable Artificial Intelligence (XAI) could clarify the influence
of static and real-time features in the R0 resection prediction. We aimed to develop an AI-based predic-
tive model for the R0 resection outcome, apply a methodology to explain the prediction, and evaluate
the interpretability by analysing feature interactions. The retrospective cohort finally assessed 571
consecutive advanced-stage EOC patients who underwent cytoreductive surgery. An eXtreme Gradi-
ent Boosting (XGBoost) algorithm was employed to develop the predictive model including mostly
patient- and surgery-specific variables. The Shapley Additive explanations (SHAP) framework was
used to provide global and local explainability for the predictive model. The XGBoost accurately
predicted R0 resection (area under curve [AUC] = 0.866; 95% confidence interval [CI] = 0.8–0.93).
We identified “turning points” that increased the probability of complete cytoreduction including
Intraoperative Mapping of Ovarian Cancer Score and Peritoneal Carcinomatosis Index < 4 and <5,
respectively, followed by Surgical Complexity Score > 4, patient’s age < 60 years, and largest tumour
bulk < 5 cm in a surgical environment of optimized infrastructural support. We demonstrated high
model accuracy for the R0 resection prediction in EOC patients and provided novel global and local
feature explainability that can be used for quality control and internal audit.

Keywords: Explainable Artificial Intelligence; complete cytoreduction; epithelial ovarian cancer

1. Introduction

Primary epithelial cancer of the fallopian tube, ovary, or peritoneum (EOC) is the
deadliest gynaecological malignancy in the Western world [1]. Over 70% of women di-
agnosed with EOC have advanced disease at presentation (FIGO stage 3–4) [1]. Surgical
cytoreduction combined with platinum-based chemotherapy, either as treatment follow-
ing surgery (adjuvant, ACT) or as treatment both before and after surgery (neoadjuvant,
NACT), has long been the cornerstone of EOC management [2,3]. The surgery aims for
maximal cytoreduction of all visible disease, ideally reaching a total macroscopic tumour
clearance (CC0). Survival outcomes are inversely related to the initial tumour load and the
residual disease following cytoreductive surgery [4].
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Landmark randomized studies demonstrated prognostic non-inferiority of NACT
over primary debulking surgery (PDS) [5,6]. The NACT group displayed higher complete
cytoreduction (CC0) rates compared with the PDS group, but these were lower compared
to other studies [7]. If CC0 offers the best prognosis for EOC patients, surgeons should
focus on CC0 as a primary outcome measure in both the PDS and IDS settings [8,9]. Such
efforts frequently require extensive surgical procedures including multi-visceral resection
techniques such as peritoneal stripping, diaphragmatic, splenic, liver, and gastrointesti-
nal resections. The Aletti surgical complexity scoring system (SCS) was developed and
validated to reflect surgical complexity, and to identify those patients at risk of severe
morbidity [10].

In the realm of personalized medicine, innovative data mining technologies such as
Artificial Intelligence (AI) can be used for monitoring quality improvement and delivery
of modern ovarian cancer care. AI technology has been exponentially demonstrating its
potential applications across various medical domains [11]. Examples include accurate
classification between benign and malignant ovarian neoplasms using the CEA and HE4
biomarkers [12], development of an EOC-specific predictive framework for clinical staging,
disease burden, and prognosis based on multiple blood biomarkers [13]. We previously
identified an AI method, the k-NN model, which is very much reflective of ‘previous
clinical experience’ as a promising and versatile tool for CC0 prediction in serous EOC [14].
Consequently, we investigated the problem of EOC survival, and highlighted the impor-
tance of AI-based feature selection for two-year prognosis prediction with satisfactory
accuracy [15].

At the same time, explainability methods are required to render AI more attractive to
clinicians and patients. Despite the recent growth of AI systems in medicine, explainable
models remain scarce with only few examples in the fields of oncology [16]. This lack of
decipherable AI has created doubt regarding its validity within clinical practice. Explainable
AI (XAI) techniques have been recently introduced to explain specific decisions made by
AI models, while maintaining a high level of learning performance [17]. As expected, the
development of XAI in medical applications is in its infancy [18]. Currently, the definition
of complete cytoreduction merely indicates the absence of macroscopically visible residual
tumour cells in the tumour bed after surgical cytoreduction. In reality, the surgeons consider
themselves responsible not only for the resection of the large bulk of primary cancer, but
also for dealing with microscopic residual disease [19]. Unfortunately, R0 resections are not
always realized in the complex environment of the operating room, and many surgeons
seek objective strategies to evaluate the outcomes of their cytoreduction. This can be
used not only for personalised planning of surgical strategy and subsequent treatment for
the patient, but for self-assessment and improvement of clinicians’ individual judgment.
Moreover, although previous complex AI approaches provide good prediction accuracy,
their application in a clinical setting is limited because their predictions are difficult to
interpret, and hence not actionable. Explainable Artificial Intelligence would help augment
CC0 prediction for quality control and internal audit purposes. The objective of this study
was to develop a predictive model for CC0 resection, and to support the explainability
of the prediction as a binary classification problem, using the prospectively registered
data of EOC patients who underwent surgical cytoreduction. The primary outcomes were
the development and performance of the predictive AI model for CC0, application of
methodology to explain the prediction, and evaluation of interpretability by analysing
feature interactions. The secondary outcome was the exploration of potential clinical
implementation of the AI model.

2. Materials and Methods

Prospective registered data in the hospital-wide Patient Pathway Manager (PPM)
database from 576 consecutive women with EOC, who underwent cytoreductive surgery
with the intention to be treated at St James’s University Hospital, Leeds, by a certified
gynaecological oncology surgeon from January 2014 to December 2019 were analysed.
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This database was developed internally for clinical trials and integrated with an electronic
patient record system [20]. Our hospital is a tertiary centre, recently accredited by the
European Society of Gynaecological Oncology (ESGO) as a centre of excellence for ovarian
cancer surgery. Tumour staging was reported by the 2014 International Federation of
Gynaecology and Obstetrics (FIGO) classification [21].

In a personalized protocol, women underwent either PDS or three to four cycles of
NACT followed by IDS if they had: FIGO stage 4 disease; poor performance status (PS);
uncertainty about the possibility of optimal tumour removal. Only EOC patients with at
least one pre-treatment CA125 value were included in the study. Excluded were patients
aged < 18 years, as well as those with non-epithelial histology, synchronous primary
malignancy, and those undergoing emergency surgery for bowel obstruction by general
surgeons. Patients who had progressive disease following three courses of NACT were
excluded from the analysis. Patients with low-grade EOC were offered NACT, but were
counselled regarding the chemo-resistant nature of the disease, and therefore the limited
lack of efficacy. The study was conducted according to the guidelines of the Declaration
of Helsinki and approved by the Leeds Teaching Hospitals Trust Institutional Review
Board (MO20/133163/18.06.20). Informed written consent was obtained from all patients.
Formal case discussion at the central gynaecological oncology multidisciplinary team
(MDT) meeting was undertaken for all patients prior to treatment initiation.

All patients underwent the standard institutional therapy for ovarian cancer, namely
primary surgical cytoreduction, which involved explorative laparotomy, abdominal hys-
terectomy with bilateral salpingo-oophorectomy omentectomy, and peritoneal sampling.
Additional surgical procedures were performed according to practice recommendations
from the British Gynaecological Cancer Society (BGCS) to improve cytoreduction rates [22].
Laparoscopic assessment of disease respectability prior to embarking on surgical cytore-
duction is not standard practice in our institution. It is infrequently used upon the MDT’s
recommendation. Following implementation of the Enhanced Recovery After Surgery
(ERAS) pathway [23] in late 2015, a paradigm shift towards more complex multi-visceral
surgery was initiated in the years 2016 and 2017. This was facilitated by the appointment
of new Gynaecological Oncology Consultant colleagues with specific training in (ultra-) radi-
cal surgery for EOC; the development of governance models to support patient safety when
undergoing maximal effort cytoreductive surgery for EOC by joint working for gynaecologic
oncologists and surgeons from other disciplines; further and more robust optimisation of the
ERAS protocols with the appointment of specialized enhanced recovery nurses; expansion of
the availability of critical care unit beds for high-risk EOC patients with parallel intensification
of their peri-operative management by dedicated anaesthetists with a special interest in complex
gynaecological oncology surgery [24]. In this respect, the years 2016–2017 served as transition
years, which were further evaluated in the years 2018 and 2019.

Candidate predictors were selected a priori from three domains:

• Patient: age, year of diagnosis, year of surgery, Eastern Co-operative Oncology Group
(ECOG) performance status (PS), histology type, grade (low and high), stage (FIGO 3
or 4), and pre-treatment and pre-surgery CA-125.

• Operative/tumour factors: timing of surgery (PDS or IDS), presence of ascites (yes/no),
operative time, site of intra-operative bulk of the disease, size of the largest tumour de-
posit, Peritoneal Carcinomatosis Index (PCI), and intra-operative mapping of ovarian
cancer (IMO).

• Age of consultant surgeon, as a parameter of surgical technique heuristics.

The patient- and surgery-specific variables are readily available in tertiary centres. They
have been previously shown to be independent predictors of post-operative morbidity and
mortality for ovarian cancer patients [3]. At the beginning of the surgery, the PCI was calculated
to describe the extent of the tumour load [25]. The location of the disease was assessed using
the IMO score [26]. Both PCI and IMO were calculated at laparotomy. The surgical complexity
score (SCS) was assigned to describe the surgical effort according to the Aletti classification,
but was interrogated as a continuous dependent variable [10]. Complete cytoreduction was
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defined as macroscopic tumour clearance with no residual visible disease, documented by a
comprehensive visual assessment of all the areas of the abdomen.

Descriptive statistics were displayed by frequency and percentages for binary and
categorical variables and by means and standard deviation (SD) or medians (with lower
or upper quartiles for continuous variables). The t test for continuous variables and the
Chi-square test for categorical variables were performed. The Fischer’s exact tests were
used for binary variables. Statistical significance was set at p < 0.05. For these analyses,
the Python’s SciPy library (version 2.7) (Python Software Foundation. Python Language
Reference, version 2.7. Available at http://www.python.org) was used.

The R0 resection prediction was formulated as a binary classification problem where
the positive class is related to residual disease (non R0), while the negative one is related
to R0 resection. The dataset was initially split into training and test cohorts (70%:30%
ratio) creating and finetuning the model with the former and evaluating it with the latter.
There was no significant difference (p > 0.20) between the two cohorts, with respect to
all variables. The training cohorts were used to create and finetune the predictive model
by selecting the set of parameters that maximize model performance. Five-fold stratified
cross-validation (CV) was used towards this direction. Because the dataset was imbalanced,
stratified folds were created to ensure the same distribution of negative and positive classes
were present in each fold, in order to reflect the distribution of the whole training dataset
when performing the CV evaluation. The CV process was iterated 100 times in order to
decrease both variance and bias, hence creating and evaluating 500 models in each round.
Model performance was assessed by measuring the total area under the receiver-operating
curve (AUC). The test set was finally employed to evaluate model’s performance with
data that were not used in model creation. The eXtreme Gradient Boosting (XGBoost)
method was employed to develop the predictive model. This method is an application of a
generalized gradient boosting algorithm, which boosts the performance of weak learning
algorithms by combining all the generated hypotheses into a single hypothesis [27]. In
this work, one new weak learner was added at a time and existing weak learners in the
model were frozen and left unchanged. In XGBoost, several parameters need to be selected
to maximize model performance. In our case, we investigated the combined effect of
eight parameters by evaluating a grid of 7680 combinations of values using Scikit-learn’s
GridSearchCV function.

An explanation is that the collection of features in the interpretable domain contributed
to the classification of the problem. To explain the predictive models, we proposed the Shap-
ley Additive explanations (SHAP) values as a unified measure of feature importance [28].
This game-theory inspired method attempts to enhance interpretability by computing the
important values for each feature for individual predictions. In this way, it maintains
desirable properties such as local accuracy and consistency. The method explains a model
globally by expressing it as a linear function of features. In other words, it explains how
much the presence of a feature contributes to the model’s overall predictions.

3. Results

A total of 576 EOC patients with histological confirmation of EOC were initially
enrolled in the study. Four patients were excluded: one patient with a synchronous primary
malignancy and three patients who underwent emergency cytoreduction with no intention
to treat. One patient was omitted due to incomplete data. Finally, 571 EOC patients
participated in the final analysis (Table 1). The mean age of patients in the entire cohort was
63.5 + 11.2 years. This was comparable between the train and test sets; 63.6 ± 11, 63.2 ± 11.7,
respectively, but CC0 was more likely to be achieved in younger patients compared to
non-CC0 (p < 0.001). Performance status, tumour grade and stage, timing of surgery, index
pre-treatment and pre-surgery CA-125, and presence of ascites intra-operatively values
were similar in the groups of patients with or without CC0. As expected, real-time metric
features, such as PCI, IMP, SCS, size of the large tumour bulk, and site of largest bulk were
statistically different between the two groups.

http://www.python.org


J. Pers. Med. 2022, 12, 607 5 of 17

Table 1. Cohort descriptive statistics: values are mean ± SD or n (%).

Demographic Characteristics Overall
(n = 571)

Train Set
(n = 399)

Test Set
(n = 172) p Value Non R0

(n = 196)
R0

(n = 375) p Value

Age (y) 63.5 ± 11.2 63.6 ± 11 63.2 ± 11.7 0.71 65.6 ± 10.1 62.4 ± 11.6 <0.001

Histology 0.217 0.008

Serous 504 (0.88) 350 (0.88) 153 (0.89) 186 (0.94) 318 (0.85)

Mucinous 13 (0.02) 7 (0.017) 6 (0.035) 1 (0.005) 12 (0.03)

Clear cell/endometrioid 33 (0.06) 23 (0.057) 10 (0.058) 6 (0.03) 27 (0.07)

Miscellaneous 22 (0.04) 19 (0.047) 3 (0.017) 4 (0.02) 18 (0.05)

Primary = 0/recurrent = 1 0.37

Primary 561 (0.98) 370 (0.66) 191 (0.32) 0.7 192 (0.98) 369 (0.98)

Recurrent 10 (0.02) 7 (0.02) 3 (0.02)

Grade (G1 = 0/G3 = 1) 516 (0.9) 354 (0.89) 162 (0.94) 174 (0.89) 342 (0.91) 0.43

FIGO stage (S3 = 0/S4 = 1) 157 (0.27) 106 (0.27) 51 (0.3) 59 (0.3) 98 (0.26) 0.36

Performance status (WHO) 0.74 0.001

0 273 (0.48) 192 (0.48) 80 (0.46) 70 (0.35) 203 (0.54)

1 212 (0.37) 144 (0.36) 68 (0.39) 90 (0.46) 122 (0.32)

2 68 (0.12) 50 (0.125) 18 (0.1) 28 (0.14) 40 (0.1)

3 19 (0.03) 13 (0.276) 6 (0.35) 9 (0.04) 10 (0.02)

Age of consultant (y) 49.2 ± 6 49.3 ± 6 48.9 ± 6 0.46 49.2 ± 6.3 49.2 ± 5.9 0.99

Timing of surgery 0.6 0.38

Interval debulking surgery 396 (0.69) 278 (0.7) 118 (0.69) 141 (0.72) 255 (0.68)

Primary debulking surgery 175 (0.31) 113 (0.64) 62 (0.36) 122 (0.7) 53 (0.3)

Year 0.7 0.012

2014 91 (0.158) 63 (0.158) 27 (0.156) 44 (0.22) 47 (0.12)

2015 93 (0.162) 65 (0.163) 28 (0.16) 36 (0.18) 57 (0.15)
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Table 1. Cont.

Demographic Characteristics Overall
(n = 571)

Train Set
(n = 399)

Test Set
(n = 172) p Value Non R0

(n = 196)
R0

(n = 375) p Value

2016 108 (0.19) 74 (0.185) 34 (0.198) 38 (0.19) 70 (0.19)

2017 96 (0.17) 64 (0.16) 32 (0.186) 31 (0.16) 65 (0.17)

2018 82 (0.14) 55 (0.138) 27 (0.157) 23 (0.12) 59 (0.16)

2019 102 (0.18) 78 (0.195) 24 (0.14) 25 (0.13) 77 (0.21)

Pre-treatment CA125 1572.7 ± 2993.2 1542.9 ± 3070.7 1641.8 ± 2812.9 0.7 1790.9 ± 3207 1458.7 ± 2873.1 0.22

Pre-surgery CA125 411.79 ± 1170 387.3 ± 943.7 468.6 ± 1576.7 0.52 451 ± 931.7 391.3 ± 1277.7 0.52

Size of largest disease bulk (cm) 8.9 ± 5.58 9.0 ± 5.79 8.63 ± 5.09 0.43 9.79 ± 5.24 8.41 ± 5.7 0.004

Peritoneal Carcinomatosis
Index (PCI) 7.39 ± 4.53 7.39 ± 4.52 7.4 ± 4.56 0.99 8.91 ± 4.31 6.6 ± 4.44 <0.001

Surgical Complexity Score
(SCS) 3.8 ± 2.12 3.79 ± 2.14 3.82 ± 2.09 0.89 3.1 ± 1.44 4.17 ± 2.32 <0.001

Time procedure (min) 170.36 ± 77.48 170.1 ± 79.48 170.96 ± 72.85 0.9 161.84 ± 63.81 174.81 ± 83.47 0.039

Site of largest tumour deposit 0.28 <0.001

Ovary 298 (0.52) 216 (0.54) 82 (0.477) 83 (0.42) 215 (0.57)

Omentum 258 (0.45) 171 (0.43) 86 (0.5) 110 (0.56) 148 (0.39)

Miscellaneous 16 (0.03) 12 (0.03) 4 (0.023) 4 (0.02) 12 (0.03)

Intra Operative Mapping Score 4.92 ± 1.99 4.95 ± 1.99 4.85 ± 2.01 0.58 5.96 ± 1.69 4.38 ± 1.93 <0.001

Ascites (intra-op) 131 (0.23) 93 (0.23) 38 (0.22) 49 (0.25) 82 (0.22) 0.458
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3.1. XGBoost Model Performance

The receiver operator characteristic area under the curve (ROC-AUC) score of the
model in the test set was 0.866 with a 95% confidence interval (CI) between 0.8 and 0.93.
Figure 1 depicts the ROC curve along with the CI estimated through the 100 repetitions
of the CV process. Table 2 presents the results of precision, recall, and f1-score for both
positive and negative classes.
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Operator Characteristic (ROC) (AUC = 0.866) plot demonstrating also the CI (AUC = 0.8–0.93). Note
that the ROC curves depend on the order of the feature relative risk values without the need to choose
a threshold.

Table 2. Performance evaluation scores of the test cohort.

Precision Recall f1-Score

CC0 0.91 0.87 0.89

Non-CC0 0.71 0.78 0.75

To promote reproducibility, the optimal set of model parameters were the following:
‘alpha’: 0.001, ‘colsample_bytree’: 0.75, ‘learning_rate’: 0.01, ‘max_depth’: 3, ‘n_estimators’:
500, ‘scale_pos_weight’: 1.86, ‘subsample’: 0.75.

3.2. Feature Analysis

To demonstrate the value of our model’s explained predictions and refine features
influencing CC0 resection, we developed: (a) SHAP Summary plots for global and local
explanation of the results, (b) SHAP Dependence plots of the key risk features for CC0
resection, (c) SHAP Interaction Value Dependence plots, and (d) SHAP Force plots that
explain the CC0 probability for individual patients.

3.3. SHAP Summary Plots

The SHAP Summary plot was presented in the form of a set of beeswarm plots
(Figure 2). The order of the features reflects their importance, i.e., the sum of the SHAP
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value magnitudes across all the samples. Each point on the summary plot is a Shapley
value for a feature and an instance. The position on the y-axis is determined by the feature
and on the x-axis by the Shapley value. The colour represents the value of the feature from
low to high. The IMO score was the most important feature globally. The plot indicated the
direction of the effects, meaning, for example, that low IMO score subjects carried a higher
probability of achieving CC0 than high-IMO-score subjects. In contrast, higher SHAP
values of surgical complexity, the second most important feature, corresponded to a higher
chance of CC0 resection. The top-six list of important features was complemented by PCI,
year of surgery, and size of the largest tumour bulk. The plot also presents the distribution
of effect sizes, such as the long tails of several features. These long tails suggest that features
with low global importance can be equally important for specific patients. For example,
CA-125 is not included in the top-six list of important features; however, in several cases, a
high CA-125 value may sensibly indicate that CC0 resection is not achievable.
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correspond to the individual EOC patients in the study.

3.4. SHAP Dependence Plots

The SHAP dependence plot reveals the impact of each feature’s value to the prediction
problem (Figure 3). It plots the value of a feature on x-axis and the SHAP feature value on
the y-axis by changing each time to a specific feature in the model. Ignoring the colour of
the figure, Figure 3A clearly shows the inflection point of the impact of the IMO score on
the CC0. For low IMO score, overall SHAP values are negative up to five, which means
that CC0 is likely to be achieved. Then, SHAP values become positive, which means that by
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increasing the IMO score, the probability for incomplete cytoreduction increases. Clearly, if
PCI is selected as a feature to determine its impact, an increasing PCI above five results in a
lower chance of CC0 (Figure 3B). Similarly, the inflection points for SCS, year of surgery,
size of largest bulk of disease, age and pre-surgery CA125 are four, 2016, 5 cm, 60 years,
and less than 1000, respectively (Figures 3C,D and S1).
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3.5. SHAP Interaction Value Dependence Plots

The SHAP interaction values can be interpreted as the difference between the SHAP
values for feature A when feature B is present, and the SHAP values for future B when
feature A is absent [29]. An interaction feature is the additional combined feature effect
after accounting for the individual feature effects. Examples of the plots of the SHAP
interaction values of various pairs of features are shown in Figure 4.



J. Pers. Med. 2022, 12, 607 10 of 17
J. Pers. Med. 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 4. SHAP Interaction Value Dependence plots: (A) IMO score with type of surgery (B) PCI 
with time of the procedure (C) PCI with ECOG status (D) Size of largest tumor deposit with SCS.  

3.6. SHAP Force Plots 
For local explainability, the SHAP Force plots demonstrate features each contributing 

to pushing from the base value (the average model output over the training dataset) 
towards the model output. Features pushing the prediction higher are shown in red, 
whilst features pushing the prediction lower are shown in blue (Figure 5). Several 
examples referring to individual cases are illustrated. 

Figure 4. SHAP Interaction Value Dependence plots: (A) IMO score with type of surgery (B) PCI
with time of the procedure (C) PCI with ECOG status (D) Size of largest tumor deposit with SCS.

The plot of the SHAP interaction value of the IMO score with type of surgery (Figure 4A)
shows how the effect of the IMO score depends on the probability of CC0 with the type
of surgery. Notably, an IMO score four or less stands a chance for CC0 at IDS, whereas,
surgical effort at PDS could still achieve CC0 irrespective of how high the IMO score can be.
The plot of the SHAP interaction value of PCI with time of the procedure (Figure 4B) shows
that PCI has a different effect on the probability of CC0 depending on the operative team.
A surgical effort up to 200 min is required to achieve CC0, provided the PCI is less than six.
The plot of the SHAP interaction value of PCI with ECOG status (Figure 4C) shows that the
probability for CC0 for good PS (0–1) is the same, provided the PCI is six or less. The plot
of the SHAP interaction value of the size of the largest tumour bulk with SCS shows that in
areas of moderate surgical effort, the effect of size on the probability of CC0 reverses at a
point around 5–10 cm.

3.6. SHAP Force Plots

For local explainability, the SHAP Force plots demonstrate features each contributing
to pushing from the base value (the average model output over the training dataset) towards
the model output. Features pushing the prediction higher are shown in red, whilst features
pushing the prediction lower are shown in blue (Figure 5). Several examples referring to
individual cases are illustrated.
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Figure 5. Succinct visual summary of feature integration by the XAI model into a single risk for
R0 resection prediction. The SHAP force plots illustrate examples of explained risks for individual
patients. For R0 resection risk, blue features have values that increased the risk, while red features
decreased the risk. The combination of impacts of all features is the predicted R0 prediction risk.
(A–D) The odds for R0 resection range between 1.54 and 2.35 times higher than expected (E). The
odds for incomplete cytoreduction are 3.21 times higher than expected. Each feature impact value
represents the change in risk when that feature’s value is known versus unknown. These examples
clearly demonstrated the complex interactions between patients and ovarian cancer specific features
in a dynamic well supported surgical environment.

4. Discussion

We presented an ensemble AI-based model that predicted CC0 following cytoreductive
surgery for EOC with high accuracy, and an XAI strategy that explained the patient and
surgery-specific factors that led to that risk (Figure 6). To our knowledge, this is the first
attempt to implement XAI models in the field of gynaecology oncology. To interpret our
results, we used their visual inspection as the leading result offering constant cognitive
intuition to the CC0 prediction. We surmise this is an important step towards further AI
implementation in medicine because while AI models have significantly improved the
ability to predict a patient’s outcome, the inability to explain the prediction from accurate,
complex models remains a serious limitation. More importantly, we demonstrated how
to preserve the prediction accuracy and retain interpretability by developing a method to
provide theoretically justified explanations of the R0 prediction, which further builds on
recent advances in the explainability of prediction methodology. This ability to provide
simple explanations of predictions from an arbitrarily complex model helps eliminate the
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accuracy versus interpretability trade-off, thus broadening the scope of AI in the delivery
of modern ovarian cancer care.
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Several approaches have been proposed to explain model predictions [30]. Their scope
varies based on their ability to generate global or local explanations, whereas their flexibility
indicates whether their approach is model-specific or model-agnostic. Local explanations
are critical because they reveal the impact of input features on individual predictions of
a single patient. In our study, the SHAP approach was chosen because despite being a
local explainability model, it introduces a global interpretation methodology based on the
aggregations of Shapley values. Due to its ability to simplify data, such a methodology has
been slowly embraced in a range of domains, including medicine [31].

This model integrated a comprehensive dataset consisting of high-fidelity, real-time
data, such as IMO, PCI, operative time and surgical complexity, and static data such as
patient- and tumour-specific information, resulting in a high prediction accuracy that
outperforms alternative prediction models previously used to predict CC0. Using a novel
XAI methodology, we explained why a prediction was made regardless of the complexity of
the AI model. A numeric representation is useful (i.e., odds ratio), but a detailed explanation
that the risk is due to patient’s age, IMO, SCS, PCI, maximum tumour size, and the resources
provided in the dynamic surgical environment becomes more clinically meaningful since
some features may be potentially modifiable and result in clinical changes mitigating
that risk. Interestingly, we identified specific “turning points” that demonstrated clear
preference towards CC0. For example, the strongest positive influence was exerted by IMO
and PCI scores less than five and six, respectively, at the cost of a moderate surgical effort
(SCS > 4). The clear-cut threshold of the IMO score—a more simplistic adaptation of the
PCI—less than five has not been previously documented. However, the positive correlation
between IMO and SCS has been demonstrated by London study groups [32]. The PCI
score is widely perceived as an excellent predictor of incomplete cytoreduction; in that
same study, NACT was considered if the PCI was higher than 24 probably due to reduced
surgical success [33]. Another feature was the patient’s age. Not surprisingly, age has been
frequently included in risk stratification algorithms [34]. According to Eisenkop et al., the
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probability of survival is independently influenced by age (≤61 years) [35]. Our cut-off of
60 years simply reflects the survival impact of surgical cytoreduction. However, we should
cautiously embrace the value of features with large standard deviations, such as age and
CA-125 values. Our results also showed that the optimisation of infrastructural support
driven by the paradigm shift towards more complex surgical management of EOC can help
achieve the goal of CC0, partly by performing more radical cytoreductive surgery for our
patients, in line with other studies [36]. Reassuringly, the explanations for our predictions
are broadly consistent with prior knowledge from the gynaecologic oncology community.

We deployed an efficient, theoretically justified XAI technique to estimate the impor-
tance of each feature on a prediction made for a single patient, which drives real-time
explanations. This is important as it provides valuable and detailed information tailored
to an individual clinical profile. The effective visualizations of such explanations could
be potentially encoded in a compact visual form for gynaecologic oncologists to use. The
magnitude of such a strategy can be appreciated if we extrapolate the real-time results to
more than 2000 annual cytoreductive surgeries in the UK. Then, the ‘no residual disease’—a
surgical note—stops being stochastic and may, in turn, boost patients’ motivation to engage
in shared decision making and to act upon risk-relevant information [37].

This study further prepares the ground for a crucial full-scale clinical audit to map
ovarian cancer surgery across the National Health Service. We have continuously audited
and recently published our surgical outcomes. We demonstrated that improving complete
surgical cytoreduction rates in advanced stage EOC is achievable without a significant
increase in morbidity [15,38]. Our complete surgical cytoreduction rates were comparable
to other high-volume specialized centres [39]. Standardization of surgical practice and
identification of centres of excellence will benefit patients by supporting a maximal effort
approach at all possible levels [40].

Several predictive models have demonstrated their ability to forecast CC0 [10,39,41–43].
However, some of these studies did not aim for CC0 resection, resulting in some of the
results not being confirmed in cross-validation studies. The poor predictive value of cross-
sectional imaging in those studies suggests that the inclusion of pre-operative radiological
predictors should be used with caution, probably due to a lack of universally applicable
criteria. The debate is ongoing as few groups have successfully combined pre-operative ra-
diological and surgical observation data to construct dynamic predictive models to predict
optimal or incomplete cytoreduction [44]. In our study, we did not use any radiological
parameters, which could potentially explain the superior performance of our model. This
observation precludes the prediction of CC0 based on the extent of tumour dissemination
prior to cytoreduction. Hence, operative efforts should not be abbreviated on the hypothesis
that extensive disease at specific anatomic regions precludes long-term survival [45].

A strength of the study was the development of a highly predictive model for CC0.
Nevertheless, the main strength of the study was the provision of two levels of explainability
for our predictive model. From a medical perspective, this is of paramount importance, as
first level (global) explainability allows us to understand how the system arrived at general
conclusions akin to a generic laboratory test. Furthermore, it provides second level (local)
explainability that allows us to identify which features are important for the individual
prediction. In other words, we explained why a certain prediction was made for a patient,
i.e., specific patient characteristics that led to the prediction. In this respect, an individual
CC0 prediction can be safe-checked for patterns that might indicate a false prediction, such
as an outlier with an unusual feature distribution. In an era where surgeons are often
subjected to scrutiny as to why they consider extending their therapeutic effort to patients
with a presumed less-favourable prognosis [46], this strategy should have implications
for surgeon’s acceptability, patient’s acceptance, and deserve future integration within
healthcare systems’ infrastructure.

To reduce selection bias, we used strict selection criteria as per MDT’s recommen-
dations. Our study was a single-institution experience of a tertiary referral centre, and
we are conscious that our results may not be generally applicable. The applicability of



J. Pers. Med. 2022, 12, 607 14 of 17

these findings to other centres remain to be determined. A recent anonymized UK survey
confirmed a variation in the surgical management of EOC amongst consultant gynaecologic
oncologists. Based on the mean operating times and types of procedures undertaken, the
survey provided compelling evidence that in many UK cancer centres, the surgical goal has
not been complete cytoreduction [47]. The retrospective study nature could not necessarily
be a limiting factor, as surgical efforts are often interpretable in the sense that they can
only be rationalized after surgery. Static features, such as BMI or co-morbidities, frequently
used as a proxy for patient acuity, have been employed in our previous effort to predict
CC0 in an earlier subset of this study population [14]. They did not appear neither signifi-
cant nor of relative importance when building the AI model. Temporal recovery-related
features may be more insightful than those derived from measures of disease severity at
a single point in time [48]. Another limitation is the lack of prospective quality-of-life
data. Ongoing research aims to implement an ensemble AI-based model to predict surgical
complications following EOC cytoreductive surgery, an important short-term outcome.
However, standard machine learning algorithms perform rather poorly on such datasets as
they tend to be biased towards the majority class. This decreases the prediction accuracy of
the minority class, i.e., the small high-risk group with surgical complications [49]. We also
acknowledge the fact that we did not use survival as an outcome, predominantly focusing
only on the advanced-stage EOC patients who received surgery. This might potentially
introduce selection bias when evaluating survival, as the denominator should include all
presenting EOC patients.

5. Conclusions

We developed a highly accurate AI-based model for CC0 prediction following EOC
cytoreductive surgery. We provided novel global and local feature set explainability that
can be used for quality control and internal audits. The study showcases the strong need
for explainable AI; as we unveil the black box of AI, we remove barriers to its use in clinical
practice, thereby allowing the application of AI in modern ovarian cancer care.

Supplementary Materials: The following supporting information can be downloaded at: https:
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