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Abstract 

Trade-credit is an influential implementation in financial transactions. This paper proposes an inventory model 

for decaying items with lifetime under linked-to-order partial delay in payments. More precisely, the items are 

gradually deteriorating and also have known maximum lifetime. The payment scheme is structured as follows: 

if the order quantity reaches a particular level, fully permissible trade credit is possible, otherwise the partial 

trade credit is offered. To the best of our knowledge, this is the first research incorporating the “Linked-to-

order Trade Credit Financing” scheme for deteriorating items with lifetime. Selling price and purchasing costs 

are not considered equal and there is no need for the interest charged in stocks to be larger than the interest 

earned on investment. Theoretical results are developed to obtain the optimum solutions of the problem. The 

authenticity and pertinence of the model and solution procedure are illustrated through numerical results. 

Finally, sensitivity analysis and managerial insights are provided.  
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1. INTRODUCTION 

The competitive environment has obliged suppliers to provide a number of specified concessions for their 

customers in order to attract more sales (Cárdenas-Barrón and Treviño-Garza, 2014). In this regard, trade 
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Credit Financing (TCF) or Delayed Payment (DP) could be considered as one of the most influential 

concessions. In classical models, it is taken as granted that the seller is paid on receipt of the sold products 

(Tsao, 2010). However, the supplier can suggest a DP to the retailer in order to enhance sales. During this time, 

the retailer has the chance to cumulate sales revenues and earn interest on that. Trade credit patterns generally 

fall into two major classes: full and partial. As the name suggests, in full TCF the buyer has the opportunity to 

delay all of their payments. On the other hand, partial TCF allows for a fraction of the payments to be delayed 

and the remainder needs to be paid on purchase. 

Most of the goods lose their value with the passing of time and for some of them the velocity of this 

process is more than the average. These items are called deteriorating or perishable products. Since 

deterioration imposes additional costs on the system, an appropriate inventory management of deteriorating 

items is of great importance. In this research, a partial linked-to-order TCF model for deteriorating items with 

maximum life time is being developed. Items deteriorate continuously and alongside they have their own 

maximum lifetime. It is assumed that, if the order quantity reaches a particular level, the fully permissible DP 

will be provided, otherwise the partial trade credit is offered by the supplier. This is called linked-to-order trade 

credit. 

The remainder of the paper is organized as follows: In section 2, literature body of the problem is reviewed 

while in section 3 the assumptions and notations are presented. Section 4 provides the proposed model. In 

section 5, theoretical results are put forward. Then experimental results are provided in section 6 to prove the 

validity of the proposed model. Finally, section 7 finishes the paper with conclusions and recommended future 

research directions. 

2. LITERATURE REVIEW 

Delays in payments are a common part in mercantile transactions which can effectively enhance demand in a 

short-run period (Seifert et al., 2013). Accordingly, there exists rich literature in this area which falls into three 

main classes: classical DP models, linked-to-order DP models and DP models in the presence of deterioration, 

each of which will be studied briefly in what follows. 

2.1. Classical delayed payment models 

The model proposed by Goyal (1985) is the basis for a great number of later studies in this area. Jaggi et al. 

(2007) developed a two-stage DP model. They assumed that demand is dependent on the period of the DP. A 

similar model was studied by Huang and Hsu (2008), the solution procedure of which was not complete. Das 

et al.’s. (2013) research is novel. They assumed that the procurement cost of the retailer linearly depends on 

the delay period. Teng et al. (2014) developed an economic production quantity (EPQ) system, where TCF 

increased the opportunity cost, default risk and sales. Zhang et al. (2014) studied TCF as a supply chain 
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coordination tool. In their model the producer offers discount on the condition that the buyer pays a fraction 

of cost before delivery time and amplifies the lot size.  

2.2. Linked-to-order quantity delayed payment models 

Khouja and Mehnez’s (1996) research is the first attempt to model linked-to-order quantity DP. In this model, 

if the order quantity exceeds a certain level, DP will be offered by the supplier to the customer. Ouyang et al. 

(2008) proposed a model with variable manufacturing rate, price-dependent demand, linked-to-order DP. 

Huang (2007) extended this model by considering partial TCF. Chung et al. (2013) further extended Huang’s 

model (2007) by relaxing the obligation for interest charged in stocks to be larger than interest earned on 

investment. They also proposed a different solution framework. 

2.3.  Delayed payments models with deterioration 

Aggarwal and Jaggi (1995) generalized Goyal’s (1985) work by incorporating deterioration. Liao (2008) 

studied an EPQ model with exponential deterioration rate and two-stage warehouse. Chung and Huang (2007) 

extended a double storages system for perishable items with two-stage DP. This work was extended by Liao 

et al. (2013) by considering that the decaying rate in rented warehouse exceeds that in owned one. Jaggi et al. 

(2017) developed a similar framework for deteriorating items with imperfect quality. Wang et al. (2014) 

proposed an inventory model for deteriorating items with lifetime under TCF which had two major impacts on 

their model: Increasing demand rate and also raising default risk. They also applied the proposed structure for 

non-deteriorating items. Wu et al. (2014) extended Wang et al. (2014) by considering two-level TCF. Down 

and up-stream DPs have been studied by Chen et al. (2013), Shah and Cárdenas-Barrón (2015), Banu and 

Mondal (2018)  and Tiwari et al. (2018) for decaying items as well. 

Shah (2015) introduced an inventory control model for deteriorating items where the demand is depended 

on the length of the credit period. They determined the optimal replenishment time and credit period under two 

levels of trade credit financing schemes. Annadurai and Uthayakumar (2015) set up a lot-sizing model for 

decaying items with stock-dependent demand and delay in payments. Dye and Yang (2015) provided a similar 

framework for items with general time-dependent deterioration rate under environmental considerations. 

Mishra et al. (2018) studied TCF for items with preservation-dependent deterioration rate. Shaikh et al. (2018) 

also put forth a similar inventory model for deteriorating items where shortages are admissible and the demand 

rate is price dependent.   

Up to now, far too little attention has been paid to simultaneous study of deterioration and linked-to-order 

quantity DP. Chang et al. (2003) developed one of the first studies in this field. Then, Chang (2004) extended 

the previous model by incorporating inflation rate as well as finite planning horizon. Later, Ouyang et al. 

(2009) extended Chang et al. (2003) by allowing for partial TCF when the ordering quantity does not reach the 

specified threshold. A brief comparison of the mentioned studies is provided in Table (1). 
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As review of the literature reveals, TCF is an active research area which has attracted high level of academic 

effort. On the other hand, there are still some unfolded and overlooked directions to be surveyed. Most of the 

papers avoid considering deterioration as it forces more complexity on the model. Even when deterioration is 

not overlooked, it usually appears in its simplest form i.e. constant rate. In comparison to the classical models, 

linked-to-order trade credit is not deeply studied especially under partial payments. Taken all the above studies 

together, it could be claimed that:  To the best of our knowledge this is the first academic effort which studies 

linked-to-order quantity TCF where partial payments are offered and the items which already have their own 

lifetime, deteriorate following time-dependent patterns. 

3. MODEL DEVELOPMENT 

The following notations are employed throughout the paper to formulate the problem: 

A  Fixed order cost 
D  Rate of demand per year 
W  The specific threshold till which the fully trade credit is permitted 

wT  The time that W  units are used 

TABLE 1. REVIEW OF AFORESAID STUDIES 

Reference 
Trade Credit Life 

time 
Deterioration 

pattern Full or Partial  
Trade Credit 

Linked  
to order 

Two 
stage 

Chang et al. (2003) Full  - - Constant 
Chang (2004) Full  - - Constant 

Jaggi et al. (2007) Full -  - - 
Huang (2007) Partial  - - - 

Chung and Huang (2007 Full -  - Constant 
Huang & Hsu (2008) Partial -  - - 

Liao (2008) Full - - - Constant 
Ouyang et al. (2009) Partial  - - Constant 

Das et al. (2013) Full - - - Constant 
Chung et al. (2013) Partial  - - - 
Chen et al. (2013) Partial -  - Constant 
Liao et al. (2013) Full -  - Constant 

Zhang et al. (2014) Full - - - - 
Wang et al. (2014) Full - -  Time-dependent 
Wu et al. (2014) Full -   Time-dependent 

Annadurai & Uthayakumar 
(2015) 

Full - - - Constant 

Shah (2015) Full -  - Constant 
Dye & Yang (2015) Full - - - Time-dependent 

Shah & Cárdenas-Barrón (2015) Full   - Constant 
Sharma (2016) Partial -  - - 

Zhang & Lee (2017) Full - - - Constant 
Jaggi et al.  (2017) Full - - - Constant 

Banu & Mondal (2018) Full -  - Constant 
Mishra et al. (2018) Full - - - Constant 

https://www.sciencedirect.com/science/article/abs/pii/S0096300315003045#!
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Shaikh et al.  (2018) Full - - - Constant 
Tiwari et al. (2018) Partial -   Time-dependent 

Present paper Partial  -  Time-dependent 

0T  Period length during which (1 )Qα−  units are used 
( )tθ  The time depended deterioration rate 

G  The product maximum lifetime 
P  Selling price 
C  Purchasing cost 
h  Carrying cost per unit per year 

eI  Interest which is earned 

kI  Interest which is charged 
M  The DP period length 
α  The permitted fraction of DPs 
Q  The order quantity 
T  The inventory period 

( )ITC T  The identical costs 
( )iATC T  The annual total cost of case i 

  
Consider a situation where the retailer uses an EOQ system to manage the inventory of his/her deteriorating 

items. The items are under constant deterioration and have a maximum lifetime. Linked-to-order quantity type 

of TCF is provided from the seller to the buyer. To combat real world conditions, the selling price and 

purchasing cost are not equal. Moreover, there is no obligation for the interest charged in stocks (IC) to be 

greater than interest earned on investment (IE). 

 The following assumptions are applied to model the problem: 

1. Demand rate is constant and shortages are not admissible. 

2. The replenishment is instantaneous at an infinite rate. 

3. According to Wu and Chan (2014), the deterioration rate is 1
( ) ;

1
t

G t
θ =

+ −
0 t T≤ ≤ , where G is 

maximum lifetime.  

4. When an order size exceeds a pre-determined quantity, full trade credit is offered. That is, if Q W>

(i.e. wT T> ), full DP is permitted and the retailer pays CQ  after M time units from filling the orders. If 

the ordering quantity cannot reach W , the partially delayed payment will be allowed. In this case, 

when the order is being filed, the retailer must pay the supplier the partial payment (1 )CQα− and pay 

off the remaining balances ( CQα ) at the end of the trade credit period. 

5. For as long as the amount is not paid off, obtained revenues are deposited in an interest bearing 

account. 
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4. MATHEMATICAL FORMULATION 

The changes in inventory level are captured by the following equation: 

( )
( ) ( ); 0 , ( ) 0

dI t
D t I t t T I T

dt
θ= − − ≤ ≤ =  (1) 

Solving this equation gives: 

1
( ) ( 1 ) ln( ) 0

1
G t

I t D G t t T
G T

− +
= + − ≤ ≤

− +
 (2) 

Then, the order quantity is obtained as; 

1
(0) ( 1) ln( )

1
G

Q I D G
G T

+
= = +

− +
 (3) 

From Equation (3), the time during which W units are depleted is obtained as: 

( 1)( 1)[1 ]w

W
D GT G e

−
+= + −  (4) 

If Q W> ( wT T> ), full trade credit is allowed, else the partial trade credit is offered. The buyer must pay 

(1 )CQα− and pay off CQα at the end of DP period.  

0T is defined as the time during which (1 )Qα− units are depleted. From Equation (3), we have; 

1
0

1
( 1)(1 ( ) )

1
G

T G
G T

α −+
= + −

− +
 (5) 

It should be noted that parameters of 0, ,wM T T  and T are those parameters that have effects on the capital 

cost. According to their values, seven cases are possible which are shown in Table 2. 

Identical related costs are: ordering cost, holding cost and purchasing cost; 

:
A

Ordering Cost OC
T

=  (6) 

2 2

0

(1 ) 1 (1 )
: ( ) ln( )

2 1 4 2

Th hD G G T G T
Holding Cost HC I t dt

T T G T
+ + +

= = + −
+ −

 
 
 

∫  
(7) 

1
: ( 1) ln( )

1
CQ CD G

PurchaseCost PC G
T T G T

+
= = +

+ −
 

(8) 

Then identical cost of the system is obtained as;  
2 2(1 ) 1 (1 ) 1

( ) ln( ) (1 ) ln( )
2 1 4 2 1

A hD G G T G T CD G
ITC T G

T T G T T G T
+ + + +

= + + − + +
+ − + −

 
 
 

 (9) 

As mentioned, because of different values of wT  and M , two groups of wM T≥ and wM T< may occur. Now 

for each case of the first group which is wM T≥ , IC and IE will be derived.  
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Case 1: wT M T≤ ≤  

As depicted in Fig. 1, IC is ( )
T

k

M

I C
I t dt

T ∫ and IE is 2

2
eI PD

M
T

. So the annual total cost function is: 

2 22
2

1

( )

4 2

(1 ) 1
( ) ( ) ln( )

2 1 2
k eT M G T M MI CD I PDG M G M

ATC T ITC T M
T G T T

− + +
+ +

+ − + −
= + −

+ −
 
  

 (10) 

TABLE 2. POSSIBLE CASES FOR THE PERMUTATION OF THE  PARAMETERS  

Comparison between M

and
w

T  Effects of T  Effects of 
0

T  Cases 

w
M T≥  M T≤  _ w

T M T≤ ≤  

w
M T≥  M T>  _ w

T T M≤ <  

w
M T≥  

w
T T<  _ w

T T M< ≤  

w
M T<  

w
T T≤  _ w

M T T< ≤  

w
M T<  

w
T T>  

0
T T M< ≤  

0 w
T T M T< < <  

w
M T<  

w
T T>  

0
T M T< ≤  

0 w
T M T T< < <  

w
M T<  

w
T T>  

0
M T T< ≤  

0 w
M T T T< ≤ <  

 

Case 2: wT T M≤ <  

As in Fig. 2, IC is zero and IE is
2

( )
2

e eI PDT I PD
M T T

T T
+ − . So, the annual total cost is: 

2

2 ( ) ( ) ( )
2

e eI PDT I PD
ATC T ITC T M T T

T T
= − − −  (11) 

Case 3: wT T M< ≤  

According to Fig. 3, IC is 
0

0

0

( )
T

k kI C I C
I t dt QT

T T
α+∫  and IE is 2 ( )

2
e eI PD I PD

T M T T
T T

+ − . Then we have: 

2
2( 1) 2( 1)

3

2
( 1) 2

(1 ) 1 1 1 1 1
( ) ( ) ln( ) ( ) 1 ( ) 1

2 1 1 4 1

(1 ) 1 1
ln( ) 1 ( ) ( )

1 1 2

k

k e e

I CD G G G G
ATC T ITC T

T G T G T G T

I CD G I PD I PDG G
T M T T

T G T G T T T

α α

α

α

α

− −

−

+ + + +
= + − − + −

+ − + − + −

+ + +
− − − − −

+ − + −

    
        

  
    

 (12) 
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Fig. 1.The interest charged (left figure) and interest earned (right figure) for case

w
T M T≤ ≤  

 
Fig. 2.The interest charged (left figure) and interest earned (right figure) for case

w
T T M≤ <  

 

 
Fig. 3.The interest charged (left figure) and interest earned (right figure) for case

w
T T M< ≤  

Thus, for the first group separated by wM T≥ , we have: 

1

2

3

w

w

w

ATC T M T
ATC ATC T T M

ATC T T M

≤ ≤

= ≤ ≤

< ≤






 (13) 

Case 4: wM T T< ≤  

IC is ( )
T

k

M

I C
I t dt

T ∫ and IE is 2

2
eI PD

M
T

. So 

4 1( ) ( )ATC T ATC T=  (14) 

Case 5: 0 wT T M T< < <  
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IC is
0

0

0

( )
T

k kI C I C
I t dt QT

T T
α−∫ and IE is 2 ( )

2
e eI PD I PD

T M T T
T T

+ − .Then: 

5 3( ) ( )ATC T ATC T=  (15) 

Case 6: 0 wT M T T< < <  

According to Fig. 4, IC is 
0

0

0

( ) ( )
T T

k k k

M

I C I C I C
I t dt QT I t dt

T T T
α− +∫ ∫ and IE is 2

2
eI PD

M
T

. Therefore the annual 

total cost is: 

{ }2
2( 1) 2( 1)

6

2 2 2
2

2
( 1)

(1 ) 1 1 1 1 1
( ) ( ) ln( ) ( ) 1 ( ) 1

2 1 1 4 1

( 1) 1 ( )
ln( )

2 1 4 2 2

(1 ) 1 1
ln( ) 1 ( )

1 1

k

k e

k

I CD G G G G
ATC T ITC T

T G T G T G T

I CD I PDG M G M T M G T M M
M

T G T T

I CD G G G
T G T G T

α α

α

α

α

− −

−

+ + + +
= + − − + −

+ − + − + −

− + − + − + +
+ + + −

+ −

+ + +
− −

+ − + −

   
      

 
  

 


 
  

 

(16) 

 
Fig. 4.The interest charged (left figure) and interest earned (right figure) for case

0 w
T M T T< < <  

Case 7: 0 wM T T T< ≤ <  

As in Fig. 5, IC and IE are 
0

( )
T

k kI C I C
I t dt QM

T T
α−∫ and 2

2
eI PD

M
T

. Then 

22 2

7

(1 )(1 ) 1 (1 ) 1
( ) ln( ) ln( )

2 1 4 2 1 2
k k eI CD I C MD G I PDMG G T G T G

ATC ITC T
T G T T G T T

α ++ + + +
= + + − − −

+ − + −

 
  

 
(17) 

Then, the annual total costs are as below: 

1

3 0

6 0

7 0

w

w

w

w

ATC M T T

ATC T T M T
ATC

ATC T M T T

ATC M T T T

< ≤

< < <
=

< < <

< ≤ <







 

(18) 
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4. SOLUTION METHODOLOGY 

This section seeks to obtain the optimal solution of each case, discussed above: 

Case 1:  

The necessary optimality condition for 1 ( )ATC T  gives: 

2 2 2

2 2

2 2 2

(1 ) 1 (1 ) (1 ) 1 1
ln( ) ( )

2 1 4 2 2(1 ) 2 2 1

1 (1 )
(1 ) ln( )

1 2 2(1 ) 2 2

(1 ) 1 ( )
ln( )

2 1 4 2

e
k

k

G G T G T G T G G
A hD hDT CDT

G T G T G T

I PDMG G M T G
CD G I CDT

G T G T

G M G M T M G T M M
I CD

G T

+ + + + + +
− − + − + + − +

+ − + − + −

+ + −
− + + + + +

+ − + −

+ − + − − + +
− + +

+ −

   
      

 
  

 
 

0=

 (19) 

To optimize T in[ , )M ∞ , we let:  

 
Fig. 5.The interest charged (left figure) and interest earned (right figure) for case

0 w
M T T T< ≤ <  

2 2 2

1

(1 ) 1 (1 ) (1 ) 1
ln( )

2 1 4 2 2(1 ) 2 2

G G M G M G M G
A hD hDM

G T G M
∆

+ + + + +
= − − + − + + −

+ − + −

   
      

 

2 21 1 2 1
(1 ) ln( ) ( )

1 1 2 2 2
e

k k

I PDMG G M M G M
CD G CDM I CD I CDM M

G M G M

+ + + + −
− + + + − + +

+ − + −
 
  

 

 

(20) 

Then Lemma 1 is established as: 

Lemma 1. 

a) If 1 0∆ ≤  then there exists 
1

[ , )T M∈ ∞ which is optimal, unique and satisfies Equation (19). 

b) If 1 0∆ >  then 1 ( )ATC T is optimized at T M= . 

Proof. See Appendix A. 

Case 2: wT T M≤ <  

Similarly, 2
( )

0
d ATC T

dT
=  implies: 

wT M T≤ ≤
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2 2 2(1 ) 1 (1 ) (1 ) 1 1
ln( ) ( )

2 1 4 2 2(1 ) 2 2 1

G G T G T G T G G
A hD hDT CDT

G T G T G T

+ + + + + +
− − + − + + − +

+ − + − + −

   
      

  

21
(1 ) ln( ) 0

1 2
eI PDTG

CD G
G T

+
− + + =

+ −

 

(21) 

To show that there is an optimal T in [ , ]wT M , we have: 

22

2

22

(1 )(1 ) 1
ln( )

2 1 4 2

(1 ) 1 1 1
( ) (1 ) ln( )

2(1 ) 2 2 1 1 2

w w

w

w e w
w w

w w w

T G TG G
A hD

G T

T I PDTG G G G
hDT CDT CD G

G T G T G T

++ +
∆ = − − + −

+ −

+ + + +
+ + − + − + +

+ − + − + −

 
 
 

 
 
 

 

(22) 

If wM T≥ then 1 2∆ ≥ ∆ . So lemma 2 is established as: 

Lemma 2. 

a) If 2 10∆ ≤ ≤ ∆  then 2 ( )ATC T  reaches its minimum at 2T T=  where 2 [ , ]wT T M∈  satisfies Equation (21) and 

is unique. 

b) If 2 0∆ >  then 2 ( )ATC T  reaches its optimum at wT T= . 

c) If 1 0∆ <  then 2 ( )ATC T  reaches its optimum at T M= . 

Proof. This is proven analogously to Lemma (1). 

Case 3:  

Again, 3 ( )
0

d ATC T

dT
=  leads to: 

2 2 2(1 ) 1 (1 ) (1 ) 1
ln( )

2 1 4 2 2(1 ) 2 2

G G T G T G T G
A hD hDT

G T G T

+ + + + +
− − + − + + −

+ − + −

   
        

21 1
( ) (1 ) ln( )
1 1 2

eI PDTG G
CDT CD G

G T G T

+ +
+ − + +

+ − + −  

{ }2 2( 1) 2( 1)1 1 1 1 1
(1 ) ln( ) ( ) ( ) 1

2 1 1 4 1k

G G G
I CD G

G T G T G T
α αα − −+ + +

− + − + −
+ − + − + −

   
        

2

2 ( 1) 2 ( 1)

2 1 2 1

2 ( 1)

2 1

(1 ) ( 1)(1 )

2 (1 ) 2(1 )
(1 )

1 (1 ) 1
( 1) ln( )

1 2(1 )(1 )

k

G G

G T G T
I CD G T

G G

G T G TG T

α α

α α

α

α

α α

α α

− −

− −

−

−

+ − +
− −

+ − + −
+ +

+ +
− − +

+ − + −+ −

 
 
 
 
 
  

 

{ }2 11 1
(1 ) ln( ) 1 ( )

1 1k

G G
I CD G

G T G T
αα −+ +

+ + −
+ − + −

 
  

 

(23) 

wT T M< ≤
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1 1

2 (1 ) 1 (1 ) 1
(1 ) ( 1) ln( ) 0

(1 ) 1 (1 ) (1 )k

G G G
I CD G T

L T G T G T G T

α α

α α
α α

− −

+ + +
− + − − − + =

+ − + − + − + −

 
 
 

 

3∆ is obtained by substituting wT for T  in left side of Equation (23). 

Lemma3.  

a) If 3 0∆ ≥  then 3 ( )ATC T  reaches its minimum at 3 (0, )wT T∈  which satisfies Equation (23) and is unique. 

b) If 3 0∆ <  then there is no value for T in (0, )wT at which 3 ( )ATC T  is optimized. 

Proof. See Appendix B. 

Since wM T≥ , we know that 1 2∆ ≥ ∆ , consequently combining Lemmas (1) to (3) and considering

1 2( ) ( )ATC M ATC M= , the pursuant theorem is obtained to specify *T . 

Theorem 1. For wM T≥ , the optimal inventory cycle ( *T ) can be obtained under conditions presented in Table 

3. 

Proof. It can be proved under Lemmas (1) to (3) and the fact that 1 2( ) ( )ATC M ATC M= . 

 

 

 

 

TABLE 3. THE OPTIMAL REPLENISHMENT CYCLE UNDER DIFFERENT CONDITIONS 
Conditions *( )TRC T  *T  

1 3
0 , 0∆ ≤ ∆ <  

1 1
( )ATC T  

1
T  

1 3
0 , 0∆ ≤ ∆ ≥  { }

1 1 3 3
( ), ( )Min ATC T ATC T  

1
T or

3
T  

1 2 3
0 , 0 , 0∆ > ∆ ≤ ∆ ≥  { }

2 2 3 3
( ), ( )Min ATC T ATC T  

2
T or

3
T  

1 2 3
0 , 0 , 0∆ > ∆ ≤ ∆ <  

2 2
( )ATC T  

2
T  

2 3
0 , 0∆ > ∆ ≥  { }

2 3 3
( ), ( )

w
Min ATC T ATC T  

w
T or

2
T  

2 3
0 , 0∆ > ∆ <  

2
( )

w
ATC T  

w
T  
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Case 4:  

As the same approach (cases 1, 2, 3), the necessary optimality condition is 1 ( )
0

d ATC T

dT
= . To show 

uniqueness ofT  in [ , )wT ∞  at which 1 ( )ATC T  is optimized, 4∆ is obtained by substituting wT for T  in left side 

of Equation (20). Consequently, we have the following lemma. 

Lemma4. 

a) If 4 0∆ ≤ , then 1 ( )ATC T  reaches its minimum at 4 [ , )wT T∈ ∞ which satisfies Equation (19) and is unique. 

b) If 4 0∆ > , the boundary point wT T=  is the optimal value. 

Proof. This is proven analogously to Lemma (1). 

Case 5:  

Likewise, 5∆ is obtained by substituting M for T  in left side of Equation (23).  

Lemma5. 

a) If 5 0∆ ≥  then 3 ( )ATC T  reaches its minimum at 5 (0, ]T M∈  which satisfies Equation (23) and is unique. 

b) If 5 0∆ < , the boundary point T M= is optimal. 

Proof. This is proven analogously to Lemma (1). 

Case 6:  

Again, the necessary condition for 6 ( )ATC T  to reach its minimum is 6 ( )
0

d ATC T

dT
=  which leads to: 

2 2 2(1 ) 1 (1 ) (1 ) 1
ln( )

2 1 4 2 2(1 ) 2

G G T G T G T G
A hD hDT

G T G T

+ + + + − −
− − + − + +

+ − + −

   
      

 

21 1
( ) (1 ) ln( )
1 1 2

eI PDMG G
CDT CD G

G T G T

+ +
+ − + +

+ − + −
  

{ }2 2( 1) 2( 1)1 1 1 1 1
(1 ) ln( ) ( ) ( ) 1

2 1 1 4 1k

G G G
I CD G

G T G T G T
α αα − −+ + +

− + − + −
+ − + − + −

   
      

 

2 ( 1) 2 ( 1) 2 ( 1)

2 1 2 1 2 1

2 (1 ) ( 1)(1 ) 1 (1 ) 1
(1 ) ( 1) ln( )

2 1 2(1 )(1 ) 2(1 ) (1 )
k

G G G G
I CD G T

G T G TG T G T G T

α α α

α α α

α α
α α

− − −

− − −

+ − + + +
+ + − + − −

+ − + −+ − + − + −

 
+ 

 
 

{ }2 1
21 1 (1 )

(1 ) ln( )1 ( )
1 1 2(1 ) 2k k

G G G M T G
I CD G I CDT

G T G T G T
αα −+ + + − +

+ + − + +
+ − + − + −

 
 
 

 

(24) 

wM T T< ≤

0 wT T M T< < <

0 wT M T T< < <
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2 2 2(1 ) 1 ( )
ln( )

2 1 4 2k

G M G M T M G T M M
I CD

G T

+ − + − − + +
− + +

+ −

 
  

1 1

2 (1 ) 1 (1 ) 1
(1 ) ( 1) ln( ) 0

(1 ) 1 (1 ) (1 )k

G G G
I CD G T

L T L T G T G T

α α

α α
α α

− −

+ + +
− + − − − + =

+ − + − + − + −

 
 
 

 In order to demonstrate that there exist [ , )wT M T∈  at which 6 ( )ATC T is optimized; 6∆ is obtained by 

substituting wT for T  in left side of Equation (24). Obviously, if wM T< then 5 6∆ < ∆ and we have lemma 6. 

Lemma 6. 

a) If 5 60∆ ≤ ≤ ∆ , 6 ( )ATC T reaches its minimum at 6 [ , )wT M T∈  which satisfies Equation (24) and is unique. 

b) If 5 0∆ >  then the boundary pointT M=  is optimal. 

c) If 6 0∆ <  then there is no value for T during [ , )wM T at which 6 ( )ATC T  is minimized. 

Proof. This is proven analogously to Lemma (3). 

Case 7:  

Finally 7 ( )
0

d ATC T

dT
=  gives: 

2 2 2

2 2

2 2

(1 ) 1 (1 ) (1 ) 1
ln( )

2 1 4 2 2(1 ) 2

(1 )1 1 (1 ) (1 )
( ) (1 ) ln( )
1 1 2 21 2 1

(1 ) 1 (1 )
ln( )

2 1 4

e k
k

k

G G T G T G T G
A hD hDT

G T G T

I PDM I C MD GG G G T G
CDT CD G I CDT

G T G T G T G T

G G T G
I CD

G T

Tα

+ + + + − −
− − + − + +

+ − + −

++ + + − +
+ − + + + + −

+ − + − + − + −

+ + +
− + −

+ −

   
      

 
  

1
ln( ) 0

2 1
(1 )k

T G

G T
I C MD Gα +

+ =
+ −

  +  
 

(25) 

In order to demonstrate that there exists ( , )wT M T∈  at which 7 ( )ATC T  is minimized, 7∆ and 8∆ are obtained 

by substituting M and wT  for T  in left side of Equation (25) respectively. Then these are used in Lemma 7. 

Lemma 7. 

a) If 7 80∆ ≤ ≤ ∆  then 7 ( )ATC T  reaches its minimum 7T T= where 7 ( , )wT M T∈ ,  satisfies Equation (25) and is 

unique. 

b) If 7 0∆ >  then there is no value for 7T in ( , )wM T at which 7 ( )ATC T  is optimized. 

c) If 8 0∆ <  then there is no value for 7T in ( , )wM T at which 7 ( )ATC T  is optimized. 

Proof. This is proven analogously to Lemma (3). 

0 wM T T T< ≤ <
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If wM T< , we have 5 6∆ < ∆ and 7 8∆ < ∆ . Then combining Lemmas (4) to (7) and considering

3 6( ) ( )ATC M ATC M= , the following theorem is obtained to determine *T  for cases 4, 5, 6 and7. 

Theorem 2. For wM T<  the optimal inventory period can be obtained under conditions presented in Table 4. 

Proof. It can be proved under Lemmas (4) to (7) and the fact that 3 6( ) ( )ATC M ATC M= . 

Regarding to the possible intervals of period length in the sixth and the seventh cases, represented in section 

4, we should note that, 

• After calculating 0T by Equation (5) with respect to 6T  , if 0M T<  then 6T does not have a feasible value and 

its related cost is omitted from our calculations and comparisons. 

• After calculating 0T by Equation (5) with respects to 7T , if 0M T>  then 7T does not have a feasible value and 

its related cost is omitted from our calculations and comparisons. 

By using Theorems (1) and (2), the following algorithm procedure is developed to solve the problem at 

hand. Moreover its flowchart is presented in Fig. 6. 

Algorithm: 

Step 1- Compare the values of M and wT , if wM T≥ go to step 2, otherwise go to step 3. 

Step 2- Calculate 1∆ , 2∆ and 3∆ respectively. Then (applying Theorem (1)), use Table 3 to obtain the optimal 

solution. 

Step 3- Calculate 4∆ , 5∆ , 6∆ , 7∆ and 8∆ respectively. Then (applying Theorem (2)), use Table 4 to obtain the 

optimal solution. 

Step 4-End 

TABLE 4 
THE OPTIMAL REPLENISHMENT CYCLE UNDER DIFFERENT CONDITIONS 

Conditions *( )TRC T  *T  

4 5 7 80 , 0 , 0, 0∆ ≤ ∆ ≥ ∆ ≤ ∆ ≥  { }4 4 5 5 7 7( ), ( ), ( )Min ATC T ATC T ATC T  4T or 5T or 7T  

4 5 70 , 0 , 0∆ ≤ ∆ ≥ ∆ >  { }4 4 5 5( ), ( )Min ATC T ATC T  5T or 4T  

4 5 80 , 0 , 0∆ ≤ ∆ ≥ ∆ <  { }4 4 5 5( ), ( )Min ATC T ATC T  5T or 4T  

4 5 6 7 80 , 0 , 0, 0, 0∆ ≤ ∆ < ∆ ≥ ∆ ≤ ∆ ≥  { }4 4 6 6 7 7( ), ( ), ( )Min ATC T ATC T ATC T  4T or 6T or 7T  

4 5 6 70 , 0 , 0, 0∆ ≤ ∆ < ∆ ≥ ∆ >  { }4 4 6 6( ), ( )Min ATC T ATC T  6T or 4T  

4 5 6 80 , 0 , 0, 0∆ ≤ ∆ < ∆ ≥ ∆ <  { }4 4 6 6( ), ( )Min ATC T ATC T  6T or 4T  

4 6 7 80 , 0, 0, 0∆ ≤ ∆ < ∆ ≤ ∆ ≥  { }4 4 7 7( ), ( )Min ATC T ATC T  7T or 4T  
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4 6 70 , 0, 0∆ ≤ ∆ < ∆ >  4 4( )ATC T  4T  

4 6 80 , 0, 0∆ ≤ ∆ < ∆ <  4 4( )ATC T  4T  

4 5 7 80 , 0 , 0, 0∆ > ∆ ≥ ∆ ≤ ∆ ≥  { }4 5 5 7 7( ), ( ), ( )wMin ATC T ATC T ATC T  wT or 5T or 7T  

4 5 70 , 0 , 0∆ > ∆ ≥ ∆ >  { }4 5 5( ), ( )wMin ATC T ATC T  5T or wT  

4 5 80 , 0 , 0∆ > ∆ ≥ ∆ <  { }4 5 5( ), ( )wMin ATC T ATC T  5T  or wT  

4 5 6 7 80 , 0 , 0, 0, 0∆ > ∆ < ∆ ≥ ∆ ≤ ∆ ≥  { }4 6 6 7 7( ), ( ), ( )wMin ATC T ATC T ATC T  wT or 6T or 7T  

4 5 6 70 , 0 , 0, 0∆ > ∆ < ∆ ≥ ∆ >  { }4 6 6( ), ( )wMin ATC T ATC T  6T or wT  

4 5 6 80 , 0 , 0, 0∆ > ∆ < ∆ ≥ ∆ <  { }4 6 6( ), ( )wMin ATC T ATC T  6T or wT  

4 6 7 80 , 0, 0, 0∆ > ∆ < ∆ ≤ ∆ ≥  { }4 7 7( ), ( )wMin ATC T ATC T  7T or wT  

4 6 70 , 0, 0∆ > ∆ < ∆ >  4 ( )wATC T  wT  

4 6 80 , 0, 0∆ > ∆ < ∆ <  4 ( )wATC T  wT  

 
Fig. 6.  Flowchart of the proposed algorithm 

5. NUMERICAL RESULTS 

Example. Assume $5 / /h unit year= $50 /A order= , 0.1 $ /kI year= , 0.2M year= , 1000 /D units year= , 

0.07 $ /pI year= . For different inputs (100, 200, 300)W = , (0.2, 0.5, 0.8)α =  and (10, 20, 30)C = , the optimal 

replenishment cycle is  calculated and displayed in Table 5. 

TABLE 5. NUMERICAL RESULTS 
* *( )ATC T  *Q  *T  C  W  α  

12113.15 245.697 1T =0.2312 10   
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13992.227 239.369 1T =0.2256 20 100  

16723.761 226.673 1T =0.2143 30   

19308.35 200 wT = 0.1903 10   

19308.35 200 wT = 0.1903 20 200 0.2 

20981.251 193.682 2T = 0.1846 30   

22371.232 187.852 5T = 0.1793 10   

23520.314 177.335 5T = 0.1697 20 300  

24571.021 168.285 5T = 0.1614 30   

12113.15 245.697 1T =0.2312 10 

100 

 

13992.227 239.369 1T =0.2256 20  

16723.761 226.673 1T =0.2143 30  

19308.35 200 wT = 0.1903 10 

200 

 

19308.35 200 wT = 0.1903 20 0.5 

20721.063 196.769 2T = 0.1874 30  

20464.203 192.141 5T = 0.1832 10 

300 

 

21324.166 187.303 5T = 0.1788 20  

22761.031 174.932 5T = 0.1675 30  

12113.15 245.697 1T =0.2312 10 

100 

 

13992.227 239.369 1T =0.2256 20  

16723.761 226.673 1T =0.2143 30  

19308.35 200 wT = 0.1903 10 

200 

 

19308.35 200 wT = 0.1903 20 0.8 

20410.122 199.055 2T = 0.1893 30  

20316.452 204.065 5T = 0.1940 10 

300 

 

20211.901 197.211 5T = 0.1878 20  

21075.607 194.233 5T = 0.1851 30  

According to the provided results, the sequent managerial insights are obtained: 

1. In partially DP case, for a fixed value of W and C, by increasing α  significant increase in the value of *Q

and decrease in * *( )ATC T  is observed. For instance, for 300W =  and 10C = , increasing α  from 0.2 to 0.5 

results in a 2.5% increase in the value of *Q and 8.5% decrease in * *( )ATC T . So if the buyer has the choice 

among different suppliers, they could effectively manage the costs by selecting the one who offers a higher 

partial TCF fraction. 
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2. For fixed α  and C, raising W decreases *Q  and increases the value of * *( )ATC T . For example, when 0.2α =

, 10C =  and W increases from 100 to 200, *Q  decreases 18.5% and * *( )ATC T  59%. This implies that the 

retailer cannot reach the quantity threshold for fully DP. Then, by increasing W, a drop in order quantity 

is observed and the retailer’s costs increase drastically. 

3. For a fixed value of α  and W, raising the value of C will decrease the value of *Q  and will increase the 

value of * *( )ATC T . For instance, when 100W = and 0.5α = increasing C from 10 to 20, results in a 2.5% 

reduction in the order size and 15%  increase in the annual total cost. This is normal as we observe in 

classic EOQ model. That is the changes in purchasing cost have direct relation with annual total cost and 

reverse connection with ordering quantity. 

 
As identical cost of the system entails ordering cost as well as inventory holding and purchasing cost, it is 

promising to analyze the impact of different values of inputs A , h  and C  on *T , *Q  and * *( )ATC T . The related 

findings are shown in Table 6.  

TABLE 6. SENSITIVITY ANALYSIS OF IDENTICAL COST PARAMETERS 

Parameter Changes 
(%) 

Change in (%) 
T  Q  * *( )ATC T  

C  

-50% +52.83% +117.42% -122.43% 
-25% +33.49% +68.53% -71.55% 
+25% -34.11% -68.95% +71.41% 
+50% -53.25% -118.17% +122.39% 

h  

-50% +21.52% +21.02% -2.93% 
-25% +12.48% +11.98% -1.65% 
+25% -12.73% -12.11% +1.94% 
+50% -21.52% -21.28% +3.15% 

A  

-50% -22.08% -21.03% -3.45% 
-25% -13.59% -12.64% -1.82% 
+25% +13.93% +12.85% +2.05% 
+50% +22.11% +21.39% +3.94% 

 

According to the results presented in Table 6, the following insights can be obtained. 

1. The optimal replenishment period ( *T ) decreases with raising the value of h and C . It also increases with 

any increase in the value of A . *T is mildly sensitive to the changes in h  and A , while it is extremely 

sensitive to the variations in C . 
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2. The optimal *Q  decreases with a rise in h and C . It increases as the value of A  rises. *T is relatively 

sensitive to the changes in h  and A , whereas it is extremely sensitive to the variations in C .This is 

identical to changes in the replenishment cycle. 

3. The optimal * *( )ATC T  decreases with reduction in h , C and A .The impact of changes in C is much more 

notable than h or A .This suggests a very tricky fact to the retailer: if the retailer has the choice among 

different suppliers, it is logical to prefer the one with lowest purchasing cost over other cost elements. 

6. CONCLUSION 

In this paper, an EOQ model with the linked-to-order TCF and under deterioration was developed. We 

assumed that deterioration rate is time-dependent and product has maximum lifetime. In our model, if the order 

quantity reaches a certain level the fully DP will be possible, otherwise partial DP is offered from the supplier. 

Several Lemmas and Theorems were developed to solve the model. The authenticity and pertinence of the 

model and solution procedure were illustrated by experimental results. 

Our findings reveal that as the value of the fraction of the DP increases, the optimum order size rises and 

reduction occurs in annual total cost. Moreover, when the unit purchasing cost increases the order quantity and 

the annual total cost decreases and increases respectively.  

Current work can be extended in some directions: Firstly, other time-dependent deterioration patterns such 

Weibull might be applied. Secondly, shortages can be admissible in the model either as lost sales or backorders. 

Then revenue management policies can be embedded to the model by developing a price-dependent and (or) 

promotion-dependent demand function. Considering two-level TCF is another possible research direction. 

Finally, adding quantity discounts and time value of the money may provide a more practical structure. Also 

we suggest incorporating the partial linked to order delayed payment to the works of Taleizadeh et al (2013, 

2015), Taleizadeh and Noori (2015) and Tat et al. (2015).   
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In order to prove lemma (1) set  
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Therefore, 1 ( )F T is strictly increasing function of [ , )T M∈ ∞ . From Equation (A1), 1 1( )F M = ∆ and

1lim ( )
T

F T
→∞

= ∞ . Thereafter, by using the Intermediate Value Theorem, we could claim that there exist a unique 

value of [ , )T M∈ ∞  , say 1T , such that 1 1( ) 0F T = . Furthermore: 
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Then, apparently 1 [ , )T M∈ ∞  is a unique optimal value for 1 ( )TRC T . 

If 1 0∆ > , then for all [ , )T M∈ ∞ , 1 ( ) 0F T >  and 1 1

2

( ) ( )
0

dTRC T F T

dT T
= > . Consequently, 1 ( )TRC T  is a 

strictly increasing function of T  in the interval [ , )T M∈ ∞ .So, in this case, 1 ( )TRC T has an optimal solution at 

T M= and this completes the proof. 
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In order to prove Lemma (3) set; 
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Since 1α < we have:  
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As mentioned in assumptions, 
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Therefore, 3 (0, )wT T∈  is the unique optimal solution for 3 ( )TRC T . 

However, if 3 3lim ( ) 0
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= ∆ < , then for all (0, )wT T∈ , we have 3 ( ) 0F T < . As a result for all (0, )wT T∈ also 
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completes the proof. 


	1. INTRODUCTION
	2. Literature Review
	2.1. Classical delayed payment models
	2.2. Linked-to-order quantity delayed payment models
	2.3.  Delayed payments models with deterioration

	3. Model development
	4. Mathematical formulation
	4. Solution Methodology
	Case 1:
	Case 2:
	Case 3:
	Case 4:
	Case 5:
	Case 6:
	Case 7:

	5. Numerical Results
	6. Conclusion
	Appendix A.
	Appendix B.

