
1 
 

A systematic mapping study on teaching and learning Computational Thinking through 
programming in higher education. 
 
Computational Thinking (CT) through programming in higher education is considered an important 
skill for students to become problem solvers and thrive in the new digital workplace. Despite the 
wide interest, a systematic map of CT through programming in higher education is still missing. The 
aim of this study is twofold. First, we aim to provide a systematic map of the relevant research by 
identifying the areas and sub-areas of CT through programming teaching and learning in higher 
education. Second, we aim to investigate these areas based on two dimensions: their evolution over 
the years and the branches to which CT is applied. For this purpose, we apply a systematic mapping 
methodology. Main results include the identification of the CT areas of Knowledge Base, 
Assessment, Learning Strategies, Tools, Factors and Capacity Building. Of these, Knowledge Base, 
Assessment and Tools have significantly evolved throughout the years, while Capacity Building has 
only recently emerged. In addition, the introduction of CT to undergraduate students and preservice 
teachers differs mainly in the tools used and the CT elements that are assessed. The study 
contributes to the field by providing a structured type of research conducted and identifying gaps 
and opportunities for future research. 
Keywords: Computational Thinking, Programming, Higher education 

Introduction 

With new technological developments and their areas of application evolving rapidly, “21st-century 
skills” is one of the most widely used terms in today’s educational debate. In the 21st century, 
individuals need to understand the true potential of computers in order to become effective 
creators of computational tools, thus participating in the fast-changing digital world (Angeli et al., 
2016). In addition, higher education students need to be independent thinkers, problem solvers, and 
decision makers to thrive in their future professional lives and the new digital workspace (Silva, 
2009). 

Computational Thinking (CT) is in line with many aspects of 21st century skills (Lye & Koh, 2014) such 
as thinking creatively, reasoning systematically, and working collaboratively (Resnick et al., 2009). 
Wing (2006) defines CT as a way of “solving problems, designing systems and understanding human 
behaviour by drawing on the concepts of computer science”, suggesting that CT is a skill for 
everyone, not just computer scientists.  

CT is considered broader than programming and is often promoted through approaches from 
disciplines other than Computer Science. However, Programming is widely accepted as an ideal 
medium for CT development (Voogt et al., 2015). Specifically, programming offers the mechanisms 
for applying CT concepts and practices (Brennan & Resnick, 2012) and at the same time supports the 
cognitive aspects of CT, such as algorithmic thinking, abstraction, decomposition, and testing 
(Buitrago Flórez et al., 2017; Shute et al., 2017). 

The acquisition of CT is widely discussed in K-12 education in relation to the acquisition of 21st 
century skills and digital competences (Angeli & Giannakos, 2020; Shuchi Grover & Pea, 2013). In 
addition, CT is also of interest for higher education research as its introduction to both Computer 
Science and non-major curricula is considered important. Although methods for teaching CT at K-12 
level are being investigated in a large body of research, at higher education level, research on 
teaching CT as a fundamental skill set is still lagging behind (Czerkawski & Lyman, 2015).  

Previous studies (Czerkawski & Lyman, 2015) review CT literature in higher education focusing on 
efforts to define CT, to implement CT in Computer Science curricula and efforts to integrate CT into 
other domain of application besides Computer Science. However, a systematic map of CT through 
programming in higher education is still missing. 



2 
 

A systematic map could offer in research development by providing a structured type of research 
that has been conducted by categorizing it (Petersen et al., 2008). This study aims to map teaching 
and learning CT through programming in higher education by identifying its areas and sub-areas. The 
starting point is considered to be the areas provided by the conceptual model CTPK-12 (Tikva & 
Tambouris, 2021) namely: Knowledge Base, Learning Strategies, Tools, Assessment, Factors, Capacity 
Building.  In addition, we investigate the areas of CT teaching and learning cycle in higher education 
based on two dimensions: their evolution over the years and the branches to which CT is applied.  

2. Theoretical Foundations 

CT was firstly introduced by Papert (1980), who relates programming to procedural thinking skills. 
The term CT was reintroduced by Wing (2006) who defines CT as a process that “involves solving 
problems, designing systems, and understanding human behaviour, by drawing on the concepts 
fundamental to computer science” (Wing 2006, p.33). She points out that CT is a fundamental skill 
for everyone, not just for computer scientists and argues that “To writing and arithmetic, we should 
add CT to every child’s analytical ability” (Wing 2006, p.33). Wing’s definition has subsequently 
become a reference point for discussion on CT. However, various other definitions have emerged in 
the literature (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013). 

Definitions often draw upon programming and computing concepts or regard CT as a set of elements 
related both to computing concepts and problem-solving skills (Tang et al., 2020).  International 
Society for Technology in Education (ISTE) and Computer Science Teacher Association (CSTA) (2011) 
developed an operational definition that includes, the following elements: (a) formulating problems 
in a way that enables us to use a computer and other tools to help solve them, (b) logically 
organizing and analyzing data, (c) representing data through abstractions such as models and 
simulations, (d) automating solutions through algorithmic thinking (a series of ordered steps), (e) 
identifying, analyzing, and implementing possible solutions with the goal of achieving the most 
efficient and effective combination of steps and resources; and (f) generalizing and transferring this 
problem solving process to a wide variety of problems. In addition to these elements (ISTE) and 
(CSTA) include the following attitudes to their operational definition: (a) confidence in dealing with 
complexity, (b) persistence in working with difficult problems, (c) tolerance for ambiguity, (d) the 
ability to deal with open ended problems; and (e) the ability to communicate and work with others 
to achieve a common goal or solution.  

Selby (2013) defines CT as a though process that involves (a) the ability to think in abstractions, (b) 
the ability to think in terms of decomposition, (c) the ability to think algorithmically, (d) the ability to 
think in terms of evaluations; and (e) the ability to think in generalizations.  

Shute et al. (2017) developed a competency model that includes the following facets: (a) 
Decomposition: Dissect a complex problem/system into manageable parts. The divided parts are not 
random pieces, but functional elements that collectively comprise the whole system/problem; (b) 
Abstraction: Extract the essence of a (complex) system. Abstraction has three subcategories: (i) Data 
collection and analysis: Collect the most relevant and important information from multiple sources 
and understand the relationships among multilayered datasets, (ii) Pattern recognition: Identify 
patterns/rules underlying the data/information structure, (iii) Modeling: Build models or simulations 
to represent how a system operates, and/or how a system will function in the future; (c) Algorithms: 
Design logical and ordered instructions for rendering a solution to a problem. There are four sub-
categories: (i) Algorithm design: Create a series of ordered steps to solve a problem, (ii) Parallelism: 
Carry out a certain number of steps at the same time, (iii) Efficiency: Design the fewest number of 
steps to solve a problem, removing redundant and unnecessary steps, (iv) Automation: Automate 
the execution of the procedure when required to solve similar problems; (d) Debugging: Detect and 
identify errors, and then fix the errors, when a solution does not work as it should; (e) Iteration: 
Repeat design processes to refine solutions, until the ideal result is achieved; and (f) Generalization: 
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Transfer CT skills to a wide range of situations/domains to solve problems effectively and efficiently. 

Brennan and Resnick’s (2012) CT framework draws from programming in Scratch. Although, the 
context is specific, their framework has been highly adopted in studies outside Scratch. The 
framework includes the following three dimensions: a) CT concepts including Sequences, Loops, 
Parallelism, Events, Conditionals, Operators, Data, (b) CT practices including Being incremental and 
iterative, Testing and debugging, Reusing and remixing, Abstraction and modularity and (c) CT 
perspectives including Expressing, Connecting, Questioning. 

CT as a mental construct that concerns each individual, has attracted research interest in both K-12 
and higher education. The accumulation of research plethora has led to efforts to review the 
literature with an emphasis on K-12, higher education or both.  

Czerkawski & Lyman (2015) review CT research in higher education, focusing on issues around 
definition and scope, CT strategies in computer science and efforts to infuse CT into disciplines 
outside the field of Computer Science. They report research suggesting that game-based learning 
and simulations strategies may be effective in teaching CT to students of Computer Science and 
STEM disciplines. Regarding the application of CT in various other disciplines, they suggest that field-
appropriate methods and strategies are required. Furthermore, they discuss issues of digital divide 
and social equity, highlighting that colleges need to offer innovative programs and support to give 
students equal access to opportunities. In addition, Czerkawski & Lyman (2015) argue that 
educational technologists could play an important role in creating professional development 
material for universities interested in incorporating CT in their practices. 

Tikva and Tambouris (2021) develop the CT through Programming in K-12 education (CTPK-12) 
conceptual model that identifies the concepts involved in the process of CT teaching and learning. 
The CTPK-12 model consists of the following areas: Knowledge Base Area, Learning Strategies Area, 
Assessment Area, Tools Area, Factors Area and Capacity Building Area (Table 1).  

 
Table 1. CT Areas adopted from Tikva and Tambouris (2021) 
 

CT Area Definition 

Knowledge Base Area CT measurable elements and their classification. 

Assessment Area Assessment methods and frameworks for measuring CT through 
programming in K-12 education. 

Learning Strategies 
Area 

Learning strategies leveraged to enhance students' CT learning through 
programming in K-12 education.  

Factors Area Factors related to CT through programming acquisition in K-12 education. 

Tools Area Tools that are used or specifically developed for teaching and learning CT 
through programming in K-12 education. 

Capacity Building Area Capacity building needed for teaching CT through programming in K-12 
competently.  

  

Although the CTPK-12 model refers to CT through programming in K-12 education, it serves as the 
basis for this study as it presents all areas of teaching and learning CT in K-12 education. Therefore, 
in order to identify respectively the areas and sub-areas of teaching and learning CT through in 
higher education, we use as a starting point the areas of CTPK-12 model, while further identifying 
whether there are additional areas for teaching and learning CT through programming in higher 
education. We further analyze these areas based on two dimensions: their evolution over the years 
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and the branches to which CT is applied.  

3 Method 

In order to achieve the study goal, we apply a Systematic Mapping Study based on Petersen’s et al. 
(2008) methodology. This includes the following adapted steps. 

Step1. Definition of research questions: Definition of research questions based on the study goal 
(Section 3.1) 

Step2. Conduct search for primary studies: Conducting a structured search based on relevant search 
strings on scientific databases (Section 3.3). 

Step3. Screening of Studies: Applying exclusion and inclusion criteria (Section 3.4). 

Step4. Classification scheme Identification: Definition of the classification scheme. 

Step5. Data Extraction and mapping process: Shorting the studies into the classification scheme and 
provide visualizations of the results. Fig. 1 presents the study method in terms of steps conducted 
and relevant outcomes. 

 

 

Fig.1. Systematic mapping process, adapted from Petersen et al. (2008) 

3.1 Definition of Research Questions 

The research questions are the following: 

RQ1 What are the areas and sub-areas of teaching and learning CT through programming in 
higher education?   
RQ2. How do these areas evolve over the years and how do they apply to various branches? 

3.2 Conduct search for primary studies 

We structured the search string driven by the research study goal. Specifically, we used the search 

string TITLE-ABS-KEY ( "computational thinking" )  AND  PUBYEAR  >  2005  AND  ( LIMIT-

TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( DOCTYPE ,  "re" ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) ) 

in Scopus database and TITLE: ("computational thinking") Refined by: DOCUMENT TYPES: ( ARTICLE 

OR REVIEW ) AND LANGUAGES: ( ENGLISH ) Timespan: 2006-2020. Indexes: SCI-EXPANDED, SSCI, 

A&HCI, ESCI in Web of Science database. Searches include articles published between January 2006 

and December 2020. Searches resulted in 993 studies, 707 articles in Scopus database and 286 in 

Web of Science database.  
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3.3 Screening of studies 

During this step we removed 249 duplicates and studies that were not fully availably. Subsequently, 
we applied inclusion and exclusion criteria to exclude studies that were not relevant to answering 
the research questions. Table 2 presents the exclusion and inclusion criteria defined. Finally, we 
included 39 primary studies and 2 additional primary studies that we identified through backward 
(reviewing citations) and forward searching. Appendix present the total of 41 studies included. 

Table 2. 

Inclusion and exclusion criteria. 

Inclusion Criteria Exclusion Criteria 

Empirical CT studies in which participants are 
undergraduate students, postgraduate students 
and academic staff. 

Empirical CT studies that focus on CT through 
programming. 

Studies which discuss/apply CT through other 
means than programming. 
  

3.4. Classification Scheme Identification 

We use as base for the classification scheme the areas of the CTPK-12 model presented in Section 2. 
Each Area of the model corresponds to one category in the classification scheme. Petersen et al. 
(2008) propose the extraction of the classification scheme based on keywording of abstracts of the 
selected studies. For this purpose, we read all the abstracts of the selected articles and wrote down 
keywords. Each keyword was assigned to one of the classification scheme categories in order to 
determine if there were any additional categories that could be included in the classification 
scheme. 

3.5 Data extraction and mapping process 

In this step we classify the selected primary studies into the classification scheme. According to 
Petersen et al. (2008) the classification scheme evolves while data extraction is performed. When 
sorting the selected primary studies into the categories, new sub-categories appear, while others 
remain unused. We used an Excel table per category to document the different instances of sub-
categories in each primary study and the evolution of the classification scheme. When listing a 
primary study into a particular category and sub-category, we provide a brief rational for why the 
study should be located in that particular category/sub-category. The final tables show the 
distribution of primary studies into sub-categories and calculate the relevant frequencies. The 
analysis of the results focuses on comparing frequencies between different time periods and 
different targeted groups. This allows us to identify the categories and sub-categories highlighted in 
CT through programming in higher education research and therefore understand its evolvement and 
application. 

3.6 Study Limitations 

We acknowledge that this study has some limitations. First, the study includes only studies written in 
English. Second, searches were conducted in only two scientific databases, namely Web of Science 
and Scopus. Third, searches were conducted with a time constraint of 2006 onwards. Thus, the study 
maps the research conducted since 2006 and not on the initial stages of CT research. Finally, the 
small number of authors (only two) combined with subjectivity constitutes an additional limitation of 
the study. Although we applied a systematic mapping method, we had to make subjective choices 
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regarding the evolution of the classification scheme. 

4. Results 

4.1 Overview 

4.1.1 Studies by year 

The distribution of studies by year (Fig. 2) reveals an upward trend in the number of studies. This is 
particularly true from 2017 onwards when the number of studies increases, suggesting that the field 
is generally beginning to mature. For this reason, we analyze the evolution of the field based on the 
two time periods 2006-2016 and 2017-2020. 

 

 

Fig. 2. Studies by year. 

4.1.1 Interventions for CT development in higher education. 

CT through programming empirical interventions in higher education (Table 3) mainly focus on 
Education majors, Natural Sciences majors and Computer Science (CS) majors. Table 4 presents the 
classification of branches based on the selected studies. The intense interest in Education branch led 
us to classify it as a separate branch in the context of this study. Fig. 3 presents the percentage of 
studies by branch in periods 2006-2016 and 2017-2020. 

Table 3 

Study Content Branch Participants 

(Adler & Kim, 
2018) 

Science methods 
course 

Education 19 graduate and 13 
undergraduate 
preservice teachers 

(Bui et al., 2018) Mindmaps and 
Scrath programming 

Mathematics Education 50 preservice teachers 

(Cachero et al., 
2020) 

Programming 
training 

Health Information Systems, 
Psychology 

104 undergraduate 
students 
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(Chao, 2016) Principles and 
methods of C++ 
language 
programming 

Information Communication 158 undergraduate 
students 

(Choi, 2019) Java programming 
class 
 

Undefined 28 undergraduate 
students 

(Cutumisu & 
Guo, 2019) 

Educational 
Technology course 

Education 139 preservice teachers 

(Cetin, 2016) Programming 
language course 

Education 56 pre-service teachers 

(Dolgopolovas & 
Jevsikova, 2015) 

Structured 
programming (SP) 
course 

Software Engineering 65 undergraduate 
students 

(Fang et al., 
2017) 

Database Principles 
course 

Computer Science and 
Technology 

24 undergraduate 
students 

(Fernandez et 
al., 2018) 

Workshop Education 21 inservice and pre-
service teachers 

(Fernandez et 
al., 2018) 

Start to 
Programming course 

Physics, Mathematics and 
Natural Sciences 

22 undergraduate 
students 

(Gabriele et al., 
2019) 

Programming course Primary Education 141 preservice teachers 

(Hambrusch et 
al., 2009) 

Introduction to CT Physics and Chemistry 13 undergraduate 
students 

(Hou et al., 
2020) 

Programming course Beauty Science 40 sophomore students 

(Jaipal-Jamani & 
Angeli, 2017) 

Science education 
methods course 

Elementary Teacher Education 21 preservice teachers 

(Jeon & Kim, 
2017) 

CT-based 
programming course 
applicable to liberal 
arts 

Education 110 preservice teachers 

(Kang & Lee, 
2020) 

Project-based 
learning course 

Non-engineering majors Undergraduate 
students 

(Kazimoglu et 
al., 2012) 

Introductory 
computer 
programming 

Computer Science 25 undergraduate 
students 

(Katai, 2020) Sorting algorithms Humanities, Science 48 undergraduate 
students 

(Kwon & Kim, 
2018) 

CT and Software 
Coding & Problem 
Solving and 
Algorithm courses 

Humanities, Social sciences 
and Arts 

250 undergraduate 
students 

(Lee & Cho, 
2020) 

Computer 
programming 
 

Undefined 151 undergraduate 
students 

(Lin & Chen, 
2020) 

Program Logic 
Thinking Education 
 

Arts, Music, Chinese, Public 
Administration 
 

97 undergraduate 
students 

(Mouza et al., 
2017) 

Integrating 
Technology in 

Education 21 preservice teachers 
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Education program 
(Page & 
Gamboa, 2013) 

How Computers 
Work: Logic in Action 
 

Science, Engineering, History, 
Letters, Philosophy, 
Linguistics, Economics, Drama, 
Business, Psychology, 
Business, Computer Science, 
Computer Engineering 

36 undergraduate 
students 

(Pala & Mıhçı 
Türker, 2019) 

Programming-I 
Education 33 preservice teachers 

(Qin, 2009) Introduction to 
Bioinformatics 
 

Biology  Undefined 

(Rodríguez-
García et al., 
2020) 

AI, ML and its 
societal implications 
workshop 

Computer Science 14 students 

(Romero et al., 
2017) 

StorytoCode creative 
challenge 
 

Elementary School Education 120 preservice teachers 

(Rubinstein & 
Chor, 2014) 

Computational 
Approaches for Life 
Scientists 
 

Biology 25 graduate and 
undergraduate 
students 

(Shih et al., 
2015) 

Computer 
Applications in 
Emergency 
Management 

Emergency Management 
Technology 

18 undergraduate 
students 

(Wu et al., 2019) Introduction to C++ 
programming 
 

Education 47 preservice teachers 

(Yuen & 
Robbins, 2014) 

Introductory 
computer science 
course (data-driven) 
 

Biology 5 undergraduate 
students 

(Zha et al., 
2020a) 

Educational 
Technology course 

Education 59 preservice teachers 

(Zha et al., 
2020b) 

Educational 
Technology course 

Education 15 preservice teachers 

 

Table 4 

Classification of branches  

Branch sub-
category 

Description 

Majors (CS) Computer Science including Computer Science and Technology, Computer 
Science, Computer Engineering, Software Engineering 

Education majors Education including Mathematics Education, Primary Education, Elementary 
School Education, Secondary Education 

Non-majors in CS Natural Sciences including Chemistry, Biology, Physics 

Humanities, Social sciences and Arts including History, Letters, Philosophy, 



9 
 

Linguistics, Economics, Drama, Business, Psychology, Business, Arts, Music, 
Chinese, Public Administration. 

Engineering 

Mathematics 

Health Information Systems  

Information Communication  
Beauty Science 

 

 

Fig. 3. Percentage of studies by branch in periods 2006-2016 and 2017-2020.  

During period 2006-2016 a percentage of 69,23% focuses on Computer Science, Engineering and 
Natural Sciences while only 7.69% focuses on Education majors. During the next period 2017-2020 
the focus shifts from the aforementioned branches to Education. A 54,17% of interventions for CT 
through programming focus mainly on preservice teachers’ preparation. Thus, we can conclude that 
there is an upward research trend for interventions aimed at Teacher Education. 

4.2 CT teaching and learning areas in higher education 

The classification scheme identification phase revealed that there are no additional areas in the 

selected studies other than those indicated by the CTPK-12 model (Table 1). Therefore, the areas of 

CT through programming in higher education which are analyzed and synthesized in the following 

sections are the following: Knowledge Base, Learning Strategies, Tools, Assessment, Factors, 

Capacity Building. 

14.2.1 Knowledge Base 

15 studies discuss elements of CT including domain specific elements, programming elements and 
higher-order skills. Table 5 presents the classification of CT elements in the selected studies. Fig. 4 
presents the distribution of CT Knowledge Base sub-categories by periods 2006-2016 and 2017-
2020. Table 6 presents the distribution of CT Knowledge Base sub-categories by classified branch. 

Chao (2016) investigates Computational practice (Sequence, Selection, Simple iteration, Nested 
iteration, Testing), Computational design (Problem decomposition, Abutment composition, Nesting 
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composition) and Computational problem-solving performance (Goal attainment, Program size). Wu 
et al. (2019) adapts Brennan & Resnick’s framework (2012), proposing Concepts (Sequence, Loops, 
Conditions, Operators, Data), Practices (Incremental and Iterative, Testing and Debugging, Reusing 
and Remixing, Abstracting and Modularizing) and Identities (Expressing, Questioning). In the same 
line, Cutumisu & Guo (2019) adopts Brennan & Resnick’s framework (2012) for assessing CT 
concepts, practices and perspectives. Cetin (2016) investigates variables, conditional and selection 
statements, loops, arrays, and functions as CT elements. Yuen & Robbins (2014) investigates 
students’ CT based on a coding scheme that includes Organization (Coding style, Data organization), 
Construction (Following procedures, Visualizing data) and Analysis (Interpretation and Conclusions). 
Jaipal-Jamani & Angeli (2017) investigate correct sequence, decisions on the flow of control and 
debugging.  

Qin (2009) propose Multilevel abstraction and conceptualization, Iteration, recursion and 
backtracking, Modularization, Assessment and error corrections, Optimization and Simulation 
among other CT skill sets that are domain specific, derived from mapping CT skills to specific 
bioinformatics topics. In the same line, Rubinstein & Chor (2014) propose Abstraction, 
Generalization, Modular design and decomposition, Data structures and Computational models 
among other domain specific computational concepts and processes.  

Other studies propose skills such as Abstraction, Decomposition, Recognition of Patterns and 

Algorithms (Fernández et al., 2018; Hou et al., 2020), Creativity, Algorithmic Thinking, Cooperativity, 

Critical Thinking and Problem Solving (Korkmaz et al., 2017; Lin & Chen, 2020; Pala & Mıhçı Türker, 

2019). Sondakh et al. (2020) propose a holistic CT framework that includes the skills of Abstraction, 

Algorithmic Thinking, Decomposition, Debugging, Evaluation, Generalization and the attitudes of 

Problem solving, Teamwork and communication. 

Table 5 
 CT Knowledge Base sub-categories 

Knowledge Base sub 
category 

Description Studies 

Domain Specific 
elements 

CT concepts, skills and processes mapped to 
specific domains. 

PS31, PS34 

Programming elements Programming related concepts, practices, 
identities and designs.  

PS4, PS5, PS7, PS11, 
PS15, PS38, PS39 

Higher-order elements Higher-order thinking skills and competencies. PS10, PS13, PS21, 
PS24, PS29, PS36 

 

 

Fig. 4. Distribution of CT Knowledge Base elements sub-categories by time period. 
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Domain-specific elements are discussed in studies during period 2006-2016 while in period 2017-
2020 these elements are absent. Higher-order elements are introduced during period 2017-2020 
with a percentage of 60% in the selected studies of this period. Programming elements are discussed 
throughout the years. 

Table 6. Percentage of studies’ CT Knowledge Base elements sub-categories by classified branch. 

Knowledge Base sub-category Non-majors in CS Education majors 

Programming elements 33,33% 66,67% 

Higher-order elements 33,33% 33,33% 

Domain Specific elements 33,33% 0,00%  
100,00% 100,00% 

 

Domain Specific elements are discussed only in studies targeted non-majors in CS. Programming 
elements have the strongest presence in the selected studies and particularly in Education majors. 

4.2.2 Learning Strategies 

Researchers in 24 studies discuss, propose or apply teaching and learning strategies for CT through 
programming in higher education. Out of these studies, seven apply more than one learning strategy 
or practice. We classify learning strategies in nine sub-categories, namely, Game Based Strategies, 
Modeling & Simulations Based Strategies, Problem Solving Strategies, Project Based Strategies, 
Scaffolding Practices, Collaborative Strategies, Flipped Classroom, Hands-on strategies and 
Lectures. Table 7 presents studies by each sub-category. Fig. 5 presents the distribution of learning 
strategies sub-categories by time periods 2016-2016 and 2017-2020. Table 8 presents the 
distribution of learning strategies sub-categories by classified branch. 

Six studies discuss Problem Solving Strategies (Cetin, 2016; Hambrusch et al., 2009; Jeon & Kim, 
2017; Kang and Lee, 2020; Lee & Cho, 2010; Yuen & Robbins, 2014). For example, Yuen & Robbins 
(2014) examine how undergraduate students develop CT skills during a data-driven programming 
course that encompasses problem-solving iterative processes. Lee & Cho (2020) exploit problem-
solving methods to improve students’ CT skills and logical thinking ability. Hambrusch et al. (2009) 
developed a course aimed at introducing students to CT based on a problem-driven format. 

Four studies discuss Collaborative Strategies: Pair programming (Choi, 2019), Think-Pair-Share 
practice (Choi, 2019), Collaborative programming (Wu et al., 2019), teamwork (Jaipal-Jamani & 
Angeli, 2017; Zha et al., 2020b). Collaborative programming is proposed as an effective learning 
strategy to enhance students’ CT in higher education (Wu et al., 2019). For example, Choi (2019) 
develops an instructional model that exploits Think-Pair-Share Strategy and pair programming. The 
results of this study show that collaborative strategies could help students learn CT and 
programming. 

Three studies discuss Project Based Strategies (Ma et al., 2017; Wu et al., 2019). Wu et al. (2019) 
support that project-based learning contexts can help novice students develop different learning 
pathways to learn CT. In the same line, Ma et al. (2017) propose using project-driven learning 
strategies to enable students to acquire CT. 

Three studies discuss Scaffolding strategies (Chao, 2016; Jaipal-Jamani & Angeli, 2017; Yuen & 
Robbins, 2014) usually combined with other strategies. Yuen & Robbins (2014) propose scaffolding 
as an effective learning strategy in order to enable students to focus on higher-order computational 
concepts without struggling with coding process in a text programming language such as MATLAB.  
In the same line, Chao (2016) argues that scaffolding may facilitate students to develop 
programming strategies and skills. Jaipal-Jamani & Angeli (2017) also found that the scaffolded 
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programming instructional strategy they applied in their study, helped students to acquire CT. 

Two studies discuss Modeling & Simulations Based Strategies (Adler & Kim, 2018; Magana & Silva 
Coutinho, 2017), two studies Flipped classroom (Zha et al.,2020a, Zha et al. 2020b) and one study 
Game Based Strategies (Kazimoglu et al., 2012). Specifically, Kazimoglu et al. (2012) propose a 
serious game where students develop their game strategies through programming based on an 
educational game framework for CT. 

Two researchers choose to give hands-on activities (Qin, 2009; Rubinstein & Chor, 2014) and three 
use lectures (Cetin, 2016; Gabriele et al., 2019; Jaipal-Jamani & Angeli, 2017). Other strategies 
involve reflective learning (Choi, 2019), storytelling (Romero et al., 2017) and network autonomous 
learning (Li & Hou, 2014). Additionally, learning strategies are implemented in traditional classroom 
settings or in blended environments (Fernández et al., 2018; Mouza et al., 2017; Zha et al., 2020b).  

 

Table 7. Learning strategies sub-categories 

Learning Strategies 
sub-category 

Description Studies 

Game Based Strategies Game Based Related Strategies involve game design and 
digital/video game development, programming games 
and any strategy that exploits games and programming. 

PS18 

Modeling & 
Simulations Based 
Strategies 

Modeling & Simulations Based Related Strategies involve 
designing of scientific models and simulations. 

PS1, PS26 

Problem Solving  
Strategies 

Problem Solving Related Strategies involve Problem 
Based Learning and problem-solving learning strategies in 
general.  

PS4, PS12, 
PS16, PS23, 
PS26, PS39 

Project Based 
Strategies 

Project Based Related Strategies involve the engagement 
with authentic projects set around real challenges and 
problems.  

PS26, PS38 

Scaffolding Strategies  Scaffolding Related Strategies involve practices that offer 
support to students as they learn. 

PS6, PS15, 
PS39 

Collaborative 
Strategies 

Collaborative Related Practices involve practices where 
students actively interact during the learning process 
including Pair programming, Think-Pair-Share practice 
and any practice based on student’s collaboration and 
cooperation. 

PS5, PS15, 
PS38, PS40 

Flipped Classroom 
Strategies 

Flipped classroom Strategies involve strategies that 
reverse the traditional model of classroom instruction. 

PS40, PS41 

Hands-On Strategies Hands-on activities PS31, PS34 
Lectures Theoretical lectures PS4, PS11, 

PS15 
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Fig. 5. Distribution of learning strategies sub-categories by time period. 

During period 2006-2016 problem solving Strategies have the strongest presence (36.36%), while 
during period 2017-2020 almost all learning strategies sub-categories occupy the same percentage 
(13.33%) with the exception of Game Based Strategies which has no presence at all and 
Collaborative Strategies which have a slightly stronger presence than the rest (20%).  

Table 8. Percentage of learning strategies sub-categories by classified branch. 

Learning strategies sub-category CS majors Education majors Non-majors 

Collaborative Related Strategies 0,00% 23,08% 12,50% 

Game Based Related Strategies 33,33% 0,00% 0,00% 

Hands-On Strategies 0,00% 0,00% 25,00% 

Lectures 0,00% 23,08% 12,50% 

Modeling & Simulations Based Related Strategies 0,00% 7,69% 0,00% 

Problem Solving Related Strategies 33,33% 15,38% 25,00% 

Project Based Related Strategies 33,33% 7,69% 12,50% 

Scaffolding Related Strategies  0,00% 7,69% 12,50% 

Flipped classroom 0,00% 15,38% 0,00%  
100,00% 100,00% 100,00% 

No strategy seems to be dominant in any of the classified branches. In addition, as shown in Table 8, 
in studies aimed at preservice teachers and non-majors, a greater variety of studies is applied than in 
studies aimed CS majors. 

4.2.3 Tools  

Researchers in 37 studies discuss, propose or exploit tools for CT teaching and learning in higher 
education. We classify tools in five sub-categories, namely, Programming tools, Robotics & 
Microcontrollers, Augmented Reality Systems, Machine Learning tools and tools specifically 
developed for CT. Table 9 presents tools sub-categories leveraged in the selected studies. Fig. 6 
presents the distribution of tools sub-categories in periods 2006-2016 and 2017-2020. Table 10 
presents the distribution of tools sub-categories by classified branch. 
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Eight studies exploit Scratch (Adler & Kim, 2018; Bui et al., 2018; Cetin, 2016; Gabriele et al., 2019; 

Hou et al., 2020, Mouza et al., 2017; Romero et al., 2017, Zha et al., 2020a), two studies Hour of 

Code (Adler & Kim, 2018; Mouza et al., 2017), one study Code.org (Cutumisu & Guo, 2019), one 

study App Inventor (Shih et al., 2015), one study ARDUINO IDE (Pala & Mıhçı Türker, 2019), one 

study LEGO® WeDo robotics (Jaipal-Jamani & Angeli, 2017), one study Java (Choi, 2019), one study 

Hopscotch (Zha et al., 2020b), one study HTML5 and CSS3 (Jeon & Kim, 2017) nine studies Python 

(Cachero  et al., 2020; Dolgopolovas & Jevsikova, 2015; Hambrusch et al., 2009; Kang & Lee, 2020; 

Kwon & Kim, 2018; Lee & Cho, 2020; Magana & Silva Coutinho, 2017; Pala & Mıhçı Türker, 2019; 

Rubinstein & Chor, 2014), one study ACL programming language (Page & Gamboa, 2013), two 

studies C++ (Pala & Mıhçı Türker, 2019; Wu et al., 2019), three studies SQL (Huang & Leng, 2019; 

Qin, 2009; Fang et al., 2017), two studies MATLAB (Magana & Silva Coutinho, 2017; Yuen & Robbins, 

2014), and four (Chao, 2016; Katai, 2020; Kazimoglu et al., 2012; Lin & Chen, 2020)  studies develop 

a tool. For example, Chao (2016) develops a problem-solving programming environment and Lin & 

Chen (2020) develop a deep learning recommendation based augmented reality system. 

Table 9. Tools sub-categories 

Tools sub-category 
Studies 

Programming 
tools  

Visual programming & PS1, PS2, PS4, PS5, PS7, 
PS11, PS13, PS18, PS19, 
PS28, PS33, PS35, PS39, 
PS40 

 Text programming tools. PS3, PS6, PS8, PS9, PS12, 
PS14, PS16, PS17, PS22, 
PS23, PS27, PS29, PS30, 
PS31, PS34, PS35, PS38, 
PS39 

Robotics & Microcontrollers  PS15, PS30 

Augmented Reality systems PS25 

Machine Learning tools PS32 

Tools specifically developed to support a CT strategy PS5, PS18, PS25, PS19 
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Fig. 6. Distribution of tools sub-categories by period. 

During period 2006-2016 text programming tools have the strongest presence (57.14%) while 
28.57% of studies investigates visual programming. Subsequently during period 2017-2020 a 40% of 
studies investigating visual programming. Thus, an upward trend in visual programming is revealed. 
In addition, new tools such as Microcontrollers, Robotics, Machine Learning tools and Augmented 
Reality systems are introduced. 

Table 10.  Percentage of tools sub-categories by classified branch.  

Tools sub-category CS majors Education majors Non-majors in CS 

Tools developed for CT 20,00% 0,00% 12,50% 

Microcontrollers & Robotics 0,00% 13,33% 0,00% 

Visual programming 20,00% 66,67% 25,00% 

Text programming 40,00% 20,00% 56,25% 

Augmented Reality  0,00% 0,00% 6,25% 

Machine learning 20,00% 0,00% 0,00% 

Total 100,00% 100,00% 100,00% 

Visual programming is investigated mainly in studies that focus on preservice-teachers while it is not 
prevalent in studies that target Non-majors and CS majors. Text-programing is investigated in all 
branches while it is prevalent in studies that target Non-majors in CS (56,25%) and CS majors (40%). 

4.2.4 Assessment 

29 studies discuss CT through programming assessment methods. Assessment methods are 
classified in four sub-categories, namely, Self-report methods, Tests, Artifact analysis and 
Observations. Table 11 presents assessment methods applied in the selected studies. Fig. 7 presents 
the distribution of assessment sub-categories in periods 2006-2016 and 2017-2020. Table 12 
presents the distribution of assessment sub-categories by classified branch. 

Four of the selected studies involve observations. Wu et al. (2019) record students’ actions and 
conversations (screen and video recording) to examine how novice programmers develop CT by 
interacting with each other during collaborative programming and problem solving. More 
specifically, they investigate students’ trajectories and their different CT development pathways. 
Screen recording is used to capture the programming process while video recording is used to 
capture student’s conversations. Yuen & Robbins (2014) collect field notes during participants 
interviews. 
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Six of the selected studies involve artifact analysis. Chao (2016) collects log data about the 
participants' practice, strategies, and performance of computational problem-solving activities. Choi 
(2019) evaluates students’ programming artifacts. Yuen & Robbins (2014) collect source code from 
students’ in-class activities. Romero et al. (2017) analyze students’ projects through Dr. Scratch 
(Moreno-Leon et al., 2015) and manual inspection based on entities, events, code blocks and errors. 
Gabriele et al. (2019) analyzed students’ Scratch files through manual inspection for programming 
concepts, code organization and designing for usability adapted by Denner et al. (2012) and 
automatic inspection through Dr. Scratch.  

23 studies exploit self-report assessment methods. Five studies exploit scales, three surveys, seven 
interviews, eight questionnaires and one study students’ reflections. Yuen & Robbins (2014) use 
interviews as their primary method for data collection. Shih et al. (2015) survey students’ 
perceptions about programming and their experiences with the applied CT intervention. Mouza et 
al. (2017) assess students’ CT knowledge based on a pre/post scale. Cutumisu & Guo (2019) used 
topic modeling techniques to extract participants CT understanding through their reflections. 
Researchers also develop and validate self-report scales in their studies. For example, Korkmaz et al. 
(2017) developed the CTS scale in order to assess students’ CT skills. The scale includes the items of 
Creativity, Algorithmic Thinking, Critical Thinking, Problem Solving and Cooperativity. Sondakh et al. 
(2020) propose a scale for CT assessment validated through Fuzzy Delphi Method that includes the 
items of Abstraction, Algorithmic Thinking, Decomposition, Debugging, Evaluation, Generalization, 
Problem solving, Teamwork, Communication and spiritual intelligence. In the same line, Kılıç et al. 
(2020) developed and validated a scale that includes the items of Conceptual Knowledge, 
Algorithmic Thinking and Evaluation. Finally, ten studies assess students’ CT through tests and 
assignments. For example, Jaipal-Jamani & Angeli (2017) used programming worksheets with 
completed, semi-completed and new programming tasks. Lin & Chen (2020) used multiple-choice 
and fill-in-the-blank questions to assess students’ programming understanding. 

Table 11. Assessment sub-categories 

Assessment 
sub-category 

Description Studies 

Self-Report 
Methods 

scales, questionnaires, surveys, interviews, reports, 
reflections 

PS1, PS2, PS3, PS4, PS5, 
PS7, PS10, PS11, PS15, 
PS16, PS17, PS20, PS21, 
PS22, PS28, PS29, S30, 
PS31, PS34, PS35, PS36, 
PS39, PS40 

Tests  multiple choice and open-ended tests, quizzes, 
tasks, assignments 

PS3, PS4, PS15, PS18, 
PS25, PS31, PS32, PS34, 
PS39, PS40 

Artifact analysis automatic analysis, manually inspection of artifacts, 
log data 

PS5, PS11, PS19, PS33, 
PS38, PS39 

Observations observations of students’ actions, screen recordings, 
camera recordings, field notes 

PS2, PS37, PS39, PS40 
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Fig. 7. Distribution of assessment sub-categories by period. 

During period 2017-2020 an upward trend in the use of observations (+4,04%) and self-report 

methods (+10.47%) and a downward trend in the use of tests (-15.47%) is revealed in the 

assessment of CT. Artifact analysis shows a very small increase of 1.48%.  

Table 12. Percentage of assessment sub-categories by classified branch. 

Assessment sub-category CS majors Education majors Non-majors in CS 

Artifact Analysis 0,00% 15,79% 14,29% 

Observations 0,00% 15,79% 7,14% 

Tests 50,00% 10,53% 28,57% 

Self-Report Methods 50,00% 57,89% 50,00% 

Total 100,00% 100,00% 100,00% 

 

Self-report methods have the strongest presence compared to other methods in studies targeted 

Non-majors in CS (50%) and education majors (57.89%). 

4.2.5 Factors 

Nine studies discuss factors that affect CT. Table 13 presents factors discussed in the selected 
studies. The effects that CT could have on interest in Computing and attitudes toward programming 
(Cetin, 2016; Hambrusch et al., 2009; Shih et al., 2015), self-efficacy (Jaipal-Jamani & Angeli, 2017; 
Kwon & Kim, 2018), creativity (Romero et al., 2017), interest in CT (Zha et al., 2020a), motivational 
impact (Katai, 2020), enrollment in CS courses (Hambrusch et al., 2009) and occupational change 
(Kwon & Kim, 2018) are discussed in the selected studies. CT-related factors are discussed through 
the years, 33.33% of the studies are published during 2006-2016 and another 66.67% during 2017-
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2020. Furthermore, studies that investigate CT-related factors focus on both Education Majors 
(57.14%) and Non-majors in CS (71.43%). 

Hambrusch’s et al. (2009) study reveals that the problem-driven approach focused on computational 
principles and scientific discovery they applied, increased students’ interest in CS. In the same line, 
Shih et al. (2015) found a positively change in students’ perceptions about computing after they 
attended a course aimed to encourage students to apply CT and problem-solving skills to authentic 
problems. On the contrary, Cetin (2016) found no significant difference between control and 
experimental group students in terms of their attitudes towards programing. However, he suggests 
that this this is probably due to the short duration of the intervention and the difficulty of changing 
students’ already high attitudes. Kwon & Kim (2018) conclude that a software education curriculum 
based on CT can stimulate students’ intrinsic motivation and improve students’ self-efficacy. In the 
same line, Jaipal-Jamani & Angeli (2017) found that after participated in a CT robotics program 
students’ self-efficacy related to robotics and interest in learning robotics significantly increased. 
Kwon & Kim’s (2018) study reveals that integrating CT could affect students’ perspectives about their 
future occupation. 

Table 13. Factors investigated in the selected studies. 

Factors Description Studies 

Non-Cognitive 
factors 

Personal traits, attitudes and motivations such as 
attitudes toward programming, self-efficacy, creativity, 
interest in CS, perspective about future occupation. 

PS4, PS12, PS15, 
PS19, PS22, PS27, 
PS33, PS35, PS41 
 

4.2.6 Capacity Building 

Only three of the selected studies discuss academic faculty training and professional development 
and they are all published in period 2017-2019. Table 14 presents methods regarding capacity 
building discussed in the selected studies.  

Magana & Silva Coutinho (2017) survey industry and academia experts to identify the challenges 
facing academic staff in integrating CT at undergraduate level. Ma et al. (2017) suggest ways to 
improve university student’s CT skills, including faculty professional training based on two principles: 
the mobility of academic staff and the organization of training programs. Taylor et al (2018) 
emphasize the role of collaboration between institutions as a means of motivating academic staff to 
redesign courses to integrate new concepts such as CT and coding. 

Table 14. Capacity Building methods 

Capacity Building Description Studies 

Professional 
development 

Variety of tools such as training programs, mobility of 
academic staff, collaboration between institutions. 

PS26, PS27, PS37 

5. Discussion and conclusions  

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning Strategies, 
Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12 model also cover 
teaching and learning CT through programming in higher education. However, different sub-areas 
emerge in CT areas, while some of the model’s sub-areas do not exist in the selected higher 
education studies. Fig. 8 presents the revised CTPK-12 model that corresponds to CT through 
programming in higher education. The CTPK-12 model also depicts the relationships between the 
areas of teaching and learning CT through programming as links between the areas shown in Fig. 8. 
The revised model could be use in order to develop research questions between the areas of 
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teaching and learning CT through programming in higher education. For example, which learning 
strategies could be more appropriate for teaching CT domain specific elements, which for CT 
programming elements and which for CT higher-order skills.  

 

Fig. 8. The revised conceptual model for CT through programming in higher education (CTPHE). 

Furthermore, as CT applications become more mature these areas evolve. Early attempts often link 
CT to domain-related elements, drawing on topics and activities related to specific courses and 
disciplines. However, in the coming years, CT is considered as a construct that is more associated 
with high-level skills such as abstraction and decomposition. Elements related to programming are 
most prevalent and evident throughout the years. This is plausible as CT draws from CS concepts 
according to Wing’s (2006) definition. 

CT through programming in higher education is traditionally implemented through text 
programming environments. However, the analysis of the selected studies revealed an upward trend 
in visual programming. This could be explained as visual programming is often applied to teacher 
education courses that have been at the forefront of CT higher education in recent years. In 
addition, tools such as Microcontrollers, Robotics and Augmented reality systems have recently 
emerged. 

CT assessment is generally considered difficult to achieve by several authors (Brennan & Resnick, 
2012; Denning, 2017; Fronza et al., 2017; Werner et al., 2012; Zhong et al. 2016). While self-report 
methods are the most common, the analysis of the selected studies also revealed a shift from tests 
to artifact analysis and observations in recent years. These methods are incorporated in order to 
provide a more complete picture of the CT acquisition. 

Learning strategies and factors related to CT development such as personal traits, attitudes and 
motivations are discussed throughout the years, while academic faculty training and professional 
development gained attention only recently.  

Teaching and learning CT through programming in higher education could be also organized in two 
areas: CT development for Non-majors and CS majors; and Teacher Education. The first concerns 
interventions and studies that propose the integration of programming aiming to help Non-majors 
and CS majors to acquire CT. The second concerns efforts to educate and support pre-service 
teachers with ultimate goal the integration of CT in K-12 education. The two areas present 
differentiation mainly in the tools used and the CT elements that are assessed with the second one 
to draw upon research on CT contacted in K-12 settings. Implementation of CT through 
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programming for pre-service teachers is designed mainly on the basis of programming elements and 
includes mainly visual programming.  

The analysis of the selected studies reveals that the focus of CT research in higher education is 
mainly on re-designing courses to align disciplinary knowledge with CT core concepts and to provide 
instructional models. The development of frameworks for learning strategies, tools and assessment 
methods is not extensively discussed in the selected studies.  

Herein we also identify gaps that we discuss in the following paragraphs in an attempt to draw 
connections and implications from K-12 education where extensive efforts are being made 
worldwide to integrate CT. 

In terms of learning strategies, although previous research has revealed that game design is often 
selected to introduce software engineering to students Souza et al. (2018), this is not the case for CT 
in higher education. There is no study in the selected studies that focuses on the development of CT 
through programming that applies game design learning strategy. In contrary, in K-12 education, 
game design is one of the most common strategies applied in several studies such as (Garneli & 
Chorianopoulos, 2018; Repenning et al., 2015; Weintrop et al., 2016). This is probably due to the 
capabilities of the tools offered to different age groups. In K-12 education, various tools such as 
Scratch (Resnick et al., 2009), and Agentsheets (Repenning et al., 2015) are utilized for game design 
and media computation, supporting the implementation of learning strategies that include game 
design learning. Although these tools are widely used in K-12 education and in higher education to 
prepare future teachers (Adler & Kim, 2018; Angeli et al., 2016; Gabriele et al., 2019), they are rarely 
used in interventions targeted other CS major or Non-major students. Text programming languages 
that are mainly used in higher education pose challenges to students such as dealing with complex 
syntaxes and abstract concepts (Buitrago Flórez et al., 2017) and require deep programming learning 
and experience to enable students to develop a game.  

The importance of learning strategies in CT development is emphasized in both K-12 and higher 
education studies. Denner et al. (2012) study reveals that introducing CT to young students without 
applying a learning strategy, causes difficulties in developing students’ CT skills. In the same line, 
Dolgopolovas & Jevsikova, (2015) argue that appropriate learning strategies should be exploited in 
order to facilitate CT skills development. They suggest that programming didactical approaches in 
higher education should focus on problem solving skills rather than language programming syntax. 

Only few studies (Lee & Cho, 2020; Li & Hou, 2014; Ma et al., 2017) focus on creating frameworks by 
aligning learning strategies with CT. The bulk of research in higher education focuses on the 
implementation of learning strategies within specific courses and the development of instructional 
models.  

Although there are studies that underline the role of communities in CT development (Xing, 2019) 
and the need to shift from tools to Communities (Clark & Sengupta, 2019; Kafai, 2016), as CT and 
programming are social practices, the exploitation of programming Communities in higher education 
is still lacking behind. Content-specific tools and mainly text programming languages are those 
applied in the higher education context. This in line with Magana & Silva Coutinho's (2017) study, 
showing that tools for teaching and learning CT in higher education are chosen on the basis of 
subjects rather than on their ability to support the acquisition of these skills. Exception are studies 
that focus on pre-service teachers that investigate mainly visual programming. 

CT assessment in higher education applies the same assessment methods (Artifact Analysis, 
Observations, Tests and Self-report) as in K-12 education. However, the assessment is mainly carried 
out in the context of course evaluation. There are some efforts to develop universally accepted 
assessment methods but all of them are self-report methods. This is consistent with Lyon and 
Magana (2020) review that highlights the strong presence of self-report assessment methods in 
higher education CT studies. In addition, studies do not always attempt to validate the methods used 
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and often do not yield quantitative results. Other challenges involve the small sample size and the 
lack of CT specific elements in the studies’ results.  

Moreover, often while studies present in the background various definitions of CT, they do not 
ultimately provide information on which elements of CT they focus on based on these definitions. 
Many times, they do not mention the CT context on which they are based, or display CT elements 
that are not based on a clear definition, are poorly documented and often vague. 

Females and minority groups are often underrepresented in computing, as well as in technology 
labor (Jenson & Droumeva, 2016). Cooper et al. (2014) suggest that research in computing education 
should focus on gender and other minority groups. In addition, Shute et al. (2017) review the 
literature highlighting that researchers consider utilizing CT to motivate learners, especially females 
and minorities. However, there are limited studies (e.g., Zha, 2020a) in higher education that discuss 
the use of CT through programming to address issues related to female or underrepresented 
students. In addition, although gender as a factor affecting CT acquisition is particularly discussed in 
K-12 education (Atmatzidou & Demetriadis, 2016; Durak & Saritepeci, 2018), this is not the case for 
higher education. Studies in higher education do not focus on examining the relationship between 
gender and other social factors with CT.  

Although teachers’ knowledge and needs and their preparation to support students’ understanding 
of CT are highly discussed in K-12 literature (e.g., Alfayez & Lambert, 2019; Angeli et al., 2016; Bower 
et al., 2017; Giannakos et al., 2015; Israel et al., 2015; Mouza et al., 2017; Yadav et al., 2017), 
research in higher education rarely focuses on faculty preparation. Only two of the selected studies 
involve higher education faculty (Magana & Silva Coutinho, 2017) or discuss opportunities for 
professional development (Ma et al., 2017). 

To conclude, the results of this review indicate that several efforts have been emerged in CT through 
programming in higher education research recently, although challenges remain in the six areas 
identified in this review: Knowledge Base, Learning Strategies, Tools, Assessment, Factors and 
Capacity Building. Future studies should address remaining challenges by basing their design on clear 
definitions of CT as categorized and described in 1.4.2.1 section. The assessment should be based on 
the recording of CT elements as previously defined in the context of the studies. In addition, it is 
proposed to integrate direct assessment methods in combination with self-report methods in order 
to provide a more objective picture of the development of students' CT. The alignment of CT 
elements and assessment methods could provide a more comprehensive understanding of students’ 
CT development. Future research should also explore how different learning strategies could 
support CT development. In addition, future research could focus on the development of tools 
suitable for higher education, which would enable the exploitation of game design strategies. Finally, 
studies should also focus on the investigation of how factors such as gender, creativity, self-efficacy, 
motivation may affect CT and how professional development of academic stuff could enhance the CT 
integration in higher education context. 
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