
1

A systematic mapping study on teaching and learning Computational Thinking through
programming in higher education.

Computational Thinking (CT) through programming in higher education is considered an important
skill for students to become problem solvers and thrive in the new digital workplace. Despite the
wide interest, a systematic map of CT through programming in higher education is still missing. The
aim of this study is twofold. First, we aim to provide a systematic map of the relevant research by
identifying the areas and sub-areas of CT through programming teaching and learning in higher
education. Second, we aim to investigate these areas based on two dimensions: their evolution over
the years and the branches to which CT is applied. For this purpose, we apply a systematic mapping
methodology. Main results include the identification of the CT areas of Knowledge Base,
Assessment, Learning Strategies, Tools, Factors and Capacity Building. Of these, Knowledge Base,
Assessment and Tools have significantly evolved throughout the years, while Capacity Building has
only recently emerged. In addition, the introduction of CT to undergraduate students and preservice
teachers differs mainly in the tools used and the CT elements that are assessed. The study
contributes to the field by providing a structured type of research conducted and identifying gaps
and opportunities for future research.
Keywords: Computational Thinking, Programming, Higher education

Introduction

With new technological developments and their areas of application evolving rapidly, “21st-century
skills” is one of the most widely used terms in today’s educational debate. In the 21st century,
individuals need to understand the true potential of computers in order to become effective
creators of computational tools, thus participating in the fast-changing digital world (Angeli et al.,
2016). In addition, higher education students need to be independent thinkers, problem solvers, and
decision makers to thrive in their future professional lives and the new digital workspace (Silva,
2009).

Computational Thinking (CT) is in line with many aspects of 21st century skills (Lye & Koh, 2014) such
as thinking creatively, reasoning systematically, and working collaboratively (Resnick et al., 2009).
Wing (2006) defines CT as a way of “solving problems, designing systems and understanding human
behaviour by drawing on the concepts of computer science”, suggesting that CT is a skill for
everyone, not just computer scientists.

CT is considered broader than programming and is often promoted through approaches from
disciplines other than Computer Science. However, Programming is widely accepted as an ideal
medium for CT development (Voogt et al., 2015). Specifically, programming offers the mechanisms
for applying CT concepts and practices (Brennan & Resnick, 2012) and at the same time supports the
cognitive aspects of CT, such as algorithmic thinking, abstraction, decomposition, and testing
(Buitrago Flórez et al., 2017; Shute et al., 2017).

The acquisition of CT is widely discussed in K-12 education in relation to the acquisition of 21st
century skills and digital competences (Angeli & Giannakos, 2020; Shuchi Grover & Pea, 2013). In
addition, CT is also of interest for higher education research as its introduction to both Computer
Science and non-major curricula is considered important. Although methods for teaching CT at K-12
level are being investigated in a large body of research, at higher education level, research on
teaching CT as a fundamental skill set is still lagging behind (Czerkawski & Lyman, 2015).

Previous studies (Czerkawski & Lyman, 2015) review CT literature in higher education focusing on
efforts to define CT, to implement CT in Computer Science curricula and efforts to integrate CT into
other domain of application besides Computer Science. However, a systematic map of CT through
programming in higher education is still missing.

2

A systematic map could offer in research development by providing a structured type of research
that has been conducted by categorizing it (Petersen et al., 2008). This study aims to map teaching
and learning CT through programming in higher education by identifying its areas and sub-areas. The
starting point is considered to be the areas provided by the conceptual model CTPK-12 (Tikva &
Tambouris, 2021) namely: Knowledge Base, Learning Strategies, Tools, Assessment, Factors, Capacity
Building. In addition, we investigate the areas of CT teaching and learning cycle in higher education
based on two dimensions: their evolution over the years and the branches to which CT is applied.

2. Theoretical Foundations

CT was firstly introduced by Papert (1980), who relates programming to procedural thinking skills.
The term CT was reintroduced by Wing (2006) who defines CT as a process that “involves solving
problems, designing systems, and understanding human behaviour, by drawing on the concepts
fundamental to computer science” (Wing 2006, p.33). She points out that CT is a fundamental skill
for everyone, not just for computer scientists and argues that “To writing and arithmetic, we should
add CT to every child’s analytical ability” (Wing 2006, p.33). Wing’s definition has subsequently
become a reference point for discussion on CT. However, various other definitions have emerged in
the literature (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013).

Definitions often draw upon programming and computing concepts or regard CT as a set of elements
related both to computing concepts and problem-solving skills (Tang et al., 2020). International
Society for Technology in Education (ISTE) and Computer Science Teacher Association (CSTA) (2011)
developed an operational definition that includes, the following elements: (a) formulating problems
in a way that enables us to use a computer and other tools to help solve them, (b) logically
organizing and analyzing data, (c) representing data through abstractions such as models and
simulations, (d) automating solutions through algorithmic thinking (a series of ordered steps), (e)
identifying, analyzing, and implementing possible solutions with the goal of achieving the most
efficient and effective combination of steps and resources; and (f) generalizing and transferring this
problem solving process to a wide variety of problems. In addition to these elements (ISTE) and
(CSTA) include the following attitudes to their operational definition: (a) confidence in dealing with
complexity, (b) persistence in working with difficult problems, (c) tolerance for ambiguity, (d) the
ability to deal with open ended problems; and (e) the ability to communicate and work with others
to achieve a common goal or solution.

Selby (2013) defines CT as a though process that involves (a) the ability to think in abstractions, (b)
the ability to think in terms of decomposition, (c) the ability to think algorithmically, (d) the ability to
think in terms of evaluations; and (e) the ability to think in generalizations.

Shute et al. (2017) developed a competency model that includes the following facets: (a)
Decomposition: Dissect a complex problem/system into manageable parts. The divided parts are not
random pieces, but functional elements that collectively comprise the whole system/problem; (b)
Abstraction: Extract the essence of a (complex) system. Abstraction has three subcategories: (i) Data
collection and analysis: Collect the most relevant and important information from multiple sources
and understand the relationships among multilayered datasets, (ii) Pattern recognition: Identify
patterns/rules underlying the data/information structure, (iii) Modeling: Build models or simulations
to represent how a system operates, and/or how a system will function in the future; (c) Algorithms:
Design logical and ordered instructions for rendering a solution to a problem. There are four sub-
categories: (i) Algorithm design: Create a series of ordered steps to solve a problem, (ii) Parallelism:
Carry out a certain number of steps at the same time, (iii) Efficiency: Design the fewest number of
steps to solve a problem, removing redundant and unnecessary steps, (iv) Automation: Automate
the execution of the procedure when required to solve similar problems; (d) Debugging: Detect and
identify errors, and then fix the errors, when a solution does not work as it should; (e) Iteration:
Repeat design processes to refine solutions, until the ideal result is achieved; and (f) Generalization:

3

Transfer CT skills to a wide range of situations/domains to solve problems effectively and efficiently.

Brennan and Resnick’s (2012) CT framework draws from programming in Scratch. Although, the
context is specific, their framework has been highly adopted in studies outside Scratch. The
framework includes the following three dimensions: a) CT concepts including Sequences, Loops,
Parallelism, Events, Conditionals, Operators, Data, (b) CT practices including Being incremental and
iterative, Testing and debugging, Reusing and remixing, Abstraction and modularity and (c) CT
perspectives including Expressing, Connecting, Questioning.

CT as a mental construct that concerns each individual, has attracted research interest in both K-12
and higher education. The accumulation of research plethora has led to efforts to review the
literature with an emphasis on K-12, higher education or both.

Czerkawski & Lyman (2015) review CT research in higher education, focusing on issues around
definition and scope, CT strategies in computer science and efforts to infuse CT into disciplines
outside the field of Computer Science. They report research suggesting that game-based learning
and simulations strategies may be effective in teaching CT to students of Computer Science and
STEM disciplines. Regarding the application of CT in various other disciplines, they suggest that field-
appropriate methods and strategies are required. Furthermore, they discuss issues of digital divide
and social equity, highlighting that colleges need to offer innovative programs and support to give
students equal access to opportunities. In addition, Czerkawski & Lyman (2015) argue that
educational technologists could play an important role in creating professional development
material for universities interested in incorporating CT in their practices.

Tikva and Tambouris (2021) develop the CT through Programming in K-12 education (CTPK-12)
conceptual model that identifies the concepts involved in the process of CT teaching and learning.
The CTPK-12 model consists of the following areas: Knowledge Base Area, Learning Strategies Area,
Assessment Area, Tools Area, Factors Area and Capacity Building Area (Table 1).

Table 1. CT Areas adopted from Tikva and Tambouris (2021)

CT Area Definition

Knowledge Base Area CT measurable elements and their classification.

Assessment Area Assessment methods and frameworks for measuring CT through
programming in K-12 education.

Learning Strategies
Area

Learning strategies leveraged to enhance students' CT learning through
programming in K-12 education.

Factors Area Factors related to CT through programming acquisition in K-12 education.

Tools Area Tools that are used or specifically developed for teaching and learning CT
through programming in K-12 education.

Capacity Building Area Capacity building needed for teaching CT through programming in K-12
competently.

Although the CTPK-12 model refers to CT through programming in K-12 education, it serves as the
basis for this study as it presents all areas of teaching and learning CT in K-12 education. Therefore,
in order to identify respectively the areas and sub-areas of teaching and learning CT through in
higher education, we use as a starting point the areas of CTPK-12 model, while further identifying
whether there are additional areas for teaching and learning CT through programming in higher
education. We further analyze these areas based on two dimensions: their evolution over the years

4

and the branches to which CT is applied.

3 Method

In order to achieve the study goal, we apply a Systematic Mapping Study based on Petersen’s et al.
(2008) methodology. This includes the following adapted steps.

Step1. Definition of research questions: Definition of research questions based on the study goal
(Section 3.1)

Step2. Conduct search for primary studies: Conducting a structured search based on relevant search
strings on scientific databases (Section 3.3).

Step3. Screening of Studies: Applying exclusion and inclusion criteria (Section 3.4).

Step4. Classification scheme Identification: Definition of the classification scheme.

Step5. Data Extraction and mapping process: Shorting the studies into the classification scheme and
provide visualizations of the results. Fig. 1 presents the study method in terms of steps conducted
and relevant outcomes.

Fig.1. Systematic mapping process, adapted from Petersen et al. (2008)

3.1 Definition of Research Questions

The research questions are the following:

RQ1 What are the areas and sub-areas of teaching and learning CT through programming in
higher education?
RQ2. How do these areas evolve over the years and how do they apply to various branches?

3.2 Conduct search for primary studies

We structured the search string driven by the research study goal. Specifically, we used the search

string TITLE-ABS-KEY ("computational thinking") AND PUBYEAR > 2005 AND (LIMIT-

TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "re")) AND (LIMIT-TO (LANGUAGE , "English"))

in Scopus database and TITLE: ("computational thinking") Refined by: DOCUMENT TYPES: (ARTICLE

OR REVIEW) AND LANGUAGES: (ENGLISH) Timespan: 2006-2020. Indexes: SCI-EXPANDED, SSCI,

A&HCI, ESCI in Web of Science database. Searches include articles published between January 2006

and December 2020. Searches resulted in 993 studies, 707 articles in Scopus database and 286 in

Web of Science database.

5

3.3 Screening of studies

During this step we removed 249 duplicates and studies that were not fully availably. Subsequently,
we applied inclusion and exclusion criteria to exclude studies that were not relevant to answering
the research questions. Table 2 presents the exclusion and inclusion criteria defined. Finally, we
included 39 primary studies and 2 additional primary studies that we identified through backward
(reviewing citations) and forward searching. Appendix present the total of 41 studies included.

Table 2.

Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Empirical CT studies in which participants are
undergraduate students, postgraduate students
and academic staff.

Empirical CT studies that focus on CT through
programming.

Studies which discuss/apply CT through other
means than programming.

3.4. Classification Scheme Identification

We use as base for the classification scheme the areas of the CTPK-12 model presented in Section 2.
Each Area of the model corresponds to one category in the classification scheme. Petersen et al.
(2008) propose the extraction of the classification scheme based on keywording of abstracts of the
selected studies. For this purpose, we read all the abstracts of the selected articles and wrote down
keywords. Each keyword was assigned to one of the classification scheme categories in order to
determine if there were any additional categories that could be included in the classification
scheme.

3.5 Data extraction and mapping process

In this step we classify the selected primary studies into the classification scheme. According to
Petersen et al. (2008) the classification scheme evolves while data extraction is performed. When
sorting the selected primary studies into the categories, new sub-categories appear, while others
remain unused. We used an Excel table per category to document the different instances of sub-
categories in each primary study and the evolution of the classification scheme. When listing a
primary study into a particular category and sub-category, we provide a brief rational for why the
study should be located in that particular category/sub-category. The final tables show the
distribution of primary studies into sub-categories and calculate the relevant frequencies. The
analysis of the results focuses on comparing frequencies between different time periods and
different targeted groups. This allows us to identify the categories and sub-categories highlighted in
CT through programming in higher education research and therefore understand its evolvement and
application.

3.6 Study Limitations

We acknowledge that this study has some limitations. First, the study includes only studies written in
English. Second, searches were conducted in only two scientific databases, namely Web of Science
and Scopus. Third, searches were conducted with a time constraint of 2006 onwards. Thus, the study
maps the research conducted since 2006 and not on the initial stages of CT research. Finally, the
small number of authors (only two) combined with subjectivity constitutes an additional limitation of
the study. Although we applied a systematic mapping method, we had to make subjective choices

6

regarding the evolution of the classification scheme.

4. Results

4.1 Overview

4.1.1 Studies by year

The distribution of studies by year (Fig. 2) reveals an upward trend in the number of studies. This is
particularly true from 2017 onwards when the number of studies increases, suggesting that the field
is generally beginning to mature. For this reason, we analyze the evolution of the field based on the
two time periods 2006-2016 and 2017-2020.

Fig. 2. Studies by year.

4.1.1 Interventions for CT development in higher education.

CT through programming empirical interventions in higher education (Table 3) mainly focus on
Education majors, Natural Sciences majors and Computer Science (CS) majors. Table 4 presents the
classification of branches based on the selected studies. The intense interest in Education branch led
us to classify it as a separate branch in the context of this study. Fig. 3 presents the percentage of
studies by branch in periods 2006-2016 and 2017-2020.

Table 3

Study Content Branch Participants

(Adler & Kim,
2018)

Science methods
course

Education 19 graduate and 13
undergraduate
preservice teachers

(Bui et al., 2018) Mindmaps and
Scrath programming

Mathematics Education 50 preservice teachers

(Cachero et al.,
2020)

Programming
training

Health Information Systems,
Psychology

104 undergraduate
students

7

(Chao, 2016) Principles and
methods of C++
language
programming

Information Communication 158 undergraduate
students

(Choi, 2019) Java programming
class

Undefined 28 undergraduate
students

(Cutumisu &
Guo, 2019)

Educational
Technology course

Education 139 preservice teachers

(Cetin, 2016) Programming
language course

Education 56 pre-service teachers

(Dolgopolovas &
Jevsikova, 2015)

Structured
programming (SP)
course

Software Engineering 65 undergraduate
students

(Fang et al.,
2017)

Database Principles
course

Computer Science and
Technology

24 undergraduate
students

(Fernandez et
al., 2018)

Workshop Education 21 inservice and pre-
service teachers

(Fernandez et
al., 2018)

Start to
Programming course

Physics, Mathematics and
Natural Sciences

22 undergraduate
students

(Gabriele et al.,
2019)

Programming course Primary Education 141 preservice teachers

(Hambrusch et
al., 2009)

Introduction to CT Physics and Chemistry 13 undergraduate
students

(Hou et al.,
2020)

Programming course Beauty Science 40 sophomore students

(Jaipal-Jamani &
Angeli, 2017)

Science education
methods course

Elementary Teacher Education 21 preservice teachers

(Jeon & Kim,
2017)

CT-based
programming course
applicable to liberal
arts

Education 110 preservice teachers

(Kang & Lee,
2020)

Project-based
learning course

Non-engineering majors Undergraduate
students

(Kazimoglu et
al., 2012)

Introductory
computer
programming

Computer Science 25 undergraduate
students

(Katai, 2020) Sorting algorithms Humanities, Science 48 undergraduate
students

(Kwon & Kim,
2018)

CT and Software
Coding & Problem
Solving and
Algorithm courses

Humanities, Social sciences
and Arts

250 undergraduate
students

(Lee & Cho,
2020)

Computer
programming

Undefined 151 undergraduate
students

(Lin & Chen,
2020)

Program Logic
Thinking Education

Arts, Music, Chinese, Public
Administration

97 undergraduate
students

(Mouza et al.,
2017)

Integrating
Technology in

Education 21 preservice teachers

8

Education program
(Page &
Gamboa, 2013)

How Computers
Work: Logic in Action

Science, Engineering, History,
Letters, Philosophy,
Linguistics, Economics, Drama,
Business, Psychology,
Business, Computer Science,
Computer Engineering

36 undergraduate
students

(Pala & Mıhçı
Türker, 2019)

Programming-I
Education 33 preservice teachers

(Qin, 2009) Introduction to
Bioinformatics

Biology Undefined

(Rodríguez-
García et al.,
2020)

AI, ML and its
societal implications
workshop

Computer Science 14 students

(Romero et al.,
2017)

StorytoCode creative
challenge

Elementary School Education 120 preservice teachers

(Rubinstein &
Chor, 2014)

Computational
Approaches for Life
Scientists

Biology 25 graduate and
undergraduate
students

(Shih et al.,
2015)

Computer
Applications in
Emergency
Management

Emergency Management
Technology

18 undergraduate
students

(Wu et al., 2019) Introduction to C++
programming

Education 47 preservice teachers

(Yuen &
Robbins, 2014)

Introductory
computer science
course (data-driven)

Biology 5 undergraduate
students

(Zha et al.,
2020a)

Educational
Technology course

Education 59 preservice teachers

(Zha et al.,
2020b)

Educational
Technology course

Education 15 preservice teachers

Table 4

Classification of branches

Branch sub-
category

Description

Majors (CS) Computer Science including Computer Science and Technology, Computer
Science, Computer Engineering, Software Engineering

Education majors Education including Mathematics Education, Primary Education, Elementary
School Education, Secondary Education

Non-majors in CS Natural Sciences including Chemistry, Biology, Physics

Humanities, Social sciences and Arts including History, Letters, Philosophy,

9

Linguistics, Economics, Drama, Business, Psychology, Business, Arts, Music,
Chinese, Public Administration.

Engineering

Mathematics

Health Information Systems

Information Communication
Beauty Science

Fig. 3. Percentage of studies by branch in periods 2006-2016 and 2017-2020.

During period 2006-2016 a percentage of 69,23% focuses on Computer Science, Engineering and
Natural Sciences while only 7.69% focuses on Education majors. During the next period 2017-2020
the focus shifts from the aforementioned branches to Education. A 54,17% of interventions for CT
through programming focus mainly on preservice teachers’ preparation. Thus, we can conclude that
there is an upward research trend for interventions aimed at Teacher Education.

4.2 CT teaching and learning areas in higher education

The classification scheme identification phase revealed that there are no additional areas in the

selected studies other than those indicated by the CTPK-12 model (Table 1). Therefore, the areas of

CT through programming in higher education which are analyzed and synthesized in the following

sections are the following: Knowledge Base, Learning Strategies, Tools, Assessment, Factors,

Capacity Building.

14.2.1 Knowledge Base

15 studies discuss elements of CT including domain specific elements, programming elements and
higher-order skills. Table 5 presents the classification of CT elements in the selected studies. Fig. 4
presents the distribution of CT Knowledge Base sub-categories by periods 2006-2016 and 2017-
2020. Table 6 presents the distribution of CT Knowledge Base sub-categories by classified branch.

Chao (2016) investigates Computational practice (Sequence, Selection, Simple iteration, Nested
iteration, Testing), Computational design (Problem decomposition, Abutment composition, Nesting

10

composition) and Computational problem-solving performance (Goal attainment, Program size). Wu
et al. (2019) adapts Brennan & Resnick’s framework (2012), proposing Concepts (Sequence, Loops,
Conditions, Operators, Data), Practices (Incremental and Iterative, Testing and Debugging, Reusing
and Remixing, Abstracting and Modularizing) and Identities (Expressing, Questioning). In the same
line, Cutumisu & Guo (2019) adopts Brennan & Resnick’s framework (2012) for assessing CT
concepts, practices and perspectives. Cetin (2016) investigates variables, conditional and selection
statements, loops, arrays, and functions as CT elements. Yuen & Robbins (2014) investigates
students’ CT based on a coding scheme that includes Organization (Coding style, Data organization),
Construction (Following procedures, Visualizing data) and Analysis (Interpretation and Conclusions).
Jaipal-Jamani & Angeli (2017) investigate correct sequence, decisions on the flow of control and
debugging.

Qin (2009) propose Multilevel abstraction and conceptualization, Iteration, recursion and
backtracking, Modularization, Assessment and error corrections, Optimization and Simulation
among other CT skill sets that are domain specific, derived from mapping CT skills to specific
bioinformatics topics. In the same line, Rubinstein & Chor (2014) propose Abstraction,
Generalization, Modular design and decomposition, Data structures and Computational models
among other domain specific computational concepts and processes.

Other studies propose skills such as Abstraction, Decomposition, Recognition of Patterns and

Algorithms (Fernández et al., 2018; Hou et al., 2020), Creativity, Algorithmic Thinking, Cooperativity,

Critical Thinking and Problem Solving (Korkmaz et al., 2017; Lin & Chen, 2020; Pala & Mıhçı Türker,

2019). Sondakh et al. (2020) propose a holistic CT framework that includes the skills of Abstraction,

Algorithmic Thinking, Decomposition, Debugging, Evaluation, Generalization and the attitudes of

Problem solving, Teamwork and communication.

Table 5
 CT Knowledge Base sub-categories

Knowledge Base sub
category

Description Studies

Domain Specific
elements

CT concepts, skills and processes mapped to
specific domains.

PS31, PS34

Programming elements Programming related concepts, practices,
identities and designs.

PS4, PS5, PS7, PS11,
PS15, PS38, PS39

Higher-order elements Higher-order thinking skills and competencies. PS10, PS13, PS21,
PS24, PS29, PS36

Fig. 4. Distribution of CT Knowledge Base elements sub-categories by time period.

11

Domain-specific elements are discussed in studies during period 2006-2016 while in period 2017-
2020 these elements are absent. Higher-order elements are introduced during period 2017-2020
with a percentage of 60% in the selected studies of this period. Programming elements are discussed
throughout the years.

Table 6. Percentage of studies’ CT Knowledge Base elements sub-categories by classified branch.

Knowledge Base sub-category Non-majors in CS Education majors

Programming elements 33,33% 66,67%

Higher-order elements 33,33% 33,33%

Domain Specific elements 33,33% 0,00%
100,00% 100,00%

Domain Specific elements are discussed only in studies targeted non-majors in CS. Programming
elements have the strongest presence in the selected studies and particularly in Education majors.

4.2.2 Learning Strategies

Researchers in 24 studies discuss, propose or apply teaching and learning strategies for CT through
programming in higher education. Out of these studies, seven apply more than one learning strategy
or practice. We classify learning strategies in nine sub-categories, namely, Game Based Strategies,
Modeling & Simulations Based Strategies, Problem Solving Strategies, Project Based Strategies,
Scaffolding Practices, Collaborative Strategies, Flipped Classroom, Hands-on strategies and
Lectures. Table 7 presents studies by each sub-category. Fig. 5 presents the distribution of learning
strategies sub-categories by time periods 2016-2016 and 2017-2020. Table 8 presents the
distribution of learning strategies sub-categories by classified branch.

Six studies discuss Problem Solving Strategies (Cetin, 2016; Hambrusch et al., 2009; Jeon & Kim,
2017; Kang and Lee, 2020; Lee & Cho, 2010; Yuen & Robbins, 2014). For example, Yuen & Robbins
(2014) examine how undergraduate students develop CT skills during a data-driven programming
course that encompasses problem-solving iterative processes. Lee & Cho (2020) exploit problem-
solving methods to improve students’ CT skills and logical thinking ability. Hambrusch et al. (2009)
developed a course aimed at introducing students to CT based on a problem-driven format.

Four studies discuss Collaborative Strategies: Pair programming (Choi, 2019), Think-Pair-Share
practice (Choi, 2019), Collaborative programming (Wu et al., 2019), teamwork (Jaipal-Jamani &
Angeli, 2017; Zha et al., 2020b). Collaborative programming is proposed as an effective learning
strategy to enhance students’ CT in higher education (Wu et al., 2019). For example, Choi (2019)
develops an instructional model that exploits Think-Pair-Share Strategy and pair programming. The
results of this study show that collaborative strategies could help students learn CT and
programming.

Three studies discuss Project Based Strategies (Ma et al., 2017; Wu et al., 2019). Wu et al. (2019)
support that project-based learning contexts can help novice students develop different learning
pathways to learn CT. In the same line, Ma et al. (2017) propose using project-driven learning
strategies to enable students to acquire CT.

Three studies discuss Scaffolding strategies (Chao, 2016; Jaipal-Jamani & Angeli, 2017; Yuen &
Robbins, 2014) usually combined with other strategies. Yuen & Robbins (2014) propose scaffolding
as an effective learning strategy in order to enable students to focus on higher-order computational
concepts without struggling with coding process in a text programming language such as MATLAB.
In the same line, Chao (2016) argues that scaffolding may facilitate students to develop
programming strategies and skills. Jaipal-Jamani & Angeli (2017) also found that the scaffolded

12

programming instructional strategy they applied in their study, helped students to acquire CT.

Two studies discuss Modeling & Simulations Based Strategies (Adler & Kim, 2018; Magana & Silva
Coutinho, 2017), two studies Flipped classroom (Zha et al.,2020a, Zha et al. 2020b) and one study
Game Based Strategies (Kazimoglu et al., 2012). Specifically, Kazimoglu et al. (2012) propose a
serious game where students develop their game strategies through programming based on an
educational game framework for CT.

Two researchers choose to give hands-on activities (Qin, 2009; Rubinstein & Chor, 2014) and three
use lectures (Cetin, 2016; Gabriele et al., 2019; Jaipal-Jamani & Angeli, 2017). Other strategies
involve reflective learning (Choi, 2019), storytelling (Romero et al., 2017) and network autonomous
learning (Li & Hou, 2014). Additionally, learning strategies are implemented in traditional classroom
settings or in blended environments (Fernández et al., 2018; Mouza et al., 2017; Zha et al., 2020b).

Table 7. Learning strategies sub-categories

Learning Strategies
sub-category

Description Studies

Game Based Strategies Game Based Related Strategies involve game design and
digital/video game development, programming games
and any strategy that exploits games and programming.

PS18

Modeling &
Simulations Based
Strategies

Modeling & Simulations Based Related Strategies involve
designing of scientific models and simulations.

PS1, PS26

Problem Solving
Strategies

Problem Solving Related Strategies involve Problem
Based Learning and problem-solving learning strategies in
general.

PS4, PS12,
PS16, PS23,
PS26, PS39

Project Based
Strategies

Project Based Related Strategies involve the engagement
with authentic projects set around real challenges and
problems.

PS26, PS38

Scaffolding Strategies Scaffolding Related Strategies involve practices that offer
support to students as they learn.

PS6, PS15,
PS39

Collaborative
Strategies

Collaborative Related Practices involve practices where
students actively interact during the learning process
including Pair programming, Think-Pair-Share practice
and any practice based on student’s collaboration and
cooperation.

PS5, PS15,
PS38, PS40

Flipped Classroom
Strategies

Flipped classroom Strategies involve strategies that
reverse the traditional model of classroom instruction.

PS40, PS41

Hands-On Strategies Hands-on activities PS31, PS34
Lectures Theoretical lectures PS4, PS11,

PS15

13

Fig. 5. Distribution of learning strategies sub-categories by time period.

During period 2006-2016 problem solving Strategies have the strongest presence (36.36%), while
during period 2017-2020 almost all learning strategies sub-categories occupy the same percentage
(13.33%) with the exception of Game Based Strategies which has no presence at all and
Collaborative Strategies which have a slightly stronger presence than the rest (20%).

Table 8. Percentage of learning strategies sub-categories by classified branch.

Learning strategies sub-category CS majors Education majors Non-majors

Collaborative Related Strategies 0,00% 23,08% 12,50%

Game Based Related Strategies 33,33% 0,00% 0,00%

Hands-On Strategies 0,00% 0,00% 25,00%

Lectures 0,00% 23,08% 12,50%

Modeling & Simulations Based Related Strategies 0,00% 7,69% 0,00%

Problem Solving Related Strategies 33,33% 15,38% 25,00%

Project Based Related Strategies 33,33% 7,69% 12,50%

Scaffolding Related Strategies 0,00% 7,69% 12,50%

Flipped classroom 0,00% 15,38% 0,00%
100,00% 100,00% 100,00%

No strategy seems to be dominant in any of the classified branches. In addition, as shown in Table 8,
in studies aimed at preservice teachers and non-majors, a greater variety of studies is applied than in
studies aimed CS majors.

4.2.3 Tools

Researchers in 37 studies discuss, propose or exploit tools for CT teaching and learning in higher
education. We classify tools in five sub-categories, namely, Programming tools, Robotics &
Microcontrollers, Augmented Reality Systems, Machine Learning tools and tools specifically
developed for CT. Table 9 presents tools sub-categories leveraged in the selected studies. Fig. 6
presents the distribution of tools sub-categories in periods 2006-2016 and 2017-2020. Table 10
presents the distribution of tools sub-categories by classified branch.

14

Eight studies exploit Scratch (Adler & Kim, 2018; Bui et al., 2018; Cetin, 2016; Gabriele et al., 2019;

Hou et al., 2020, Mouza et al., 2017; Romero et al., 2017, Zha et al., 2020a), two studies Hour of

Code (Adler & Kim, 2018; Mouza et al., 2017), one study Code.org (Cutumisu & Guo, 2019), one

study App Inventor (Shih et al., 2015), one study ARDUINO IDE (Pala & Mıhçı Türker, 2019), one

study LEGO® WeDo robotics (Jaipal-Jamani & Angeli, 2017), one study Java (Choi, 2019), one study

Hopscotch (Zha et al., 2020b), one study HTML5 and CSS3 (Jeon & Kim, 2017) nine studies Python

(Cachero et al., 2020; Dolgopolovas & Jevsikova, 2015; Hambrusch et al., 2009; Kang & Lee, 2020;

Kwon & Kim, 2018; Lee & Cho, 2020; Magana & Silva Coutinho, 2017; Pala & Mıhçı Türker, 2019;

Rubinstein & Chor, 2014), one study ACL programming language (Page & Gamboa, 2013), two

studies C++ (Pala & Mıhçı Türker, 2019; Wu et al., 2019), three studies SQL (Huang & Leng, 2019;

Qin, 2009; Fang et al., 2017), two studies MATLAB (Magana & Silva Coutinho, 2017; Yuen & Robbins,

2014), and four (Chao, 2016; Katai, 2020; Kazimoglu et al., 2012; Lin & Chen, 2020) studies develop

a tool. For example, Chao (2016) develops a problem-solving programming environment and Lin &

Chen (2020) develop a deep learning recommendation based augmented reality system.

Table 9. Tools sub-categories

Tools sub-category
Studies

Programming
tools

Visual programming & PS1, PS2, PS4, PS5, PS7,
PS11, PS13, PS18, PS19,
PS28, PS33, PS35, PS39,
PS40

 Text programming tools. PS3, PS6, PS8, PS9, PS12,
PS14, PS16, PS17, PS22,
PS23, PS27, PS29, PS30,
PS31, PS34, PS35, PS38,
PS39

Robotics & Microcontrollers PS15, PS30

Augmented Reality systems PS25

Machine Learning tools PS32

Tools specifically developed to support a CT strategy PS5, PS18, PS25, PS19

15

Fig. 6. Distribution of tools sub-categories by period.

During period 2006-2016 text programming tools have the strongest presence (57.14%) while
28.57% of studies investigates visual programming. Subsequently during period 2017-2020 a 40% of
studies investigating visual programming. Thus, an upward trend in visual programming is revealed.
In addition, new tools such as Microcontrollers, Robotics, Machine Learning tools and Augmented
Reality systems are introduced.

Table 10. Percentage of tools sub-categories by classified branch.

Tools sub-category CS majors Education majors Non-majors in CS

Tools developed for CT 20,00% 0,00% 12,50%

Microcontrollers & Robotics 0,00% 13,33% 0,00%

Visual programming 20,00% 66,67% 25,00%

Text programming 40,00% 20,00% 56,25%

Augmented Reality 0,00% 0,00% 6,25%

Machine learning 20,00% 0,00% 0,00%

Total 100,00% 100,00% 100,00%

Visual programming is investigated mainly in studies that focus on preservice-teachers while it is not
prevalent in studies that target Non-majors and CS majors. Text-programing is investigated in all
branches while it is prevalent in studies that target Non-majors in CS (56,25%) and CS majors (40%).

4.2.4 Assessment

29 studies discuss CT through programming assessment methods. Assessment methods are
classified in four sub-categories, namely, Self-report methods, Tests, Artifact analysis and
Observations. Table 11 presents assessment methods applied in the selected studies. Fig. 7 presents
the distribution of assessment sub-categories in periods 2006-2016 and 2017-2020. Table 12
presents the distribution of assessment sub-categories by classified branch.

Four of the selected studies involve observations. Wu et al. (2019) record students’ actions and
conversations (screen and video recording) to examine how novice programmers develop CT by
interacting with each other during collaborative programming and problem solving. More
specifically, they investigate students’ trajectories and their different CT development pathways.
Screen recording is used to capture the programming process while video recording is used to
capture student’s conversations. Yuen & Robbins (2014) collect field notes during participants
interviews.

16

Six of the selected studies involve artifact analysis. Chao (2016) collects log data about the
participants' practice, strategies, and performance of computational problem-solving activities. Choi
(2019) evaluates students’ programming artifacts. Yuen & Robbins (2014) collect source code from
students’ in-class activities. Romero et al. (2017) analyze students’ projects through Dr. Scratch
(Moreno-Leon et al., 2015) and manual inspection based on entities, events, code blocks and errors.
Gabriele et al. (2019) analyzed students’ Scratch files through manual inspection for programming
concepts, code organization and designing for usability adapted by Denner et al. (2012) and
automatic inspection through Dr. Scratch.

23 studies exploit self-report assessment methods. Five studies exploit scales, three surveys, seven
interviews, eight questionnaires and one study students’ reflections. Yuen & Robbins (2014) use
interviews as their primary method for data collection. Shih et al. (2015) survey students’
perceptions about programming and their experiences with the applied CT intervention. Mouza et
al. (2017) assess students’ CT knowledge based on a pre/post scale. Cutumisu & Guo (2019) used
topic modeling techniques to extract participants CT understanding through their reflections.
Researchers also develop and validate self-report scales in their studies. For example, Korkmaz et al.
(2017) developed the CTS scale in order to assess students’ CT skills. The scale includes the items of
Creativity, Algorithmic Thinking, Critical Thinking, Problem Solving and Cooperativity. Sondakh et al.
(2020) propose a scale for CT assessment validated through Fuzzy Delphi Method that includes the
items of Abstraction, Algorithmic Thinking, Decomposition, Debugging, Evaluation, Generalization,
Problem solving, Teamwork, Communication and spiritual intelligence. In the same line, Kılıç et al.
(2020) developed and validated a scale that includes the items of Conceptual Knowledge,
Algorithmic Thinking and Evaluation. Finally, ten studies assess students’ CT through tests and
assignments. For example, Jaipal-Jamani & Angeli (2017) used programming worksheets with
completed, semi-completed and new programming tasks. Lin & Chen (2020) used multiple-choice
and fill-in-the-blank questions to assess students’ programming understanding.

Table 11. Assessment sub-categories

Assessment
sub-category

Description Studies

Self-Report
Methods

scales, questionnaires, surveys, interviews, reports,
reflections

PS1, PS2, PS3, PS4, PS5,
PS7, PS10, PS11, PS15,
PS16, PS17, PS20, PS21,
PS22, PS28, PS29, S30,
PS31, PS34, PS35, PS36,
PS39, PS40

Tests multiple choice and open-ended tests, quizzes,
tasks, assignments

PS3, PS4, PS15, PS18,
PS25, PS31, PS32, PS34,
PS39, PS40

Artifact analysis automatic analysis, manually inspection of artifacts,
log data

PS5, PS11, PS19, PS33,
PS38, PS39

Observations observations of students’ actions, screen recordings,
camera recordings, field notes

PS2, PS37, PS39, PS40

17

Fig. 7. Distribution of assessment sub-categories by period.

During period 2017-2020 an upward trend in the use of observations (+4,04%) and self-report

methods (+10.47%) and a downward trend in the use of tests (-15.47%) is revealed in the

assessment of CT. Artifact analysis shows a very small increase of 1.48%.

Table 12. Percentage of assessment sub-categories by classified branch.

Assessment sub-category CS majors Education majors Non-majors in CS

Artifact Analysis 0,00% 15,79% 14,29%

Observations 0,00% 15,79% 7,14%

Tests 50,00% 10,53% 28,57%

Self-Report Methods 50,00% 57,89% 50,00%

Total 100,00% 100,00% 100,00%

Self-report methods have the strongest presence compared to other methods in studies targeted

Non-majors in CS (50%) and education majors (57.89%).

4.2.5 Factors

Nine studies discuss factors that affect CT. Table 13 presents factors discussed in the selected
studies. The effects that CT could have on interest in Computing and attitudes toward programming
(Cetin, 2016; Hambrusch et al., 2009; Shih et al., 2015), self-efficacy (Jaipal-Jamani & Angeli, 2017;
Kwon & Kim, 2018), creativity (Romero et al., 2017), interest in CT (Zha et al., 2020a), motivational
impact (Katai, 2020), enrollment in CS courses (Hambrusch et al., 2009) and occupational change
(Kwon & Kim, 2018) are discussed in the selected studies. CT-related factors are discussed through
the years, 33.33% of the studies are published during 2006-2016 and another 66.67% during 2017-

18

2020. Furthermore, studies that investigate CT-related factors focus on both Education Majors
(57.14%) and Non-majors in CS (71.43%).

Hambrusch’s et al. (2009) study reveals that the problem-driven approach focused on computational
principles and scientific discovery they applied, increased students’ interest in CS. In the same line,
Shih et al. (2015) found a positively change in students’ perceptions about computing after they
attended a course aimed to encourage students to apply CT and problem-solving skills to authentic
problems. On the contrary, Cetin (2016) found no significant difference between control and
experimental group students in terms of their attitudes towards programing. However, he suggests
that this this is probably due to the short duration of the intervention and the difficulty of changing
students’ already high attitudes. Kwon & Kim (2018) conclude that a software education curriculum
based on CT can stimulate students’ intrinsic motivation and improve students’ self-efficacy. In the
same line, Jaipal-Jamani & Angeli (2017) found that after participated in a CT robotics program
students’ self-efficacy related to robotics and interest in learning robotics significantly increased.
Kwon & Kim’s (2018) study reveals that integrating CT could affect students’ perspectives about their
future occupation.

Table 13. Factors investigated in the selected studies.

Factors Description Studies

Non-Cognitive
factors

Personal traits, attitudes and motivations such as
attitudes toward programming, self-efficacy, creativity,
interest in CS, perspective about future occupation.

PS4, PS12, PS15,
PS19, PS22, PS27,
PS33, PS35, PS41

4.2.6 Capacity Building

Only three of the selected studies discuss academic faculty training and professional development
and they are all published in period 2017-2019. Table 14 presents methods regarding capacity
building discussed in the selected studies.

Magana & Silva Coutinho (2017) survey industry and academia experts to identify the challenges
facing academic staff in integrating CT at undergraduate level. Ma et al. (2017) suggest ways to
improve university student’s CT skills, including faculty professional training based on two principles:
the mobility of academic staff and the organization of training programs. Taylor et al (2018)
emphasize the role of collaboration between institutions as a means of motivating academic staff to
redesign courses to integrate new concepts such as CT and coding.

Table 14. Capacity Building methods

Capacity Building Description Studies

Professional
development

Variety of tools such as training programs, mobility of
academic staff, collaboration between institutions.

PS26, PS27, PS37

5. Discussion and conclusions

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning Strategies,
Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12 model also cover
teaching and learning CT through programming in higher education. However, different sub-areas
emerge in CT areas, while some of the model’s sub-areas do not exist in the selected higher
education studies. Fig. 8 presents the revised CTPK-12 model that corresponds to CT through
programming in higher education. The CTPK-12 model also depicts the relationships between the
areas of teaching and learning CT through programming as links between the areas shown in Fig. 8.
The revised model could be use in order to develop research questions between the areas of

19

teaching and learning CT through programming in higher education. For example, which learning
strategies could be more appropriate for teaching CT domain specific elements, which for CT
programming elements and which for CT higher-order skills.

Fig. 8. The revised conceptual model for CT through programming in higher education (CTPHE).

Furthermore, as CT applications become more mature these areas evolve. Early attempts often link
CT to domain-related elements, drawing on topics and activities related to specific courses and
disciplines. However, in the coming years, CT is considered as a construct that is more associated
with high-level skills such as abstraction and decomposition. Elements related to programming are
most prevalent and evident throughout the years. This is plausible as CT draws from CS concepts
according to Wing’s (2006) definition.

CT through programming in higher education is traditionally implemented through text
programming environments. However, the analysis of the selected studies revealed an upward trend
in visual programming. This could be explained as visual programming is often applied to teacher
education courses that have been at the forefront of CT higher education in recent years. In
addition, tools such as Microcontrollers, Robotics and Augmented reality systems have recently
emerged.

CT assessment is generally considered difficult to achieve by several authors (Brennan & Resnick,
2012; Denning, 2017; Fronza et al., 2017; Werner et al., 2012; Zhong et al. 2016). While self-report
methods are the most common, the analysis of the selected studies also revealed a shift from tests
to artifact analysis and observations in recent years. These methods are incorporated in order to
provide a more complete picture of the CT acquisition.

Learning strategies and factors related to CT development such as personal traits, attitudes and
motivations are discussed throughout the years, while academic faculty training and professional
development gained attention only recently.

Teaching and learning CT through programming in higher education could be also organized in two
areas: CT development for Non-majors and CS majors; and Teacher Education. The first concerns
interventions and studies that propose the integration of programming aiming to help Non-majors
and CS majors to acquire CT. The second concerns efforts to educate and support pre-service
teachers with ultimate goal the integration of CT in K-12 education. The two areas present
differentiation mainly in the tools used and the CT elements that are assessed with the second one
to draw upon research on CT contacted in K-12 settings. Implementation of CT through

20

programming for pre-service teachers is designed mainly on the basis of programming elements and
includes mainly visual programming.

The analysis of the selected studies reveals that the focus of CT research in higher education is
mainly on re-designing courses to align disciplinary knowledge with CT core concepts and to provide
instructional models. The development of frameworks for learning strategies, tools and assessment
methods is not extensively discussed in the selected studies.

Herein we also identify gaps that we discuss in the following paragraphs in an attempt to draw
connections and implications from K-12 education where extensive efforts are being made
worldwide to integrate CT.

In terms of learning strategies, although previous research has revealed that game design is often
selected to introduce software engineering to students Souza et al. (2018), this is not the case for CT
in higher education. There is no study in the selected studies that focuses on the development of CT
through programming that applies game design learning strategy. In contrary, in K-12 education,
game design is one of the most common strategies applied in several studies such as (Garneli &
Chorianopoulos, 2018; Repenning et al., 2015; Weintrop et al., 2016). This is probably due to the
capabilities of the tools offered to different age groups. In K-12 education, various tools such as
Scratch (Resnick et al., 2009), and Agentsheets (Repenning et al., 2015) are utilized for game design
and media computation, supporting the implementation of learning strategies that include game
design learning. Although these tools are widely used in K-12 education and in higher education to
prepare future teachers (Adler & Kim, 2018; Angeli et al., 2016; Gabriele et al., 2019), they are rarely
used in interventions targeted other CS major or Non-major students. Text programming languages
that are mainly used in higher education pose challenges to students such as dealing with complex
syntaxes and abstract concepts (Buitrago Flórez et al., 2017) and require deep programming learning
and experience to enable students to develop a game.

The importance of learning strategies in CT development is emphasized in both K-12 and higher
education studies. Denner et al. (2012) study reveals that introducing CT to young students without
applying a learning strategy, causes difficulties in developing students’ CT skills. In the same line,
Dolgopolovas & Jevsikova, (2015) argue that appropriate learning strategies should be exploited in
order to facilitate CT skills development. They suggest that programming didactical approaches in
higher education should focus on problem solving skills rather than language programming syntax.

Only few studies (Lee & Cho, 2020; Li & Hou, 2014; Ma et al., 2017) focus on creating frameworks by
aligning learning strategies with CT. The bulk of research in higher education focuses on the
implementation of learning strategies within specific courses and the development of instructional
models.

Although there are studies that underline the role of communities in CT development (Xing, 2019)
and the need to shift from tools to Communities (Clark & Sengupta, 2019; Kafai, 2016), as CT and
programming are social practices, the exploitation of programming Communities in higher education
is still lacking behind. Content-specific tools and mainly text programming languages are those
applied in the higher education context. This in line with Magana & Silva Coutinho's (2017) study,
showing that tools for teaching and learning CT in higher education are chosen on the basis of
subjects rather than on their ability to support the acquisition of these skills. Exception are studies
that focus on pre-service teachers that investigate mainly visual programming.

CT assessment in higher education applies the same assessment methods (Artifact Analysis,
Observations, Tests and Self-report) as in K-12 education. However, the assessment is mainly carried
out in the context of course evaluation. There are some efforts to develop universally accepted
assessment methods but all of them are self-report methods. This is consistent with Lyon and
Magana (2020) review that highlights the strong presence of self-report assessment methods in
higher education CT studies. In addition, studies do not always attempt to validate the methods used

21

and often do not yield quantitative results. Other challenges involve the small sample size and the
lack of CT specific elements in the studies’ results.

Moreover, often while studies present in the background various definitions of CT, they do not
ultimately provide information on which elements of CT they focus on based on these definitions.
Many times, they do not mention the CT context on which they are based, or display CT elements
that are not based on a clear definition, are poorly documented and often vague.

Females and minority groups are often underrepresented in computing, as well as in technology
labor (Jenson & Droumeva, 2016). Cooper et al. (2014) suggest that research in computing education
should focus on gender and other minority groups. In addition, Shute et al. (2017) review the
literature highlighting that researchers consider utilizing CT to motivate learners, especially females
and minorities. However, there are limited studies (e.g., Zha, 2020a) in higher education that discuss
the use of CT through programming to address issues related to female or underrepresented
students. In addition, although gender as a factor affecting CT acquisition is particularly discussed in
K-12 education (Atmatzidou & Demetriadis, 2016; Durak & Saritepeci, 2018), this is not the case for
higher education. Studies in higher education do not focus on examining the relationship between
gender and other social factors with CT.

Although teachers’ knowledge and needs and their preparation to support students’ understanding
of CT are highly discussed in K-12 literature (e.g., Alfayez & Lambert, 2019; Angeli et al., 2016; Bower
et al., 2017; Giannakos et al., 2015; Israel et al., 2015; Mouza et al., 2017; Yadav et al., 2017),
research in higher education rarely focuses on faculty preparation. Only two of the selected studies
involve higher education faculty (Magana & Silva Coutinho, 2017) or discuss opportunities for
professional development (Ma et al., 2017).

To conclude, the results of this review indicate that several efforts have been emerged in CT through
programming in higher education research recently, although challenges remain in the six areas
identified in this review: Knowledge Base, Learning Strategies, Tools, Assessment, Factors and
Capacity Building. Future studies should address remaining challenges by basing their design on clear
definitions of CT as categorized and described in 1.4.2.1 section. The assessment should be based on
the recording of CT elements as previously defined in the context of the studies. In addition, it is
proposed to integrate direct assessment methods in combination with self-report methods in order
to provide a more objective picture of the development of students' CT. The alignment of CT
elements and assessment methods could provide a more comprehensive understanding of students’
CT development. Future research should also explore how different learning strategies could
support CT development. In addition, future research could focus on the development of tools
suitable for higher education, which would enable the exploitation of game design strategies. Finally,
studies should also focus on the investigation of how factors such as gender, creativity, self-efficacy,
motivation may affect CT and how professional development of academic stuff could enhance the CT
integration in higher education context.

Declaration of competing interest

None.

Appendix. List of the selected Primary Studies

PS1 Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational
thinking skills through modeling and simulations. Education and Information Technologies,
Vol. 23, pp. 1501–1514. https://doi.org/10.1007/s10639-017-9675-1

PS2 Bui, L. D., Kim, Y. G., Ho, W., Thi, H., Ho, T., & Pham, N. K. (2018). Developing
WebQuest 2.0 model for promoting computational thinking skill. In International Journal
of Engineering & Technology (Vol. 7). Retrieved from http://bit.ly/2jH9KT2.

22

PS3 Cachero C., Barra P., Melia S., Lopez O.,"Impact of Programming Exposure on the
Development of Computational Thinking Capabilities: An Empirical Study",2020,"IEEE
Access","10.1109/ACCESS.2020.2987254","https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85084334725&doi=10.1109%2fACCESS.2020.2987254&partnerID=40&md5=1333d67d45b
e18c0a20cbc955aa580d6"

PS4 Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring
Utilization of Scratch. Journal of Educational Computing Research, Vol. 54, pp. 997–1021.
https://doi.org/10.1177/0735633116642774

PS5 Chao, P. Y. (2016). Exploring students’ computational practice, design and
performance of problem-solving through a visual programming environment. Computers
and Education, 95, 202–215. https://doi.org/10.1016/j.compedu.2016.01.010

PS6 Choi, S.-Y. (2019). Development of an instructional model based on constructivism
for fostering computational thinking. International Journal of Innovative Technology and
Exploring Engineering, Vol. 8, pp. 381–385. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85064633190&partnerID=40&md5=9c6da0548c789dfbb24134edc2cbfdc7

PS7 Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service
Teachers’ Understandings of Computational Thinking From Their Coding Reflections. IEEE
Transactions on Education. https://doi.org/10.1109/TE.2019.2925253

PS8 Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of computational thinking
of software engineering novice students. Proceedings of The, 4(2), 105–112.
https://doi.org/10.13140/RG.2.1.2855.9206

PS9 Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on blending
learning flipped class model in colleges and universities based on computational thinking -
“Database principles” for example. Eurasia Journal of Mathematics, Science and
Technology Education, Vol. 13, pp. 5747–5755.
https://doi.org/10.12973/eurasia.2017.01024a

PS10 Fernández, J. M., Zúñiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018). Experiences
in Learning Problem-Solving through Computational Thinking. Journal of Computer Science
and Technology, 18(02), e15. https://doi.org/10.24215/16666038.18.e15

PS11 Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., & Bilotta,
E. (2019). Lesson planning by computational thinking skills in Italian pre-service teachers.
Informatics in Education, Vol. 18, pp. 69–104. https://doi.org/10.15388/infedu.2019.04

PS12 Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A
multidisciplinary approach towards computational thinking for science majors. SIGCSE
Bulletin Inroads, Vol. 41, pp. 183–187. https://doi.org/10.1145/1539024.1508931

PS13 Hou H.-Y., Agrawal S., Lee C.-F.,"Computational thinking training with technology
for non-information undergraduates",2020,"Thinking Skills and
Creativity","10.1016/j.tsc.2020.100720","https://www.scopus.com/inward/record.uri?eid
=2-s2.0-
85090228702&doi=10.1016%2fj.tsc.2020.100720&partnerID=40&md5=a6c007fa4e1130f6
9a15118167520743"

PS14 Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on
computational thinking training. International Journal of Emerging Technologies in
Learning, Vol. 14, pp. 52–69. https://doi.org/10.3991/ijet.v14i08.10495

PS15 Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice
Teachers’ Self-Efficacy, Science Learning, and Computational Thinking. Journal of Science
Education and Technology, Vol. 26, pp. 175–192. https://doi.org/10.1007/s10956-016-
9663-z

PS16 Jeon, Y., & Kim, T. (2017). The effects of the computational thinking-based

23

programming class on the computer learning attitude of non-major students in the
teacher training college. Journal of Theoretical and Applied Information Technology,
95(17), 4330–4339.

PS17 Kang Y., Lee K.,"Designing technology entrepreneurship education using
computational thinking",2020,"Education and Information
Technologies","10.1007/s10639-020-10231-
2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85085371936&doi=10.1007%2fs10639-020-10231-
2&partnerID=40&md5=72af666d82419c9dc4344f0144fb7e18"

PS18 Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious Game for
Developing Computational Thinking and Learning Introductory Computer Programming.
Procedia - Social and Behavioral Sciences, 47, 1991–1999.
https://doi.org/10.1016/j.sbspro.2012.06.938

PS19 Katai Z.,"Promoting computational thinking of both sciences- and humanities-
oriented students: an instructional and motivational design
perspective",2020,"Educational Technology Research and
Development","10.1007/s11423-020-09766-
5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85083359163&doi=10.1007%2fs11423-020-09766-
5&partnerID=40&md5=d27baf0027852e2a276dfd1c052f9fe7"

PS20 Kılıç S., Gökoğlu S., Öztürk M.,"A Valid and Reliable Scale for Developing
Programming-Oriented Computational Thinking",2020,"Journal of Educational Computing
Research","10.1177/0735633120964402","https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85092671278&doi=10.1177%2f0735633120964402&partnerID=40&md5=a767d80ae4487
90747589c61c0fe8ac6"

PS21 Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the
computational thinking scales (CTS). In Computers in Human Behavior (Vol. 72, pp. 558–
569). https://doi.org/10.1016/j.chb.2017.01.005

PS22 Kwon, J., & Kim, J. (2018). A study on the design and effect of computational
thinking and software education. KSII Transactions on Internet and Information Systems,
Vol. 12, pp. 4057–4071. https://doi.org/10.3837/tiis.2018.08.028

PS23 Lee, Y., & Cho, J. (2019). Knowledge representation for computational thinking
using knowledge discovery computing. Information Technology and Management.
https://doi.org/10.1007/s10799-019-00299-9

PS24 Li, M., & Hou, D. (2014). Network autonomous learning based on computational
thinking. World Transactions on Engineering and Technology Education, Vol. 12, pp. 576–
580. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84916237711&partnerID=40&md5=3d31af2cb32278ebb421ef9de6f7271f

PS25 Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning
Recommendation Based Augmented Reality System for Teaching Programming and
Computational Thinking. IEEE Access, 8, 45689–45699.
https://doi.org/10.1109/ACCESS.2020.2977679

PS26 Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching reform on
computational thinking training for undergraduates of computer major. Eurasia Journal of
Mathematics, Science and Technology Education, 13(10), 7121–7130.
https://doi.org/10.12973/ejmste/78738

PS27 Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a
computational thinking-enabled engineering workforce. Computer Applications in
Engineering Education, 25(1), 62–78. https://doi.org/10.1002/cae.21779

PS28 Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting

24

educational technology coursework for pre-service teachers: A computational thinking
approach to the development of technological pedagogical content knowledge (TPACK).
Australasian Journal of Educational Technology, Vol. 33, pp. 61–76.
https://doi.org/10.14742/ajet.3521

PS29 Page, R., & Gamboa, R. (2013). How Computers Work: Computational Thinking for
Everyone. Electronic Proceedings in Theoretical Computer Science, 106(Tfpie 2012), 1–19.
https://doi.org/10.4204/eptcs.106.1

PS30 Pala, F. K., & Mıhçı Türker, P. (2019). The effects of different programming
trainings on the computational thinking skills. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1635495

PS31 Qin, H. (2009). Teaching computational thinking through bioinformatics to biology
students. SIGCSE Bulletin Inroads, Vol. 41, pp. 188–191.
https://doi.org/10.1145/1539024.1508932

PS32 Rodríguez-García J.D., Moreno-León J., Román-González M., Robles
G.,"LearningML: A tool to foster computational thinking skills through practical artificial
intelligence projects",2020,"Revista de Educacion a
Distancia","10.6018/RED.410121","https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
85085603174&doi=10.6018%2fRED.410121&partnerID=40&md5=8629359de325467d947
de6634fd4b859"

PS33 Romero M, Lepage A, Lille B. Computational thinking development through
creative programming in higher education. International Journal of Educational
Technology in Higher Education. 2017 Dec;14(42): 1-15

PS34 Rubinstein, A., & Chor, B. (2014). Computational Thinking in Life Science Education.
PLoS Computational Biology, Vol. 10. https://doi.org/10.1371/journal.pcbi.1003897

PS35 Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015). Promoting
computational thinking skills in an emergency management class with MIT app inventor.
Computers in Education Journal, Vol. 6, pp. 82–91. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85052799029&partnerID=40&md5=df2b3b5a13cfeb93ab789a443cd5d7dd

PS36 Sondakh D.E., Osman K., Zainudin S.,"A proposal for holistic assessment of
computational thinking for undergraduate: Content validity",2020,"European Journal of
Educational Research","10.12973/eu-
jer.9.1.33","https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85082097163&doi=10.12973%2feu-
jer.9.1.33&partnerID=40&md5=54d1017f4af582d22b1edc9970ecd68f"

PS37 Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating
computational thinking into library graduate course goals and objectives. School Library
Research, Vol. 21. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85053260681&partnerID=40&md5=15815233f96a5912185346fe719f6496

PS38 Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in
collaborative programming: A quantitative ethnography approach. Journal of Computer
Assisted Learning, Vol. 35, pp. 421–434. https://doi.org/10.1111/jcal.12348

PS39 Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’ computational
thinking skills in a data-driven computing class. ACM Transactions on Computing
Education, Vol. 14. https://doi.org/10.1145/2676660

PS40 Zha, S., Jin, Y., Moore, Gaston J. (2020). Hopscotch into Coding: Introducing Pre-
Service Teachers Computational Thinking. TechTrends, 64, 17–28.
https://doi.org/10.1007/s11528-019-00423-0

PS41 Zha S., Jin Y., Moore P., Gaston J. (2020). A cross-institutional investigation of a
flipped module on preservice teachers’ interest in teaching computational thinking (2020),

25

Journal of Digital Learning in Teacher Education.
https://doi.org/10.1080/21532974.2019.1693941

References

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ CT skills through modeling and
simulations. Education and Information Technologies, 23, 1501–1514.
https://doi.org/10.1007/s10639-017-9675-1

Alfayez, A. A., & Lambert, J. (2019). Exploring Saudi Computer Science Teachers’ Conceptual Mastery
Level of CT Skills. Computers in the Schools, 36, 143–166.
https://doi.org/10.1080/07380569.2019.1639593

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 CT
curriculum framework: Implications for teacher knowledge. Educational Technology and
Society, 19, 47–57. https:// doi.org/10.1016/j.chb.2019.106185

Angeli, Charoula, & Giannakos, M. (2020). Computational thinking education: Issues and challenges.
Computers in Human Behaviour, 105. https://doi.org/10.1016/j.chb.2019.106185

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ CT skills through educational robotics:
A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–
670. https://doi.org/10.1016/j.robot.2015.10.008

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and
what is the role of the computer science education community? In ACM Inroads, 2(1), 48–54.
https://doi.org/10.1145/1929887.1929905

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., & Lister, R. (2017). Improving the CT pedagogical
capabilities of school teachers. Australian Journal of Teacher Education, 42(3), 53–72.
https://doi.org/10.14221/ajte.2017v42n3.4

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
CT. Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 1–25.
Retrieved from
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Bui, L. D., Kim, Y. G., Ho, W., Ho, H. T. T., & Pham, N. K. (2018). Developing WebQuest 2.0 model for
promoting CT skill. International Journal of Engineering and Technology (UAE), 7(2), 140–144.
https://doi.org/10.14419/ijet.v7i2.29.13304

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing
a Generation’s Way of Thinking: Teaching CT Through Programming. Review of Educational
Research, 87, 834–860. https://doi.org/10.3102/0034654317710096

Cachero, C., Barra, P., Melia, S., & Lopez, O. (2020). Impact of Programming Exposure on the
Development of Computational Thinking Capabilities: An Empirical Study. IEEE ACCESS, 8,
72316–72325. https://doi.org/10.1109/ACCESS.2020.2987254

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization of Scratch.
Journal of Educational Computing Research, 54, 997–1021.
https://doi.org/10.1177/0735633116642774

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Computers and Education, 95, 202–215.
https://doi.org/10.1016/j.compedu.2016.01.010

26

Choi, S.-Y. (2019). Development of an instructional model based on constructivism for fostering CT.
International Journal of Innovative Technology and Exploring Engineering, 8, 381–385.
Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85064633190&partnerID=40&md5=9c6da0548c789dfbb24134edc2cbfdc7

Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating CT and science as
practice: collaborative agent-based disciplinarily-integrated games. Interactive Learning
Environments, 28(3), 328-346. https://doi.org/10.1080/10494820.2019.1636071

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). Education: A future for computing education
research. Communications of the ACM, 57(11), 34–36. https://doi.org/10.1145/2668899

CSTA & ISTE. (2011). Operational definition of computational thinking. Retrieved from
https://www.iste.org/explore/Solutions/Computational-thinking-for-all.

Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service Teachers’
Understandings of CT From Their Coding Reflections. 62(4), IEEE Transactions on Education,
62(4), 325-332. https://doi.org/10.1109/TE.2019.2925253

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring Issues About CT in Higher Education. TechTrends,
59, 57–65. https://doi.org/10.1007/s11528-015-0840-3

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the
ACM, 60(6), 33–39. https://doi.org/10.1145/2998438 Dolgopolovas, V., Dagien˙ e, V., Jasut˙ e,
E., & Jevsikova, T. (2019). Design science research for computational thinking in constructionist
education: A pragmatist perspective. Problemos, 95, 144–159.
https://doi.org/10.15388/Problemos.95.12

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they
be used to measure understanding of computer science concepts? Computers and Education,
58(1), 240–249. https://doi.org/10.1016/j.compedu.2011.08.006

Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of CT of software engineering novice
students. Proceedings of The IFIP TC3 Working Conference “A New Culture of Learning:
Computing and next Generations” At: Vilnius, 4(2), 105–112.
https://doi.org/10.13140/RG.2.1.2855.9206

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between CT skills and various variables
with the structural equation model. Computers and Education, 116, 191–202.
https://doi.org/10.1016/j.compedu.2017.09.004

Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on blending learning flipped
class model in colleges and universities based on CT - “Database principles” for example.
Eurasia Journal of Mathematics, Science and Technology Education, 13, 5747–5755.
https://doi.org/10.12973/eurasia.2017.01024a

Fernández, J. M., Zúñiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018). Experiences in Learning
Problem-Solving through CT. Journal of Computer Science and Technology, 18(02).
https://doi.org/10.24215/16666038.18.e15

Fronza, I., El Ioini, N., & Corral, L. (2017). Teaching computational thinking using agile software
engineering methods: A framework for middle schools. ACM Transactions on Computing

Education, 17. https://doi.org/10.1145/3055258

Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., & Bilotta, E. (2019). Lesson
planning by CT skills in Italian pre-service teachers. Informatics in Education, 18, 69–104.
https://doi.org/10.15388/infedu.2019.04

https://doi.org/10.1145/2668899

27

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in science
education: exploring CT through code analysis. Interactive Learning Environments, 26, 386–401.
https://doi.org/10.1080/10494820.2017.1337036

Giannakos, M. N., Doukakis, S., Pappas, I. O., Adamopoulos, N., & Giannopoulou, P. (2015).
Investigating teachers’ confidence on technological pedagogical and content knowledge: an
initial validation of TPACK scales in K-12 computing education context. Journal of Computers in
Education, 2(1), 43–59. https://doi.org/10.1007/s40692-014-0024-8Grover, S., & Pea, R.
(2013). Computational Thinking in K-12: A Review of the State of the Field. Educational
Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education, 25(2), 199–237.
https://doi.org/10.1080/08993408.2015.1033142

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A multidisciplinary
approach towards CT for science majors. SIGCSE Bulletin Inroads, 41, 183–187.
https://doi.org/10.1145/1539024.1508931

Hou, H.-Y., Agrawal, S., & Lee, C.-F. (2020). Computational thinking training with technology for non-
information undergraduates. Thinking Skills and Creativity, 38.
https://doi.org/10.1016/j.tsc.2020.100720

Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on CT training.
International Journal of Emerging Technologies in Learning, 14, 52–69.
https://doi.org/10.3991/ijet.v14i08.10495

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in
school-wide CT: A cross-case qualitative analysis. Computers and Education, 82, 263–279.
https://doi.org/10.1016/j.compedu.2014.11.022

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice Teachers’ Self-
Efficacy, Science Learning, and CT. Journal of Science Education and Technology, 26, 175–192.
https://doi.org/10.1007/s10956-016-9663-z

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and CT: A game maker curriculum study.
Electronic Journal of E-Learning, 14, 111–121. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84968835202&partnerID=40&md5=b2d18e2de52058bda3b76bca4b55a25e

Jeon, Y., & Kim, T. (2017). The effects of the CT-based programming class on the computer learning
attitude of non-major students in the teacher training college. Journal of Theoretical and
Applied Information Technology, 95(17), 4330–4339.

Kafai, Y. B. (2016). From CT to computational participation in K-12 education. Communications of the
ACM, 59, 26–27. https://doi.org/10.1145/2955114

Kang, Y., & Lee, K. (2020). Designing technology entrepreneurship education using computational
thinking. Education and Information Technologies, 25(6), 5357–5377.
https://doi.org/10.1007/s10639-020-10231-2

Katai, Z. (2020). Promoting computational thinking of both sciences- and humanities-oriented
students: an instructional and motivational design perspective. ETR&D-EDUCATIONAL
TECHNOLOGY RESEARCH AND DEVELOPMENT, 68(5), 2239–2261.
https://doi.org/10.1007/s11423-020-09766-5

Kılıç, S., Gökoğlu, S., & Öztürk, M. (2020). A Valid and Reliable Scale for Developing Programming-

28

Oriented Computational Thinking. Journal of Educational Computing Research,
073563312096440. https://doi.org/10.1177/0735633120964402

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious Game for Developing CT and
Learning Introductory Computer Programming. Procedia - Social and Behavioral Sciences, 47,
1991–1999. https://doi.org/10.1016/j.sbspro.2012.06.938

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the CT scales (CTS).
Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005

Kwon, J., & Kim, J. (2018). A study on the design and effect of CT and software education. KSII
Transactions on Internet and Information Systems, 12, 4057–4071.
https://doi.org/10.3837/tiis.2018.08.028

Lee, Y., & Cho, J. (2020). Knowledge representation for computational thinking using knowledge
discovery computing. Information Technology and Management, 21(1), 15–28.
https://doi.org/10.1007/s10799-019-00299-9

Li, M., & Hou, D. (2014). Network autonomous learning based on CT. World Transactions on
Engineering and Technology Education, 12, 576–580. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84916237711&partnerID=40&md5=3d31af2cb32278ebb421ef9de6f7271f

Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning Recommendation Based
Augmented Reality System for Teaching Programming and CT. IEEE Access, 8, 45689–45699.
https://doi.org/10.1109/ACCESS.2020.2977679

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

Lyon, J. A., & Magana, J. A. (2020). Computational thinking in higher education: A review of the
literature. COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 28(5), 1174–1189.
https://doi.org/10.1002/cae.22295

Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching reform on CT training for
undergraduates of computer major. Eurasia Journal of Mathematics, Science and Technology
Education, 13(10), 7121–7130. https://doi.org/10.12973/ejmste/78738

Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a CT-enabled
engineering workforce. Computer Applications in Engineering Education, 25(1), 62–78.
https://doi.org/10.1002/cae.21779

Moreno León, J., Robles, G., & Román González, M. (2015). Dr. Scratch: Automatic Analysis of
Scratch Projects to Assess and Foster CT. RED: Revista de Educación a Distancia, 46.

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting educational
technology coursework for pre-service teachers: A CT approach to the development of
technological pedagogical content knowledge (TPACK). Australasian Journal of Educational
Technology, 33, 61–76. https://doi.org/10.14742/ajet.3521

Page, R., & Gamboa, R. (2013). How Computers Work: CT for Everyone. Electronic Proceedings in
Theoretical Computer Science, 106, 1–19. https://doi.org/10.4204/eptcs.106.1

Pala, F. K., & Mıhçı Türker, P. (2019). The effects of different programming trainings on the CT skills.
Interactive Learning Environments. https://doi.org/10.1080/10494820.2019.1635495

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

29

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software
engineering. 12th International Conference on Evaluation and Assessment in Software
Engineering, EASE 2008, 1–10.

Qin, H. (2009). Teaching CT through bioinformatics to biology students. SIGCSE Bulletin Inroads, 41,
188–191. https://doi.org/10.1145/1539024.1508932

Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K. H., … Gluck, F. (2015).
Scalable Game Design. ACM Transactions on Computing Education, 15(2), 1–31.
https://doi.org/10.1145/2700517

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., … Kafai, Y.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
https://doi.org/10.1145/1592761.1592779

Rodríguez-García, J. D., Moreno-León, J., Román-González, M., & Robles, G. (2020). LearningML: A
tool to foster computational thinking skills through practical artificial intelligence projects.
Revista de Educacion a Distancia, 20(63). https://doi.org/10.6018/RED.410121

Romero, M., Lepage, A., & Lille, B. (2017). CT development through creative programming in higher
education. International Journal of Educational Technology in Higher Education, 14(42).
https://doi.org/10.1186/s41239-017-0080-z

Rubinstein, A., & Chor, B. (2014). CT in Life Science Education. PLoS Computational Biology, 10.
https://doi.org/10.1371/journal.pcbi.1003897

Silva, E. (2009). Measuring Skills for 21st-Century Learning. Phi Delta Kappan, 90(9), 630-634.

Selby, C. (2013). Computational Thinking : The Developing Definition. ITiCSE Conference 2013, 5–8.

Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015). Promoting CT skills in an
emergency management class with MIT app inventor. Computers in Education Journal, 6, 82–
91. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85052799029&partnerID=40&md5=df2b3b5a13cfeb93ab789a443cd5d7dd

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying CT. Educational Research Review, 22,
142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Sondakh, D. E., Osman, K., & Zainudin, S. (2020). A proposal for holistic assessment of computational
thinking for undergraduate: Content validity. European Journal of Educational Research, 9(1),
33–50. https://doi.org/10.12973/eu-jer.9.1.33

Souza, M. R. d. A., Veado, L., Moreira, R. T., Figueiredo, E., & Costa, H. (2018). A systematic mapping
study on game-related methods for software engineering education. Information and Software
Technology, 95, 201–218. https://doi.org/10.1016/j.infsof.2017.09.014

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic
review of empirical studies. Computers and Education, 148.
https://doi.org/10.1016/j.compedu.2019.103798

Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating CT into library graduate
course goals and objectives. School Library Research, 21. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85053260681&partnerID=40&md5=15815233f96a5912185346fe719f6496

30

Tikva, C., & Tambouris, E. (2021). Mapping Computational Thinking through Programming in K-12
Education: A Conceptual Model based on a Systematic Literature Review. Computers &
Education, 162. https://doi.org/https://doi.org/10.1016/j.compedu.2020.104083

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). CT in constructionist video games.
International Journal of Game-Based Learning, 6, 1–17.
https://doi.org/10.4018/IJGBL.2016010101

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment:
Measuring computational thinking in middle school. SIGCSE’12 - proceedings of the 43rd ACM
technical symposium on computer science education.
https://doi.org/10.1145/2157136.2157200

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing CT in collaborative programming: A
quantitative ethnography approach. Journal of Computer Assisted Learning, 35, 421–434.
https://doi.org/10.1111/jcal.12348

Xing, W. (2019). Large-scale path modeling of remixing to CT. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1573199

Yadav, A., Stephenson, C., & Hong, H. (2017). CT for teacher education. Communications of the ACM,
60, 55–62. https://doi.org/10.1145/2994591

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory
education: Towards an agenda for research and practice. In Education and Information
Technologies, 20(4), 715–728). https://doi.org/10.1007/s10639-015-9412-6

Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’ CT skills in a data-driven
computing class. ACM Transactions on Computing Education, 14.
https://doi.org/10.1145/2676660

Wing, J. M. (2006). Computational thinking. In Communications of the ACM 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020a). A cross-institutional investigation of a flipped module
on preservice teachers’ interest in teaching computational thinking. Journal of Digital Learning
in Teacher Education, 36(1), 32–45. https://doi.org/10.1080/21532974.2019.1693941

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020b). Hopscotch into Coding: Introducing Pre-Service
Teachers Computational Thinking. TechTrends, 64(1), 17–28. https://doi.org/10.1007/s11528-
019-00423-0

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated
assessment for computational thinking. Journal of Educational Computing Research, 53.
https://doi.org/10.1177/0735633115608444

