
Design Pattern Alternatives:
What to do when a GoF pattern fails

Apostolos Ampatzoglou

Department of Informatics
Aristotle University of Thessaloniki

Thessaloniki, Greece
apamp@csd.auth.gr

Sofia Charalampidou
Department of Computer Science

Chalmers University of Technology
Gothenburg, Sweden

sofiagcharalampidou@gmail.com

Ioannis Stamelos
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

stamelos@csd.auth.gr

ABSTRACT

Design patterns have been introduced in the field of software
engineering in the middle of 90s as common solutions to common
design problems. Until now, the effect of design patterns on
software quality attributes has been studied by many researchers.
However, the results are not the expected ones, in the sense that
several studies suggest that there are cases when a design pattern
is not the optimum way of designing a system. In this paper, we
present the findings of a systematic literature review that aims at
cataloging published design solutions, referenced as alternative
design solutions, which are equivalent to design patterns and can
be used when a design pattern instance is not the optimum design
solution for a specific design problem.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Design Tools and
Techniques - Object-oriented design methods. ACM Computing
Classification Scheme: http://www.acm.org/class/1998/

General Terms

Design

Keywords

design patterns, design alternatives, literature review.

1. INTRODUCTION

One the most famous software pattern catalogues has been
introduced by Gamma, Helms, Johnson and Vlissides, where the
authors catalogued 23 design solutions to common design
problems in the area of object-oriented software engineering,
known as Gang of Four (GoF) design patterns [11]. Since then,
many papers evaluated GoF design patterns with respect to quality
attributes, by comparing them to alternative design solutions,
sometimes referenced as “simpler solutions”.

In [5], the authors synthesize the findings of the abovementioned
papers, in a mapping study, that reports on the effect of design
patterns on software quality attributes. The results of [5] suggest
that the effect of GoF patterns on software quality is not always
positive, but there are cases when an alternative design solution
might produce better results, with respect to certain quality
attributes. In addition to that Wendorff presents a case study
conducted in an industrial environment, where GoF design pattern
have been inappropriately applied. As a result, the maintainability
of the system was decreased [34]. Finally, in [4], the authors
suggest that even the same design pattern can have a different
effect on the same quality attribute, depending on the number of
classes that participate in the design pattern instance.

In this study, we conduct a systematic literature review that aims
at cataloguing a broad range of design solutions that are
equivalent to GoF design patterns. At this point it is necessary to
clarify that the recorded alternatives are not necessarily “good” or
“bad” practices, in the sense that in most cases, these alternatives
have not been compared to the GoF design pattern they substitute.
In addition to that, the paper itself does not aim to compare the
design patterns and the design alternatives, as it is done on some
of the primary studies and summarized in [5]. However, whenever
possible, the paper provides pointers to primary studies that
whether compare patterns to alternative solutions.

Considering the above, it becomes clear that a list of alternative
design solutions, which are equivalent to GoF design patterns can
be interesting for both researchers and practitioners. Such a
catalogue would help practitioners to pick a design solution, in
cases when GoF design patterns are applicable, but they are not
the optimum design solution, with respect to the software quality
attributes that they are interested in. Concerning researchers, such
a catalogue is expected to aid in the evaluation of GoF design
patterns, with empirical and analytical methods, such as in [3, 4,
25 and 31]. In section 2, we describe the methodology that is used
during the review process. Section 3 presents the results of our
secondary study, whereas section 4 discusses them.

2. METHODOLOGY

In order to accomplish a high standard systematic literature review
process, we have chosen to follow the guidelines described in
[17], which are considered the leading methodology for
conducting and presenting systematic reviews in software
engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PCI 2013, September 19 - 21 2013, Thessaloniki, Greece
Copyright 2013 ACM 978-1-4503-1969-0/13/09…$15.00.
http://dx.doi.org/10.1145/2491845.2491857

2.1 Research Questions

In this study, we plan to investigate the alternative design
solutions that are equivalent to GoF patterns. The main research
questions addressed in the study are:

RQ1: Which GoF design patterns have equivalent alternative

design solutions?

The findings of this research question are closer to the results of a
mapping study, since pointers to other primary studies are given.
Thus, they will aid researchers in the sense that they will provide
a catalogue of pattern alternatives and pattern variations that can
be used for evaluating design patterns. On the other hand,
practitioners can assess each primary study and decide if they
want to use GoF pattern alternatives, without searching the
complete pattern literature.

RQ2: How are alternative design solutions represented in the

studies they are introduced?

This research question aims at investigating the way that such
alternatives are presented. Design pattern alternatives can be
described by UML class diagrams, source code or by a textual
description. Intuitively, it is expected that design alternatives that
are described in a more formal way, such as class diagram are
easier to use and adapt.

RQ3: Is there a comparison of alternative design solutions to the

GoF design pattern that they are equivalent to?

This research question aims at investigating if the proposed design
alternatives are evaluated and compared to the design pattern they
can substitute. The results of this research question are important
mainly to practitioners who are interested in the structural quality
of their final product.

2.2 Search Process

The search process of our study has been based on the process
described in [7], where the authors used seven journals and seven
conferences as search space. In our study, we searched in the
journals and conferences of [7] and in two additional journals,
seven additional conferences and two additional workshops that
deal with pattern languages, reverse engineering, maintenance,
refactoring, metrics, and generic software engineering1.
Concerning the time period of the searching process, the study has
not defined any starting search date and includes articles
published until the end of 2010.

1
 SIGSOFT Symposium on Foundation of Software Engineering (FSE), International

Symposium on Software Reliability Engineering (ISSRE), Empirical Software

Engineering (ESE), Metrics Symposium (METRICS), Symposium on Empirical

Software Engineering and Measurement (ESEM), International Conference on Program

Comprehension (ICPC), International Conference on Programming Languages of

Patterns (PLOP), European Conference on Programming Languages of Patterns

(EuroPLOP), Object Oriented Programming, Systems, Languages & Applications

(OOPSLA), International Conference on Automated Software Engineering (ASE),

Software (IEEESoft), Journal of Systems and Software (JSS), Information and Software

Technology (IST), IEEE Transactions on Software Engineering (TSE), Working

Conference on Reverse Engineering (WCRE), ICSE Workshops , International

Conference on Software Maintenance (ICSM), International Conference on Software

Engineering (ICSE), European Conference on Software Maintenance and

Reengineering (CSMR), Annual Computer Software and Application Conference

(COMPSAC), FSE Workshops, Journal of Software: Evolution and Process, ACM

Transactions on Software Engineering and Methodology (TOSEM), Science of

Computer Programming (SCP), International Symposium in Software Testing and

Analysis (ISSTA), Software Testing, Verification and Reliability (STVR).

The search process was conducted by a search through the portals
of five digital libraries, namely ACM, IEEE, ScienceDirect,
Springer, and Wiley. The only term used in the search process was
pattern, referenced in the title of the publication. The exclusion of
non-relevant articles was manually conducted according to the
inclusion and exclusion criteria defined in Section 2.3.

2.3 Article Inclusion and Exclusion Criteria

The papers that are selected as primary studies in the review must
present a design solution that is equivalent to a GoF design
pattern [11]. In line with [17], there are three stages of filtering
the article set to produce the primary study data set, i.e. on basis
of title, abstract and full text. The search process was handled by
the second author, the titles and abstracts have been examined by
the first author whereas the full papers, which were not rejected at
the first two stages, were examined by all three authors. The two
inclusion criteria are the relevance of a primary study with GoF
design patterns and the existence of a description of another
design that is equivalent to one GoF design pattern.

In cases that more than one author was responsible for the
inclusion/exclusion phase, the evaluation of the primary study was
done separately. The final decision on including or excluding a
study was made through agreement of all authors. The most
common reason for excluding a paper, with respect to title, was
that the paper dealt with patterns in topics other than software
engineering. In addition, when we examined the abstracts of the
papers, the majority of the excluded studies dealt with HCI
patterns or architectural patterns. Finally, the criterion taken into
account while excluding paper, with respect to their full text, was
the absence of an explicit reference to at least one of the 23 GoF
patterns in the article full text or that the paper did not have any
kind of description of a design pattern alternative.

On the completion of the above process our primary study dataset
included 28 papers. The journals and conferences where relevant
papers have been identified, are presented in Table 1,
accompanied by the number of papers that have been taken into
account from every venue.

Table 1. Publication Venues1

Name count

PLOP 18

JSS 2

ICSE 1

ISSRE 1

ICSE Workshops 1

TSE 1

IST 1

COMPSAC 1

EuroPLOP 1

ESE 1

2.4 Data Collection

During the article selection phase, we have collected a set of
variables that describe each primary study. For every study the
following data have been extracted:

 Published in (journal or conference name)

 Patterns Investigated (name of GoF pattern)

 Alternative Design Solutions to a GoF Design Pattern (the
name of the design alternative if it is another design pattern.
If the alternative design is an unnamed variation or design, a
description of how the mechanism of the pattern is designed
by the alternative design is documented).

 Representation of Alternative Design Solution (if exists,
class diagram / source code)

 Comparison of Alternative Design Solution to a GoF Design
Pattern with respect to quality attributes (YES/NO).

At this point it is necessary to clarify that all selected articles have
been examined by all three authors, who have separately assigned
values for each variable, for every considered primary study. The
final variable values have been assigned to primary studies after
discussion on each author’s opinion.

2.5 Data Analysis

In a systematic literature review a very important step in order to
draw valuable conclusions, is data synthesis. In this step, data
from all studies are put together so as to create a data set that can
be analyzed in order to answer the research questions. The data
synthesis plan in our study aims at accessing data needed for
answering each research question, as shown in Table 2.

Table 2. Data Synthesis Overview

Research

Question Data Synthesis

RQ1 Count of discreet alternative design solutions to each
GoF design pattern

RQ2

Count of discreet alternative design solutions to each
GoF design pattern

Count of discreet representation type for alternative
design solutions to each GoF pattern

RQ3

Count of discreet alternative design solutions to each
GoF design pattern

Count of discreet alternative design solutions that have
already been compared to each GoF pattern

3. RESULTS

In Table 3, we present the patterns that have been linked to an
alternative design solution. More specifically, we mention the
patterns for which we have identified alternative design solutions,
the studies where such solutions are referenced, the way each
study presented the solution and if a comparison of the pattern
and the alternative solutions has been performed.

Table 3. Primary Studies Data Set

GoF Design

Pattern Study

Class

Diagram

Source

Code Comparison

Bridge

[3]
[14]
[16]
[21]

YES
YES
YES
YES

NO
NO
YES
NO

YES
YES
NO
NO

State

[1]
[2]
[3]
[6]
[10]
[24]
[27]

YES
NO
YES
NO
YES
NO
YES

YES
NO
NO
YES
NO
NO
YES

NO
NO
YES
YES
NO
NO
NO

GoF Design

Pattern Study

Class

Diagram

Source

Code Comparison

Abstract
Factory

[9] NO YES YES

Mediator
[13]
[14]
[30]

YES
YES
YES

NO
NO
YES

YES
YES
YES

Visitor

[12]
[14]
[20]
[23]
[25]
[31]

YES
YES
YES
YES
NO
NO

YES
NO
YES
YES
YES
YES

NO
YES
NO
NO
YES
YES

Factory Method
[22]
[33]

NO
YES

YES
YES

YES
NO

Decorator

[13]
[22]
[25]
[31]

YES
YES
NO
NO

NO
YES
YES
YES

YES
YES
YES
YES

Iterator
[19]
[26]

YES
YES

YES
YES

YES
NO

Observer

[15]
[18]
[25]
[31]
[32]

YES
YES
NO
NO
YES

YES
YES
YES
YES
NO

NO
NO
YES
YES
NO

Composite
[25]
[31]

NO
NO

YES
YES

YES
YES

Proxy [28] NO YES YES

Strategy [29] YES YES NO

Command [8] YES YES NO

Using the data from Table 3 and the data synthesis overview from
Table 2, we are able to create a table, with descriptive statistics,
that can be used for discussing the research questions of our
study.

Table 4. Descriptive Statistics

design pattern

count of

alternatives

class

diagram

source

code

compared

with GoF

Bridge 4 4 1 2

State 7 4 3 2

Abstract
Factory

1 0 1 1

Mediator 3 3 1 3

Visitor 6 4 5 3

Factory Method 2 1 2 1

Decorator 4 2 3 4

Iterator 2 2 2 1

Observer 5 3 4 2

Composite 2 0 2 2

Proxy 1 0 1 1

Strategy 1 1 1 0

Command 1 1 1 0

4. DISCUSSION

Cataloguing alternative solutions to GoF design patterns is
desirable from both a researcher’s and a practitioners’ point of
view. Concerning researchers, a list of alternative designs can aid
in the evaluation of design patterns and in the identification of
scenarios when the application of a design pattern is desirable.
Additionally, we believe that a wide set of proposed designs that
solve the same problem can help practitioners to select the most
fitting design solutions according to their special needs. In
literature, the design alternatives can be introduced as new design
patterns or as a piece of code or design artifact, most commonly a
class diagram, that solve the same problem as the GoF design
pattern. Until now, alternative design solutions have been
introduced for at least 13 out of 23 GoF design patterns, which are
described in [11], as shown in Figure 1.

The three GoF design patterns that have been linked with most
design alternatives are State, Visitor and Observer. State has
probably attracted the interest of researchers because it is one of
the most widely used patterns. On the other hand, Visitor and
Observer have probably been connected to a variety of design
alternatives, because they are considered quite complex in their
structure and their effect on software quality attributes is
controversial [5].

Figure 1. Number of Design Alternatives per GoF Pattern

The alternative designs are divided into two major categories, (a)
the ones that have been compared to GoF design patterns and (b)
the ones that have been proposed, but no direct comparison to the
corresponding GoF pattern has been found.

More specifically, concerning the Bridge design pattern, we have
identified two alternative design solutions that have been
compared to it. In [3], the authors have identified an open-source
project that uses cascaded “if” statements in the client class rather
than employing the pattern. In [14], the author suggests that using
a deeper inheritance tree can substitute the Bridge design pattern.
Additionally, [3 and 6] suggest that the State pattern can be
replaced by a code fragment in the Client class that uses multiple
alternative statements to implement the behavior of concrete states
and compare their alternatives to the design pattern. Similarly, in
[9 and 22], the authors suggest that Abstract Factory and Factory

Method patterns can be implemented with cascaded “if”
statements in the Client, reject the polymorphism that the pattern
offers and compares the solutions. Furthermore, in [13, 22, 25 and
31], the authors present an alternative to Decorator, which uses a
deeper inheritance tree to produce an equivalent solution to the
design pattern and compare the designs.

Concerning Mediator, in [13 and 14], the authors propose and
evaluate an alternative solution that does not use the pattern, but
offers equivalent functionality, by connecting all related classes

directly and not through the Mediator class. In [14, 25 and 31],
the authors propose and evaluate an alternative to the Visitor
pattern. The rationale beneath the alternative solution employs
multiple functions rather than “accept” and “visit” methods and
only one class hierarchy. The responsibility delegation is handled
through a cascaded “if” statement in every subclass of the
remaining hierarchy.

Figure 2. Design Alternatives that are compared to GoF

Design Patterns

In [19], the authors present and evaluate three variations of the
Iterator pattern. The variations are the “Non-Deterministric
Iterator”, the “Dynamic Iterator” and the “Lazy Recursion
Iterator”. Concerning Observer and Composite design patterns, in
[25 and 31], the authors omits the alternative solutions in their
manuscript, but they are available as supplementary material and a
technical report2. In both studies, the same set of patterns and
alternative solutions are evaluated.

In addition to studies that compare patterns to alternative design
solutions, there are several studies, in which new design patterns
are proposed and documented. Such research efforts are usually
published in pattern specific conferences, such as PLoP and
EuroPLoP. At this point it is necessary to clarify that it is out of
the scope of this paper to reference all the proposed patterns, but
we refer only to those that can be considered alternatives or
variations of a GoF design pattern. More specifically, in [1, 2, 10,
24 and 27] the authors present several variations of the State
pattern to enhance its behavior. Similarly, in [20 and 23], the
authors attempt to classify and organize the variations of the
Visitor design pattern. In [12], Gamma introduces a new design
pattern, Extension Object, which can be used for similar reasons
as the Visitor design pattern, in the sense that both patterns enable
the extension of object instances. In [21], the author introduces
the Cascading Bridge design pattern that is a variation of the
Bridge GoF pattern. Furthermore, in [16], the author introduces
the TypeObject that can be considered similar to the Bridge
pattern. Additionally, the Courier [30] presents a decoupled

2
 http://page.mi.fu-berlin.de/prechelt/packages/tcheck_package.zip

 http://page.mi.fu-berlin.de/prechelt/Biblio/wustl_pattern34-1997.pdf

alternative to the Mediator pattern. In [28] two variations of the
Proxy pattern are discussed: Distributed Proxy and Remote Proxy.
An extension of the Strategy pattern is presented in [29], for the
pattern to handle parameterized algorithms. In [15, 18 and 32],
the authors introduce Middle Observer, Dynamic Template, and
Decoupled Reference, which are a variation of the GoF Observer
pattern. In [8], the authors present “Command Dispatcher” that is
an alternative to the Command design pattern. Moreover, in [26],
the authors present a discussion on an alternative for the Iterator
design pattern. Finally, [33] introduces alternatives for creating
objects, similarly to Factory.

Figure 3. Design Alternatives that are presented through a

Class Diagram

Figure 4. Design Alternatives that are presented through

Source Code

Concerning alternative design types of representation, we observe
that only 5% of the proposed design alternatives are textually
presented, without source code nor class diagram representation.
On the other hand, only about 38% of the proposed alternative
solutions are fully described, both by providing a sample source

code of the alternative and its class diagram. Comparing the two
possible ways of representation, we observed that presenting an
alternative design solution through its source code is more
popular among researchers, although the difference is quite small.

5. CONCLUSIONS

This paper aims at providing a catalogue of design solutions that
can be used as alternative solutions, when the use of a GoF design
pattern is not the optimum way for designing a requirement. As
such, these alternatives are functionally equivalent to design
patterns.

In order to achieve this goal, we performed a systematic literature
review, from which we identified 39 alternative design solutions
for 13 GoF design patterns. Among them, the most alternative
design solutions have been proposed for State, Visitor and
Observer design pattern. The identified alternative design
solutions have been divided into two main categories, solutions
that have been structurally compared to design patterns (~55%)
and solutions that are only presented as alternatives, but are not
evaluated (~45%). In addition to that, 95% of the proposed
alternative design solutions are introduced with a formal
representation, i.e. class diagram or source code. However, less
than 40% of the proposed design alternatives have been
introduced with both class diagram and source code.

As future work, we plan to investigate the extent to which design
alternatives are used in practice through empirical methodologies,
such as case studies and surveys. In addition to that, a more in
depth analysis on the methods used for comparing the structural
quality of GoF design patterns and alternative design solutions are
in progress.

6. REFERENCES

[1] P. Adamczyk, “Selected Patterns for Implementing Finite
State Machines”, 11th Conference on Pattern Languages of

Programs (PLOP ’04), Monticello, Illinois, 8 – 12 September
2004
[2] P. Adamczyk, “The Anthology of the Finite State Machine
Design Patterns”, 10th Conference on Pattern Languages of

Programs (PLOP ‘03), Monticello, Illinois, 8 – 12 September
2003.
[3] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of
object-oriented design patterns in game development”,
Information and Software Technology, Elsevier, 49 (5), pp.445-
454, May 2007.
[4] A. Ampatzoglou, G. Frantzeskou and I. Stamelos, "A
Methodology to Assess the Impact of Design Patterns on Software
Quality", Information and Software Technology, Elsevier, 54 (4),
pp. 331-346, April 2012.
[5] A. Ampatzoglou, S. Charalampidou and I. Stamelos,
“Research State of the Art on GoF Design Patterns: A Mapping
Study”, Journal of Systems and Software, Elsevier, 86 (7), pp.
1945-1964, July 2013.
[6] B. Baudry, Y. Le Sunye and J. M. Jezequel, “Towards a

Safe Use of Design Patterns to Improve OO Software Testability”,

Proceedings of the 12th International Symposium on Software

Reliability Engineering, IEEE, pp. 324, Hong Kong, China, 27-30
November 2001.
[7] K. Y. Cai and D. Card, “An analysis of topics in software
engineering - 2006”, Journal of Systems and Software, Elsevier,
81 (6), pp. 1051 – 1058, June 2008.
[8] B. Dupire and E. B. Fernandez, “The Command Dispatcher
Pattern”, 8th Conference on Pattern Languages of Programs

(PLOP ‘01), Monticello, Illinois, 11-15 September 2001.
[9] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in
API Design: A Usability Evaluation”, Proceedings of the 29th

international conference on Software Engineering, IEEE, pp.
302-312, Minneapolis, Minnesota, 20-26 May 2007
[10] L. L. Ferreira and C. M. F. Rubira, “The Reflective State
Pattern”, 5th Conference on Pattern Languages of Programs

(PLOP ‘98), Monticello, Illinois, 11-14 August 1998.
[11] E. Gamma, R. Helms, R. Johnson and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Professional, Reading, MA, 1995.
[12] E. Gamma, “The Extension Objects Pattern”, 3rd

Conference on Pattern Languages of Programs (PLOP ‘96),
Monticello, Illinois, 4-6 September 1996.
[13] N. L. Hsueh, P. H. Chu and W. Chu, “A quantitative
approach for evaluating the quality of design patterns”, Journal of

Systems and Software, Elsevier, 81 (8), pp. 1430-1439, August
2008.
[14] B. Huston, “The effects of design pattern application on
metric scores”, Journal of Systems and Software, Elsevier, 58 (3),
pp.261-269, September 2001.
[15] P. Iaría and U. Chesini, “Refining the Observer Pattern: The
Middle Observer Pattern”, 5th Conference on Pattern Languages

of Programs (PLOP ‘98), Monticello, Illinois, 11-14 August
1998.
[16] R. Johnson and B. Woolf, “The Type Object Pattern”, 3rd

Conference on Pattern Languages of Programs (PLOP ‘96),
Monticello, Illinois, 4-6 September 1996.
[17] B. Kitchenham, S. Charters, “Guidelines for performing
systematic literature reviews in software engineering”, Technical

Report EBSE-2007-001, Keele University & Durham University
Joint Report, Staffordshire, UK, 2007.
[18] F. D. Lyardet, “The Dynamic Template Pattern”, 4th

Conference on Pattern Languages of Programs (PLOP ‘97),
Monticello, Illinois, 3-5 September 1997.
[19] M. L. Nelson, “A Design Pattern for Autonomous Vehicle
Software Control Architectures”, 23rd International Computer

Software and Applications Conference (COMPSAC’99), IEEE,
p.p. 172, Phoenix, Arizona, 25-26 October 1999.
[20] Y. Mai and M. De Champlain, “Pattern Language To
Visitors”, 8th Conference on Pattern Languages of Programs

(PLOP ‘01), Monticello, Illinois, 11-15 September 2001.
[21] B. McCarthy, “The Cascading Bridge Design Pattern”, 5th

Conference on Pattern Languages of Programs (PLOP ‘98),
Monticello, Illinois, 11-14 August 1998.

[22] T. Muraki and M. Saeki, “Metrics for applying GOF design
patterns in refactoring processes”, Proceedings of the 4th

International Workshop on Principles of Software Evolution,

IEEE, pp.27-36, Vienna, Austria, 10-11 September 2001.
[23] M.E. Nordberg III, “Variations on the Visitor Pattern”, 3rd

Conference on Pattern Languages of Programs (PLOP ‘96),
Monticello, Illinois, 4-6 September 1996.
[24] J. Odrowski and P. Sogaard, “Pattern Integration -
Variations of State”, 3rd Conference on Pattern Languages of

Programs (PLOP ‘96), Monticello, Illinois, 4-6 September 1996.
[25] L. Prechelt, B. Unger-Lamprecht, W .F. Tichy, P. Brossler
and L. G. Votta, “A controlled experiment in maintenance
comparing design patterns to simpler solutions”, IEEE

Transactions on Software Engineering, IEEE, 27 (3), pp 1134 -
1144 , December 2001
[26] M. Raner, “The Mutator Pattern”, Proceedings of the 2006

conference on Pattern languages of programs (PLOP ’06), ACM,
Portland, Oregon, 21-23 October 2006.
[27] A. V. Saúde, R. A. S. S. Victório and Gabriel C. A.
Coutinho, “Persistent State Pattern”, 17th Conference on Pattern

Languages of Programs (PLOP ‘10), Reno/Tahoe, Nevada , 16-
18 October 2010.
[28] R. Silva, “Distributed Proxy: A Design Pattern for
Distributed Object Communication”, 4th Conference on Pattern

Languages of Programs (PLOP ‘97), Monticello, Illinois, 3-5
September 1997.
[29] O. Sobajic, M. Moussavi and B. Far, “Extending the
Strategy Pattern for parameterized Algorithms”, 17th Conference

on Pattern Languages of Programs (PLOP ‘10), Reno/Tahoe,
Nevada, 16-18 October 2010.
[30] R. Switzer, “Courier Patterns”, 5th Conference on Pattern

Languages of Programs (PLOP ‘98), Monticello, Illinois, 11-14
August 1998.
[31] M. Vokáč, W. Tichy, D. I. K. Sjøberg , E. Arisholm and M.
Aldrin, “A Controlled Experiment Comparing the Maintainability
of Programs Designed with and without Design Patterns—A
Replication in a Real Programming Environment”, Empirical

Software Engineering, Springer, 9(3), pp 149-195, September
2004.
[32] P.L. Weibel, “The decoupled reference pattern”, 2nd

Conference on European Pattern Languages of Programs

(EuroPLoP’ 96), Kloster, Irsee, Germany, 11-13 July 1996.
[33] L. Welicki, J. W. Yoder and R. Wirfs-Brock, “The Dynamic
Factory Pattern”, 15th Conference on Pattern Languages of

Programs (PLOP ‘08), Nashville, Tennessee, 18-20 October
2008.
[34] P. Wendorff, “Assessment of Design Patterns during
Software Reengineering: Lessons Learned from a Large
Professional Project”, IEEE Proceedings of the 5th European
Conference on Software Maintenance and Reengineering (CSMR

2001), pp.77-84, 14–16 March 2001, Lisbon, Portugal.

