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SOUL IN THE RIND

In the past, the distance that cognitively separates humans from other mammalian species was
explained by our possessing a soul that animals did not have. Ramón y Cajal (1933) reduced the
difference between human and animal intelligence to the abundance and complexity of cortical
association fibers, the number of which increases in proportion to the quantity of gray matter: “The
large cerebra of the elephant, whale, ox, horse, etc., possess many projection cells but relatively
scarce association cells.”

Today, the explanation for human intellect is that we possess a bigger telencephalon: the richness
of mental life depends on the surface area of an expanded cerebral cortex, considered to be the seat
of consciousness (de Duve, 2002).

CREASELESS TO CRINKLED

The vertebrate cerebral cortex varies from the trilaminar reptilian to the hexalaminar mammalian
form (Shepherd, 2011). The evolution from lissencephaly to gyrencephaly provided mammals with
a means to accommodate more cerebral cortex within the confines of their cranial vault. The
degree of cortical folding depends on the cortical surface, thickness, volume, and convolutedness
(Hofman, 1985). An increase in the gyrification index (GI) correlates with the increase in brainmass
inmammalian orders, including primates, cetaceans, carnivores, and ungulates (Pillay andManger,
2007). Cetaceans are the most gyrencephalic mammals, regardless of brain mass, which is a finding
explained by their post-terrestrial return to a marine environment (Manger et al., 2012).

The areal expansion and the gyration of the cortical surface commence prenatally in the
developing human. Gyrated cortices feature multipotent basal radial glial cells that reside in
the outer subventricular zone (Ghosh and Jessberger, 2013). During late developmental stages,
asymmetrical cell divisions in the ventricular zone generate radial glial cells and intermediate
progenitor cells; subsequently, the latter divide symmetrically in the subventricular zone to produce
multiple types of neurons (Rakic, 1988). The evolution of this two-step pattern of neurogenesis
is theorized to have played an important role in the amplification of cell numbers underlying
the radial and tangential cortical expansion (Martínez-Cerdeño et al., 2006). Cytoskeletal
rearrangements also appear to be crucial for the development of gyrated brains (Nielsen et al.,
2010).

The folding of the cerebral cortex has been attributed to a relative increase in the expansion
of the superficial layers relative to deep layers and to the dissipation of the in-plane mechanical
forces generated by the tangential cortical surface expansion (Van Essen, 1997; Bayer and Altman,
2006; Mota and Herculano-Houzel, 2015; Ronan and Fletcher, 2015). Axonal growth and synapse
formation happen along with gyrification, such that laminar and regional cytoarchitecture is
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intimately linked to cortical “connectomics” and thalamocortical
projections (Karten, 2015).

The developmental and evolutionary mechanisms of
cerebrocortical gyrification, and their malformations, have
been investigated by means of neuroimaging and molecular
genetic methods (Rash and Rakic, 2014). Certain genes
involved in the process of cortical gyrification demonstrate
altered transcriptional activity during the time-frame when
convolutions appear (Nielsen et al., 2010).

The fact that there is a similar pattern in the gyration across
members within a species, but a different pattern among species,
indicates that cortical convolution is a genetically-programmed
process (Nielsen et al., 2010). A technical way to address the
question of gyrification is by genomic analyses before and
after the appearance of gyration in diverse species; that is,
by comparing the differential expression of identified genes
between the lissencephalic embryonic stage and the primary-
folded gyrencephalic stage, as Nielsen et al. (2010) did in the
pig.

The DNA-associated protein Trnp1 regulates cortical
expansion tangentially and radially. In mice, high levels of
Trnp1 lead to cortical gyrification in an animal that is normally
lissencephalic (Stahl et al., 2013). Another gene, ARHGAP11B,
which is unique to humans, has been shown to promote basal
progenitor cell generation in the subventricular zone and induce
cerebrocortical gyrification after insertion into the mouse
genome (Florio et al., 2015).

The GPR56 gene encodes a heterotrimeric G-binding protein-
coupled receptor expressed in cortical progenitor cells and
required for normal cortical development; the GPR56 protein
functions in cell adhesion and guidance (Nielsen et al., 2010;
Rash and Rakic, 2014). A 15-base pair deletion in the regulatory
region ofGPR56 was discovered in patients with familial seizures,
mental disability, and bilateral cortical abnormalities in the
frontal lobe around the Sylvian fissure, including Broca’s area
(Bae et al., 2014); in mice, GPR56 overexpression led to an
increase of cortical progenitor proliferation and influenced gyral
patterning.

FUNCTIONAL ATTRIBUTES

The issue of functional localization in the human cerebral
cortex has journeyed from neuroanatomical phenomenology
to hypothesis-driven neuropsychology and back. Classical
neuroanatomists considered brain structure and function as
one; they studied morphology from a histophysiological
perspective, not as a mere parcellation of neurons (Jakob,
1939). Cajal, Brodmann, Economo, Koskinas, and the Vogts
worked on the premise that morphological diversity reflected
functional specifications, leaving it to future physiological
and clinical studies to attribute functional individualities to
anatomical subdivisions (Bartels and Zeki, 2005; Jones, 2008).
Koskinas (1931) put it succinctly: “As a general principle, each
physiological function presupposes a corresponding anatomical
basis. From the precise knowledge of the structure of the
cerebral cortex we may expect to shed light on issues of the

utmost importance, such as the relationship between mental
attributes and brain structure.” Examples of cytoarchitectonic
subdivisions that reflect functional differentiation were found in
motor, somatosensory, and visual fields in the frontal, parietal,
and occipital lobes.

Cortical cytoarchitecture and myeloarchitecture are
inextricable from neuronal connections (van den Heuvel
et al., 2015). In defining cortical areas, connectivity is key; the
guiding principle of neuroanatomists that cortical areas form
parts of connectional networks is now being adopted by the
neuroimaging community, including the streams of intrinsic
cortico-cortical connections, the re-entrant projections from the
thalamus, and their ontogeny (Jones, 2008).

The traditional hypothesis-driven paradigm faces new
challenges (Frackowiak and Markram, 2015). The “piece-meal”
research style we are used to cannot offer a full understanding
of brain function; instead, an integrated, multilevel explanation
seems imperative, comprising all organizational aspects of the
nervous system, from DNA to behavior, and the cooperation of
such different levels with each other.

Advances in neuroimaging have led to new knowledge about
brain organization at a systems level, “a macro-scale road map
for understanding perception, action, and cognition” (Badre
et al., 2015). Neuroimaging researchers, equipped with ever
more powerful magnets, seem content with locating a gyrus
that corresponds to a Brodmann numbered area and referring a
particular behavioral action to that location (Jones, 2008). They
revived the notion of “cognitive brain mapping” and purport
to unveil physical representations of cognition in living cerebral
tissue; the term “activation” (adjustable pseudocolors generated
by software) became an ambiguous catchall term (Smith,
2010). Typically, an activation occurs when two experimental
conditions produce statistically-significant differences in relative,
normalized signal strength between two neighboring anatomical
regions. In fMRI, mental functions are taken as localized in
cortical sites (“functional segregation”), a notion reflecting the
old view that conscious processes must have a seat in the brain,
rather than connections.

There are further limitations in decoding the results of
functional magnetic resonance imaging (fMRI) (Haynes, 2015).
Information contained in single voxels or voxel ensembles cannot
be directly correlated with information encoded in single neurons
because the method relies on the magnetization level of blood
as an indirect marker of activity in pools of thousands of
neurons in a nonlinear hemodynamic response. Signals can
appear in disparate brain areas, not connected anatomically, and
with different signal-to-noise ratios. Moreover, a positive signal
in a fMRI can overestimate the information available at the
neuronal level, influenced by the pattern of blood vessel drainage;
conversely, absence of information in the fMRI does not mean
absence of information at the level of local neuron populations
(Haynes, 2015).

An inherent limitation of fMRI is resolution (macro-level).
If we consider that the key to any behavioral outcome is the
activity at the synapse (micro-level), we realize that today’s
imaging cannot reveal the ultimate morphological or chemical
happenings that lead to behavior. There is a strong argument that
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FIGURE 1 | Brains of advanced gyrencephalic species depicted in classical neuroanatomical works (varying scales). (Upper): Adult human (Homo sapiens sapiens)

(Retzius, 1896, plate 57/1); African elephant (Loxodonta africana) (Jakob and Onelli, 1913, plate 38/262); and common porpoise (Phocoena phocoena) (Flatau and

Jacobsohn, 1899, plate 6/1). (Lower): Southern right whale (Eubalaena australis); giraffe (Giraffa camelopardalis); South American fur seal (Arctocephalus australis);

and llama (Lama glama) (Jakob and Onelli, plates 37/254, 30/206, 36/242, 27/176, respectively). Modern photographs of brains of over 175 species are available

online (NeuroscienceLibrary.org) at the National Museum of Health and Medicine of the Armed Forces Institute of Pathology, Washington, D.C., which houses several

renowned neuroanatomical collections, including the University of Wisconsin–Madison Comparative Mammalian Brain Collection (Fobbs and Johnson, 2011).

it is not merely helpful to understand the nano-scale organization
of the brain for insight into its function; it is a requisite
(Südhof, 2017); a molecular understanding of the brain further
necessitates taking into account the incessant neural plasticity,
the non-synaptic communication between neurons, and the role
of glia.

Cortical functions are integrative. Their underlying network
commonality transcends parcellation and connectivity, especially
with the thalamus, and is therefore crucial in defining any
cortical area. Even white matter imaging methods, such as
diffusion-tensor and diffusion-spectrum imaging, do not reveal
the synaptic terminations of axons in the gray matter of the
cerebral hemispheres (Jones, 2008).

Nonetheless, imaging techniques make it possible to study
human representational space noninvasively in unprecedented
ways, provided they are interpreted cautiously. Sizeable
experimental data have been gathered in the effort to link
particular behaviors to specific anatomical loci in the human
cerebral hemispheres. A function is attributed to a cerebral lobe,
cortical gyrus, lobule, or cytoarchitectonic area (Vandenberghe
et al., 2001; Zysset et al., 2003; Rivera et al., 2005; Kitada et al.,
2009; Sestieri et al., 2010). Brain imaging studies have gone
as far as associating individualist, conservative and radical
political ideologies to cortical areas—medial prefrontal cortex
and temporoparietal junction, dorsolateral prefrontal cortex,
and ventral striatum and posterior cingulate cortex, respectively
(Zamboni et al., 2009)—and associating cortical gyri with

economic-political decisions or voting behavior (Xia et al.,
2015).

THE DISCREPANCY OF SPECIES

Pioneers of neuroanatomy, including Obersteiner, Flatau,
Edinger, Retzius, Jakob, Ariëns-Kappers, Herrick, and Welker,
placed emphasis on comparative neurology in their quest to
understand the human brain in the context of growth, form,
and function (Obersteiner, 1890; Retzius, 1896; Edinger, 1899;
Flatau and Jacobsohn, 1899; Jakob and Onelli, 1913; Hofman and
Johnson, 2011).

The tendency to ascribe a function to each lobule or gyrus
of the human cerebral hemispheres comes in sharp contrast to
the fact that, for the plethora of mammals with rich gyration
patterns of the cerebral cortex (Figure 1), we have very little data
that allow us to attribute specific functions to each anatomically-
defined ensemble. What do all these gyri and cytoarchitectonic
areas do? It would be a paradox to concur that natural selection
produced human gyri for specific functional outcomes, while in
other species the presence of numerous gyri just serves to fill the
cranial cavity.

The twentieth century in neuroscience has centered around a
small number of models, such as mice, rats, cats, dogs, rabbits,
and monkeys (so-called “classic laboratory animals”; Nielsen
et al., 2010). The trend accelerated as genomic sequences and
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molecular genetic tools became available for specific species,
leading to a “bottleneck.” It is now realized that the comparative
study of species from different phyletic lineages can be useful
for the formulation and critical testing of hypotheses (Brenowitz
and Zakon, 2015). Evidently, mammalian species that have
not yet been studied outnumber those studied. In an attempt
to explain anatomical structure in tandem with functional
specialization in complex brains, neuroscience research of the
twenty-first century should establish a coherent denominator
by extending research to a range of richly-gyrated, “exotic”
animals that have not been studied extensively or at all.
There are unique brain collections in comparative anatomy
museums worldwide that remain unexploited (Iwaniuk, 2010).
An ambitious plan is to generate a phylogenetic tree of
functional cortical cartography; in other words, a comparative
neurology that takes into account the fourth dimension—
the macro-time scale of evolution (Triarhou, 2008). Only
then can the blueprint of cortical gyration be understood in
conjunction with its microstructure and integrative functional
output.

Along that line, substantial progress is noted in the study of
brain structure in gyrencephalic species beyond primates, such
as the dromedary (Simon, 1965), llama (Welker et al., 1976),
horse (Cozzi et al., 2014), hippopotamus (Butti et al., 2014),
rhinoceros (Manger, 2011; Bhagwandin et al., 2017), elephant
seal, and sea lion (Sawyer et al., 2016; Turner et al., 2017),
not to mention the extensive literature on proboscidea (Dexler,
1907; Jakob, 1909; Janssen and Stephan, 1956; Haug, 1966;
Cozzi et al., 2001; Shoshani et al., 2006; Jacobs et al., 2011;
Herculano-Houzel et al., 2014) and cetacea (Tower, 1954; Haug,
1970; Walløe et al., 2010; Butti et al., 2011; Mortensen et al.,
2014).

Common anatomical landmarks were documented across
gyrencephalic species early in the scientific history of this
topic (Flatau and Jacobsohn, 1899; Jakob and Onelli, 1913).
The question emerges whether there are homologous areas,
circuits, and pathways that mediate perceptual, visual, auditory,
somatosensory, and other processes or, reversely, whether there
are homologous behaviors, conceivably subserved by different
cytoarchitectonic areas. Or is the assumption of homologies
among species increasingly difficult to sustain, as Frackowiak
and Markram (2015) reasoned? Beyond the basics, what is the
morphofunctional nature of gyri? Which cytoarchitectonic areas
are conserved in larger gyrated brains and which diverge? What
is the layer distribution of neuronal types and how are they
assembled into neocortical circuits? Histology, histochemistry,
microelectrode recordings and biochemical analyses, which
historically yielded landmark discoveries in neuroscience, should
not be abandoned or underestimated as techniques for the future.

Computational methods of mapping and quantifying cortical
area layout, such as the original comparative approach of Chaplin
et al. (2013) in simian primates, are also meaningful in the quest
to probe form and function in larger gyrated brains.

In the accounts of phylogenetic evolution, the occasional
bias in the resolution of cladogram branches in favor of
Homo sapiens was pinpointed (Sandvik, 2009). Perhaps the
answers to the problems outlined above would help us to gain

a broader understanding of neocortical gyration, and a less
anthropocentric interpretation of neurobiology.
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