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Abstract—Network Function Virtualization (NFV) poses the
need for efficient embeddings of network services, usually defined
in the form of service graphs, associated with resource and
bandwidth demands. As the scope of NFV has been expanded in
order to meet the requirements of virtualized cellular networks
and emerging 5G services, the diversity of resource demands
across dimensions, such as CPU, memory, and storage, increased.
This requirement exacerbates the already challenging problem
of network service embedding (NSE), rendering most existing
NSE methods inefficient, as they commonly account for a single
resource dimension (i.e., typically, the CPU).

In this context, we investigate methods for NSE optimization
across multiple resource dimensions. To this end, we study a
range of multi-dimensional mapping efficiency metrics and assess
their suitability for heuristic and exact NSE methods. Utilizing
the most suitable and efficient metrics, we propose two heuristics
and a mixed integer linear program (MILP) for optimized multi-
dimensional NSE. In addition, we devise a virtual network
function (VNF) bundling scheme that generates (resource-wise)
balanced VNF bundles in order to augment VNF placement.
Our evaluation results indicate notable resource efficiency gains
of the proposed heuristics compared to a single-dimensional
counterpart, as well as a minor degree of sub-optimality in
relation to our proposed MILP. We further demonstrate how
the bundling scheme affects the embedding efficiency, when
coupled with our most efficient heuristic. Our study also uncovers
interesting insights and potential implications from the utilization
of multi-dimensional metrics within NSE methods.

Index Terms—Network Function Virtualization, Orchestration,
Mathematical optimization, Network service embedding.

I. INTRODUCTION

Middleboxes, such as firewalls, proxies, network address
translators (NAT), intrusion detection systems (IDS), and
redundancy elimination devices, comprise an indispensable
part of the network infrastructure [1], [2]. The various lim-
itations of middleboxes in terms of resource efficiency (i.e.,
middleboxes are typically provisioned for peak loads, meaning
that they can remain under-utilized for long periods) and
flexibility (middleboxes are specialized devices that cannot be
re-purposed for other functionality) have sparked interest in
software-based solutions, which are promoted by the Network
Function Virtualization (NFV) paradigm [3], [4]. NFV is be-
ing materialized in enterprise datacenters (DCs), (micro-)DCs
operated by telcos, and pubic cloud infrastructures, enabling
the deployment of virtualized network functions (VNF) on
commodity servers at unprecedented flexibility and lower cost.

The deployment and management of VNFs is far from
straightforward, as these entail significant challenges in terms
of resource allocation, service chaining, and elasticity, which

are commonly studied within the context of NFV orchestration
[5]. Network service embedding (NSE) comprises one of the
most critical problems for NFV infrastructures, since efficient
NSE methods can meet certain resource allocation policies
and objectives, leading to increased revenue and potential
reduction of operation costs (e.g., by VNF consolidation) [6].
The problem of NSE consists in the mapping of service chains
(i.e., ordered sequences of VNFs) onto the NFV infrastructure,
while ensuring resource efficiency and correctness. NSE can
be optimized with specific objectives in mind, which can be
tailored to the provider’s policy (e.g., footprint minimization,
inter-rack traffic minimization) or the client’s needs (e.g.,
expenditure minimization). In this respect, a range of heuristic
and exact methods have been proposed, which are applicable
either within a single NFV infrastructure [7], [8] or across
multiple domains [6], [9].

One limitation of most proposed NSE methods is that they
account for a single resource dimension, which is highly
restrictive especially in the case of nodes (i.e., VNFs). In
practice, VNF resource demands need to be expressed across
multiple dimensions, such as CPU, memory, and storage.
Furthermore, given the expansion of the scope of NFV, from
packet processing functions to virtualized cellular network el-
ements (e.g., Serving Gateway, Mobility Management Entity)
[8], [10], and specialized service elements (e.g., for location-
based services) [11], we anticipate a wide diversity in the
requirements among the resource dimensions. Taking into
account only the CPU demand (which is the common practice
of the majority of NSE methods) for memory- or storage-
intensive VNFs can lead to a significant resource wastage
and, consequently, loss of revenue for the provider. The
implications of single-dimensional NSE methods on resource
efficiency can be more severe in resource-constrained NFV
environments, such as edge clouds.

In this work, we tackle the NSE problem under a more
pragmatic scope, by designing and evaluating methods for
optimized NSE across multiple resource dimensions. To this
end, we study the efficiency of relevant multi-dimensional
mapping metrics, utilized for virtual machine placement.
We further assess the suitability of these metrics for their
utilization in multi-dimensional heuristic and exact service
embedding methods. More precisely, we employ the metrics
L2 norm-based greedy and the cosine similarity [12], [13],
[14] into heuristic algorithms, whereas the Manhattan distance
is deemed more appropriate for our proposed mixed integer
linear program (MILP), because of its linearity. An additional
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metric, i.e., resource skewness [15], is used to quantify the
balance in the resource consumption among the multiple
dimensions.

Along these lines, the main goals of our study are the
following: (i) quantify the gains of multi-dimensional NSE
methods compared to counterparts that account only for CPU
demands, and (ii) investigate to what extent a balanced re-
source utilization (across resource dimensions) can guarantee
high resource efficiency. Our extensive evaluation results in-
dicate notable resource efficiency gains from the use of multi-
dimensional NSE methods. With respect to the second goal, we
uncover that the integration of a multi-dimensional mapping
metric into a heuristic is by no means straightforward; instead,
they need to be very carefully coupled in order to ensure high
efficiency.

This paper extends our previous work [16], by expanding
the scope of NSE methods from two dimensions to an arbitrary
number of resource dimensions1, thereby, enhancing the appli-
cability and potential of the proposed methods. In this version,
we also devise and evaluate a VNF bundling mechanism
that seeks to generate VNF bundles out of individual VNFs
with unbalanced resource demands. More precisely, the main
contributions of this paper are the following:

• We investigate the suitability of multi-dimensional map-
ping efficiency metrics for NSE across multiple resource
dimensions.

• We propose both heuristic and exact methods for the
embedding of network services with demands across
multiple resource dimensions.

• We assess the efficiency of multi-dimensional metrics
for NSE, and further quantify the resource efficiency
gains compared to a NSE method with a single resource
dimension.

• We perform a comparison between our most prominent
heuristic and a MILP, in terms of NSE optimality and
solver run-time.

• We propose a VNF bundling scheme and assess its
efficiency by coupling it with our most efficient heuristic.

• We shed light on challenging aspects and potential impli-
cations from the utilization of multi-dimensional metrics
within NSE heuristics and exact methods.

The remainder of the paper is organized as follows. In
Section II, we elaborate on the NSE and the multi-dimensional
resource allocation problems. In Section III, we initially
present service and substrate network models required for
our formulations; subsequently, we study four relevant multi-
dimensional mapping efficiency metrics and comment upon
their suitability for heuristic and exact methods. In Sec-
tion IV, we introduce a MILP formulation, a heuristic for
multi-dimensional embedding, as well as our VNF bundling
method. In Section V, we quantify the efficiency of the multi-
dimensional metrics in comparison with a baseline heuristic
that accounts only for CPU demands. In addition, we compare
the most efficient heuristic variant and our proposed MILP, and

1CPU, memory, storage, and I/O are regarded as the most common resource
dimensions.

Fig. 1: Network service embedding onto a two-layer datacenter
network topology.

assess the impact of the VNF bundling scheme on the embed-
ding efficiency. Section VI provides an extensive discussion
of related work. In Section VII, we discuss critical aspects of
multi-dimensional NSE and highlight our conclusions.

II. PROBLEM DESCRIPTION

In this section, we elaborate on the NSE and the multi-
dimensional virtual machine (VM) allocation problems. In
particular, we aim at pointing out how methods from the latter
can be incorporated into the former and, further explain the
integration of multi-dimensional allocation principles into a
heuristic algorithm that we later present and evaluate.

A. Network Service Embedding

NSE exhibits certain similarities with the Virtual Net-
work Embedding (VNE) problem. VNE consists the main
resource allocation challenge in network virtualization [17],
since both virtual nodes and virtual links have to be mapped
to the respective substrate components, subject to capacity
constraints. Nonetheless, VNE was initially decoupled into
two sub-problems; namely, the virtual node mapping and the
virtual link mapping [18]. This decomposition, though, may
lead to sub-optimal embeddings. This problem was rectified
by subsequent VNE methods, which coordinate node and link
assignment (e.g., [19]).

NSE differentiates itself from VNE in that the virtual
networks are expressed as undirected graphs composed of
vertices and edges, whereas network services (NSes) are
specified as directed graphs (more precisely, as directed acyclic
graphs) [20], [21]. According to [6], a service chain represents
the exact sequence of VNFs traversed by one or multiple flows.
That is, NSes are defined as directed graphs composed of
vertices and edges, which represent VNFs and virtual links
(for VNF communication), respectively, as shown on the top
of Fig. 1. The essence of the problem lies in the efficient
assignment of both VNFs and virtual links to the respective
counterparts of the substrate topology, while adhering to
capacity constraints. Schematically, according to Fig. 1, each
VNF must be placed at exactly one server, while each virtual
link must be mapped onto a sequence of physical links that,
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Fig. 2: VNF-to-server mapping with 3-dimensional nodes.

ultimately, forms a path that connects servers hosting adjacent
VNFs.

The range of different allocation possibilities, both for
VNFs and virtual links, corroborates the combinatorial nature
of NSE. More specifically, NSE belongs in the class of
NP-complete combinatorial optimization problems, being, as
already mentioned, a particular instance of the NP-complete
VNE [22]. Furthermore, NSE can be tackled from a variety
of optimization objectives, such as footprint minimization,
revenue maximization, or load balancing.

B. Multi-dimensional VM allocation

Research on single-dimensional VM allocation has led to
several algorithms that exhibit a high degree of optimality [12].
However, by considering multi-dimensional VMs and servers,
the complexity of the problem increases significantly. That
is, the notion of a VM best fitting a server can not be
inherently extended to many dimensions. In practice, the multi-
dimensional VM allocation problem is approached as a variant
of the Vector Bin Packing (VBP) problem and algorithms
implemented for the former draw upon research on the latter.

The VBP problem considers the allocation of n-dimensional
items to n-dimensional bins by using as few bins as possible. It
has been proved to be an NP-hard combinatorial optimization
problem (e.g., [23]); hence, a variety of heuristic algorithms
have been developed as more appropriate means of tackling
it, e.g., [12], [13], [24], [25]. Assuming that items and bins
correspond to VNFs and servers, respectively, VBP algorithms
can be directly utilized to handle the virtual node placement
phase discussed in Section II-A, although without guaranteeing
success on our particular problem, since they cannot incorpo-
rate the bandwidth demands of a NS. We propose solutions
for this later in the paper.

The limitations of a naive allocation policy, with three
resource type requirements for VNFs, are merely illustrated
in Fig. 2. In essence, if the VNF on top is placed in Server 1,
a significant portion of its first resource type remains untapped,
since the other two resource types of the server are fully occu-
pied and, therefore, no additional VNFs can be accommodated.
Instead, the placement of the VNF in Server 2 seems more
suitable for the exact opposite reason, i.e., more efficient server
resource utilization.

Essentially, the corresponding resources marked with the
red line are implicitly bounded; the fact, however, that they are

TABLE I: Notations in the network model and the NS embed-
ding formulations and algorithms.

Symbol Description
V the set of physical nodes within the substrate topology
VF the set of virtual nodes comprising a network service
E the set of physical edges within the substrate topology

EF the set of virtual edges between virtual nodes
N the set of all resource types
dk

i demand of virtual node i on resource k
di j bandwidth demand of edge (i, j) in Mbps
rk

u residual capacity of physical node u on resource k
ruv residual capacity of physical edge (u,v) in Mbps
xi

u assignment of virtual node i to physical node u
Mu the sum of the remaining capacities of each resource type

for server u
f i j
uv amount of bandwidth assigned to link (u,v) for virtual edge

(i, j) in Mbps
zu usage indicator of server u
si

u suitability value for the mapping of VNF i to server u

not assigned to any particular VNF prevents the infrastructure
providers (InPs) from monetizing them. Techniques addressing
this problem can be deemed efficient only when they minimize
such resource wastage.

NSE deals with NSes that commonly consist of a multitude
of VNFs. As a consequence, typical VBP algorithms that are
driven by holistic criteria for the allocation of items to bins
cannot be directly applied to the problem that we investigate.
In this respect, our work aims at exploring potential ways
of leveraging VBP insights within the NSE problem space.
This is anticipated to yield more efficient resource utilization
in servers, compared to other relevant methods that do not
exercise any notion of multi-dimensional resource mapping.

III. MODELS AND MAPPING EFFICIENCY METRICS

In this section, we initially introduce models for the NS and
the substrate network, i.e., datacenter (DC). Next, we describe
in detail the various mapping efficiency metrics that we use.

A. Service and Network Models

Network Service (NS) model. We use a directed graph GF =
(VF ,EF) to express a NS. The set of nodes VF includes all
VNFs i that are associated with a demand value on resource
k, denoted by dk

i . Edges between nodes i and j, i, j ∈VF , are
expressed as (i, j) ∈ EF , whereas their respective bandwidth
demands are denoted by di j.

Datacenter (DC) model. We model a DC as an undirected
graph G = (V,E), where V is the set of all physical nodes
within the datacenter, i.e., servers and switches. Furthermore,
rk

u is assigned to every physical node u to express its residual
capacity on resource k. Likewise, (u,v) ∈ E denotes the link
between nodes u and v, (u,v ∈ V ). Each link (u,v) ∈ E is
associated with its residual bandwidth capacity, ruv.

Table I summarizes the notations for the models explained
above. We point out that all switches within a DC are assigned
with zero resource capacities in order to inhibit the mapping
of VNFs onto them.



4

B. Mapping Efficiency Metrics

Let the vector di = [d1
i ,d

2
i , ...,d

n
i ] indicate the requirements

of a VNF i∈VF , on a finite set of resource types N = {1, ...,n}.
Similarly, we denote with ru = [r1

u,r
2
u, ...,r

n
u] the vector of

available resources of a server u ∈V . According to these for-
mulations, we now present the way each metric is computed,
as well as its broader scope.

L2 norm-based greedy. Based on the L2 norm-based greedy
metric, the server u that hosts VNF i in the most efficient way
will be the one that minimizes the quantity:

si
u =

√
n

∑
k=1

(rk
u−dk

i )
2 (1)

Eq. 1 computes the euclidean distance between the n −
dimensional points expressed by the coordinates of di and
ru. Thus, the L2 norm-based greedy selects the server that
minimizes this distance.

Dot product - Cosine similarity. Given the coordinates of all
vectors ru, and di, the respective dot-products can be computed
with the analytical expression, i.e., Eq. 2:

si
u = ru ·di =

n

∑
k=1

rk
u ·dk

i (2)

As per the dot-product metric, the most suitable server u for
the mapping of VNF i is the one that maximizes Eq. 2. The
dot-product of two vectors can be also calculated as:

si
u = ru ·di = ||ru|| · ||di|| · cosθ (3)

where ||ru|| and ||di|| indicate the norms of the respective
vectors, while cosθ expresses the cosine of their angle (which
is illustrated in Fig. 3). Consequently, and given that di is fixed
for a specific VNF i, the dot-product in Eq. 3 increases if the
value of ||ru||, cosθ or both also increase.

Nevertheless, the effect of ||ru|| on the final selection of a
server may outweigh that of cosθ. Since we deem the latter
term as more appropriate for finding aligned (according to
available and required resources) server-VNF pairs, we utilize
the cosine similarity metric, shown in Eq. 4.

si
u
′ = cosθ =

ru ·di

||ru|| · ||di||
(4)

The coordinates of all vectors participating in Eq. 4 are
positive2 and thus their angle lies within [0, π

2 ). Therefore, the
domain of si

u
′ will be (0,1] and, apparently, the closer this

value to one, the better.

Resource skewness. The notion of resource skewness is
introduced in [15] as a means to quantify the fairness of the
utilization of a server’s different resource types. In accordance
with the applicability of the other two metrics, we can compute
the skewness of each server using:

si
u =

√
n

∑
k=1

(
rk

u−dk
i

r̄u
−1)2 (5)

2We only consider servers with sufficient resources for hosting the VNF.

Fig. 3: The angle θ between the vector of a server’s residual
capacities, ru, and the vector of a VNF’s resource require-
ments, di, for a 2-dimensional scenario.

where r̄u expresses the average consumption of all resources
of server u. In this way, Eq. 5 can be used to assign a cost to
each VNF-to-server mapping alternative, for a specific VNF
i and the available servers u. The smaller the skewness of a
server the more balanced its resource utilization is. Therefore,
we would opt for the server u that minimizes Eq. 5.

Nevertheless, we compute skewness as shown in Eq. 6.
Specifically, we omit the terms dk

i from the nominators of the
previous equation, and compute the average resource skewness
of all servers according to their current consumption levels in
order to obtain a single value for an individual DC. Hence,
we adopt this metric as an embedding efficiency measure.

skewness =
∑u∈V

√
∑

n
k=1 (

rk
u

r̄u
−1)2

|V |
(6)

Manhattan distance. In the MILP that we later present, we
aim at incorporating a metric that acts similarly to those
already presented. More specifically, this metric will act as
a penalty assigned to the servers selected during the NS
embedding, in the sense that the more balanced their resource
consumption is the better (and vice versa). It becomes appar-
ent, though, that the metrics presented thus far are computed
with non-linear terms. Hence, by incorporating them into a
MILP, the element of linearity would be lost. Furthermore,
the time complexity of the resulting solver would explode. To
circumvent this, we have decided to incorporate the Manhattan
distance into our MILP. According to Eq. 7, this distance
is computed as the sum of the absolute differences of the
respective coordinates of two vectors.

si
u =

n

∑
k=1
|rk

u−dk
i | (7)

Despite the fact that the Manhattan metric seems incapable
of expressing aspects, such as the angle of two vectors,
its simplicity and linearity make it computationally efficient.
Thus, it stands out as the most appropriate metric for our
MILP. Instead, the L2 norm-based greedy and the cosine
similarity metrics are incorporated into the heuristic algorithm,
which is presented in the next section.

Note that each resource dimension k ∈ N can be assigned
a weight (e.g., by multiplying an αk value with terms formed
by dk

i and rk
u in previous equations). Such weights can adjust



5

the impact of a resource dimension on the embedding compu-
tation. For instance, someone can assign the CPU dimension
a weight larger than memory, which, in turn, may be given a
larger weight than storage. In our evaluations (Section V-A),
such adjustments are implied by different resource scarcities,
mandated by VNF resource demands and server resource
capacities.

IV. NS EMBEDDING METHODS

For the NSE problem that we study, we formulate, imple-
ment and evaluate three different embedding methods. The first
one is a mixed-integer linear program (MILP), which exhibits
the known drawback of exact methods, i.e., high solver run-
time. Therefore, we provide two heuristics in order to quickly
obtain efficient solutions; the first one (i.e., multi-dimensional
heuristic) leverages information about the geometry of virtual
and physical nodes, as opposed to the second one (i.e.,
heuristic-cpu) which does not exhibit this feature. We further
propose a service graph pre-processing method, which aims at
the composition of resource-balanced VNF bundles, prior to
their embedding.

A. Mixed Integer Linear Program
We initially introduce a MILP, which is essentially an

extension of the MILP employed in [6] for multi-dimensional
nodes. Besides the notations for the abstraction of a NS and a
DC (Table I), we further use the binary variables xi

u and zu. The
former indicates the placement of the virtual node i∈VF in the
physical node u ∈V , while the latter represents the allocation
of a physical node u ∈ V from the computed embedding. In
addition, we utilize the variable f i j

uv to denote the amount of
flow of the virtual edge (i, j) ∈ EF that is mapped onto the
physical edge (u,v)∈ E, whereas Mu expresses the Manhattan
distance between the vector of residual capacities of server u
and the vector of (cumulative) assigned resources to server u.

We define the objective function (8), at which the value
of α acts as a weight parameter that signifies the importance
of efficient VNF-to-server allocations (for a more thorough
discussion on the adjustment of this parameter, see Section
VII). For a given NS, the objective function gives preference
to solutions that utilize fewer servers, while, at the same time,
minimize the volume of network traffic in the DC. Our MILP
formulation is as follows:

Minimize

∑
u∈V

(zu +αMu)+
1

∑
(i, j)∈EF

di j ∑
(u,v)∈E

∑
(i, j)∈EF

f i j
uv (8)

subject to:

∑
u∈V

xi
u = 1 ∀i ∈VF (9)

∑
v∈V
(u 6=v)

( f i j
uv− f i j

vu) = di j(xi
u− x j

u)

i 6= j,∀(i, j) ∈ EF ,∀u ∈V (10)

Mu = ∑
k∈N

(zurk
u− ∑

i∈VF

dk
i xi

u) ∀u ∈V (11)

∑
i∈VF

dk
i xi

u ≤ rk
u · zu ∀u ∈V,∀k ∈ N (12)

∑
(i, j)∈EF

f i j
uv ≤ ruv ∀(u,v) ∈ E (13)

xi
u,zu ∈ {0,1} ∀i ∈VF ,∀u ∈V (14)

f i j
uv,Mu ∈ R+ ∀(u,v) ∈ E,∀(i, j) ∈ EF ,

∀u ∈V (15)

With respect to expressions (9) to (15), constraint (9) en-
sures that each virtual node is mapped at exactly one substrate
node (i.e., server), while (10) enforces flow conservation, (i.e.,
the amount of ingress traffic in a switch equals the amount of
egress traffic). The penalty values calculated by the Manhattan
distance are assigned through constraint (11). Notice that Mu
is zero for all servers u that do not participate in the current
embedding. Constraints (12) and (13) are used to prevent
infeasible placements, i.e., placements that violate node and
link residual capacities. Another property of constraints (12)
is that they bind x and z variables, e.g., if xi

u = 1 (for some
i ∈ VF ,u ∈ V ), then zu = 1. Finally, constraints (14) and (15)
enforce the variables’ domains.

B. Multi-Dimensional Heuristic

Based on [6], we implement a heuristic that initially ranks
the datacenter’s racks in descending order, according to the
average available capacity of their top-of-the-rack (ToR) to
core switch links (line 5 in Algorithm 1). The attempt of
embedding a NS within the substrate topology initiates from
the first ordered rack and ends on the last (line 6). In case
that the whole NS cannot be placed within a single rack, the
min-cut algorithm is applied (line 39) to partition the request
into segments, striving to minimize the amount of generated
inter-rack traffic via the coordinated VNF and link assignment.

The aspect that we investigate appears during the placement
of VNFs within a certain rack. Let VR⊂V be the set of servers
within this rack. Then, for a specific VNF i of a given NS,
the corresponding si

u values are computed in accordance to
the utilized metric (line 11). The most suitable server for
accommodating VNF i is expressed by u = argminu(si

u) or
u = argmaxu(si

u), u ∈ VR, depending on the metric (line 12).
Thus, the substance of each metric lies on the way they sort the
servers of each rack. Nevertheless, if the VNF can be placed in
the same server as its predecessor, this placement is prioritized
since, in this way, the generated traffic within the substrate
network is reduced (line 13). Regarding the respective flow
mappings, for adjacent VNFs within the same rack the map-
ping possibilities are limited, since there are unique paths that
can establish their connection. In the case where such VNFs
are accommodated in servers within different racks, though,
the algorithm assigns the corresponding flow to inter-rack links
that are the least loaded.
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Algorithm 1 Heuristic for VNF placement

1: Input: V,racks,VF ,EF
2: Output: mapping, rejected service
3: re jected service := True
4: N := |VF |
5: s racks = sort(racks)
6: for R ∈ s racks do
7: prevServer := ”None”
8: placed vn f s := 0
9: for i ∈VF do

10: placed vn f := False
11: compute si

u,∀u ∈VR
12: sorted VR = argsortu(s)
13: if prevServer ∈ sorted VR and i fits prevServer then
14: update mapping
15: placed vn f := True
16: placed vn f s+= 1
17: if placed vn f s == N then
18: re jected service := False
19: else
20: for u ∈ sorted VR do
21: if i fits u then
22: update mapping, prevServer
23: placed vn f := True
24: placed vn f s+= 1
25: if placed vn f s == N then
26: re jected service := False
27: break
28: else
29: continue
30: if placed vn f and re jected service then
31: continue
32: else
33: break
34: if re jected service then
35: continue
36: else
37: break
38: if re jected service and |VF |> 1 then
39: VF1 ,VF2 = minCut(VF ,EF)
40: mapping1,re jected1 = vnPlace(V,racks,VF1 ,EF)
41: mapping2,re jected2 = vnPlace(V,racks,VF2 ,EF)
42: if re jected1 or re jected2 then
43: return {},True
44: else
45: return mapping1∪mapping2,False
46: else if re jected service and |VF |= 1 then
47: return {},True
48: else
49: return mapping,False

Fig. 4: NSE example with the multi-dimensional heuristic
using the Manhattan metric.

Fig. 4 exemplifies the logic behind the proposed algorithm,
in an attempt to map a NS to a datacenter rack. In this
example, we consider the embedding of a NS (composed of
three 2-dimensional VNFs) to a specific rack that consists
of two servers. dk

i - and rk
u-values are used for the purposes

described in Table I. The heuristic seeks to map the VNFs
sequentially, i.e., it will commence with the mapping of VNF 1
and terminate with VNF 3. For the sake of simplicity, let us
assume that the heuristic incorporates the Manhattan metric.
Thus, we compute the following:

s1
1 = |0.45−0.20|+ |0.75−0.40|= 0.60

s1
2 = |0.80−0.20|+ |0.75−0.40|= 0.95

and we derive that VNF 1 will be assigned to Server 1. In
more detail, this decision is made based on the following two
conditions: (i) Server 1 has sufficient capacity to accommodate
VNF 1 and (ii) s1

1 = 0.60 < 0.95 = s1
2 (i.e., assigning VNF 1

to Server 1 is more efficient than assigning it to Server 2,
according to the utilized metric). Subsequently, rk

1-values are
recomputed, since the available resources of Server 1 have
changed. Ideally, VNF 2 would also be placed on Server 1;
however, it is apparent that it does not fit due to lack of avail-
able CPU resources. Thereby, VNF 2 is mapped onto Server 2
and rk

2-values are recomputed. We note that although VNF 3
fits better in Server 1 (i.e., s3

1 = 0.10 < 0.25 = s3
2, considering

the updated rk
u-values), it will be placed on Server 2, where its

predecessor has been assigned in order to avoid the generation
of additional intra-rack traffic.

This example demonstrates a critical aspect of the problem
concerned. That is, striving for a balanced resource consump-
tion may lead to larger traffic volumes and, thus, the inherent
capability of an algorithm to skew in favour of the former
against the latter (or the opposite) will significantly affect the
overall NSE efficiency.
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Fig. 5: The Greedy VNF Bundling (GVB) service graph pre-
processing method.

C. Heuristic Baseline

Furthermore, we have implemented another heuristic that
we term as heuristic-cpu. This heuristic serves as a baseline,
empowering us to quantify the potential gains from NSE with
multiple resource dimensions. In particular, this heuristic is
similar to the one presented in Section IV-B. However, instead
of using any of the mapping efficiency metrics defined in the
previous sections, it ranks the servers within a rack according
to their available CPU capacity, in descending order.

D. Greedy VNF Bundling (GVB)

We devise a VNF-graph pre-processing method, namely
Greedy VNF Bundling (GVB), which seeks to generate bundles
out of VNFs, while maintaining the same resource require-
ments with the sum of individual VNFs that comprise each
bundle. The primary aim of GVB is to create VNF bundles
with more balanced resource demands (across the resource
dimensions), thereby, augmenting the underlying NSE method
in VNF placement. The main intuition behind this approach
is that bundling VNFs with resource intensity in different di-
mensions (e.g., a CPU-intensive VNF with a memory-intensive
one) can generate more balanced VNF bundles. One restriction
here is that bundling should be applied only to consecutive
VNFs (in the service chain) in order to enforce correctness in
the processing of traffic.

A key-feature of GVB is the way that it groups adjacent
VNFs. More specifically, it commences with an empty bundle,
and places the first VNF of the chain within it. Subsequently,
it assigns the following VNF in the same bundle, if the
sum of the respective VNF resource requirements results in
a more resource-balanced (bundled) VNF, provided that its
requirements do not exceed the capacity of a server; otherwise,
it opens up a new bundle and repeats the same procedure.
The level of resource balance is quantified using Eq. 4, where
ru =

→
1 , and di expresses the resource requirements of the ith

bundle.
To exemplify GVB, Fig. 5 illustrates a service graph com-

prising four VNFs, with their respective resource demand di

vectors (i.e., normalized CPU, memory, and storage demands,
respectively). For instance, dA = [.03, .015, .006] indicates that
VNF A requires 3% of a server’s CPU, 1.5% of its memory,
and 0.6% of its storage capacity. According to the GVB
procedure, an empty bundle (i.e., Bundle 1) is spawned, and
VNF A is assigned to it. Eq. 4 computes the level of resource-
balancing of Bundle 1, as follows:

balance(Bundle1) = cosθ =

→
1 · [.03, .015, .006]

||
→
1 || · ||[.03, .015, .006]||

= .864

Subsequently, we examine whether VNF B should be placed
into Bundle 1. This will result in Bundle 1 requiring

[.03+ .25, .015+ .24, .006+ .064] = [.28, .255, .07]

resources, and, thus:

balance(Bundle1) = cosθ =

→
1 · [.28, .255, .07]

||
→
1 || · ||[.28, .255, .07]||

= .906

Since the generated bundled VNF is more balanced, we assign
VNF B to Bundle 1. Next, we attempt to assign VNF C to
Bundle 1, also. In this case, we obtain:

balance(Bundle1) = cosθ =

→
1 · [.405, .315, .094]

||
→
1 || · ||[.405, .315, .094]||

= .898

which implies a degraded level of resource balance. Hence, we
do not assign VNF C to Bundle 1 and, instead, a new bundle
(i.e., Bundle 2) is spawned. Following a similar approach,
we obtain that Bundle 2 comprises VNF C and VNF D.
Finally, this pre-processing phase results in a new service
graph (depicted at the bottom of Fig. 5), which consists of
two VNF bundles connected with a virtual link (i.e., the edge
between VNF B and VNF C).

V. EVALUATION

In this section, we initially present the evaluation environ-
ment, i.e., the simulation parameters for the DCs and the
NS requests, as well as our evaluation metrics (Section V-A).
Subsequently, in Section V-B we examine the impact of incor-
porating the L2 norm-based greedy and the cosine similarity
metrics into the heuristic presented in Section IV-B. The
resulting heuristics are termed as heuristic-L2 and heuristic-
cos, respectively, in the remaining of the paper. Both of
these algorithms are compared against the single-dimensional
version of the same heuristic, i.e., that merely accounts for the
CPU resource dimension. Next, in Section V-C we discuss the
comparative evaluation of the heuristic that stands out (from
the previous comparison) and the MILP presented in Section
IV-A. Finally, we assess the impact of the GVB pre-processing
scheme on the embedding efficiency in Section V-D.



8

A. Evaluation Environment

Each one of the evaluated algorithms is handling the em-
bedding of NS requests to a DC with a two-layer hierarchical
topology. More specifically, the simulated DC contains 200
servers, organized in 10 racks. The corresponding 10 top-
of-the-rack (ToR) switches communicate via the topology’s
core layer, which includes 5 core switches. Each server has a
computing capacity of 64 vCPUs, 512 GB of main memory,
and 8 TB of storage. Lastly, each server is connected to its
ToR switch with a 4 Gbps link, whereas the links connecting
the ToR with the core switches have capacity of 16 Gbps, as
shown in Table II.

Prominent cloud providers, such as Microsoft [26], Ama-
zon [27], Google [28] and IBM [29], offer the deployment of
VM instances classified, among others, to compute-, memory-
and storage-optimized. This provides evidence for the resource
demand diversity of workloads executed in cloud environ-
ments, as well as the versatility that the cloud provides for
the accommodation of the various resource demands. Based
on these observations, we distinguish between three types
of VNFs; namely compute-, memory- and storage-optimized
VNFs. Subsequently, each VNF instance may require 2, 4, 8,
16 or 32 vCPUs. The required capacities of the other resource
types, though, depend on the VNF type. More specifically:

Compute-optimized VNF instances are specified by a con-
stant memory-to-vCPU ratio of 4, as well as a constant
storage-to-vCPU ratio of 25.
Memory-optimized VNF instances are associated with a
constant memory-to-vCPU ratio of 8 and a constant storage-
to-vCPU- ratio of 32.5.
Storage-optimized VNF instances have a constant memory-
to-vCPU ratio of 8 and a constant storage-to-vCPU ratio of
232.5.

Therefore, if a VNF requires 8 vCPUs and is classified as a
memory-optimized instance, the required memory and storage
capacities will be 64GB and 260GB, respectively. Apparently,
these VNF instances yield a positive correlation between the
various resource dimensions (pairwise), irrespective of their
type. Although this correlation may influence the behavior of
our algorithms, such instances are deemed more realistic.

Furthermore, the inbound traffic of a NS is set to a random
value within the range [10, 100] (Mbps), whereas the inbound-
to-outbound traffic ratio for each VNF in the service chain
is adjusted to a random value within [0.5, 1.5]. This traffic
ratio essentially captures potential implications of VNFs on
the volume of outbound traffic (compared to inbound traffic).
This stems from the fact that VNFs which perform packet
inspection, redundancy elimination or caching (amongst other
processing operations) may suppress or amplify the inbound
traffic [6].

In terms of incoming NSE requests, we consider the more
realistic case of expiring NSes with a lifetime of three to
nine time intervals. Such NSE requests arrive at the DCs
with a Poisson distribution (30 on average per time interval).
Furthermore, each NS comprises three to ten VNFs (Table IV).

Our simulations are conducted on a server with 8 CPU cores
at 2.1 GHz and 8 GB of RAM, using the Linux-based Ubuntu

TABLE II: DC Model Parameters
Number of Core Switches 5
Number of Racks 10
Number of Servers per Rack 20
Capacity of server vCPUs 64
Capacity of server memory 512GB
Capacity of server storage 8TB
ToR-to-Server link capacity 4Gbps
Inter-rack link capacity 16Gbps

TABLE III: NSR Model Parameters
Inbound NS traffic uniform distr. [10,100]
Outbound-to-inbound traffic ratio uniform distr. [0.5,1.5]
Splittable flow Yes

TABLE IV: Evaluation Environment Parameters
Number of NSes per time interval Poisson(30)
Number of VNFs per NS uniform distr. [3,10]
NS type expiring
NS running duration random [3,9] intervals

16.04 (LTS) operating system. The simulation environment is
implemented in Python, while for the MILP we rely on the
Gurobi [30] solver.

For the comparison between the NSE methods, we use the
following metrics:
Request Acceptance Rate, which is computed as the ratio
of the successfully embedded NSes over the total number of
incoming NSE requests.
Resource Utilization, which corresponds to the sum of the
physical resources (i.e., CPU, memory, storage) that have been
allocated for the VNFs.
Resource Skewness, which is computed according to Eq. 6
(Section III-B).
Intra-, Inter-rack traffic, which is the mean volume of traffic
observed in the respective links in various snapshots of the
simulated network infrastructure.

B. Evaluation of Metrics

We hereby study the efficiency of the two multi-dimensional
mapping metrics (i.e., L2 norm-based greedy and cosine
similarity), as they have been incorporated into the proposed
heuristic. Fig. 6 illustrates that the two heuristics that incor-
porate the metrics yield more efficiency than the heuristic-
cpu. More specifically, we observe a higher acceptance rate
for the heuristic-L2 compared to the heuristic-cos, while both
of them outperform the third algorithm. Bearing in mind
that a 1% difference in the acceptance rate at the end of
the experiment corresponds to the rejection of more than 70
NSes, the improvement by the proposed heuristics is deemed
considerable.

To gain more insights on embedding efficiency, we further
examine the resource utilization achieved by the three meth-
ods. To this end, we depict the percentage-wise difference of
the resource utilization obtained with the heuristic-L2 and the
heuristic-cos (computed as a moving average) compared to
the one obtained by the heuristic-cpu. According to Fig. 7,
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Fig. 6: Request acceptance rate. Fig. 7: CPU utilization of the multi-
dimensional heuristics, in relation to
the single-dimensional.

Fig. 8: Memory utilization of the
multi-dimensional heuristics, in rela-
tion to the single-dimensional.

Fig. 9: Storage utilization of the multi-
dimensional heuristics, in relation to
the single-dimensional.

Fig. 10: Resource skewness of the
multi-dimensional heuristics, in rela-
tion to the single-dimensional (lower
is better).

Fig. 11: Intra-rack and inter-rack traf-
fic distribution.

the percentage of the excess CPU that is assigned to NSes
(more precisely, to VNFs) by the multi-dimensional heuristics
is equal or lower than the respective percentages concerning
the rest resource dimensions (Figs. 8, 9); this pertains to both
heuristic-L2 and heuristic-cos. This outcome is expected, since
the heuristic-cpu accounts for the CPU resource dimension
and, thus, assigns it to VNFs in a less naive manner, compared
to the way it allocates memory and storage. However, with
respect to the allocation efficiency of all resource types, we
observe significant gains of at least 4%, for the heuristic-cos,
and at least 7%, for the heuristic-L2.

To further comprehend the benefits of the multi-dimensional
heuristics, we investigate the extent to which resource bal-
ance comprises a key aspect of their efficiency. According
to Fig. 10, the proposed algorithms yield a more balanced
consumption of the different resource types than the heuristic-
cpu. Specifically, by quantifying this balance with the resource
skewness metric, the two heuristics lead to almost 8% more
balanced servers on average. In addition, the algorithm that
employs the cosine similarity metric yields the best skewness,
since its respective skewness values are typically lower than
those of the heuristic-L2. Nevertheless, we cannot infer that the
improved resource utilization stems exclusively from skewness
(i.e., balanced consumption of server resource types). If that
was the case, the heuristic-cos would yield at least similar
(if not better) efficiency than the heuristic-L2. However, our
previous results provide the opposite indication.

This finding essentially raises the need for a deeper investi-
gation of the way that the two metrics influence the embedding

decisions. Recall that the cosine similarity metric ranks servers
according to Eq. 4. As such, a previously unused server may
be selected for the placement of a VNF, although this VNF
may fit into a previously allocated server within the same
rack. This can, in turn, lead to the mapping of subsequent
VNFs onto the same server (since it currently hosts only one
VNF), although (according to Algorithm 1) there will be no
consideration of the degree of alignment between the VNF
resource requirements and the available resources of the server.

Consequently, the heuristic-cos utilizes the cosine similarity
less frequently in the computation of VNF-to-server mappings,
which eventually affects its efficiency. On the other hand, the
heuristic-L2 tends to map a VNF to the server that minimizes
Eq. 1 (i.e., its embedding approach is dictated by the Best
Fit principle). As such, subsequent VNFs are less likely to
be placed onto the same server, due to lack of available
resources. Thereby, the L2 norm-based greedy metric is used
more frequently for the computation of the additional VNF-
to-server assignments.

Along these lines, we reach the following observations: (i)
the heuristic-L2 yields a higher degree of server consolidation
compared to the heuristic-cos, and (ii) the effectiveness of a
multi-dimensional mapping efficiency metric is highly depen-
dent on the embedding heuristic. These observations are essen-
tially reflected by our resource allocation and skewness results.
The cosine similarity, in particular, has been proved a more
efficient metric compared to the L2 norm-based greedy [14].
However, this gain of the cosine similarity is not translated into
better embedding efficiency, since the corresponding metric is
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Fig. 12: Request acceptance rate. Fig. 13: Number of NSE rejections for
the different service chain lengths.

Fig. 14: Resource utilization of the
heuristic-L2, in relation to the MILP-
manhattan.

Fig. 15: Resource skewness of the
heuristic-L2, in relation to the MILP-
manhattan.

Fig. 16: Intra-rack and inter-rack traf-
fic distribution.

Fig. 17: Average solver run-time for
the different service chain lengths.

less frequently utilized.
Lastly, Fig. 11 illustrates the average intra- and inter-

rack traffic generated on the DC. According to this plot, all
algorithms achieve a negligible degree of inter-rack traffic,
with the heuristic-cpu exhibiting higher variation from the
average value. This is attributed to the more frequent min-
cut triggering, i.e., the algorithmic element that enables the
partitioning of a NS across multiple racks. We also observe a
higher volume of intra-rack traffic for the heuristic-L2. This
stems from the following observations: (i) the heuristic-L2
admits a larger number of incoming NSes, and (ii) it exhibits
a tendency for NS partitioning across multiple servers, as
explained in our previous discussion about the L2 norm-based
greedy metric.

C. Comparison of MILP and heuristic-L2

As explained in Section III-B, we incorporate the Man-
hattan distance into a MILP in order to penalize inefficient
assignments, while retaining the exact method’s linearity. In
the following, we compare the resulting algorithm (i.e., MILP-
manhattan) with the heuristic-L2, which stood out from the
previous comparison. To this end, we assess the margin
between the heuristic algorithm and the optimal solutions
computed by the MILP-manhattan.

According to Fig. 12, the two algorithms manage to embed
roughly the same number of NSes. Their marginal difference
of ∼ 1% (that unexpectedly favors the heuristic-L2) is further
investigated via additional micro-benchmarks. More precisely,
an analysis of the rejections (Fig. 13) uncovers the limited
computational capacity of the heuristic for embedding long

(≥ 8 VNFs) NSes compared to the MILP; instead, the heuristic
utilizes the available resources for embedding more short NSes
(≤ 5 VNFs). This computational limitation of the heuristic-L2
can be mainly attributed to its poor search space exploration
capability (compared to the MILP-manhattan), since the ex-
ercised min-cut policy reduces the VNF-to-server allocation
combinations.

After approximately 3,000 NSE requests, we observe the
relative utilization for each resource dimension, illustrated in
Fig. 14. It is apparent that storage (which comprises the most
abundant resource type) has the most profound impact on the
overall resource utilization of the heuristic-L2. As such, we
conclude that the proposed heuristic exhibits only a minimal
(1-2%) margin from the MILP in terms of maximizing re-
source utilization. This, combined with the improved resource
skewness (i.e., Fig. 15), empower the heuristic-L2 to achieve
high efficiency on par with the MILP-manhattan.

We observe, though, a substantial difference between the
two methods in terms of consolidation, in favor of the MILP-
manhattan. This is implied by the respective intra-rack traffic
level shown in Fig. 16. Nevertheless, MILP exhibits a sig-
nificant drawback, as its solver run-time grows exponentially
with the problem size. For instance, according to Fig. 17, the
computation of the embedding for a NS with 10 VNFs requires
6 seconds on average, whereas the heuristic’s run-time is in
the order of milliseconds for all NS lengths. The scalability
limitation of the MILP could be potentially addressed by
employing relaxation and rounding techniques, similar to our
previous work in [6]. However, the resulting linear program
(LP) is expected to yield a degree of sub-optimality (compared
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Fig. 18: Resource utilization of the
GVB-heuristic-L2, in relation to the
heuristic-L2.

Fig. 19: CDF of the number of servers
utilized per network service.

Fig. 20: GVB triggering frequency.

Fig. 21: Resource utilization of the
GVB-heuristic-L2, in relation to the
heuristic-L2 (threshold-based variant).

Fig. 22: CDF of the number of
servers utilized per network service
(threshold-based variant).

Fig. 23: GVB triggering frequency
(threshold-based variant).

to the MILP), whereas its solver run-time would still be
considerably higher than the heuristic.

D. Comparison of GVB-heuristic-L2 and heuristic-L2

We hereby investigate the potential gains from the GVB pre-
processing method, which generates VNF bundles in order to
augment VNF embedding. To assess the efficiency of GVB,
we couple it with the heuristic-L2, which stands out as the
most prominent embedding method (in the following, we term
this combination as GVB-heuristic-L2). In particular, GVB pro-
cesses the initial service graph generating a potentially shorter
graph with bundled VNFs, which is, in turn, conveyed to the
heuristic-L2 for optimized embedding. Since VNF bundles are
associated with higher resource requirements (compared to the
VNFs of the initial service graph), this reduces the search
space for VNF embedding optimization. Consequently, if the
embedding of a bundled VNF is not possible, instead of the
embedding request rejection, we perform another embedding
attempt using the initial (non-bundled) service graph. In such
case, we assign zero to a GVB-success binary variable. We
also assign zero to the same variable, whenever the number of
generated bundles equals the number of initial VNFs (which
might occur if, for instance, all VNFs of a service chain are
CPU-intensive). Otherwise (i.e., whenever GVB-heuristic-L2
successfully embeds bundled VNFs), we assign the value of
one to this variable.

According to Fig. 18, the assignment of CPU, memory, and
storage of the GVB-heuristic-L2, in relation to the respective
allocations of the heuristic-L2, is approximately 2% less
across all three resource dimensions. This implies slightly

lower profits for an InP; however, the VNF bundling method
appears to yield higher embedding efficiency than heuristic-
L2, as indicated in Fig. 19. More precisely, 90% of the
services embedded with the GVB-heuristic-L2 are assigned to
5 servers at most, whereas the respective number of servers
for heuristic-L2 is 9. Although these servers usually belong to
the same rack, the higher degree of VNF co-location achieved
by GVB-heuristic-L2 reduces the volume of generated traffic
(the respective results are omitted, due to space limitations).

To shed more light on the behavior of the bundling algo-
rithm, we examine its success rate. In Fig. 20, a continuous line
illustrates the product of the GVB-success variable with the
average CPU utilization of the datacenter, whereas the dashed
line merely represents the latter. These curves intersect when-
ever a bundled VNF placement occurs, i.e., GVB-success=1.
Unexpectedly, the GVB-heuristic-L2 yields successes even at
very high utilization levels (e.g., above 80%), which indicates
that GVB is triggered very frequently.

The insights gained from the behavior of GVB-heuristic-L2
lead to a critical observation, which stems from an intuitive
principle of bin-packing, i.e., having many and small items,
instead of fewer and larger, when closing up the bins (i.e.,
when bins are almost full), is more effective. Therefore, we
evaluate a variant of GVB-heuristic-L2, whose main difference
from the initial bundling scheme is that it is not executed
when the infrastructure exceeds a certain utilization level. In
our simulations, we set this threshold to 75% of the mean DC
CPU utilization. As such, this GVB variant is triggered only for
low and medium utilization levels. Instead, it degenerates to
the basic heuristic-L2 for the embedding of the initial VNFs (in
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analogy to many and smaller items), when the infrastructure
utilization is high (analogous to bins ready to close up). With
this behavior, GVB lays the foundation for a balanced resource
consumption within servers.

This adjustment in the behavior of GVB yields even higher
resource efficiency, since it leads to (i) equivalent resource
allocations with the heuristic-L2 (Fig. 21) and (ii) slightly
improved VNF co-location efficiency, according to Fig. 22.
Fig. 23 corroborates that GVB is triggered (frequently) only
at low and medium utilization levels.

Consequently, the GVB-heuristic-L2 effectively couples the
cosine-similarity (according to the bundling logic described
in Section IV-D) with the L2 norm-based greedy (since the
heuristic-L2 is employed to map the service graph with the
bundled VNFs). Thereby, the GVB-heuristic-L2 promotes the
synergy of the two metrics, whose gains are illustrated in
Figs. 21 and 22. Additional gains could be achieved by
coupling the proposed bundling scheme with a NSE MILP, as
well. In particular, the smaller number of VNFs in the service
graph (as the outcome of VNF bundling) is expected to reduce
the MILP solver run-time, which is illustrated in Fig. 17.

VI. RELATED WORK

Throughout this section, we discuss related work on the
following two areas: (i) NSE and (ii) multi-dimensional VM
assignment.

A. Network Service Embedding

Benson et al. propose CloudNaaS [31], a system that
allows the deployment of cloud applications offering features
such as virtual network isolation, service differentiation and
flexible deployment of middleboxes. The network controller of
CloudNaaS is responsible, among others, for the assignment of
VMs (that compose the cloud application) to physical servers
considering their communication dependencies and require-
ments. Authors employ a heuristic approach for tackling this
problem, with its ultimate goal being to minimize the amount
of flow mapped on the network links.

Another research work that considers the problem of NSE is
Stratos [20]. In particular, Stratos comprises a framework for
a multitude of NFV orchestration functions, such as service
chaining and resource provisioning. The resource provisioning
aspect of Stratos, which is the most relevant to our work,
mainly deals with flow distribution, i.e., the assignment of
flows to the various VNF instances. This problem is formu-
lated as a linear program.

Nestor [6] and DistNSE [9] tackle the multi-provider NSE
problem, taking into account the privacy restrictions imposed
by the different participating providers. Both Nestor and
DistNSE decompose this into two sub-problems: (i) service
chain partitioning (among providers), and (ii) mapping of each
chain segment onto the respective provider’s domain. While
Nestor relies on a centralized broker for service chain parti-
tioning, DistNSE handles this in a distributed manner, using an
embedding protocol (which essentially obviates the need for
any centralized orchestrator). The intra-provider mapping of
both Nestor and DistNSE (which is the particular sub-problem

of relevance to our work) is restricted to a single dimension for
all resource types (i.e., CPU demands for VNFs and bandwidth
demands for links).

In [7], Fu et al. present a deep reinforcement learning
approach for the embedding of network services. As implied
in the paper, the inherent dynamic nature of Internet of Things
should be supported by NSes being embedded by algorithms
that can autonomously adjust their decisions based on past
knowledge.

The NSE problem has also been studied in the context
of cellular network slicing. The aim here is to optimize the
placement of VNFs that implement certain elements of a
virtualized cellular network, such as the eNodeB (eNB), the
Serving Gateway (S-GW), the Packet Data Network Gateway
(P-GW), and the Mobility Management Entity (MME). In
particular, authors in [10] propose an exact method for the
embedding of such VNF-graphs onto a virtualized cellular
core. Besides capacity constraints, the proposed method op-
timizes the placement of VNFs, taking into account delay
budgets between VNFs, as mandated by 3GPP. Papagianni et
al. follow a different approach to this NSE problem, as they
promote the sharing of VNFs among multiple service chains
in a network slice, as means to reduce the deployed VNF
instances and, consequently, the provisioning and management
cost of the virtualized cellular network [8]. To this end, the
authors propose a MILP formulation for NSE with shared
VNFs.

Even though all of the above-mentioned studies shed light
on critical aspects of NSE, the fact that they are confined
in single-dimensional nodes (i.e., CPU demand) restricts their
applicability to NSes with diverse requirements across multiple
resources. Hence, we address this limitation by providing an
efficient NSE algorithm that accounts for multiple resource
dimensions, eventually leading to more efficient utilization and
higher revenues for InPs.

B. Virtual Machine Assignment

The multi-dimensional VM allocation problem is examined
as a specific application of the more generic VBP problem.
Within the context of mapping VMs to physical hosts, several
studies (e.g., [15], [32]) primarily focus on server consolida-
tion, i.e., the allocation of VMs into as few servers as possible.

Ghodsi et al. [33] is considered to be one of the most influ-
ential studies on the discussed topic. This study is among the
first that approaches the fair allocation of multiple resources
as pertaining to users with heterogeneous requirements. To
this end, they propose Dominant Resource Fairness (DRF), a
multi-dimensional allocation scheme that meets a multitude
of preferable properties. However, the applicability of DRF
can be seen as more suitable for large computer clusters,
where all users have equal rights of utilizing their resources, as
opposed to commercial cloud infrastructures, at which profit
maximization is commonly sought.

An additional research work tackling this problem is [15].
In particular, Xiao et al. implement an algorithm that aims
at using the least amount of hosts possible. In addition,
the utilization of host resources must not exceed respective
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pre-determined thresholds so as to avoid VM performance
degradation. In order to circumvent the difficulty of allocating
resources across multiple dimensions, authors embrace the
notion of resource skewness. Essentially, skewness acts as
means to quantify the efficiency of server resource utilization
and also trigger VM migrations that improve the overall server
utilization.

Motivated from VM placement problems, [12] and [13]
propose new heuristics for the multi-dimensional VM con-
solidation and the VBP problem in general. In both studies,
authors underline the difficulty of extending the objective
of best fitting VMs to servers, when considering both of
them as multi-dimensional vectors. To this end, they propose
two heuristics; namely, the Dot Product and the Norm-based
Greedy. The former is able to evaluate the VM requirements
against the residual capacity (across multiple dimensions) of
servers, while the latter utilizes a certain norm to quantify the
distance between the aforementioned vectors.

Tetris [14], a cluster scheduler that matches tasks with
machines according to requirements along multiple resources,
is proposed to confront the drawbacks of fairness- and slot-
based schedulers. Authors suggest that the former do not
optimize job completion time, while the latter result in either
excessive resource allocation or resource wastage. To this end,
Tetris incorporates the cosine similarity (defined in Section
III-B) for calculating the alignment of tasks with servers.

The objective of our study is aligned with related work [6],
[20], [31], which targets the minimization of the generated
inter-rack traffic and also ensures correctness for the embedded
service chains. Since we deal with multi-dimensional virtual
and substrate nodes, we further employ the efficiency metrics
used in [12], [13], [14] and [15], which are discussed in detail
in Section III-B. To the best of our knowledge, the coupling of
NSE with the multi-dimensional VM allocation problem has
not been investigated in the literature. Our work essentially
enables the computation of efficient NS embeddings under a
pragmatic scope, which leads to a more balanced resource con-
sumption, eliminating resource wastage and potential revenue
losses for InPs.

VII. CONCLUSIONS

We conducted a comprehensive study on the problem of
NSE across multiple dimensions. To this end, we compared
the efficiency of various multi-dimensional mapping metrics,
which were introduced in the context of multi-dimensional
VM assignment. These metrics (i.e., L2 norm-based greedy,
cosine similarity, and Manhattan distance) were integrated
into heuristic or exact methods, enabling us to quantify the
gains of NSE across multiple dimensions.

According to the VNF types and the resource requirements
they raise, as well as the initial resource capacities of servers
considered during our simulations (see Section V-A), we can
infer that (i) there is a positive correlation (pairwise) between
the different resource dimensions, and (ii) the CPU resource
type is most in demand. These are aspects that affect the
efficiency of a mapping metric. In fact, we conducted tests with
VNFs that require a uniformly random amount of resources

within the range [0.01,0.50], i.e., from 1% to 50% of a
server’s initial resources, across all resource dimensions. In
this setting, the heuristic-cos performed the best with respect
to all performance indicators. Nevertheless, such parameters
are not in line with real-life ones and, hence, we left them out
of our evaluation.

The Manhattan distance between the vector of residual
capacities and the vector of demands, as pertaining to a server
and a VNF, respectively, takes values that are tightly related to
the number of different resource types, i.e., resource dimen-
sions. For n dimensions, and given that all vector coordinates
are normalized, the Mu could theoretically lie within the range
[0,n). Therefore, the α value is adjusted to 10, considering (i)
that we are dealing with three dimensions, (ii) the domains
of the other variables, and (iii) that we wanted to emphasize
the MILP’s capability of obtaining efficient VNF-to-server
assignments. At the same time, as already discussed in Section
V, this inherently strengthens the algorithm’s capability of
consolidating the VNFs of a specific NS. Nevertheless, there
will be a pivotal value of α that, if exceeded, the second
term of Eq. 8 will be dominated, resulting in inefficient
NS embeddings, due to unfavourably large inter-rack traffic
volumes within the DC.

Our evaluation results corroborate the improved resource
efficiency of multi-dimensional NSE compared to a single-
dimensional counterpart. The resource efficiency gains mainly
stem from (i) a more balanced resource consumption, and (ii)
increased VNF consolidation, which confines both intra- and
inter-rack traffic in the DC. Additional insights gained from
our evaluations indicate that the way resource consumption
balancing is achieved is crucial, since the heuristic-L2 and
the heuristic-cos achieve similar resource skewness levels, but
they exhibit notable differences in the rest of the efficiency
metrics. This brings us to a second conclusion, which is the
critical impact of the embedding algorithm on the utilization
of the mapping efficiency metric. In our case, this pertains
to the frequency that the metric is utilized. Furthermore, we
identified an insignificant gap in the optimality between the
heuristic-L2 and the MILP (which is essentially outweighed
by the substantial solver run-time of the latter).

Lastly, we evaluated a VNF graph pre-processing method,
which strives to group VNFs into resource-balanced bun-
dles. Our results indicate that the proposed bundling scheme,
coupled with the heuristic-L2 (i.e., GVB-heuristic-L2), can
achieve a high degree of VNF co-location while maintaining
fair resource utilization levels. We further evaluated a variant
of GVB-heuristic-L2, at which the VNF bundling scheme is
triggered below a pre-defined resource utilization level. This
empowers an InP to properly adjust the trade-off between VNF
co-location and resource efficiency in order to increase their
revenue by either minimizing resource wastage (i.e., saving
capacity to accommodate additional services) or by embedding
services at potentially premium prices via a minimal embed-
ding footprint (in order to meet strict latency requirements).
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