
A Study of Deploying Smooth- and Responsive- TCPs
with Different Queue Management Schemes

Chi Zhang

Juniper Networks, USA

Lefteris Mamatas
University College London

London, UK

Vassilis Tsaoussidis
Department of Electrical and Computer Engineering

Demokritos University of Thrace, Greece

ABSTRACT

While there exist extensive research works on congestion control and active queue

management, or the joint dynamics of a congestion control strategy with the Random Early

Detection (RED) algorithm, little has been done on the interactions between different window

adjustment strategies and different queue management schemes such as DropTail and RED. In

this paper, we consider a spectrum of TCP-friendly Additive Increase and Multiplicative

Decrease (AIMD) parameters. At the one end of this spectrum, smooth TCP enhances

smoothness for multimedia applications by reducing the window decrease ratio upon congestion,

at the cost of the additive increase speed and the responsiveness to available bandwidth. At the

other end, responsive TCP enhances the responsiveness by increasing the additive increase speed,

at the cost of smoothness. We investigate the network dynamics with various combinations of

AIMD parameters and queue management schemes, under different metrics. The investigation is

conducted from the deployment (especially incremental deployment) point of view. We discussed

the impact of the interactions on the goodput, fairness, end-to-end delay, and its implications to

energy-consumption on mobile hosts.

1. Introduction

In packet-switched computer networks, routers and switches usually do not maintain per-

flow states, and nor do they provide bandwidth reservation mechanisms for competing flows. In

most routers, FIFO buffers are used for multiplexing packets from different flows. Since the

available bandwidth and the number of competing flows are unknown to end-hosts, protocols

need to ‘probe’ to detect the available bandwidth and congestion in the network. Congestion

control of standard TCP [ASP99] is based on the Additive Increase / Multiplicative Decrease

(AIMD) window adjustment strategy [CJ89] that exploits available bandwidth, avoids persistent

congestion, and achieves system fairness. Traditional AIMD is a somewhat "blind" mechanism,

in the sense that the congestion window increases steadily until the occurrence of congestion,

which triggers the subsequent error recovery. That is, congestion control mechanism itself is the

natural cause of congestion, and congestion can be detected only by packet drops.

In addition, on routers and switches, a complementary mechanism, Active Queue

Management (AQM), has been proposed to alleviate the congested bottleneck queue with a

straightforward “Drop-Tail” buffer [BRA98]. Random Early Detection (RED) [FJ93] is an active

queue management scheme highly recommended for deployment in routers [BRA98]. RED

attempts to provide negative feedback to sending hosts by dropping packets. To prevent high

delays and bursty drops, prior to the queue overflow, RED drops packets from among various

flows probabilistically, if contention increases (i.e. the queue steadily builds up). Each drop is

expected to trigger a congestion-oriented response from the corresponding TCP sender. Notably,

high queuing delay hurts the subjective performance of interactive applications such as Telnet or

short Web transfers.

Although TCP congestion control is basically appropriate for bulk data transfers, some

real-time applications such as media-streaming find the standard multiplicative decrease by a

factor of 2 upon congestion to be unnecessarily severe, as it can cause data-rate oscillations and

even transmission gaps [TZ99]. TCP-friendly protocols [FHPW00, YL00] therefore have been

proposed with two fundamental goals: (i) to achieve smooth backward adjustments; this is done

by increasing the window decrease ratio during congestion, and (ii) to compete fairly with TCP

flows; this is approached by reducing the window increase step according to a steady-state TCP

throughput equation [PFTK98]. That is, TCP-friendly protocols favor smoothness by using a

gentle backward adjustment upon congestion, at the cost of lesser responsiveness - through

moderated upward adjustments.
To be more specific, GAIMD [YL00] is a TCP-friendly protocol that generalizes AIMD

congestion control by parameterizing the congestion window increase value α and decrease ratio

β, where the sender’s window size is increased by α if there is no packet loss in a round-trip time,

and the window is decreased to β times the current value if there is a loss indication. A

throughput equation for standard TCP (α=1, β=½) is first introduced in [PFTK98], which is

extended by [YL00] to include parameters a and b:

(1)

where p is the loss rate; T0 is the retransmission timeout value; b is the number of packets

acknowledged by each ACK. The overall throughput of TCP-Friendly (α, β) protocols is bounded

by the average throughput of standard TCP(α=1, β=0.5), which means that equation (2) derived

from (1) (see [YL00]) could provide a rough guide to achieve TCP-friendliness.

 (2)

Authors of [YL00] derive from (1) and (2) a simple relationship for α and β:

 (3)

Based on experiments, they propose a β = ⅞ as the appropriate value for smooth multiplicative

decrease (i.e. less rapidly than TCP does) for media-streaming applications. For β = ⅞, (3) gives

an increase value α=0.31, which sacrifices the protocol’s responsiveness to rapidly-available

bandwidth.

We are particularly interested in TCP(α, β) protocols, as they provide a good opportunity

to obtain interesting and useful insights into the strategy of window adjustments: by tuning the

protocol parameters α and β, we can observe the protocol behavior under various network and

traffic conditions. In this paper, we consider a spectrum of TCP-friendly AIMD parameters and

their interactions with queue management schemes such as Drop-Tail and RED. In our discussion

below, we refer to three classes of TCP(α, β) protocols:

(i) Standard TCP(1, ½);

(ii) Responsive TCP is TCP(α, β) with relatively low β value and high α value;

(iii) Smooth TCP is TCP(α, β) with relatively high β value and low α value.

Basically, smooth TCP enhances smoothness for multimedia applications by reducing the

window decrease ratio upon congestion, at the cost of the additive increase speed and the

responsiveness to available bandwidth. Responsive TCP enhances the responsiveness by

increasing the multiplicative decrease ratio, at the cost of smoothness [TZ05].

In this paper, we investigate network dynamics with various combinations of additive

increase and multiplicative decrease parameters and queue management schemes. This is

important from the deployment (especially incremental deployment) point of view. We reveal

that incremental deployment of window-adjustment strategies or queue management schemes

alone will not necessary lead to the desired effect, if the behavior of the combined system is not

considered. More specifically,

)321(
2

)1(3,1min
)1(
)1(2

1),,,(
2

2

0

0,

pppbTpbRTT

bTRTTpT

+÷
÷

ø

ö

ç
ç

è

æ -
+

+
-

=

a
b

ba
b

ba

),,,(),,,(05.0,10, bTRTTpTbTRTTpT =ba

3/)1(4 2ba -=

(a) With DropTail buffer, although smooth TCP causes less queuing delay jitter, its

average queuing delay is much higher than that of responsive TCP, since the bottleneck

buffer is always close full. The direct implication of this discovery is that when mobile

users of media-streaming and short messages share some bottleneck links, the energy

consumption for sending short messages can increase dramatically if media-streaming

users adopt smooth TCP.

(b) With RED, smooth TCP not only has smaller queue oscillations, the average/max

queue length is smaller as well.

(c) Although RED can control the magnitude of queue oscillations, the frequency of

queue oscillations can be significantly affected by the fast additive increase speed of

responsive TCP.

(d) With multiple bottlenecks and different levels of capacity aggregations, the system

fairness can be better with smooth TCP in case of RED gateways, or better with

responsive TCPs in case of DropTail gateways.

(e) With partial / incremental deployment of smooth or responsive TCP, the system

behaviors with goodput and fairness depend on the buffer management schemes at

routers, the network topology, as well as the location where the new protocol is deployed.

The rest of the paper is organized as follows. In section 2, we give an intuitive analysis of

the dynamics of AIMD control and queue fluctuations. In section 3, experiment methodology

and metrics are given. Section 4 provides detailed results and analysis. Section 5 concludes the

paper.

2 Dynamics of Congestion Control with DropTail Buffer

First we extend the analysis model of AIMD in [CJ89] by taking into account the role of

bottleneck queue. Consider a simple network topology shown in Figure 1, in which the link

bandwidth and propagation delay are labeled. In this scenrio, n TCP flows share a bottleneck link

with capacity of bw, and the round trip propagation delay is RTT0 = 2 * (src_delay + delay +

R1 R2

Figure 1. A Simple Network Topology

sink_delay
sink_bw

delay
bw

src_delay
src_bw

Sink n Source n

Sink 1 Source 1

sink_delay). Since our focus in this section is on the overall system behavior, we define the

aggregated congestion window size at time t as:

 (1)

where cwndi(t) is the window size of the ith flow. Consequently, the system throughput at time t

can be given by the following equation:

 (2)

where qdelay(t) is the queuing delay at the bottleneck router R1. As can be seen from (2), the

throughput is not only a function of the congestion window, but also a function of the queuing

delay.

Assume all flows are in the additive increase stage. First consider the case where cwnd(t)

is below the point knee [CJ89]:

 (3)

Then there is no steady queue build-up in R1 (i.e. RTT(t) = RTT0), and according to (2), the

throughput grows in proportion to cwnd. The bottleneck capacity is not fully utilized until cwnd

increases to cwndknee.

If cwnd(t) increases further beyond cwndknee, however, the system displays different

dynamics. The bottleneck queue starts to build up, after the bottleneck capacity is saturated.

Rewrite cwnd(t) as:

 (4)

Since the bottleneck link can transmit at most cwndknee packets in one RTT0 (see (3)),

packets will linger in the queue. Hence the steady queuing delay at the bottleneck will be:

 (5)

Intuitively, the system throughput is bounded by the physical capacity bw, in spite of the increase

of cwnd(t) beyond the knee, because qdelay(t) in the denominator of (2) grows as well. This is

confirmed by the following:

 (6)

The system dynamics can be described by equations (4) – (6), until the queue length

reaches the maximum buffer size, i.e. when cwnd touches the point cliff.

å
=

=
n

i
i tcwndtcwnd

1
)()(

)(
)(

)(
)()(

0 tqdelayRTT
tcwnd

tRTT
tcwndtthroughput

+
=

=

bwRTTcwndknee ×= 0

)0)(()()(>DD+= twtwcwndtcwnd knee

)(twD

bwtwtqdelay /)()(D=

bw
tqdelayRTT
bwtqdelaybwRTT

tqdelayRTT
twcwnd

tthroughput knee

=
+

×+×
=

+
D+

=

)(
)(

)(
)(

)(

0

0

0

)(twD

 (7)

TCP senders then multiplicatively decrease their congestion window, after packet losses due to

buffer overflow are detected.

Equation (6) demonstrates that increasing cwnd beyond the knee does not enhance further

the system throughput, but only results in increasing queuing delay. However, the analysis also

indicates that some queue build-up is inevitable, in order to provide to the fairness-oriented

AIMD algorithm an operating scope where the system throughput fully exploits the bottleneck

bandwidth. More precisely, although multiplicative decrease is necessary to accomplish fairness

dynamically [TZ05], it does not necessarily mean that the throughput will be sacrificed, as long

as the system operates between the knee and the cliff.

Furthermore, the analysis of [CJ89] assumed a synchronized model, meaning that all

flows synchronously adjust backward upon congestion indication. However, our simulation

experience [TZ05] confirms the early findings [DIM01] that global synchronization rarely

happens even with DropTail buffer. That is, in a real system, packet losses do not occur to all

flows when the bottleneck buffer overflows. Some flows experiencing early packet drops reduce

their sending windows quickly, which might bring about partial queue draining. This could leave

sufficient space for additive increase afterwards, and hence the remaining flows keep growing.

Due to this partial backward adjustment upon congestion, from the system perspective, the

multiplicative decrease ratio of the aggregated window is higher than the ratio β an individual

flow adopts. The selection of which flows to drop is random by nature. With active queue

management, such as RED, random congestion indications are explicitly performed. Obviously,

unsynchronized multiplicative decrease degrades the short-term fairness, due to random

congestive drops that permit some flows to grow beyond their fairshares, at the cost of the other

flows forced to decrease, in a short period of time. However, an adequate level of long-term

fairness can still be achieved, due to the inherent characteristic of randomness in selecting which

flows to drop [ZT03].

3. Experimental Methodology

3.1 Simulation Configuration and Evaluation Plan

We have implemented our evaluation plan on the ns-2 network simulator [NS]. The

network topology used as a test-bed is shown in Figure 2. The bottleneck link capacity

(bw_bottleneck), the access links to source nodes (bw_src) and the access links to sink nodes

(bw_dst) were occasionally re-configured for the different scenarios. In most cases however,

bwqdelayRTTcwndcliff ×+=)max(0

bw_bottleneck = bw_src = bw_dst unless it is pointed out explicitly otherwise. For simulations

of heterogeneous (wired and wireless) networks, ns-2 error models [NS] were inserted into the

access links at the sink nodes. The Bernoulli model with a configurable bit error rate (BER) was

used to simulate independent bit errors due to wireless interferences. The number of flows (or the

number of source-sink pairs) N, varied from experiment to experiment. The simulated connection

time was fixed at 100 seconds.

In order to validate our statements on the behavior of equation-based protocols with

parameters a and b, we selected and evaluated four protocols that span across the spectrum from

smoothness to responsiveness and satisfy the TCP-friendly equation (3). Our four protocols are

TCP(0.31, 0.875), TCP(0.583, 0.75), TCP(1, 0.5) and TCP(1.25, 0.25). TCP(1, 0.5) is the

standard TCP. The size of the bottleneck buffer is 100 packets. The settings for RED are as per

[Flo97]. Specifically, we adjusted the RED settings as follows: max_th = 3 min_th, min_th =

BufferSize / 6.

Protocol performance and fairness were also evaluated with multiple bottlenecks and

cross traffic, using the scenario of Figure 3. The router R1 is the bottleneck for the main traffic

(flows between source nodes to sink nodes), while the router R3 is another bottleneck for the

competing main traffic and cross traffic (flows between peripheral source nodes and peripheral

sink nodes).

bw_bottleneck
15ms

10ms
bw_dst

10ms
bw_src

Sink N
Source N

Sink 1 Source 1

Figure 2. Network topology

3.2 Performance Metrics

The System Goodput, defined as the sum of the goodput of all flows, is used to measure the

overall system efficiency in terms of bandwidth utilization at the receivers. The goodput results in

this paper is measured in Bytes/second.

Long-term Fairness is measured by the Fairness Index, defined by [CJ89]:

where throughputi is the throughput of the ith flow, measured at a time scale of connection time.

This Fairness Index provides a sort of “average-case” analysis used by most researchers. In order

conduct a “worst-case” analysis and provide a tight bound on fairness, the Worst-Case Fairness

[ZT03] is also used:

The range of worst-case fairness is also in [0, 1], with 1 representing the greatest fairness. As an

example demonstrating why worst-case fairness is used, consider a scenario of 6 flows, the

throughputs of which are 9 Mbps, 9.5 Mbps, 8.5 Mbps, 9 Mbps, 9 Mbps, and 6 Mbps,

respectively. The traditional “average-case” fairness index is 0.982, while the worst-case fairness

is 0.667. Compare this scenario with a perfectly fair case in which all flows achieve 9.5 Mbps,

R2 R3 R4 R1

Figure 3. Network Topology with Multiple Bottlenecks and Cross Traffic

10ms
10Mbps

Peripheral
Sink m

Peripheral
Sink 1

10ms
10Mbps

3ms
10Mbps

2ms
10Mbps

30Mbps

10ms

20Mbps 20Mbps

10ms

Peripheral
Source m

Peripheral
Source 1

10ms

Sink n Source n

Sink 1 Source 1

å

å

=

=

÷
ø

ö
ç
è

æ

= n

i
i

n

i
i

throughputn

throughput
dexFairnessIn

1

2

2

1

ini

ini

throughput

throughput
airnessWorstCaseF

££

££=
1

1

max

min

and both the “average-case” fairness index and worst-case fairness index are 1.0. The difference

between the first scenario and the ideal case can’t be obviously distinguished by the “average-

case” fairness index. In the first scenario, the system is fair in general, but is particularly unfair to

the 6th flow. This unfairness to a very small fraction of flows can only be captured by the worst-

case fairness.

In addition, the queue size of the bottleneck router, measured in packets, is traced and

sampled every 100ms.

4. Results and Analysis

4.1 The Impact on Queue Length and End-to-End Delay

4.1.1 Dynamics with DropTail Gateways
We first evaluated the protocol dynamics over the network topology shown in Figure 2.

10 flows shared a 10Mbps bottleneck link with a DropTail buffer of size 100 packets. The round

trip propagation delay is around 70 ms. Bottleneck queue lengths over time are depicted in

Figures 4 (a) – (d). As can be expected, the fluctuation of queue lengths reflects the fluctuation of

sending rate. The queue length fluctuations of responsive TCP is so dramatic (due to the low β)

that at some time instances the queue length approaches zero, and the bottleneck link is

temporarily underutilized because of the idle queue. On the other hand, although smooth window

adjustment leads to smaller delay jitter, the queuing delay remains high throughout the

simulation. Due to the high window decrease ratio upon congestion indications, the average

queuing length of TCP(0.31, 0.875) is much higher than the other protocols.

Figure 4(a) Queue Length with TCP (0.31, 0.875)

(DropTail gateway)

Figure 4(b) Queue Length with TCP (0.583, 0.75)

(DropTail gateway)

Figure 4(c) Queue Length with TCP (1, 0.5)

(DropTail gateway)

Figure 4(d) Queue Length with TCP (1.25, 0.25)

(DropTail gateway)

4.1.2 Dynamics with RED Gateways
The queue lengths were also traced with RED gateways, shown in Figures 5 (a) – (d).

The buffer size remains 100 packets, while min_th and max_th are set to be 1/6 and 1/2 of

the buffer size, respectively, as per [Flo97]. With smooth TCPs, not only the queue oscillation is

smaller, but also the maximum queue size is lower, as a result of the interaction between the end-

to-end AIMD window control and the active queue management. It seems that RED can control

the queue growth more effectively with smooth TCP flows, since the moderated additive increase

steps allow more time for RED to respond. We analyze why α is the dominant factor in this

scenario as follows. The queue length is determined by the aggregated window size cwnd(t) (the

sum of congestion window sizes of all flows). The average window size of each flow is therefore

given by acwnd(t) = cwnd(t) / n, assuming there are n competing flows. The packet dropping rate

pa of RED is a function of the queue length. The probability that the ith flow multiplicatively

decreases is pf = 1 – (1 – pa)cwndi, where cwndi is the window size of the ith flow. The expected size

of the aggregated window size in the next RTT will be:

, the increase rate of aggregated window size, consists of two terms. The β-related term is

negative while the α-related term is positive. Intuitively, with a small queue size and hence a

small pf, the second term (α-related) is the dominant factor for window growth. The influence of

the multiplicative decrease ratio β is lowered by the low dropping rate pf. More importantly, as

the number of flows increases, the α-related term increases with n, while the β-related term does

ab

ab

nptcwndpwinwhere
wintcwnd

wintacwndn
tacwndptacwndpn

RTTtcwnd

ff

ff

×-+×-×-=D
D+=

D+×=

+×-+×××=
+

)1()()1(
)(

)(

)])(()1())(([
)(

winD

not. With the same aggregated window size cwnd(t), the number of flows and the corresponding

fair-share of the network can be different. Although the instant queue length mainly depends on

the instant cwnd(t), the above equation shows that with a large n, the momentum of queue length

increase is stronger. In other words, multiplicative decrease ratio does not scale with the number

of flows, while additive increase value does. The impact of α can be higher than β, as the number

of competing flows increases. Hence, smooth TCPs with a low α are more “responsive” to the

early packet drops, and the growing speed of the queue can be more effectively controlled by

RED.

Figure 5(a) Queue Length with TCP (0.31, 0.875)

(RED gateway)

Figure 5(b) Queue Length with TCP (0.583, 0.75)

(RED gateway)

Figure 5(c) Queue Length with TCP (1, 0.5)

(RED gateway)

Figure 5(d) Queue Length with TCP (1.25, 0.25)

(RED gateway)

After we further increase the number of competing flows to 60, the system behavior

changes completely with RED, as shown with Figures 6 (a) – (d). The queue lengths are

straightened at the top, since the maximum queue length is bounded by the parameter max_th of

RED (in our simulation, max_th • buffer_size = 0.5 ·100 = 50 packets), for both smooth TCP and

responsive TCP. Responsive TCP has a smaller average queue size, due to the larger queue

oscillation. Based on the analysis above, with a large number of competing flows, the additive

increase speed of the entire system Nα is higher (even with a small α of smooth TCP), and the

random packet drops between min_th and max_th of RED cannot effectively control the queue

length. Eventually, the average queue length reaches max_th • buffer_size. RED then enforces to

drop all packets. This makes the system dynamics similar to a DropTail buffer, except that the

maximum queue length is halved.

Figure 6(a) Queue Length with TCP (0.31, 0.875)

(RED gateway)

Figure 6(b) Queue Length with TCP (0.583, 0.75)

(RED gateway)

Figure 6(c) Queue Length with TCP (1, 0.5)

(RED gateway)

Figure 6(d) Queue Length with TCP (1.25, 0.25)

(RED gateway)

4.1.3 Implications to Energy Consumptions of Mobile Users

For long flows (elephants, such as media-streaming applications) the throughput is

determined by the available bandwidth, while for short flows (mice, such as web page retrievals)

the throughput is mainly bounded by RTT. Furthermore, for users of mobile devices, the energy

consumptions depend largely on the transmission time [JSAC01, KB02], which is determined by

throughput.

Assume that a number of mobile users in a wireless network access a single media-

streaming server. That is, there are a number of smooth TCP flows coming from the server to the

wireless users watching a show (maybe on laptops that rely less on battery lives). If RED is not

deployed, smooth TCP can cause large persistent queues in the bottleneck buffer (see section

4.1.1). Suppose another group of users sending short messages (that can fit into one packet) to

another server (for relaying short messages) that shares the same bottleneck buffer (e.g. the buffer

on base stations) with the media-streaming server. Since the traffic of media-streaming causes

large persistent queues, the TCP ACKs sent from the short-message servers to the mobile hosts

are delayed. That is, without RED, the deployment of smooth TCP for media streaming

applications can significantly increase the connection time of mobile users sending short

messages. The extended connection time implies higher energy consumption, since the message

senders cannot turn off their devices until they receive acknowledgements.

With RED configured, if the number of competing flows is high, this implication still

holds (as shown in section 4.1.2), except that the maximum queuing delay is lowered by max_th

of RED.

4.2 Network Behaviors over Heterogeneous (Wired/Wireless) Networks
We further repeated the simulations over the same network topology as section 4.1, and

inserted random wireless bit errors (see section 3.1) into the access links to sink nodes. In the

following results, we used a Bit Error Rate of 1%.

Figure 7(a) Queue Length with TCP (0.31, 0.875)

(RED gateway)

Figure 7(b) Queue Length with TCP (0.583, 0.75)

(RED gateway)

Figure 7(c) Queue Length with TCP (1, 0.5)

Figure 7(d) Queue Length with TCP (1.25, 0.25)

(RED gateway) (RED gateway)

It is interesting to observe that although RED can limit the maximum queue size and

hence the magnitude of queuing delay fluctuations, it can not fully control the frequency of queue

oscillations (Figures 7 (a) – (d)). Note that high frequency indicates that the end-to-end delay is

more difficult to predict, given the current instant delay. In fact, RED increases the frequency of

queue oscillations by forcing TCP senders to adjust before the system reaches the cliff. Therefore,

the congestion epochs1 are reduced with RED, and the queue approaches its peak quickly and

fluctuates more frequently. On the other hand, the frequency of queue oscillations is also

significantly affected by the window adjustment strategies on end hosts. With smooth TCPs,

congestion epochs are extended. Thus, the growing speed of queue is moderated, and the

frequency of queue oscillations is reduced.

4.3 Traffic over Complex Topology with Multiple Bottlenecks
We also tested the system behaviors with different TCP(α, β) protocols over the complex

topology with multiple bottlenecks (shown in Figure 3), with both DropTail and RED. Half of the

flows form the main traffic, while the other half form the cross traffic. We choose TCP(0.31,

0.875) to represent smooth TCP and TCP(1.25, 0.25) to represent responsive TCP. The fairness,

worst-case fairness, goodput performance are depicted in Figures 8 - 11. The results are analyzed

and discussed below.

4.3.1 Homogeneous Flows over Multiple Bottlenecks
We first configured the simulations such that all flows adopt the same TCP(α, β)

protocol. With DropTail, responsive TCP achieves slightly lower throughput than smooth TCP,

which verifies the early findings in [TZ05].

There is a large oscillation with the worst-case fairness index, reflecting the inherent

characteristics of randomized multiplicative decrease discussed in section 2. Notably the lowest

goodput of individual flow is less then 10% of the highest one, as demonstrated by worst-case

fairness in Figure 8(b). It has already been shown in [TZ02] that with DropTail routers and

standard TCP, the main traffic consumed more bandwidth than the cross traffic, due to the fact

that packets aggregated into link R1-R2 (see Figure 3) before entering the bottleneck R3 were

more uniformly distributed in the time domain, therefore having smaller probability to get

1 the time period that reflects the uninterrupted growing lifetime of sending window

dropped, compared to the bursty traffic of non-aggregated (i.e. connecting to R3 directly) cross-

traffic flows. As shown below, with RED gateways, better system fairness can be achieved.

Furthermore, the responsive TCP’s fairness (Figure 8(a)), especially the worst-case

fairness (Figure 8(b)) is much higher than smooth TCPs. Upon packet losses, responsive TCP

flows in the main traffic adjust downwards more dramatically, leaving sufficient space for flows

in the cross traffic to grow. That is, with large AIMD window adjustments, the system is less

likely to have bias against less aggregated flows.

Figure 8(a) Fairness vs Number of Flows

Figure 8(b) Worst-case Fairness vs

Number of Flows

Figure 8(c) Goodput vs Number of Flows

Figure 8. Protocol Behaviors with DropTail buffer

With RED turned on at the router R1, interestingly, in contrast to the scenario of

DropTail buffer, responsive TCP may achieve slightly higher goodput (Figure 9(c)). Overall, the

system goodput is slightly higher with RED

Moreover, with RED turned on, the system fairness (Figure 9(a)) is significantly

improved. RED’s random packet drop prior to buffer overflow will discard more packets from

flows that consumes more bandwidth, therefore counterbalance the system unfairness due to

different levels of link aggregation. However, with large number of competing flows, fairness,

especially the worst-case fairness (Figure 9(b)), is still low. But, in contrast to the case of

DropTail gateways, smooth TCP achieves much better fairness than responsive TCP. A detailed

trace analysis reveals that with smooth TCP, RED can more effectively control the queue growth

and packet losses. With responsive TCP’s faster additive increase speed, the senders can easily

overshoot, and the average queue tends to touch or even exceeds the point max_th, where forced

drops (dropping all packets, instead of dropping randomly) are executed and the RED behaves

similar to DropTail.

Figure 9(a) Fairness vs Number of Flows

Figure 9(b) Worst-case Fairness vs

Number of Flows

Figure 9(c) Goodput vs Number of Flows

Figure 9. Protocol Behaviors with RED configured at R1

4.3.1 Heterogeneous Flows over Multiple Bottlenecks
We then configured the simulation such that flows adopt different TCP(α, β) protocols

over the multi-bottleneck topology. In this scenario with hybrid protocols, the main traffic uses

smooth TCP (or responsive TCP), while the cross traffic uses responsive TCP (or smooth TCP).

The protocol performance with RED and DropTail are depicted in Figures 10 – 11.

The four curves on each figure represents the test cases where (i) all flows use smooth

TCP (ii) all flows use responsive TCP (iii) the flows of main traffic use smooth TCP, while the

flows of cross traffic use responsive TCP (iv) the flows of main traffic use responsive TCP,

while the flows of cross traffic use smooth TCP. The results show that with heterogeneous flows,

when the main traffic uses smooth TCP, the system behavior is closer to the case where all flows

use smooth TCP. Similarly, with heterogeneous flows, when the main traffic uses responsive

TCP, the system behavior is closer to the case where all flows use responsive TCP. Therefore, the

results verify that the dominant factor is the protocol deployed on the main traffic with

aggregated flows. We conclude that deploying smooth/responsive TCP alone cannot control the

behavior of fairness or goodput, since the system behavior also depends on the buffer

management at routers as well as where smooth/responsive TCP is deployed.

Figure 10(a) Fairness vs Number of Flows

Figure 10(b) Worst-case Fairness vs

Number of Flows

Figure 10(c) Goodput vs Number of Flows

Figure 10. Behaviors of Heterogeneous Flows with DropTail Buffer

11(a) Fairness vs Number of Flows

11(b) Worst-case Fairness vs

Number of Flows

11(c) Goodput vs Number of Flows

Figure 11. Behaviors of Heterogeneous Flows with RED Configured at R1

5. Conclusion
We investigated the network dynamics with different window adjustment strategies and

queue management schemes. From the deployment (especially incremental deployment) point of

view, we observed the combined dynamics between different (α, β) parameters on end-hosts and

different queue management schemes, their impact on the fairness, end-to-end delay, and their

implications to energy-consumption of mobile hosts in wireless networks.

We discover that with DropTail buffer, although smooth TCP causes less queuing delay

jitter, its average queuing delay is much higher than that of responsive TCP. The direct

implication of this discovery is that when mobile users of media-streaming and short messages

share some bottleneck links, the energy consumption for sending short messages can increase

dramatically if media-streaming users adopt smooth TCP. On the other hand, with RED, smooth

TCP not only has smaller queue oscillations, the average/max queue length is smaller as well.

However, the frequency of queue oscillations can be significantly affected by the fast additive

increase speed of responsive TCP.

We further investigated incremental deployment issues with different AIMD parameters

and different queue managements. With multiple bottlenecks and different levels of capacity

aggregations, the system fairness with smooth TCP can be much worse than responsive TCP, if

RED is not deployed at the gateways. With partial / incremental deployment of smooth or

responsive TCP, the system behaviors with goodput and fairness depend on the buffer

management schemes at routers, the network topology, as well as the location where the new

congestion control mechanism is deployed.

We conclude that incremental deployment of window-adjustment strategies or queue

management schemes will not necessary lead to the desired effect, if the behavior of the

combined system is not considered.

Our future work will be providing analytical analysis to theoretically support the findings

in this paper.

References

[APS99] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC2581,

April 1999.

[BRA98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.

Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K.

Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang,
“Recommendations on Queue Management and Congestion Avoidance in the

Internet”, RFC 2309, April 1998.

 [CJ89] D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks”, Computer Networks and ISDN

Systems, 17(1):1-14, June 1989.

[DIM01] C. Diot, G. Iannaccone and M. May, “Aggregate Traffic Performance with

Active Queue Management and Drop from Tail”, ACM SIGCOMM Computer

Communication Review, vol. 31, issue 3, pp. 4 – 13, July 2001.

[FHPW00] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Congestion

Control for Unicast Applications”, In Proceedings of ACM SIGCOMM 2000, pp.

43 – 56, August 2000.

[FJ93] S. Floyd, and V. Jacobson, “Random Early Detection gateways for Congestion

Avoidance”, IEEE/ACM Transactions on Networking, 1(4):397-413, August

1993.

[Flo97] S. Floyd, “RED: Discussions of Setting Parameters”, November 1997, available

from http://www.icir.org/floyd/REDparameters.txt

[JSAC01] C. Jones, K. Sivalingam, P. Agrawal and J. Chen, “A Survey of Energy Efficient

Network Protocols for Wireless Networks”, ACM/Baltzer Journal on Wireless

Networks, vol. 7, No. 4, pp. 343 - 358, 2001.

[KB02] R. Krashinsky and H. Balakrishnan, "Minimizing energy for wireless web access

with bounded slowdown", Proceedings of ACM MobiCom, pp. 119 - 130,

September 2002

[KZT02] M. Khanna, C. Zhang and V. Tsaoussidis, “Experimental Evaluation of RED in

Heterogeneous Networks”, The 3rd International Conference on Internet

Computing, pp. 217-224, June 2002.

 [NS] ns-2 Network Simulator, http://www.isi.edu/nsnam/ns/, 2001.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP Throughput: A

Simple Model and its Empirical Validation", In Proceedings of ACM

SIGCOMM ’98, pp. 303 – 314, August 1998.

 [TZ99] D. Tan and A. Zakhor, “Real-time Internet Video Using Error Resilient Scalable

Compression and TCP-friendly Transport Protocol”, IEEE Transactions on

Multimedia, vol. 1, no. 2, pp. 172-186, May 1999.

[TZ02] V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-Oriented Congestion

Control”, Computer Networks Journal (Elsevier), Vol. 40, No. 4, pp. 477-497,

November 2002.

[TZ05] V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and

Smoothness in Heterogeneous Networks”, IEEE Journal on Selected Areas in

Communications, vol. 23, no. 6, pp. 1178-1189, March 2005.

[YL00] Y.R. Yang and S.S. Lam, “General AIMD Congestion Control”, In Proceedings

of the 8th International Conference on Network Protocols, p. 187, November

2000.

[ZT02] C. Zhang and V. Tsaoussidis, “The Interrelation of TCP Smoothness and

Responsiveness in Heterogeneous Networks”, Proceedings of the 7th IEEE

Symposium on Computers and Communications (ISCC 2002), pp. 291-297, July

2002.

[ZT03] C. Zhang and V. Tsaoussidis, “Improving TCP Smoothness by Synchronized and

Measurement-based Congestion Avoidance”, Proceedings of ACM NOSSDAV

2003, pp. 131-140, June 2003.

