
EFFORT / GAINS DYNAMICS
IN HETEROGENEOUS NETWORKS

L. Mamatas and V. Tsaoussidis

Dept. Of Electrical and Computer Engineering
Demokritos University of Thrace, Greece

Email: emamatas@ee.duth.gr, vtsaousi@ee.duth.gr

Abstract

We investigate the behavior of TCP(α,β) protocols in the presence of wireless networks. We seek an answer to

strategic issues of maximizing energy and bandwidth exploitation, without damaging the dynamics of multiple-flow

equilibrium. We take a fresh perspective on protocol design: What is the return of the effort that a protocol

expends? Can we achieve more gains with less effort? We study first the design assumptions of TCP(α,β) protocols

and discuss the impact of equation-based modulation of α and β on protocol efficiency. We introduce two new

measures to capture protocol behavior: The “Extra Energy Expenditure” and the “Unexploited Available

Resource Index”. We confirm experimentally that, in general, smoothness and responsiveness constitute a tradeoff;

however, we show that this tradeoff does not graft its dynamics into a conservative/aggressive behavior, as it is

traditionally believed. We uncover patterns of unjustified tactics; our results suggest that an adaptive congestion

control algorithm is needed to integrate the dynamics of heterogeneous networks into protocol behavior.

1. INTRODUCTION

Transmission control of reliable protocols, as exemplified by TCP [1], is based on somewhat “blind”

increase/decrease window mechanism that exploits the bandwidth availability dynamically and, meanwhile, avoids

persistent congestion. The adjustments are modeled on the Additive Increase/Multiplicative Decrease algorithm

from the perspective of fair resource allocation and efficient resource utilization [5]. AIMD is the core algorithm of

standard TCP and is becoming the core algorithm of all transport protocols that support congestion control

functions [6].

Several different mechanisms / protocols have been proposed regarding the transport layer. A thorough analysis

of the different approaches to congestion control in transport protocols can be found in [10]. For example, TFRC

[7] calculates Throughput by incorporating the loss event rate, round-trip time and packet size. TCP-Vegas [3]

estimates the level of congestion using Throughput-based measurements. TCP-Vegas demonstrates that

measurement-based window adjustments is a viable mechanism, however, the corresponding estimators can be

improved. In TCP-Westwood [4], the sender continuously measures the effective bandwidth used by monitoring

the rate of returned ACKs. TCP-Real [16] uses wave patterns: a wave consists of a number of fixed-sized data

segments sent back-to-back, matching the inherent characteristic of TCP to send packets back-to-back. The

protocol computes the data-receiving rate of a wave, which reflects the level of contention at the bottleneck link.

Bimodal congestion avoidance and control mechanism [2] computes the fair-share of the total bandwidth that

should be allocated for each flow, at any point, during the system’s execution. TCP-Jersey [17] operates based on

an “available bandwidth” estimator to optimize the window size when network congestion is detected.

However, a concern is how efficiently do protocols administer the network resources; that is, whether the

(whatever) gain is proportional to the expended effort. Also, how can we measure effectively the effort / gain

relative performance of a transport protocol? The evaluation of the proposed transport protocols needs to focus on

the effort/gain dynamics of their corresponding mechanisms too.

The problems of standard TCP have been mainly investigated from two different perspectives, namely the

application requirements and the characteristics of the underlying networks. The former expounds the impact of the

transmission gaps caused by halving the transmission rate during congestion on the quality of delay-sensitive

applications. Authors in [7, 8, 18, 19] propose TCP-friendly protocols (which are defined as the protocols that share

the available bandwidth fairly with applications built on TCP) that satisfy two fundamental goals: (i) To achieve

smooth window adjustments. This is done by reducing the window decrease ratio during congestion. (ii) To

compete fairly with TCP flows. This is approached by reducing the window increase factor according to a steady-

state TCP Throughput equation. It has been effectively established that TCP can achieve application-oriented

improvements by favoring smoothness (which is defined as the level of window oscillations) using a gentle

backward adjustment upon congestion, at the cost of lesser responsiveness (which is the speed to approach an

equilibrium) - through moderated upward adjustments. The latter perspective unfolds the need for error detection

and classification that would permit a responsive strategy, oriented by the nature of the error detected (congestion

in wired networks versus transient random errors in wireless networks) [15]. As we show, implementation of such

strategy requires occasionally a more responsive TCP. Our approach, however, is dominated by the distinctive

characteristics and requirements of wireless networks: we address issues of energy and wireless error recovery,

through a parallel study of a smooth/responsive protocol design and an aggressive/conservative outcome. Note that

the conservative-through-to-aggressive behavioral spectrum reflects the effort a protocol expends. The real issue,

therefore, is how much this effort is invested into efficient transmission.

Our contribution centers around that issue, precisely. In order to measure protocol efficiency we introduce two

new measures of performance: Extra Energy Expenditure (EEE) quantifies the additional effort expended

throughout protocol operations that did not return corresponding gains. Unexploited Available Resources (UAR) is

the measure that quantifies the missed opportunities for error-free transmission that a protocol experiences.

Traditional measures cannot capture precisely such behavior since they lack a parameter that corresponds to

optimal performance.

TCP(α,β) protocols parameterize the congestion window increase value and decrease ratio , where the

sender’s window size is increased by if there is no packet loss in a round-trip time, and the window is decreased

to times the current value if there is a loss indication. We discuss the impact of the smoothness/responsiveness

tradeoff on protocol performance, assuming that it follows strictly the friendliness-oriented α/β tradeoff. A natural

question is therefore “under what network conditions can we achieve efficiency; and how do we define efficiency”.

Having shown in previous work [14] that a protocol for wireless networks may need to be occasionally more

conservative and occasionally more aggressive, we attempt to explore how this tradeoff is shaped by the responsive

or smooth protocol strategy. In our discussion below, we refer to three classes of TCP(,) protocols: (i)

Standard New Reno TCP(1, ½); (ii) Responsive TCP(,), with relatively low value and high value; and

(iii) Smooth TCP(,), with relatively high value and low value.

We compare the performance of our TCP(α,β) versions in heterogeneous (wired and wireless) networks and in

static and dynamic1 environments. Based on the assumptions of equation-based congestion control and on

experimental data, we arrive at the conclusion that protocols, which are based entirely on the α/β tradeoff may be

adequate for specific applications, networks and scenarios; however, they are inappropriate for several other

occasions.

We organized the paper as follows: we give an overview of TCP(α,β) protocols in section 2 and we discuss

their inherent assumptions. In section 3 we define new performance measures. In section 4 we present our testing

methodology and in section 5 we analyze the results of our experiments. Finally, in section 6 we highlight our

conclusions.

2. TRADING α FOR β

A Throughput equation for standard TCP is first introduced in [13]. GAIMD [19] extends the equation to

include parameters α and β:

(1)

where p is the loss rate; T0 is the retransmission timeout value; b is the number of packets acknowledged by each

ACK. The overall Throughput of TCP-Friendly protocols is bounded by the average Throughput of standard

TCP , which means that equation (2), which is derived from (1) (see [19]) could provide a rough

guide to achieve friendliness.

 (2)

Authors of [19] derive from (1) and (2) a simple relationship for and :

 (3)

1 From the perspective of the participating flows with criterion whether their number is fixed or not.

Based on experiments, they propose a as the appropriate value for the reduced the window (i.e. less

rapidly than TCP does). For , (3) gives an increase value .

The observations of the window dynamics and event losses are frequently assumed within a time period of a

congestion epoch [7], which reflects the uninterrupted growing lifetime of congestion window. More precisely, a

congestion epoch begins with βW packets, increased by α packets per RTT and reaching a congestion window of W

packets, when a packet is dropped. The congestion window is then decreased to βW. Hence, a congestion epoch

involves

n = (1-β) * W / α + 1 RTTs (4)

Assuming that the capacity of the bottleneck link is B packets per second and the number of active flows going

through the bottleneck router is N, and assuming a control system as in [5], we further calculate that:

W = B * RTT / N (5)

We can easily observe that it takes several RTTs for a smallα to pay back the bandwidth credit of a high β.

Equation (1) is modeled by calculating the average Throughput over a congestion epoch, which is associated

with several RTTs. Since equation (1) gives the steady state TCP Throughput, in a dynamic network where

conditions changing rapidly, friendliness might not be attained. More precisely, based on (4) we conclude that (1)

and (2) can be achieved at a time n RTTs or later since multiple drops will extend further the time of convergence.

Based on (4) and (5) we further conclude that the time period required for (1) and (2) to hold is in reverse

proportion to contention within a fixed bandwidth channel; the smaller the number of flows, the larger the window

and therefore the longer the convergence time. By the same token, the fact that a responsive protocol can exploit

bandwidth better suggests that lower contention is a favorable case for such protocols.

This analysis implies that, smooth protocols may be more aggressive (since they consume temporarily more

bandwidth) in the presence of transient errors, while they may behave more conservatively, due to their low

increasing rate, when multiple drops force the multiplicative decrease factor to adjust the congestion window back

to its initial value. This can be justified by a hidden assumption behind (3): when packet drops occur at the end of

the congestion epoch, the window decreasing by a factor of (1-β) is applied only once. However, multiple packet

drops could cause the window size to be decreased multiple times, or they could also cause the retransmission timer

to expire. At the end, it is possible that the window size and the ssthresh could be decreased down to 2 segments,

even with smooth backward adjustments. Under such scenarios, the performance of applications (including real-

time applications) is not affected by how slowly the sender reduces its sending rate, but rather by how fast it can

recover from the error and restore its sending rate. Note that our scenario is not unrealistic. For example, in mobile

networks, burst correlated errors and handoffs generate this kind of error pattern. The aggressiveness of responsive

TCP may be a desirable behavior. We confirm our statements experimentally in section 5.

3. MEASURES FOR EVALUATING EFFORT / GAINS DYNAMICS

For a proper evaluation of effort / gain dynamics, we propose new measures to monitor:

- the effort expended from a protocol.

- the effective utilization of available resources.

- the achieved gain of the effort from the applications viewpoint.

Additionally, the new measures need to be combined with traditional measures:

The system Goodput measures the overall system efficiency in bandwidth utilization. The system Goodput is

defined as:

Goodput= Original_Data / Connection_time

where Original_Data is the number of bytes delivered to the high-level protocol at the receiver (i.e., excluding

retransmitted packets and overhead) and Connection_time represents the amount of time required for the data

delivery.

Fairness is captured by the Fairness Index, derived from the formula given in [5] and defined as:

where Throughputi is the Throughput of the ith flow and n is the flow number. This Fairness Index provides a sort

of “average-case” analysis used by most researchers. In order to conduct a “worst-case” analysis and provide a tight

bound on Fairness, we propose the Worst-Case Fairness as:

The range of Worst-case Fairness is also within [0, 1] (1 represents the higher Fairness). To demonstrate why

Worst-case Fairness is introduced, consider a scenario of 6 flows, with Throughputs 9 Mbps, 9.5 Mbps, 8.5 Mbps,

9 Mbps, 9 Mbps, and 6 Mbps, respectively. The traditional “average-case” Fairness Index is 0.982, while the

Worst-case Fairness is 0.667. Compare this scenario with a perfectly fair case in which all flows achieve 9.5 Mbps,

and both the “average-case” Fairness Index and Worst-case Fairness Index are 1.0. The difference between the first

scenario and the ideal case cannot be obviously distinguished by the “average-case” Fairness Index. In the first

scenario, the system is fair in general, but is particularly unfair to the 6th flow. This unfairness to a very small

fraction of flows can only be captured by the Worst-case Fairness.

In order to validate the efficiency of the protocols in real-time / multimedia applications, we assume an

application, which demands to receive at least one packet every 100ms. Due to the sending window fluctuation and

the transmission gaps of TCP(α, β), there are instances of data being unavailable to the application (because the

packets were delayed more than 100ms). We use the Realtime Performance Index in order to measure the

protocol’s real-time performance:

where PacketsDeliveredinTime is the number of packets which have been received by the application in time and

PacketsDelivered the total number of packets received by the application.

 In order to capture the amount of extra energy expended, we introduce a new metric. Extra Energy

Expenditure (3E) [11] attempts to capture the extra energy expended due to protocol operation and not just the

expended energy. That is, a protocol may transmit when there are windows of opportunities for error-free

transmission, without expending extra energy, or vice versa. In contrast, it may miss opportunities for transmission,

expending energy (even in an idle state) and extending communication time. 3E attempt to capture extra energy

expenditure as an associated result of Goodput, Throughput and maximum Throughput, each one represented as a

moving point on a line. 3E takes into account the difference of achieved Throughput from maximum Throughput

(Throughputmax) for the given channel conditions along with the difference of Goodput from Throughput,

attempting to locate the Goodput as a point within a line that starts from 0 and ends at Throughputmax. The metric

3E takes values from 0 to 1, attempting to capture both distances.

where a=1 and b=0.3

 The a and b parameters follow the behavior of a specific network device. In many cases, a sophisticated energy

efficient protocol consumes more energy than it is designed to, due to lack of sophistication of the network device.

The EEE metric should be adjusted to the network device in order to follow accurately the impact of the network

communication on the specific battery’s lifetime. In [12], we show how this adjustment can be made.

 The ideal EEE, is the EEE produced by an ideal device. We assume that an ideal network device is energy

efficient and sophisticated in the sense that its states correspond always to the states of the transport protocol (i.e.,

when the protocol suspends transmission the device remains on an idle state). Therefore, this device allows the

transport protocol to operate on it’s maximum energy efficiency. According our results, the EEE metric normalized

with the parameters a=1 and b=0.3 behaves almost ideally. Practically, we assume that the ideal network device

consumes the 30% of the energy in the idle state (set by parameter b).

When Goodput approaches Throughput, which approaches 0, the extra expenditure is only due to waiting time

(probably in an idle state). We assume that the extra expenditure at this stage is 0.3 (the first term is 0). Instead,

when Goodput=Throughput=Throughputmax the extra expenditure is 0, since all the expended energy has been

invested into efficient transmissions. Also, when Throughputmax= 100, Throughput=99, Goodput=1, the extra

expenditure due to unsuccessful retransmission increases to an almost maximum value (0.993)

We need to introduce another metric as well, in order for us to capture the level of Unexploited Available

Resources (UAR) [11]. That is, how well are the windows of opportunities exploited for successful transmissions.

More precisely, holding transmission when conditions call for transmission, will perhaps result in minor energy

expenditure but have a great cost on protocol Goodput. Reasonably, the case of Goodput=Throughput=0 should not

give us at this point a minor (as with the 3E metric) but a major penalty.

where a=0.5 and b=0.5 2. The UAR index ranges also from 0 to 1, expressing also a negative performance aspect.

The protocol efficiency can be studied from another perspective. Overhead is used as a metric to realize the

protocol transmission effort to complete reliable data delivery.

BytesSent is the total bytes transmitted by TCP senders, while OriginalBytes is the number of bytes delivered to the

higher level protocol by receivers, excluding retransmitted packets and TCP header bytes. This metric captures the

portion of consumed bandwidth, or the percentage of the transmission energy (a scarce resource in mobile

computing), that is wasted on packet retransmissions and protocol header overhead. It differs from EEE in that it

only captures the extra energy expenditure due to retransmissions.

4. EXPERIMENTAL METHODOLOGY

4.1 Evaluation Plan

2 The a, b values in both EEE & UAR indices can be modeled on the behavior of a specific wireless network device.

We have implemented our testing plan on the ns-2 network simulator. The network topology used as a test-bed

is the typical single-bottleneck dumbbell, as shown in Figure. 1. Furthermore, we evaluated the protocol behavior

using a complex topology with multiple bottlenecks and cross traffic (Figure 2). The router R1 is the bottleneck for

the main traffic, which includes TCP flows between “source nodes” to “sink nodes”. The router R3 is another

bottleneck for the competing main traffic and cross traffic, which includes TCP flows between “peripheral source

nodes” and “peripheral sink nodes”. We used equal number of source and sink nodes. We simulated a

heterogeneous (wired and wireless) network with ns-2 error models, which were inserted into the access links at the

sink nodes. The Bernoulli model was used to simulate link-level errors with configurable bit error rate (BER). To

simulate bursty wireless errors, a two-state (On/Off) error model is used, with the On/Off phase sojourn times

exponentially distributed. The Off state is error free and the On state is configured with BER values. The Off and

On states correspond to the Good and Bad states of a wireless channel, respectively. Bursty errors occur due to a

large number of reasons associated mostly with movement of mobile terminals. Error models were configured on

both (forward and reverse) directions of the link traffic. We did not use an ARQ mechanism in the link layer.

Furthermore, occasionally we included mobility in order to monitor the behavior of the network and its impact on

the application in a situation of frequent handoffs. The scenarios with handoffs do not include lossy links. The

number of flows occasionally changes for the different scenarios. The simulation time was fixed at 60 seconds, a

time-period deemed appropriate to allow all protocols to demonstrate their potential. Similar results can be attained

from scenarios with higher simulation times (e.g., 120sec).

Figure 1. Dumbbell Topology

Figure 2. Complex Topology

 Due to the deterministic nature of the experiments, statistical validity is not an issue. In order to validate our

statements, we selected and evaluated three protocols that satisfy the TCP-friendly equation [19]. We used standard

New-Reno TCP (1, 0.5), a responsive New-Reno TCP (1.25, 0.25) and a smooth New-Reno TCP (0.31, 0.875).

In the scenarios without graduated contention decrease, FTP flows are entering the system within the first two

seconds. All flows are fixed, during the remaining 58 seconds. In order to evaluate how efficiently and fairly the

protocols can exploit available bandwidth, we used, additionally, scenarios with graduated contention decrease. All

scenarios use FTP flows as the offered traffic.

5. RESULTS AND DISCUSSION

In this work, we comment on five different scenarios:

1. A simple wired scenario.

2. A wireless scenario with Error-Rate.

3. A wireless scenario with Error-Rate and Graduated Contention Increase.

4. A scenario with long handoffs.

5. A scenario with short handoffs.

6. A scenario with a complex topology.

We focus on protocol behavior with respect to effort expended and gains achieved. Although effort expended is

a rather unified metric (i.e., packets transmitted over time), achieved gain is application-specific and cannot be

expressed in a unified manner.

5.1 Simple Wired Scenario

In the simple wired scenario, while the responsive TCP improves the Fairness Index (figure 3), the smooth

TCP has less Extra Energy Expenditure (figure 4). An adaptive transport protocol could follow, in this situation,

either a responsive or a smooth transmission tactic, in order to be fair or energy efficient. Hence, there is a tradeoff

between Fairness and Energy Efficiency. The responsive TCP does not exploit the network resources efficiently in

cases of flows less than 40 (figure 6). This results in an increased UAR index (figure 5). Based on the effort / gains

perspective, we note that the increased effort that the responsive TCP expends (figure 4) makes the protocol more

fair (figure 3). However, it has no performance gains (figure 6). In case of real-time / multimedia applications, the

traditional TCP achieves more gains, as indicated by its Realtime Performance Index (figure 7).

Figure 3. Fairness of TCP Variations in a Simple Wired Scenario

Figure 4. EEE of TCP Variations in a Simple Wired Scenario

Figure 5. UAR of TCP Variations in a Simple Wired Scenario

Figure 6. Goodput of TCP Variations in a Simple Wired Scenario

Figure 7. Realtime Performance of TCP Variations in a Simple Wired Scenario

5.2 Scenario with Error-Rate (error-rate 0.02 BER)

In our second scenario, we simulated a heterogeneous environment with somewhat-extreme, but random errors

(error-rate 0.02 BER). We measured performance, ranging the number of flows from 10 to 100. Based on figure 10,

we note that the responsive TCP has an increased UAR index. In this situation, the responsive TCP follows a

conservative strategy. Therefore, there is not always a direct relationship between responsiveness and

aggressiveness. Although the responsive TCP is not the most efficient (figure 11), it appears more fair (figures 8,

9). This result is interesting and calls for further research.

Figure 8. Fairness of TCP Variations in a Lossy Environment

Figure 9. Worst-case Fairness of TCP Variations in a Lossy Environment

Figure 10. UAR of TCP Variations in a Lossy Environment

Figure 11. Goodput of TCP Variations in a Lossy Environment

5.3 Scenario with Errors and Graduated Contention Increase

We simulated a heterogeneous environment with random errors (error-rate 0.01 BER). Additionally, we

gradually increased the contention level. While the protocols exhibit similar behavior in terms of Goodput and

Energy Efficiency (figures 15, 14), the responsive protocol is more fair (figures 12, 13) because it adjusts faster to

the corresponding contention level. However, the smooth protocol has a better Realtime Performance Index, since

the smooth behavior reduces the packet jitter (figure 16). Therefore, the same effort (figure 14) can result in

different gains for different transport mechanisms. A more sophisticated transport protocol that is aware of the

application’s demands, could select a different strategy to reach the desired gain.

Figure 12. Fairness of TCP Variations in Heterogeneous Scenario with Graduated Contention Increase

Figure 13. Worst-case Fairness of TCP Variations in Heterogeneous Scenario with Graduated Contention Increase

Figure 14. EEE of TCP Variations in Heterogeneous Scenario with Graduated Contention Increase

Figure 15. Goodput of TCP Variations in Heterogeneous Scenario with Graduated Contention Increase

Figure 16. Realtime Performance of TCP Variations in Heterogeneous Scenario with Graduated Contention Increase

5.4 Scenario with Long Handoffs

In this scenario, we used handoffs with 1-second duration. We measured performance, ranging the number of flows

from 10 to 100. Although the smooth TCP is less fair (figure 17), it outperformed the other protocols in terms of

Extra Energy Expenditure (figure 18) due to their increased overhead (figures 20, 21). The increased UAR index

(figure 19) shows that the smooth protocol has not exploited the available resources efficiently. Therefore, a more

sophisticated congestion control algorithm can improve its efficiency. The lower effort of the smooth TCP (figure

18) does not impact Goodput significantly (figure 21). However, smooth TCP is not suitable for real-time /

multimedia applications because of its increased packet jitter (figure 22).

Figure 17. Fairness of TCP Variations in a Scenario with Long Handoffs

Figure 18. EEE of TCP Variations in a Scenario with Long Handoffs

Figure 19. UAR of TCP Variations in a Scenario with Long Handoffs

Figure 20. Throughput of TCP Variations in a Scenario with Long Handoffs

Figure 21. Goodput of TCP Variations in a Scenario with Long Handoffs

Figure 22. Realtime Performance of TCP Variations in a Scenario with Long Handoffs

5.5 Wireless Scenario with Short Handoffs

In this scenario, we used handoffs with low duration (0.1 sec). We measured performance, ranging the number

of flows from 1 to 10. While all protocols exhibit similar behavior in terms of Energy Efficiency and Goodput

(figures 25, 26), smooth TCP is unfair (figures 23, 24) and achieves the worst Realtime Performance (figure 27).

This result calls for further investigation into whether a smooth behavior is always more suitable for applications

demanding low packet jitter. From the effort / gain perspective, which is our present focus, we note that different

transport mechanisms may promote different targets. For example, although the smooth protocol is more suitable

for applications that demand high Fairness (e.g., distributed applications), it is not appropriate for multimedia /

real-time applications (figure 27).

Figure 23. Fairness of TCP Variations in a Scenario with Short Handoffs

Figure 24. Worst-case Fairness of TCP Variations in a Scenario with Short Handoffs

Figure 25. EEE of TCP Variations in a Scenario with Short Handoffs

Figure 26. Goodput of TCP Variations in a Scenario with Short Handoffs

Figure 27. Realtime Performance of TCP Variations in a Scenario with Short Handoffs

5.6 Scenario with a Complex Topology

In the last scenario, we used a complex topology with multiple bottlenecks and cross-traffic. We ranged the number

of flows from 10 to 100. While smooth TCP achieves the best performance in terms of Goodput (figure 31 –

especially for less than 60 flows), its Fairness potential is degraded (figures 28, 29). Furthermore, smooth TCP

appears energy efficient but inappropriate for realtime / multimedia applications due to very high packet-jitter

(figure 32). We can see a clear tradeoff between Fairness-Realtime Performance (figures 28, 29, 32) and Goodput-

Energy Efficiency (figures 30, 31). Responsive TCP improves Fairness (figures 28, 29) and Realtime Performance

(figure 32) trading off performance in Goodput (31) and Energy Efficiency (figure 30). Traditional TCP seems a

good choice maintaining all performance aspects in acceptable levels.

Figure 28. Fairness of TCP Variations in a Complex Topology

Figure 29. Worst-case Fairness of TCP Variations in a Complex Topology

Figure 30. EEE of TCP Variations in a Complex Topology

Figure 31. Goodput of TCP Variations in a Complex Topology

Figure 32. Realtime Performance of TCP Variations in a Complex Topology

ACKNOWLEDGEMENTS

This work was supported by the project PENED 03, funded by European Commission and the G.S.R.T. of

Greek Ministry of Development.

6. CONCLUSIONS AND FUTURE WORK

We have shown that smooth/responsive strategies do not always correspond to conservative/aggressive

behavior, respectively, as it is traditionally believed. Based on a primary analysis, which was also confirmed

experimentally, we have shown that different network conditions call for different smoothness/responsiveness

tactics. Furthermore, smooth protocols are not always suitable for multimedia / realtime applications. For example,

dynamic scenarios that require more frequent adjustments of the transmission strategy (such as scenarios with

handoffs or dynamic contention level) require responsive protocols.

We have also shown that effort/gains dynamics are not straightforward and impact system performance in

terms of Goodput, Fairness, Energy Efficiency and Realtime Performance. Based on the behavioral patterns we

exploited here, we plan to work towards a measurement-based algorithm (such as [16]) that monitors network

condition and triggers appropriate responses.

7. REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”, RFC2581, April 1999.

[2] P. C. Attie, A. Lahanas and V. Tsaoussidis, "Beyond AIMD: Explicit Fair-share Calculation", In Proceedings

of ISCC 2003, June, 2003.

[3] L. Brakmo and L. Peterson, "TCP Vegas: End to end congestion avoidance on a global Internet", IEEE Journal

on Selected Areas in Communication, 13(8):1465--1480, October 1995

[4] C. Casetti, M. Gerla, Saverio Mascolo, M.Y. Sansadidi, and Ren Wang, "TCP Westwood: End-to-End

Congestion Control for Wired/Wireless Networks", In Wireless Networks Journal 8, 467-479, 2002

[5] D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in

Computer Networks”, Computer Networks and ISDN Systems, 17(1):1-14, 1989.

[6] S. Floyd, “Congestion Control Principles”, RFC 2914, September 2000.

[7] S. Floyd, M. Handley and J. Padhye, “A Comparison of Equation-based and AIMD Congestion Control”, May

2000. URL: http://www.aciri.org/tfrc/.

[8] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Congestion Control for Unicast

Applications”, Proceedings of ACM SIGCOMM 2000, August 2000.

[9] Handley, M., Floyd, S., Pahdye, J., and Widmer, J, “TCP Friendly Rate Control (TFRC): Protocol

Specification”, RFC 3448

[10] L. Mamatas, T. Harks, V. Tsaoussidis, "Approaches to Congestion Control in packets networks", Journal

of Internet Engineering (JIE), Issue 1, Vol. 1, Kleidarithmos Press, 2007.

[11] L. Mamatas, V. Tsaoussidis, “Protocol Behavior: More Effort, More Gains?”, The 15th IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications, Barcelona, Spain.

[12] L. Mamatas and V. Tsaoussidis, "Transport Protocol Behavior and Energy-Saving Potential", Sixth

International Workshop on Wireless Local Networks (WLN 2006), Tampa, Florida

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP Throughput: A Simple Model and its

Empirical Validation", ACM SIGCOMM 1998, August 1998.

[14] V. Tsaoussidis, H. Badr, X. Ge, K. Pentikousis, “Energy/Throughput Tradeoffs of TCP Error Control

Strategies”, 5th IEEE Symposium on Computers and Communications IEEE ISCC 2000, July 2000.

[15] V. Tsaoussidis and I. Matta, “Open issues on TCP for Mobile Computing”, Journal of Wireless

Communications and Mobile Computing, Wiley Academic Publishers, Issue 2, Vol. 2, February 2002.

[16] V. Tsaoussidis and C. Zhang “TCP-Real: Receiver-oriented Congestion Control”, The Journal of Computer

Networks (COMNET), Elsevier Science pp 477-497, Volume 40, Issue 4, November 2002.

[17] K.Xu, Y.Tian and N.Ansari, "TCP-Jersey for wireless IP communications", IEEE JSAC, vol.22, no.4,

pp.747-756, 2004/05.

[18] Y.R. Yang, M.S. Kim and S.S. Lam, “Transient Behaviors of TCP-friendly Congestion Control Protocols”,

Proceedings of IEEE INFOCOM 2001, April 2001.

[19] Y.R. Yang and S.S. Lam, “General AIMD Congestion Control”, Proceedings of the 8th International

Conference on Network Protocols, Osaka, Japan, November 2000.

Lefteris Mamatas is a Phd student in the Demokritos University of Thrace. He graduated in

2003 from the Dept of Electrical and Computer Engineering, Demokritos University of Thrace.

His research interests are focused on transport protocols over wired/wireless networks. He

published three journal and 10 conference papers.

Vassilis Tsaoussidis received a B.Sc in Applied Mathematics from Aristotle University,

Greece; a Diploma in Statistics and Computer Science from the Hellenic Institute of Statistics;

and a Ph.D in Computer Networks from Humboldt University, Berlin, Germany (1995).

Vassilis held faculty positions in Rutgers University, New Brunswick, SUNY Stony Brook and

Northeastern University, Boston. In May 2003, Vassilis joined the Department of Electrical

and Computer Engineering of Demokritos University, Greece. His research interests lie in the

area of transport/network protocols, i.e. their design aspects and performance evaluation. His

COMNET (Computer Networks) Research Group includes 7 Ph.D students.

Vassilis is an editor-in-chief for the Journal of Internet Engineering and an editor for IEEE

Transactions in Mobile Computing, the Journal of Computer Networks, the journal of Wireless

Communications and Mobile Computing and the journal of Mobile Multimedia. He participates

in several Technical Program Committees in his area of expertise, such as INFOCOM,

GLOBECOM, ISCC, EWCN, LCN, NETWORKING and several others. Vassilis graduated 2

Ph.D students in the United States: Adrian Lahanas, now a lecturer at the University of Cyprus;

and Chi Zhang, now Asst. Professor at Florida International University.

