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Abstract— We discuss a new packet service paradigm, called
’Less Impact Better Service’ (LIBS), which is realized through
a novel queuing discipline, called ’Non-Congestive Queuing’
(NCQ). NCQ prioritizes small packets when conditions permit,
and utilizes service thresholds to confine the delay impact of
prioritization on congestive applications. We show that LIBS
and NCQ satisfy more users with diverse demands on delay and
throughput. We obtained both analytical and simulation results,
which are very promising. Diversity is simulated by using FTP,
sensor and VoIP traffic.

Index Terms— QoS, Service Differentiation, Packet Scheduling

I. INTRODUCTION

Typical scheduling paradigms of packet networks do not
match well the requirements of non-congestive applications,
which transmit minor data volumes but suffer, however, major
queuing delays. Such applications do not really cause sig-
nificant delays, raising naturally the issue of whether they
deserve a prioritized service or not. For example, a sensor-
generated packet may experience almost-zero delay favored by
a prioritized scheduling scheme, at an almost-zero cost to other
congestive flows. In the same context, a voice application,
although it generates periodic traffic at small rates, experiences
delays comparable with other applications that transfer large
data volumes.

Typical service paradigms assume resource demand ex-
ceeding resource supply, thus focusing on bandwidth sharing
among flows. Other service paradigms incorporate a propor-
tional service scheme, focusing on bandwidth allocation in
proportion to the demand. However, both perspectives lack
a delay-oriented service discipline. Delay-oriented services
have been traditionally managed based on delay requirements
of some applications, which are eventually reflected in the
prioritization during scheduling. Thus, service disciplines are
primarily application-oriented and have the inherent property
to satisfy some applications more, rather than satisfying more
applications.

We exploit here a system-oriented service discipline, which
targets in satisfying more users. We depart from two main
observations:

1) Non-congestive flows do not cause significant delays and
hence should not suffer from delays. We call this service
discipline ’Less Impact Better Service’ (LIBS).

2) As it is with Internet voice where the users tolerate more
delays with Internet than with dedicated telephone lines,
users of long and congestive applications such as FTP,
tolerate more delays than the users of small-data sensor
applications.

In this context, bandwidth alone could not have the cen-
tral role; instead, efficient distribution of resources needs

to be characterized by the delay suffered by each flow in
relation to the delay they cause. The latter is occasionally
associated with the delay that users tolerate. Our service
approach promotes small-sized packets at small rates, which
define ’non-congestive’ traffic. To avoid starvation and also
significant delay impact on congestive traffic, non-congestive
traffic is confined by corresponding service thresholds. Hence,
we analyze the behavior of systems where non-congestive
traffic has controlled prioritization without affecting congestive
traffic. From a user perspective, applications that utilize small
data packets and rates (and are also intolerant to long delays)
are satisfied while other applications suffer almost-zero extra
delays.

The key idea of Non-Congestive Queuing (NCQ) [27], [28]
that we discuss here, departs from the operational dynamics
of gateways: they may service small packets instantly. Non-
congestive packets do not cause significant delays and hence
should not suffer from delays. Although our approach sounds
straightforward, the system properties and design details re-
veal interesting dynamics. The simplicity of NCQ algorithm
reduces implementation and deployment effort. NCQ does not
require any modification at the transport protocol or packet
marking; a minor modification of the gateway’s software is
sufficient.

Our primary assumption is that some applications, such as
sensors or even VoIP generate packets in the form of non-
congestive traffic. Typically, they transmit periodically small
packets. For example, in [12] the authors claim that both the
packet size and data rate in many typical sensor networks are
very small. In [40] the authors assume a maximum sensor
packet size of 44 bytes while in [37] it is considered that
typical packet sizes in a sensor network are 32 bytes, 64 bytes,
96 bytes, and 128 bytes.

Sensor and voice data have strict requirements in delay and
the service received by the network cannot be judged on the
basis of achieved throughput. This observation calls for a new
metric for application fairness as well, which relies mainly
on the delay rather than on throughput. We introduce the
Application Satisfaction Index (ASI), which captures the delay
fair share per application on the basis of the delay impact
of each application on others. Thus, ASI reflects how fairly
applications receive service, delay-wise, under diverse delay
expectations and impact.

The proposed service paradigm impacts other performance
measures as well, such as energy expenditure, which is
very significant indeed for energy-limited sensors or VoIP
mobile devices. The gains in energy are achieved through
reduction of the communication and hence application time
and their importance varies depending on the device itself,
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the communication pattern, the network contention, etc. We
show that NCQ improves energy efficiency of sensor devices
and other non-congestive applications, without damaging the
dynamics of multiple-flow equilibrium and without causing
any statistically important Goodput losses to the congestive
flows.

In section II we discuss the related work. In sections III and
IV, we provide the pseudo-code of NCQ and present the basic
assumptions, fundamental concepts and projected outcome,
based on analytical methods. Furthermore, we explore the
impact of different application strategies regarding the size of
the transmitting packets, assuming that a LIBS-based approach
is deployed. In section V we discuss the experimental evalu-
ation plan and metrics, along with a justification for the plan.
Furthermore, we present the results, analysis and justification
and demonstrate the impact of service thresholds on system
performance. In section VI we discuss several open issues and
address reasonable concerns. In section VII we summarize our
conclusions.

II. RELATED WORK & DISCUSSION

Service differentiation in computer networks is a topic of re-
search, mainly focused on supporting application requirements
for delay and bandwidth. Differentiation is mainly an operation
that deals with reallocating bandwidth and controlling delay
for the benefit of strict-service-requiring applications and at
the cost of more flexible applications. Therefore, service
differentiation is based on the principle ’get better service - if
you need better service’.

Internet service differentiation has not been designed on
the basis of theoretical research; rather, it was driven by the
need for supporting real-time multimedia applications over
the Internet. Such applications do have strict bandwidth and
delay requirements; the flows that generate can describe their
specifications in broad or detailed terms, and the network
can plan for guaranteed service or otherwise for somewhat
better service. Two basic approaches have gained acceptance:
According to diffserv [3], the inherent properties of packet-
switched Internet are masked with a number of gentle mech-
anisms, naturally matching Internet’s structure, which - one
way or another - shape traffic at some functionally-enhanced
nodes. Alternatively, with intserv [4] the architecture itself can
be redesigned to allow for guarantees through signaling and
reservation.

Differentiation in both the aforementioned cases is
application-specific and naturally oriented either by some
explicit and strict flow characteristics or by some application
class. Even in the latter case, associating application types
with service classes requires a rather sophisticated implemen-
tation, ranging from packet marking, to shaping, scheduling
and dropping schemes. Perhaps network engineering would
have been different had the pressing demand of application
requirements been ignored. For example, a natural principle
to lead the design of network services (and consequently the
service differentiation policy) could have been the network
ability to function, the number of users serviced better without
damaging the rest, or the service offered on the basis of the

cost to other applications. It is not unnatural to service first
applications that require minimal time for service; in that case
the gain for such applications can be significant, while the cost
for the other applications may be small.

A similar scheduling concept has been studied in operat-
ing systems, where some schedulers select processes based
on their completion time, rather than the time they started
(shortest job first). Such a service alone may lead to starvation
in case the rate of small processes is sufficient to keep the pro-
cessor busy; processes demanding more time for completion
could never get their turn. However, due to the cost of context
switch, the lack of precision in estimating cost-per-process
and the limited concurrent presence of processes, this domain
had limited scheduling flexibility; our service differentiation
scheme guarantees better service for non-congestive data only
as far as the service to congestive applications is not degraded.
Thus, only a limited amount of non-congestive data should be
able to benefit from our differentiating scheme.

According to [2], the average delay for the system tends to
be reduced when customers with short service times are given
high priority. The authors give examples from everyday life
such as special checkout counters for customers with few items
or the waiting lines at copying machines, where people often
give priority to others who need to make just a few copies.

A lot has been done in the networking community aiming
at controlling traffic based on its characteristics. Controlling
is implemented either through scheduling or through dropping
policies mainly aiming at penalizing high - bandwidth -
demanding flows rather than favoring low - bandwidth - de-
manding flows. In [14] Floyd and Fall introduced mechanisms
based on the identification of high-bandwidth flows from the
drop-history of RED [15]. The RED-PD algorithm (RED
with Preferential Dropping) [26] uses per-flow preferential
dropping mechanisms. Two other approaches that use per-
flow preferential dropping with FIFO scheduling are Core-
Stateless Fair queuing (CSFQ) [38] and Flow Random Early
Detection (FRED) [23]. CSFQ marks packets with an estimate
of their current sending rate. The router uses this information
in conjunction with the flow’s fair share estimation in order
to decide whether a packet needs to be dropped. FRED does
maintain a state although only for the flows which have packets
in the queue. The flows with many buffered packets are having
an increased dropping probability.

The CHOKe mechanism [34] matches every incoming
packet against a random packet in the queue. If they belong
to the same flow, both packets are dropped. Otherwise, the
incoming packet is admitted with a certain probability. Au-
thors of [33] extended the CSFQ and CHOKe approaches.
The Stochastic Fair Blue (SFB) [13] uses multiple levels of
hashing in order to identify high-bandwidth flows. Anjum and
Tassiulas proposed in [1] a mechanism that drops packets
based on the buffer occupancy of the flow while ERUF [36]
uses source quench to have undeliverable packets dropped at
the edge routers. On the other hand, SRED [32] caches the
recent flows in order to determine the high-bandwidth flows.

In [18], the authors introduced the Alternative Best Effort
mechanism (ABE). ABE improves performance of delay-
sensitive traffic but uses only two possible traffic classifica-
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tions: delay- and throughput-sensitive. Delay-sensitive appli-
cations sacrifice throughput, and vice versa. Traffic Sensitive
QoS mechanism (TSQ) [7] allows applications to indicate
via marking their preferable delay / throughput sensitivity at
packet-level. However, their approach does not imply service
per-packet. That is, although applications may mark all or
selected packets only, the basis for marking is not the current
network state, which is unknown1 by the application, but rather
the specific properties of a packet. The dynamics of such
service interactions imply application-level QoS indeed. Appli-
cation level QoS, has therefore several undesirable properties:
• The markings are predetermined and cannot correspond

to various possible packet sizes. They inherently produce
a ’quantization’ error.

• Marks correspond to priorities and do not take into
account the impact of prioritization. For example, a
favorably-marked packet will be serviced first even if the
following packet will have zero impact to its service.

• Marks are application-level service requests; the system
can find an optimal operating point for multiplexed ap-
plications only by introducing system-oriented criteria.

We note that packet marking and NCQ are not competitive
technologies. The former can complement the latter through a
second level of prioritization. For example, different priorities
can be assigned via packet marking to the different non-
congestive or congestive applications.

III. OUR APPROACH: NON-CONGESTIVE QUEUING

We assume different classes of packets according to their
size. NCQ is incorporated into routers to differentiate services
according the impact of each traffic class on delay. For
example, a class with smaller packets and sending rate receives
better service than one with large packets or high sending
rate. A natural question therefore is what if small-packet rate
reaches levels, which delay significantly long-packet transmis-
sion. We complement the differentiating scheme with a service
threshold: The favored non-congestive traffic cannot exceed a
predetermined threshold, called ncqthresh, which represents
the upper limit of permitted prioritized service. The threshold
typically reflects a service percentage for prioritization. How-
ever, this percentage corresponds to the number of packets; not
the occupied buffer space. Indeed, since service prioritization
applies for small packets only, the queue size that corresponds
to the prioritized packets, percentage-wise, is much smaller.

On the other hand, a typical application could be inten-
tionally transformed into a small-packet, high-rate application.
Since the ncqthresh and the packet length confine the amount
of gain, the transformation should cause that much overhead
and extended communication time that naturally the penalty of
transformation will be greater than the gain. In section IV-B,
we calculate numerically the impact of such transformation.

Although the perspective of NCQ is more general, initially,
we only deal with two classes of packets: small packets (up to
130 bytes2) and long packets that typical Internet applications

1Even if it is measured, the precision and granularity of measurements are
dubious.

2For longer packets, we experimentally determined that the cost of priori-
tization for the congestive flows starts to be significant.

use for data transfers. The threshold of 130 bytes follows
the assumption that typical sensor applications usually range
from 32 to 128 bytes [37]. NCQ uses non-preemptive priority
queuing to implement priority service. That is, within the same
buffer, each packet is checked for its length, contrasted to
the current state of prioritized service rate and gets priority
whenever it satisfies two conditions: (i) length is below to
130 bytes and (ii) prioritized service rate is below ncqthresh.

The algorithm below shows the pseudo-code for NCQ:

for every received packet
begin

count received packets
(congestive and non-congestive)
if (packetLength<130)
and
(favored_packets /
received_packets < ncqthresh)

then
packet receives high priority
count favored packets
else
packet receives normal priority

end
end

In this stage of our work, we do not favor ACKs even though
they have a small size. We note that NCQ may occasionally
favor a part of a non-congestive data flow. However, a possible
slight increase3 of the re-ordered packets is counterbalanced
by the high number of packet drops that are avoided due to
the prioritization.

IV. ANALYSIS

A. Impact of NCQ

Initially, we attempt to approach numerically the impact of
NCQ priority on congestive traffic for any given proportion
of traffic classes. We assume two classes of traffic (the non-
congestive and congestive) that are formed by a large number
of flows. We assume that all packets arriving at the bottleneck
queue follow a Poisson distribution4. Class 1 has priority over
class 2. We use a non-preemptive head-of-line priority system
per class. Class 1 has smaller packets (so, average service-time
too) and lower packet-arrival rate (λ1 < λ2). We summarize
our notation in Table I.

We define the following:
Waiting Time: Waiting time represents the amount of time

a packet waits for service in the queue.
Service Time: Service time represents the amount of actual

service time required by a packet and is proportional to its size.
Time-in-System: Time-in-system equals to the Waiting

Time plus Service Time (in our case is the same as Queuing
Delay).

The packet-departure rate equals to the service distribution,
because we are using a single server.

3It is not significant in our experiments.
4It is widely adopted (such as [16], [30], [22], [10]) that the packet arrival

process for highly multiplexed environments tends to a Poisson Distribution.
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Symbol Description
λ1 Arrival rate of class 1
λ2 Arrival rate of class 2
TS1 Average service-time of class 1
TS2 Average service-time of class 2

λ = λ1 + λ2 Total arrival rate
u1 = λ1TS1 Utilization of class 1

u2 = λ1TS1 + λ2TS2 Cumulative utilization
TQ1 Average queuing delay for class 1
TQ2 Average queuing delay for class 2
TQ Average queuing delay

TABLE I
NOTATION TABLE

In the three different cases of prioritization below, we
calculate the average queuing delay for each class and for
the system:

1) Class 1 has full priority over class 2.
2) The two classes have the same priority (scheduling

without priority).
3) Class 1 has priority over class 2 but only when less than

the ncqthresh percentage of the total traffic is prioritized.
Case 1: Priority Scheduling: We calculate the average

waiting time for each of the two classes as:

TW1 =
λ1T

2
s1 + λ2T

2
s2

2(1− u1)
(1)

TW2 =
λ1T

2
s1 + λ2T

2
s2

2(1− u1)(1− u2)
(2)

Consequently, the total average waiting time equals to the
average of TW1, TW2 weighted by the arrival rate for each
class:

TW =
λ1

λ
TW1 +

λ2

λ
TW2 (3)

We calculate the queuing delay for each class and estimate
the total average time-in-system:

TQ1 = TW1 + TS1 (4)

TQ2 = TW2 + TS2 (5)

TQ =
λ1

λ
TQ1 +

λ2

λ
TQ2 (6)

Case 2: Non-Priority Scheduling: Without a priority queue,
the two classes (non-congestive and congestive) have the same
average waiting time. In such case, the network utilization of
the system is:

unp = u1 = u2 = λ1TS1 + λ2TS2 (7)

The service time:

TSnp =
λ1

λ
TS1 +

λ2

λ
TS2 (8)

The average waiting time:

TW1np = TW2np =
unpTSnp

2(1− unp)
(9)

The average time-in-system:

TQ1np = TW1np + TS1 (10)

TQ2np = TW2np + TS2 (11)

From (10) and (11), we get:

TQnp =
λ1

λ
TQ1np +

λ2

λ
TQ2np (12)

Using the equations (4), (5), (6), (10), (11), (12), we
calculated the average queuing delays for each class as well as
for the system, for two different percentages of non-congestive
traffic (Figures 1(a)-1(d)).

In Figures 1(a), 1(b) the 10% of arriving packets form the
non-congestive traffic (class 1) and the 90% the congestive
(class 2). Their service times are 0.5ms and 5ms, respectively.
For high utilizations (exceeding 0.6), there is a slight increase
in the queuing delay of the congestive traffic for a significant
improvement in the average delay of the non-congestive (Fig-
ure 1(a)). When we increase the rate of the non-congestive
packets to 20% and for high utilizations (exceeding 0.3), the
impact of the prioritization on the congestive traffic appears
significant (Figure 1(c)). For both percentages of the non-
congestive traffic (10 and 20%), the average queuing delay of
the system remains statistically the same (Figures 1(b), 1(d)).

Case 3: Priority Scheduling with ncqthresh: In the fol-
lowing analysis, we assume that only a portion of the non-
congestive traffic is favored. More precisely, Ncqthresh rep-
resents the percentage of the total traffic that can be favored
without any statistically important impact on the congestive
traffic and corresponds to the λ1

λ ∗ ncqthresh percentage of
the non-congestive traffic, which we call kthresh. The two
priority classes (1 and 2) consist of the kthresh percentage
of non-congestive traffic and the (1-kthresh) percentage of the
non-congestive traffic plus the congestive traffic, respectively.

We calculate the arrival rates and service times for each
class:

λ′1 = kthresh ∗ λ1 =
λ2

1

λ
∗ ncqthresh

λ′2 = (1−kthresh)∗λ1+λ2 = (1− λ1

λ
∗ncqthresh)∗λ1+λ2

λ′ = λ′1 + λ′2

T ′S1 = TS1

T ′S2 = (1− kthresh) ∗ λ1

λ′2
∗ TS1 +

λ2

λ′2
∗ TS2 =

T ′S2 = (1− λ1

λ
∗ ncqthresh) ∗ λ1

λ′2
∗ TS1 +

λ2

λ′2
∗ TS2

u′1 = λ′1T
′
S1

u′2 = λ′1T
′
S1 + λ′2T

′
S2
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(a) Average Queuing Delay of Congestive and
Non-congestive Traffic (10% of the packets are
Non-congestive)

(b) System’s Average Queuing Delay (10% of
the packets are Non-congestive)

(c) Average Queuing Delay of Congestive and
Non-congestive Traffic (20% of the packets are
Non-congestive)

(d) Average Queuing Delay of Congestive and
Non-congestive Traffic (20% of the packets are
Non-congestive)

Fig. 1. Numerical Results

The average waiting time for each of the two traffic classes
becomes:

T ′W1 =
λ′1T

′2
s1 + λ′2T

′2
s2

2(1− u′1)
(13)

T ′W2 =
λ′1T

′2
s1 + λ′2T

′2
s2

2(1− u′1)(1− u′2)
(14)

We calculate the waiting times of each class using the
weighted average of the waiting times T ′W1 and T ′W2:

TW1 =
kthresh ∗ λ1

λ1
T ′W1 +

(1− kthresh) ∗ λ1

λ1
T ′W2

= kthresh ∗ T ′W1 + (1− kthresh) ∗ T ′W2 =

λ1

λ
∗ ncqthresh ∗ T ′W1 + (1− λ1

λ
∗ ncqthresh) ∗ T ′W2 (15)

TW2 = T ′W2 (16)

TQ1 = TW1 + TS1 (17)

TQ2 = TW2 + TS2 (18)

For the system:

TQ =
λ1

λ
TQ1 +

λ2

λ
TQ2 (19)

For a low ncqthresh value (e.g., 0.01 - 0.05), the impact
of the prioritization on the average queuing delay of the
congestive traffic is almost-zero (Figures 2(b), 2(d)). Actually,
Ncqthresh bounds the prioritization of the non-congestive traf-
fic to a limit that is not harmful to the bandwidth exploitation
of the congestive applications. In utilizations below 23%, the
average queuing delay of the non-congestive traffic remains
statistically the same. As the network utilization builds up,
there are significant gains for the non-congestive applications
in terms of delay and increase more for higher values of
ncqthresh (Figures 2(a), 2(c)).

B. Design Strategies of Applications

Assuming that a LIBS-based mechanism is deployed, an
application may follow alternative strategies in order to have
performance gains. Here, we explore analytically such strate-
gies. We assign a specific task (i.e., to transfer 5MB) to each
of the traffic classes and calculate the service time of each
task.

The required number of transmitted packets for a specific
class n (NPn):

NPn =
Total Task Datan

Packet Sizen −Overhead Per Packet
(20)

The service time for a specific class n (STn):

STn = TQ1 ∗NPn (21)

The following analysis is based on the equations (20), (21).
We assume that each packet has 40 bytes overhead.
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(a) Average Queuing Delay of the Non-
congestive Traffic (10% of the packets are
Non-congestive)

(b) Average Queuing Delay of the Conges-
tive Traffic (10% of the packets are Non-
congestive)

(c) Average Queuing Delay of the Non-
congestive Traffic (20% of the packets are
Non-congestive)

(d) Average Queuing Delay of the Conges-
tive Traffic (20% of the packets are Non-
congestive)

Fig. 2. Numerical Results

1) FTP Application: We assume two different traffic classes
which consist of large packets, in order to approach numer-
ically a similar behavior to bulk-data transfer (FTP). Each
class has 1KB packets. The 10% of the arriving packets form
the first class and the 90% the second one. An application
designer may decide to use smaller packets in order to have
performance gains due to the LIBS-based mechanism. Is this
effective? We show that such applications should, in general,
avoid splitting their packets into smaller ones.

Fig. 3. Numerical Results of FTP Application

In Figure 3, we depict the total service time required for
the first traffic class to transfer 5 MB, in three distinct cases:

1) The FTP application uses 1KB packets.
2) The FTP application uses 120-byte packets, the NCQ

mechanism has been deployed but there is no limitation
like ncqthresh.

3) The FTP application uses small packets (120-byte) and
the NCQ mechanism has been deployed with an nc-
qthresh with value 0.05.

According to Figure 3, there is a significant performance
decrease in terms of total service time for the NCQ mechanism
without an ncqthresh limitation (e.g., 240% decrease for
utilization 0.60). In the case of an ncqthresh with the value
of 0.05, the performance decrease reaches 371% (for 0.60
utilization). Although the small packets are favored from the
NCQ mechanism, the increased overhead due to the higher
number of required packets overcomes these gains.

2) Congestive Multimedia Application: In this scenario, we
used two traffic classes: 500-byte and 1KB packets, respec-
tively. We assume that the first class follows the traffic pattern
of a Congestive Multimedia Application (uses packets with
average-size). The 10% of the arriving packets form the first
class and the 90% the second one. Although in this case we
have less extra overhead, the performance gains of the NCQ
mechanism are still inadequate to overcome this drawback
(Figure 4). For utilization 0.60, the performance decrease in
case of NCQ without ncqthresh is 143% and in case of NCQ
with ncqthresh 0.05 is 253%.

3) Non-congestive Multimedia Application: In this sce-
nario, we approach numerically a non-congestive multimedia
application. The first class represents the multimedia applica-
tion and forms the 10% of the traffic and the second class
the FTP application. The multimedia application has a packet
size of 140 bytes. In this scenario, we investigate whether it is
worth for this application to change its packet size from 140
to 120 bytes.
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Fig. 4. Numerical Results of Congestive Multimedia Application

For both versions of NCQ we have a significant decrease in
the average queuing delay (see Figure 5) but is inadequate
for a significant improvement in terms of task completion
time due to the increased overhead (Figure 6). As we can
see from Figure 6, for the NCQ without ncqthresh we have
an improvement in terms of total service time for higher
utilizations than 0.48 (e.g., 21% for utilization 0.60). In the
case of NCQ with ncqthresh 0.05 we have a performance
decrease for all utilizations (e.g., 19% for utilization 0.60).
Consequently, in special cases such applications may adjust
their packets in order to have performance gains.

Fig. 5. Queuing Delay for Non-Congestive Multimedia Application

Fig. 6. Task Completion Time for Non-Congestive Multimedia Application

To summarize, the policy to adjust the size of the trans-
mitted packets to the NCQ threshold is very often inefficient.
However, there are cases that an application can be favored
from the NCQ mechanism, if it adopts smaller packets. For
example, a non-congestive application may slightly reduce its
packet size in order to have performance gains from a LIBS-
based packet scheduling algorithm.

Furthermore, in case a malicious application tries to monop-
olize communication by transmitting small packets at high data
rates, the extra introduced overhead is not counterbalanced
by the gains. A Denial of Service attack (DoS) that uses
aggressive flows consisting of small packets, in the worst case,
would disable the extra prioritization of NCQ. However, if the
attack uses large packets, many non-congestive applications
would not suffer from the exhaustion of the resources.

V. EVALUATION

A. Evaluation Methodology

We have implemented our evaluation plan on the ns-2
network simulator [31]. We attempt to address five specific
matters:

1) To show by simulation that numerical results do not lack
any important parameter (Scenario 1: Impact of NCQ on
FTP applications).

2) To show the impact of NCQ on sensor-based applica-
tions (Scenario 2: Internetworking with Sensors).

3) To evaluate the applicability of NCQ mechanism for
VoIP traffic (Scenario 3: Impact of NCQ on VoIP traffic).

4) To explore whether NCQ can be incrementally deployed
(Scenario 4: Incremental deployment of NCQ).

We discuss each scenario along with the corresponding
results.

B. Evaluation Results

1) Scenario 1: Impact of NCQ on FTP applications: In
this scenario, we use a simple dumbbell topology as shown in
Figure 7.

Fig. 7. Simulation topology

We measure:

Goodput =
Original Data

T ime

where Original Data is the number of bytes delivered
to the high-level protocol at the receiver (i.e., excluding
retransmitted packets and overhead) and Time is the amount
of time required for the corresponding data delivery. We used
the Average Goodput in order to measure the efficiency per
flow. The Average Goodput for n flows is defined as:

AverageGoodput =
∑n
i=1 (Goodputi)

n

where Goodputi is the Goodput of the ith flow and n the
flows number.

Additionally, we measure application efficiency and user
satisfaction based on the worst and average task completion
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time as well as on the number of completed tasks. Every
congestive FTP flow transmits 1MB data and every non-
congestive FTP flow 10KB. We assume that a task is com-
pleted with the successful transmission of the carried data of
the corresponding flow.

Furthermore, we experiment with different traffic thresholds
and traffic class proportions, to demonstrate the overall system
behavior when the NCQ parameters change. We carried out
the same experiment with different values of ncqthresh (i.e.,
0.01, 0.03 and 0.05) in order to evaluate the impact of traffic
threshold (ncqthresh). As we can see from the following
results, in average, the value of 0.05 is a good choice.

At this point, we adjust the number of non-congestive flows
to the 10% of the total flows. As we can see in Figure 8(a),
the non-congestive flows achieve significant performance gains
(e.g., 10.43 times - in the case of 80 flows and ncqthresh 5%)
in terms of Goodput. The impact of the prioritization on the
congestive flows is not only insignificant but we also notice
occasionally a slight performance improvement in terms of
Goodput for the congestive flows (e.g., 7.6% improvement - in
the case of 100 flows and ncqthresh 5%) and the overall system
(Figures 8(b), 8(c)). This is not unreasonable: the impact of
timeouts caused by short packets is more significant for non-
congestive flows compared with the impact of long packets;
i.e., regardless of the packet length, timeout is the same
and extending total time for a small retransmission degrades
system throughput. It is very interesting to note that the NCQ
has a positive impact also in the system’s average / worst task
completion time (Figures 9(a), 9(b)). According to Figure 9(b),
all tasks are completed up to 24.8 seconds sooner (i.e., in the
case of 90 flows and ncqthresh 3%).

Next, we varied the traffic proportion of congestive and
non-congestive flows. As the rate of the non-congestive flows
increases (i.e., the number of the non-congestive packets
increases), the benefit for non-congestive packets is gradually
decreasing. This behavior is not symptomatic: the ncqthresh
value confines the priority service to guarantee small impact
on congestive flows. For example, we can see in Figure 10(a)
(rate of non-congestive packets 20%) that the NCQ algorithm
favors now a smaller portion of the non-congestive packets.
However, the impact on the average task completion time of
the non-congestive flows remains significant (Figure 10(b)).

Additionally, In figure 11 we depict the number of com-
pleted tasks at different time instances for both congestive and
non-congestive flows. In this example, we consider the case
of the 50 flows. We show that, on average, more applications
finish earlier. For example, at the 30.5th second 7 flows are
finished in the case of DropTail and 10 flows in the case of
the NCQ-1%.

We adjusted the task of the FTP flows to be 100KB,
assuming short-lived flows (e.g., like a typical web-page). As
we can see from the figures 12(a), 12(b) the non-congestive
flows have a significant improvement in terms of goodput
without noticable impact on the goodput of the short-lived
FTP flows.

2) Scenario 2: Internetworking with Sensors: For a more
realistic scenario of internetworked sensor applications, we
integrated NRL’s Sensor Network Extension [11] into ns-

(a) Average Goodput of Non-Congestive Flows

(b) Average Goodput of Congestive Flows

(c) Average System Goodput

Fig. 8. Impact of NCQ on Goodput

2. Our scenario consists of a sensor network (a grid of 25
wireless sensors) and a simple dumbbell wired topology (see
Figure 13). The sensor application transfers periodically data
to a wired node (the data collector). The sensor application
notifies the data-collector about the behavior of a moving
phenomenon. The simulated phenomenon has a pulse period
of 0.01 seconds. The sensor-generated data and the congestive
FTP flows coexist in the same link and cross the same NCQ-
enabled gateway. The number of FTP flows ranges from 10
to 100. We used the TwoRayGround radio-propagation model
and the AODV [35] routing protocol. We measured Goodput
on both congestive (FTP) and sensor-related non-congestive
traffic.
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(a) Average Task Completion Time in the Sys-
tem

(b) Worst Task Completion Time in the System

Fig. 9. Impact of NCQ on FTP applications

We evaluate the energy-efficiency of NCQ using the Energy
Potential (EP) [24] index:

EP = 1− (a
Throughput−Goodput

Throughputmax

+b
Throughputmax − Throughput

Throughputmax
)

The EP index takes into account the difference of achieved
Throughput from maximum Throughput (Throughputmax)
for the given channel conditions along with the difference of
Goodput from Throughput, attempting to locate the Goodput
as a point within a line that starts from 0 and ends at
Throughputmax.

In order to measure fairness in the context of LIBS, we
introduce Application Satisfaction Index (ASI). ASI is defined
as:

ASI = 1−
∣∣∑n

i=1Delayi −
Datai

TotalDataDelaymax
∣∣

nDelaymax

Where, n is either the number of active nodes or the number
of different traffic classes; Datai the total transmitted data of
the ith node to the receiver application; TotalData the total
transmitted data of all nodes; Delayi the average queuing
delay of the ith node; and Delaymax the maximum queuing
delay of the system. ASI ranges from 0 to 1.

(a) Average Goodput of Non-Congestive Flows
(20% of the packets are non-congestive packets)

(b) Average Time of Non-Congestive Flows
(20% of the packets are non-congestive packets)

Fig. 10. Impact of NCQ on Non-congestive applications

Fig. 11. Tasks Completed (50 flows)

Unlike other fairness indices (such as [6], [29], [39]), ASI
captures the deviation of the actual delay and the expected de-
lay per flow. Note, however, that expected delay is determined
by the factor Datai

TotalData . In this context, ASI represents fairness
of the LIBS architecture, since the expected delay per packet
(and in turn, per flow) grows in proportion to the volume of
their transmitted packets.

In Figure 14(a) we depict the Goodput performance of the
congestive flows and in Figures 14(b), 14(c), 15(a), 15(b) we
demonstrate the Goodput, the Energy Potential and the Appli-
cation Satisfaction Index for both overall system and Sensor
Applications. We argue that the congestive FTP flows are not
suffering from any important performance loss (see Figure
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(a) Average Goodput of Non-Congestive Flows

(b) Average Goodput of Short FTP Flows

Fig. 12. Impact of NCQ on Non-congestive Applications & Short FTP Flows

Fig. 13. Simulation topology

14(a)), while the performance gains for the non-congestive
flows are significant (up to 92%) in terms of Goodput as
well as in terms of energy efficiency (see Figure 14(c)).
Additionally, the system appears fair according to ASI (Figures
15(a), 15(b)). We note that, due to Goodput increase of sensor
applications, fairness performance may also be captured by
the traditional index of fairness.

As we demonstrate in Figures 14(a), 14(b), 14(c), 15(a),
15(b), the value of ncqthresh does not impact the results when
the system has more than 20 flows since, from that point
onwards, the percentage of non-congestive traffic is less than
1%. So, every packet generated by the sensor applications is
prioritized.

3) Scenario 3: Impact of NCQ on VoIP traffic: We simulate
VoIP traffic based on the following assumptions: During a
conversation, speakers alternate between activity and idle pe-

(a) Goodput of FTP Flows

(b) Goodput of Sensor Applications

(c) Energy Potential (Non-Congestive Flows)

Fig. 14. Impact of NCQ on Goodput/Energy Efficiency for Sensor Internet-
working

riods. Taking into consideration the ON and OFF periods [5],
as well as the heavy-tailed characteristics and self-similarity
of VoIP traffic [9], we use the Pareto distribution for modeling
the call holding times. We configure Pareto with a mean rate
to correspond to transmission rate of 64kbps and the shape
parameter is set to 1.5. In accordance with [5], we distribute
the ON and OFF periods with means of 1.0s and 1.35s,
respectively. We simulate VoIP streams of 64kbps (following
the widely-used ITU-T G.711 [21] coding standard) and we
set packet sizes at 120 bytes (i.e., each packet carries 10ms
G.711-encoded speech and a 40-byte packet header).

In the following results, we characterize the quality of voice
communication using the R-Factor, which is included in the
E-Model [19], [20] (an ITU-proposed analytic model of voice
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(a) Application Satisfaction Index for the Sys-
tem

(b) Application Satisfaction Index of Sensor
Applications

Fig. 15. Impact of NCQ on Fairness for Sensor Internetworking

quality). R-Factor captures voice quality and ranges from 100
to 0, representing best and worst quality, respectively. R-Factor
is also associated to the familiar estimated Mean Opinion
Score (MOS). MOS equals to the arithmetic average of opin-
ions where ”excellent” quality is given a score of 5, ”good” a
4, ”fair” a 3, ”poor” a 2 and ”bad” a 1. R-Factor incorporates
several different parameters, such as echo, background noise,
signal loss, codec impairments and others. In [8], the authors
simplified E-Model to transport-level measurable quantities
and resulted in a more suitable R-Factor formula. Based on
the above, we define R-Factor as:

R = α−β1d−β2(d−β3)H(d−β3)−γ1−γ2ln(1+γ3e) (22)

where α = 94.2, β1 = 0.024ms−1, β2 = 0.11ms−1, β3 =
177.3ms, d expresses the mouth-to-ear delay and e the packet
loss rate. For the G.711 codec, γ1 = 0, γ2 = 30, γ3 = 15.

The R-Factor is related to the MOS through the following
set of expressions:

For R < 0: MOS = 1
For R > 100: MOS = 4.5
For 0 < R < 100: MOS = 1+0.035R+7x10−6(100−R)
For reference, we give the relation of R-Factor to MOS

according to Table II.
In our scenario, we introduce extra delay of 10ms because

of the G.711 voice encoding (according to [8]). We use the
simple dumbbell topology of Figure 7 and adjust the ncqthresh

R-Factor Quality of voice rating MOS
90 < R < 100 Best 4.34 - 4.5
80 < R < 90 High 4.03 - 4.34
70 < R < 80 Medium 3.60 - 4.03
60 < R < 70 Low 3.10 - 3.60
50 < R < 60 Poor 2.58 - 3.10

TABLE II
R-FACTOR, QUALITY RATINGS AND MOS

to 0.01. We range the number of congestive flows from 10 to
100.

According to Figure 16(a), the VoIP traffic has significant
performance gains in terms of Goodput. In addition, the
NCQ mechanism is not degrading the performance of the
congestive FTP flows significantly (Figure 16(b)) - especially
when ncqthresh value is 0.01. Furthermore, fairness among
VoIP applications is improved (Figure 16(c)).

According to Figures 17(a), 17(b), there is a significant
improvement in voice quality, while more calls are rated better
(Figures 17(a), 17(b)). For example, in case of 50 calls, all are
rated ”poor”; NCQ improves their rating to medium (Figure
17(b)). Practically, NCQ satisfies more up-to 50 users. For
more than 80 calls, several calls are rated ”poor”, exhausting
resources unduly.

4) Scenario 4: Incremental deployment of NCQ: Here, we
evaluate NCQ using a complex topology that incorporates
multiple bottlenecks, cross and reverse traffic (Figure 18). In
this scenario, we explore whether NCQ can be incrementally
deployed. This analysis is important because the incremental
deployment of a new network service or protocol is typically
a hard problem, especially when it has to be deployed in the
routers [17].

More specifically, we range the number of routers that in-
corporate the NCQ scheme from 0 to 4, assuming incremental
deployment. The ncqthresh value is set to 0.03 and we have a
random number of applications for both congestive and non-
congestive traffic; uniformly random distributed in [1, 50] and
[1, 10], respectively. The bw value is 10Mbps. We measure
Goodput, Application Satisfaction Index and R-Factor. The
queue size is 100 packets and the duration of the experiment
is 60 sec.

We note that this experiment is non-deterministic. Conse-
quently, we performed 50 runs in order to have statistically
accurate results. The standard deviation of our measurements
is often high due to the nature of our experiment. For example,
in the case of randomized contention, one flow receives almost
always less throughput than 50 flows. In such results, the
standard deviation for the measurements does not increase
by the number of experimental runs. Each time the standard
deviation of the differences between the average value and
the samples is very small (e.g., 1-3%), we depict the average
values and the confidence intervals (i.e., the above standard de-
viation). Otherwise, we analyze and interpret our results using
frequency tables. More precisely, we group measurements into
suitable intervals that allow us to find the most common values.
Each figure that uses a frequency table, depicts the percentage
of performance improvement/decrease of each measure, using
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(a) Goodput of Non-Congestive VOIP Appli-
cation

(b) Goodput of Congestive Application (FTP)

(c) Application Satisfaction Index of VoIP
Application

Fig. 16. Impact of NCQ on Goodput and Fairness

as a reference point the experimental results of a scenario using
DropTail.

In figure 19(a), we have only a minor impact on the
Goodput of the congestive flows for any number of NCQ-
enabled routers. However, the Goodput of the non-congestive
applications is significantly improved (Figure 19(b)). When
NCQ is fully deployed (4 NCQ-enabled routers - Figure
19(b)), NCQ achieves more than 100% improvement for the
38% of the runs.

The significant improvement in terms of Goodput for the
VoIP applications is reflected in the voice quality of each call.
For example, in the case of 75% deployment (3 NCQ-enabled
routers), in the majority of the runs (i.e., 88%), the VoIP flows

(a) R-Factor of VoIP Application

(b) MOS of VoIP Application

Fig. 17. Impact of NCQ on Voice Quality

Fig. 18. Complex Network Topology

achieve improvement that reaches 50%. For the 4% of the runs
the improvement is more than 50%. The improvement in terms
of Fairness is also significant, in the 82% of the runs we have
an improvement on the Application Satisfaction Index (Figure
20(b)).

More results on the evaluation of NCQ and other similar
LIBS-based mechanisms can be found in [25], including com-
plex topologies with different congestive and non-congestive
application types.

VI. OPEN ISSUES

Although we demonstrated NCQ’s high potential, we do
not presently address all concerns necessary to justify its
need for deployment. We are working on an extension of
the algorithm to assign probabilistically priority service to
small packets. The probability per packet decreases as the rate
of non-congestive packet exceeds the ncqthresh. Probabilistic



13

(a) Goodput of Congestive Applications

(b) Goodput Improvement of VoIP Applica-
tions (4 NCQ-enabled Routers)

Fig. 19. Performance Results in Terms of Goodput

priority will guarantee fairness among non-congestive flows
in a similar fashion to RED’s probabilistic dropping [15].
An initial approach is proposed in [25]. Alternatively, the
ncqthresh may be dynamically adjusted, based on the projected
outcome.

In another front of research, ACKs5 and control packets
may benefit from the priority treatment. Control packets pri-
oritization are expected to boost the performance of short-lived
flows (mice) increasing fairness compared to long-lived flows
(elephants). ACKs are expected to increase transmission rate;
how far this can happen (considering also the delayed-ACK
scheme which is widely deployed) and how far it can impact
congestion control is under further investigation.

Initially, we assume that non-congestive traffic is formed
by small packets at low data rates. Although this approach
has significant advantages (requires almost-zero memory state,
requires minor implementation effort etc) and is suitable to
demonstrate the potential of our approach, it does not cover
all the cases of non-congestive traffic (e.g., the non-congestive
traffic that is formed by a few long packets). A more sophis-
ticated non-congestive traffic identification algorithm is the
subject of a future work

VII. CONCLUSIONS

We have shown that NCQ is a simple but powerful tool for
service differentiation, particularly beneficial for applications

5In this paper, NCQ does not favor ACKs.

(a) R-Factor Improvement (3 NCQ-enabled
Routers)

(b) Improvement in Terms of Application
Satisfaction Index (3 NCQ-enabled Routers)

Fig. 20. Voice Quality & Fairness

that utilize small rates and short packets, such as typical sensor
applications and VoIP. We discovered that a limited priori-
tization has a dual impact: it benefits non-congestive flows
significantly and reduces contention among the congestive
flows, resulting in satisfying more users; a leading design
issue in today’s Internet, which creates hopes for deployment
success.
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