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ABSTRACT Fifth generation (5G) new radio introduced flexible numerology to accommodate heteroge-
neous services. However, optimizing the scheduling of heterogeneous services with differing delay and
throughput requirements over 5G new radio is a challenging task. In this paper, we investigate near optimal,
low complexity scheduling of radio resources for ultra-reliable low-latency communications (URLLC) when
coexisting with enhanced mobile broadband (eMBB) services. We demonstrate that maximizing the sum
throughput of eMBB services while servicing URLLC users over a fixed length time-frequency grid, is,
in the long-term, equivalent to minimizing the number of URLLC placements in the time-frequency grid;
this is the consequence of reducing the number of infeasible placements for eMBB, to which we refer to
as ‘‘conflicts.’’ To meet this new objective, we evaluate the performance of new, conflict-aware heuristics,
consisting of a family of ‘‘greedy’’ and a lightweight heuristic inspired by bin packing optimization, all of
near optimal performance. Moreover, having shed light on the impact of conflict in layer-2 scheduling,
we investigate non-orthogonal multiple access (NOMA) as a potential approach for conflict resolution
leveraging superposition coding. The superior performance of NOMA with respect to OMA, thanks to
resolving conflicts, is showcased by extensive numerical results.

INDEX TERMS Time-frequency resource allocation, URLLC traffic, wireless communication, scheduling.

I. INTRODUCTION
The International telecommunication union (ITU) has
defined new requirements and capabilities on 5G mobile
communication systems to support a wide variety of new
devices and services with diverse quality of service (QoS)
requirements and characteristics [3]. The 3rd generation part-
nership project (3GPP) standardized 5G in the form of a novel
radio interface technology, referred to as new radio (NR) [4].
5G NR introduced flexible numerology and frame structure
to accommodate heterogeneous service requirements, by sup-
porting various values of subcarrier spacing and symbol /
frame duration. Optimizing resource allocation in the NR
numerology setting to deliver heterogeneous QoS require-
ments remains a challenging task [5]–[9].

In 5G and beyond, ultra-reliable low-latency communica-
tion (URLLC) services with extreme delay constraints will
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coexist with enhanced mobile broadband (eMBB) [10], that
require very high bit rates (Gigabits per second) and have
moderate latency (a few milliseconds) requirements [11].
Moreover, at present, URLLC services are expected to have
lower traffic volumes than eMBB services [12], but this
will not hold in the future for applications such as virtual
reality and haptics. In this framework, the design of radio
resource allocation strategies for URLLC traffic, when coex-
isting with eMBB, has been a focal point of recent research
efforts [13]–[16].

In this direction, two approaches have been adopted by
the 3GPP. The first is based on a ‘‘puncturing’’ framework:
according to this, eMBB traffic is scheduled initially at
the beginning of the slots; upon arrival of URLLC traffic,
the latter is being prioritized and dynamically overlapped
at mini-slots of ongoing eMBB transmissions (which are
punctured, i.e., dropped). In the second approach, known as
preemptive scheduling, resources are preemptively reserved
for URLLC, before the demands are placed [1], [17], [18].
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Based on puncturing scheduling, the studies in
[8], [19]–[22] considered resource allocation strategies for
the coexistence of URLLC and eMBB. The authors in [8]
consider three types of models - threshold, linear and convex
- to describe the eMBB data rate loss associated with the
incoming URLLC traffic. Furthermore the authors in [20]
propose a punctured scheduling approach for transmission of
low latency communication traffic multiplexed on a shared
channel with eMBB. Another approach is proposed in [21],
where a risk-sensitive model was introduced in order to
ensure URLLC allocation but also to minimize losses for
eMBB users. However, these strategies can result in sig-
nificant losses in terms of data rates for eMBB services
and may also impact eMBB transmission reliability [23].
Targeting the above problem, the authors of [22] proposed
a scheduling approach to maximize the minimum expected
achieved rates and fairness, accounting for the expected
values of the traffic. Alternatively, the authors in [1] studied
the resource allocation of eMBB and URLLC services by
preemptively reserving resources for URLLC. Such solutions
ensure advantageous conditions for URLLC packets when
they are generated, at the cost of wasting resources in absence
of URLLC transmissions [9].

A flexible numerology and frame structure was explic-
itly considered in [1] by defining a time-frequency resource
grid, containing several types of resource blocks of different
shapes, expanding over different time spans and frequency
ranges. Exploiting this flexibility to optimize the resource
allocation to different services while ensuring their QoS
requirements, was shown to be an NP-hard problem. The
resource allocation optimization over flexible numerology
and frame structure while avoiding the assignment of over-
lapping blocks that will cause collision (i.e., puncturing), still
remains a challenging task.

In this paper, following the works in [1] and [8], we con-
sider a 2-dimensional grid of resource blocks with differ-
ent sizes in the time and frequency domains. The problem
of identifying the resource allocation that maximizes the
eMBB sum-rate is studied under the constraint of serving
all URLLC throughput demands under different latency con-
straints ranging from 0.5 to 2 milliseconds (msec). In our
previous work [24] we introduced a bin packing approach
that minimizes the placements of the resource blocks for
the URLLC services in order to minimize the infeasible
placements for the eMBB services. In this work, addition-
ally, we extend the above framework by proposing a second
approach based on low complexity algorithms, that manage
the infeasible placements. We also extend our previous bin
packing approach incorporating a preprocessing step that
counts the overall feasibility of the grid. We note that in our
formulation, unlike in [22] and other published work, we do
not account for the expected traffic but rather for the actual
traffic in an appropriate time-frequency grid. This approach
has also been followed in [1] among others.

Furthermore, we consider and formulate an alterna-
tive non-orthogonal multiple access (NOMA) scheduling

proposal. In particular, we introduce a 2-user NOMA scheme
based on pairing eMBB and URRL services at the minislot
level and show that the proposed approach achieves higher
eMBB sum rates when compared to the optimal orthogonal
scheduling as it avoids puncturing and preemptive alloca-
tion.1 Finally, we evaluate the performance of the proposed
algorithms under several numerologies (fixed, flexible and
multiple). More precisely, the main contributions of this work
are outlined below:

1) We first re-formulate the problem of eMBB throughput
maximization, introducing the URLLC conflicts mini-
mization in the objective function. The novel concept
of ‘‘conflict’’ captures the penalties occurring due to
the fact that orthogonal multiple access (OMA) does
not allow overlapping of resources; as a result, OMA
scheduling incurs a large number of infeasible resource
allocation combinations. To the best of our knowledge,
our earlier conference paper [24] is the first in the
literature introducing conflict-aware solutions for the
problem at hand.

2) Next, we propose three conflict-aware, multi numerol-
ogy radio resource allocation heuristics to maximize
scheduling efficiency for URLLC, when coexisting
with eMBB services. Three different functions of the
i) average, ii) the instantaneous (placement specific),
or iii) the aggregate conflict are used to normalize the
throughput utility function and incorporate penalties,
when increasing conflicts. We argue and showcase
through extensive simulation results that employing the
proposed utilities improves the performance of pro-
posed algorithms in the literature, as this in [1].

3) Subsequently, we depart on a completely different
approach with a high accuracy and low computational
complexity. We treat the scheduling problem as a spe-
cific instance of bin packing optimization, solved by
minimizing the placements of URLLC services in the
time-frequency resource grid; to this end, we propose
to group the resource blocks in different categories
with respect to URLLC demands. Within each cate-
gory, we solve a knapsack maximization of the sum
eMBB throughput. Our proposal builds on previous
results in [24], [25] and is inspired by the refined-first-
fit family of heuristics to solve bin packing problems.
Simulation results show that the novel heuristic algo-
rithm, of complexity N log(N ), provides a lightweight
and near optimal solution to the resource allocation
scheduling of URLLC, when coexisting with eMBB.

4) Furthermore, having clarified the importance of min-
imizing conflicts between different services, the uti-
lization of NOMA schemes [26], [27] provide as a
competitive candidate for interference management.
NOMA allows the superposition of services, even at the
mini-slot level by employing superposition coding at

1In this work we focus on 2-user NOMA as opposed to multi-user NOMA
as the latter has been shown to be vulnerable to error cascading.
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the transmitter and successive interference cancellation
at the receivers [28], [29]. Although most works on
NOMA utilize the aspect of increased spectral effi-
ciency to showcase superiority with respect to OMA,
we further provide strong motivation for adopting
NOMA as a conflict mitigation approach in schedul-
ing problems. An extensive set of numerical results,
investigating 2-user and multiple-user NOMA’s perfor-
mance, for both fixed and flexible numerology, shows
the significant gains in terms of sum eMBB through-
put, when adopting NOMA in a flexible numerology
setting.

The rest of this paper is organized as follows: Section II
presents the resource allocation optimization problem along
with an equivalent formulation as a conflict minimization
problem. Conflict-aware heuristic algorithms are described
in Section III, while the problem re-formulation when using
NOMA is presented in Section IV. Section V presents numer-
ical results showing the near-optimal performance of the
proposed heuristics as well as the superiority of NOMA for
URRLC and eMBB coexistence, both in the case of flexible
as well as fixed numerologies. Finally, conclusions are given
in Section VI.

II. PROBLEM FORMULATION
We first provide a review of basic concepts in 5G NR flexible
numerology and detail the considered scheduling problem.

A. BACKGROUND ON 5G NR FLEXIBLE NUMEROLOGY
5G NR Release-15 [4] defines a flexible numerology with
subcarrier spacing (SCS) of 15, 30, and 60 kHz below 6 GHz,
and 60 and 120 kHz above 6 GHz, compared to long-term
evolution (LTE) which uses a fixed numerology with SCS
of 15 kHz below 6 GHz. 5G NR also defines a 10 msec
frame, with each frame divided into 10 subframes of 1 msec,
which are further divided into one or moremini-slots. Amini-
slot comprises 14 OFDM symbols for a configuration using
normal cyclic prefix, or 12 OFDM symbols for extended
cyclic prefix.

In 5G NR, the mini-slot size is defined according to
the symbol duration, which is inverse to the SCS, to ensure
the orthogonality of the subcarriers. By using higher SCS, the
symbol duration decreases and hence also the mini-slot size,
which is beneficial for lower latency [10]. URLLC traffic
requires extremely low delays, often lower than 1 ms [30].
The URLLC latency requirements can only be satisfied if the
transmission duration and round-trip-time (RTT) are shorter
than the corresponding latency constraint.

B. SCHEDULING PROBLEM FORMULATION
We focus, in this work, on downlink scheduling, similarly to
themajority of the existing relatedworks in the literature, e.g.,
[13]–[23]. The system model and the scheduling framework
follow the structure of [1], [8]. Time is divided into slots,
with 2 msec slot duration. Each slot serves both throughput

hungry (eMMB) and ultra-low latency users (URLLC), which
have to be serviced until the next slot. In addition, the latter
have also to satisfy specific latency requirements. Moreover,
we assume that URLLC arrivals follow a Poisson distribution
with parameter λ, while two cases are considered for the
eMBB services: i) full buffer model, and, ii) |K(c)

| = |K| −
|K(`)
|. The objective is to find the resource allocation in each

slot that maximizes the sum throughput of the eMBB while
satisfying the throughput demands and latency constraints of
the latter. Finally, we utilized [2] as a tool to implement the
time-frequency grid.

The terminology employed in the rest of the paper is tab-
ulated in Table 1: K denotes the set of all services, K(c) the
set of eMBB users, K(`) the set of URLLC users, B is the set
of all possible resource blocks according to the numerology
employed and I denotes the set of all mini-slots. Moreover,
the parameter qk denotes the throughput demand for the

TABLE 1. Notation table.
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k ∈ K(`) services that has to be satisfied with a strict latency
tolerance requirement of τk . Additionally, we introduce the
binary parameter αb,i, b ∈ B, i ∈ I which indicates whether a
block b ∈ B includes basic unit i ∈ I, in which case αb,i = 1,
otherwise αb,i = 0.

In Table 2 we describe the most widely utilized resource
block specifications for 5G NR, depicted in Fig. 1(a) and (b);
resource blocks of shape 1 shown in red, resource blocks
of shape 2 shown in yellow and resource blocks of shapes
3−4 shown in blue (employing flexible numerology,K(c) and
K(`) can utilize any of the given shapes). To demonstrate the
concept of conflict, in Fig. 1(a), we illustrate in gray shade the
invalid placements for shapes 3-4 when a specific placement
of shape 1 has taken place, while in Fig. 1(b) we show the
invalid placements for blocks of shape 2, when an additional
placement of shape 3-4 has been decided.

TABLE 2. Feasible resource blocks options in flexible numerology,
according to [4].

Now, we can define the achievable throughput of each
block b ∈ B assigned to service k ∈ K, denoted by rb,k , which
depends on the signal to interference and noise ratio (SINR)
and the configuration of the block (including the parameters
in Table 2). More precisely, we first define the achievable
Shannon rate of each minislot i ∈ I assigned to service
k ∈ K, as follows,

Ck,i =
N∑
n=1

log2(1+ SINRk,i,n), i ∈ I, k ∈ K, (1)

where N is the total number of subcarriers. Accounting for
the impact of the cyclic prefix, the rate per minislot is given
by,

Ek,i = ηjCk,i, j = {1, 2, 3, 4}, (2)

where ηj =
Tj

Tj+Tcp
, Tj is the symbol duration of the j ∈

{1, 2, 3, 4} block shape and Tcp is the cyclic prefix (CP)
length. Then, the achievable throughput of each resource
block b ∈ B with respect to service k ∈ K can be expressed
as follows,

rb,k =
I∑
i=1

(ab,iEk,i)TTIjSCSj × 1{τk−tb>0},

j = {1, 2, 3, 4}, (3)

where TTIj and SCSj are the transmission time interval dura-
tion and the subcarrier spacing of the j ∈ {1, 2, 3, 4} block

FIGURE 1. Resource allocation in a (time) slot, considering the flexible
numerology context, with three types of resource blocks and the
corresponding conflicts (grey).

shape, respectively. Additionally, 1{x} is the indicator function
for the logical proposition x. Note that the delay constraint
is incorporated in the problem by considering that the end
time tb of the block b ∈ B has to comply with the delay
tolerance τk of the service k ∈ K, otherwise the specific block
is infeasible for the specific service. As such, the latency
tolerance constraints of the URLLC services need not to
appear explicitely in the problem formulation presented in the
following. In the rest of the paper, by xb,k we denote a binary
variable that takes the value 1 if the resource block b ∈ B is
assigned to service k , otherwise xb,k = 0.
A common objective in eMBB and URLLC coexistence is

articulated inmaximizing the sum throughput ofK(c) services
under the constraint of satisfying the latency and throughput
demands of K(`), without any overlapping between the allo-
cated resource blocks. In other words, our goal is to find the
resource allocation that satisfies the URLLC users’ demands,
with minimal losses for eMBB users in terms of throughput,
and, subsequently schedule all the remaining resource blocks
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to the eMBB services. The general problem formulation is
given as follows:

[P0] max
xb,k∈{0,1}

∑
b∈B

∑
k∈K(c)

rb,kxb,k , (4)

s.t.
∑
b∈B

rb,kxb,k ≥ qk , k ∈ K(`), (5)∑
b∈B

∑
k∈K

ab,ixb,k ≤ 1, i ∈ I. (6)

In [1] it was proven that the combinatorial problem P0
is an NP-hard partition problem and a heuristic algorithm
was proposed, referred to, in the rest of the paper, as the
baseline heuristic, which uses a utility matrix uwith elements
ub,k that represent the utility of a block b ∈ B assigned
to a specific service k ∈ K. Then, in the first step of
the heuristic algorithm, the block b is allocated to service
k ∈ K(`) with the maximum ub,k ; notice that choosing the
allocation that maximizes the utility without at the same time
examining the ‘‘cost’’ of this placement in terms of generated
conflict is clearly sub-optimal. The step is iterated until all the
demands for k ∈ K(`) are satisfied under the constraint (5).
Next, in the second step, the placements for k ∈ K(c) ser-
vices are allocated, using a similar principle, until no other
non-overlapping blocks have remained. Hence, the placement
of theK(`) andK(c) has been treated as two separate resource
allocation problems. The complexity of the baseline heuristic
algorithm was shown to be O(|B||K| log(|B||K|)), without
accounting for the computation of utility matrices.

The baseline heuristic has been extended in [1] to incor-
porate other utility matrices denoted by uLP, uLD ∈ RB×K,
where uLP and uLD denote the optimal solutions of the linear
programming (LP) and the Lagrange dual (LD) relaxation of
P0, respectively. With these two new utilities, an extension of
the baseline heuristic was proposed to calculate concurrently
the solution of the heuristic algorithm by adopting both uLP
and uLD utilities and retaining the best result between them;
this allowed to reach a near-optimal performance, at the cost
of high computational complexity, especially considering that
the dual problem P0-LD also applies a sub-gradient method.

Discussing the above approach, whose basic principle
(with few variations) can be found in other published work,
e.g., [8], we notice that despite the fact that the overall aim
is to jointly maximize the throughput of K(c) while meeting
the demands of K(`) services, these two interwoven goals are
treated separately; in order to satisfy constraint (5), first the
demands of URLLC services are met and then the placements
of eMBB services take place.

Such policies solve P0 by accounting only for con-
straint (5), which is suboptimal as they do not consider
the impact of the K(`) services allocation to the consequent
allocation of the K(c) services, i.e., constraint (6). We notice
that previously proposed algorithms operate on a single opti-
mization target at any instance, that of maximizing first the
URLLC throughout and thenmaximizing the eMBB through-
put. Building on this observation, we will first show that

the previously presented baseline heuristic can be improved,
if the conflict is taken explicitly into account.

To this end, we introduce an explicit description of the
impact that the assignment of any resource block to a specific
service has on the feasible assignments of the remaining
blocks. In other words, we account for the amount of gener-
ated conflict by any specificURLLC or eMBB resource block
placement. To evaluate the impact of constraint (6) explicitly,
we define the conflict as

cb,p =


1, if

∑
b ∈ B

∑
p∈B

(αb,i + αp,i) > 1,

i ∈ I, b 6= p
0, otherwise

(7)

for b, p ∈ B. As a next step we note that,∑
b∈B

∑
k∈K(c)

rb,kxb,k = Rtotal −
∑
b∈B

∑
p∈B

∑
k∈K

cb,pxp,krb,k , (8)

where Rtotal denotes the maximum sum throughput of the
whole slot with respect toK(c) and the second triple sum rep-
resents the losses in K(c) throughput, because of the conflicts
generated by the placements of all services. Given that Rtotal
has a specific value (that can be explicitely evaluated) for
any particular slot realization (based on the specific channel
realizations), the maximization of (4) is equivalent (from
an optimization point of view) to the minimization of the
aggregate conflict, i.e.,

max
xb,k∈{0,1}

Rtotal −∑
b∈B

∑
p∈B

∑
k∈K

cb,pxp,krb,k


⇔ min

xb,k∈ {0,1}

∑
b∈B

∑
p∈B

∑
k∈K

cb,pxp,krb,k . (9)

Hence, the maximization of the sum eMBB throughput
may be reduced to the minimization of the potential conflicts.
We also note that:

E

∑
b∈B

∑
p∈B

∑
k∈K

cb,pxp,krb,k

 = |C| r̄, (10)

where E[·] denotes expectation over the channel realizations,
C is the set of conflicts when all resource blocks have the same
average throughput r̄ = E

[
rb,k

]
and |·| denotes cardinality;

i.e., from (6) and (7) it emerges that we need, on average,
to minimize the number of conflicts.

Considering these remarks, we propose novel heuristic
algorithms for P0, focusing on minimizing the number of
placements ofK(`) services. The first set of heuristics, dubbed
in the following as conflict-aware greedy, use ‘‘conflict’’
enhanced variations of the utility proposed in the baseline
heuristic and aim at closing the optimality gap. The second
approach is built on an interpretation of (6) as a bin pack-
ing optimization problem [31]; based on this approach we
develop a lightweight scheduling approach that is shown to
be near-optimal.
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Furthermore, as the minimization of conflicts is shown to
be an equivalent optimization objective to the sum through-
put maximization, we propose the use of NOMA to allow
for overlapping of placements. The proposed heuristics and
NOMA approaches are detailed in the next two sections.

III. HEURISTIC ALGORITHMS FOR
CONFLICT RESOLUTION
A. CONFLICT-AWARE HEURISTIC SOLUTIONS
We first propose extensions of the baseline heuristic, in
[1], [8], etc., by introducing penalties in URLLC resource
allocations, expressed as functions of the conflict. To this end,
we introduce two metrics for the conflict induced by K(`)

services allocation. The aggregate conflict C t
b,

C t
b =

∑
p∈B

cb,p, p, b ∈ B, (11)

that measures the total number of overlapping blocks with the
block b, and, the average conflict Cr

b,k ,

Cr
b,k =

∑
p∈B

cb,prp,k
C t
b

, p, b ∈ B and k ∈ K(`) (12)

that corresponds to the average throughput – for every service
k ∈ K(`) – of the blocks p ∈ B that overlap with block b ∈ B.
Using these new conflict measures, we propose three vari-

ations for the utility matrix to be used in solving P0:
• In the first version the utility becomes,

utotalb,k =
rb,k
C t
b
;

• In the second variation, the utility becomes,

uavgb,k =
rb,k
Cr
b,k
;

• Finally, in the third variation, we use the following util-
ity,

ulast pl.b,k =

{
rb,k , if k = 1, . . . ,

∣∣K(`)
∣∣− 1

uavgb,k , if k = {
∣∣K(`)

∣∣}.
The utility matrix ulast pl.b,k is introduced to incorporate a
‘‘compromise’’ between the baseline and the conflict-aware
approaches; notably, it considers the impact of the conflict
only in the last K(`) service placement, since our simulations
revealed that in this last placement, usually, more blocks are
required to satisfy the demands constraint.

In Algorithm 1 we outline, in the form of pseudocode,
the proposed conflict-aware heuristic. Algorithm consists
of two phases: i) in Lines 1-10 we decribe the alloca-
tion of the URLLC services, and, ii) in Lines 11-14 the
allocation of the eMBB services is described. First, in Line 2,
we denote the set G, consisting of the resource blocks to
be allocated for the URLLC services (initially G = ∅). Set
G is augmented with the couple (b′, k ′) that maximizies the
conflict utility metric (utotal , uavg and ulast pl.) across all the
available b ∈ B and k ∈ K(`), described in Line 3. A service

Algorithm 1Conflict-Aware Resource Allocation Algorithm
(CA) Based on [1]

Input: u(`) = [ub,k ], b ∈ B, k ∈ K(`), utility matrix for K (`)

(utotal , uavg or ulast pl.) and u(c) = [rb,k ], b ∈ B, k ∈
K(c), utility matrix for K (c).

Output: Block-service assignment G.
I Phase (K(`) resource allocation):

1: repeat
2: Remove from B the blocks in G and the overlapping

with G blocks.
3: (b′, k ′)← argmaxb∈B,k∈K(`) u(`)b,k ,G ← G ∪ {(b′, k ′)}.
4: if qk ′ is met then
5: K(`)

← K(`)
\ k ′.

6: end if
7: until K(`)

= ∅ or B = ∅
8: if K(`)

6= ∅ then
9: The demand of the remaining users in K(`) cannot be

met.
10: end if

I Phase (K(c) resource allocation):
11: repeat
12: Remove from B the blocks in G and the overlapping

with G blocks.
13: (b′, k ′)← argmaxb∈B,k∈K(c) u(c)b,k ,G ← G ∪ {(b′, k ′)}.
14: until B = ∅

k ∈ K(`) is satisfied when its qk demand is met and the first
phase is concluded when all services are satisfied or no other
available b ∈ B exist, according to Lines 4-6 and Lines 7-10,
respectively.

In case all URLLC services are satisfied, algorithm pro-
ceeds to the second phase. From the available blocks B we
exclude the resource blocks used for the URLLC services
and all the overlapping to these blocks (Line 12). Finally,
the eMBB services are allocated iteratively, according to the
utility metric u(c)b,k = rb,k (Line 13), until B = ∅ (Line 14).

B. HEURISTIC INSPIRED FROM BIN PACKING
OPTIMIZATION
In the standard bin packing problem formulation, the goal is
to find the optimal placement of items of different volumes
in the minimum number of containers (bins) of fixed vol-
ume [31]. Although the bin packing is a combinatorial NP-
hard problem, due to it’s widespread encounter in a large
number of settings, various proposed heuristics have been
reported in the literature with different optimality gaps. Here,
we propose a novel, computationally efficient scheduling
approach, inspired by the refined-first-fit heuristic for the
standard bin packing problem.

The proposed scheduling heuristic that accounts for con-
flicts is summarized in Algorithm 2, jointly minimizing
the number of K(`) resource allocations (placements) and
throughput losses for K(c) users. Allocation of resources to
K(`) and K(c) services is treated sequentially but still in an

VOLUME 10, 2022 36581



S. Skaperas et al.: Scheduling of Heterogeneous Services by Resolving Conflicts

Algorithm 2 Bin Packing Based Resource Allocation Algo-
rithm (BPB)
Input: throughput matrix r = [rb,k ], b ∈ B, k ∈ K,

aggregated-throughput-loss vector e = [eb], b ∈ B and
overall number of categories (bins) H .

Output: Block-service assignment G.
I Phase (generate categories):

1: for k = 1 to |K(`)
| do

2: for i = 1 to H do
3: Cat iU k contains all resource blocks b ∈ B where

dqk/rb,ke = i (14);
4: Check pairwise conflicts among categorized blocks

and remove the blocks with the higher eb, b ∈ B
(13);

5: end for
6: end for

I Phase (K(`) resource allocation):
7: for k = 1 to H do
8: repeat
9: if |Cat iU k

| ≥ i then
10: B′← argsort(eb), b ∈ Cat iU k ;
11: G ← G ∪ (B′(1, i), k),
12: Remove from B the blocks in G and those over-

lapping with the blocks in G;
13: end if
14: if qk is not met then
15: Demand of k ∈ K(`) can be satisfied
16: end if
17: until qk is met or i = H
18: end for

I Phase (K(c) resource allocation):
19: repeat
20: Remove from B the blocks in G and those overlapping

with the blocks in G;
21: (b′, k ′)← argmaxb∈B,k∈K(c) rb,k , G ← G ∪ (b′, k ′);
22: until B = ∅

interwoven approach, with URLLC being served first to meet
the latency requirements. In the following, we denote by
vector e the aggregated throughput losses for each allocation
of a block b ∈ B, i.e.,

eb =
∑
p∈B

∑
k∈K(c)

cb,prb,k . (13)

The proposed heuristic contains three steps: i)generation
of bin-packing categories, in Lines 1-6, ii) URLLC resource
allocation, in Lines 7-18, and, iii) eMBB allocation,
Lines 19-22. First, for each k ∈ K(`) we generate H cate-
gories (bins) with decreasing fractional sizes with respect to
qk , k ∈ K(`). Category i ∈ {1, . . . ,H} is defined as the set
of all resource blocks b ∈ B for which the ceiling of the
service demand ratio over the throughput of block b is equal
to i, or equivalently, category Cat iU k contains the available
resource blocks which satisfy at least 1/i-th of the service

demand qk . Formally, we define,

Cat iU k
=

{
b :
⌈
qk
rb,k

⌉
= i,∀b∈B \ {Cat jU k

}j=1,...,i−1

}
,

k ∈ K(`), i ∈ {1, . . . ,H}. (14)

The above operation is described in Lines 1-3. Afterwards,
in Line 4, we remove the overlapping blocks with the
higher aggregated throughput loss (within each category),
using (13).

In other words, Cat1U1 is the category of the blocks
which individually satisfy the whole demand of the URLLC
service k = 1. Therefore, the categories created for service
k ∈ K(`) range from Cat1U k – containing the most valuable
blocks (valuable in terms of throughput rb,k ) – till CatHU k ,
containing the least valuable blocks in order. Note that i) we
need at most i elements from Cat iU k to satisfy the demand
qk of service k ∈ K(`); ii) categories might be empty, so H
needs to be defined according to the expected throughput per
mini-slot, as well as its variance.

Next, we consider the allocation of the URLLC services.
For each k ∈ K(`) we select the first category Cat iU k with
elements at least equal to i ∈ H , Lines 7-9. In this category,
we subsequently introduce a further minimization problem in
order to select the elements from each category that incur the
minimum loss to eMBB, i.e.,

min
yb∈{0,1}

∑
b

ebyb, b ∈ (K(l)
∩ Cat iU k )

s.t.
∑

b∈Cat iU k

yb ≤ i. (15)

Note that if (15) is interpreted as a knapsack problem, each
element of a given category has the same weight (equal
to unity), while the values (losses in the specific instance)
differ. Similar problems are encountered in different set-
tings, e.g., the subcarrier resource allocation in [25]. Exploit-
ing these previous results, we reproduce a simple heuristic
according to which the elements of each category are re-
ordered2 O

(
maxi,k{|Cat iU k

| log(|Cat iU k
|)}
)
. in increasing

aggregated loss eb, b ∈ B, Line 10. Subsequently, the
first i elements of category Cat iU k are allocated to URLLC,
Line 11. After each allocation, the allocated blocks are
removed from B and all other categories, Line 12. The proce-
dure is repeated until the demand qk , k ∈ K(`) is satisfied or
no more categories exist for the specific service k , Line 17;
in this last case solution is infeasible, Lines 14-16.

As an example, after this step, the first element of Cat1U k

is the resource block that can simultaneously cover the
demand qk of URLLC service k while incurring the least
aggregate losses for the eMBB users. The joint minimization
of the number of K(`) placements and the losses due to
conflicts is achieved simply by assigning to service k ∈ K(`)

the first i elements of Cat iU k , starting from i = 1, i.e., the
allocation for demand qk starts from Cat1U k . As explained

2The ordering has a complexity.
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before, the most valuable categories in terms of throughput
satisfy URLLC services by using the least number of resource
blocks and result in the minimum number ofK(`) placements,
that is expected on average to incur the minimum losses
due to conflicts. Furthermore, having re-ordered the elements
of each category in increasing eMBB loss value, we jointly
account for both constraints (5) and (6) in one go.

In the last phase of the algorithm, Lines 20-22, the resource
allocation to K(c) services takes place. This is performed by
selecting the block-service pairs with the highest throughput
rb,k , b ∈ B, k ∈ K(c)) from the remaining available blocks.
The latter have not been allocated to a URLLC service, since
once a block is allocated it is removed from B. This step is
iterated until no more blocks remain available.

Finally, we also consider a modified version of the bin
packing based heuristic (mBP), targeting on challenging
time-frequency grids, where infeasibility is the major issue.
In this case, we introduce a pre-processing step to check the
feasibility of each slot. We first count the total throughput of
all available block placements and compare with throughput
resulting from the placement of all the available blocks for
the URLLC services, in both cases with respect to the con-
straint (3). Then if,∑

b′∈B

∑
k∈K(`)

rb′,k > δ
∑
b′∈B

∑
k∈K

rb′,k ,

where b′ ∈ B are the blocks that satisfy constraint (3) and
δ ∈ (0, 1), instead of using the eb metric for the allocation of
the k ∈ K(`) services we switch the metric to e′b = max rb,k ,
k ∈ K(`), in order to ensure the URLLC’s services allocation.

IV. NOMA FOR DOWNLINK SCHEDULING
In this section, we re-examine P0 under the assumption that
it is possible to employ NOMA in the downlink to schedule
different services, even at the mini-slot level [27]. We extend
our analysis to the NOMA approach in order to discuss the
potential gains that stem from the avoidance of conflicts, due
to the superposition of services into the same resource block.
NOMAhas in the past been proposed as a competitive scheme
to enhance throughput per resource block [26]; here we
further motivate for it’s employment as the means to mitigate
conflicts in the allocation of resource blocks by allowing
superposition of users, puncturing and preemptive scheduling
can be avoided.

First, we consider the multiple NOMA (mNOMA) sce-
nario where multiple users may share the same resource
block. Therefore, P0 is reduced to a linear programming (LP),
since this scheme allows overlapping amongst blocks, either
fully or partially (on some of the minislots of the resource
block). We refer to the corresponding optimization problem
as P1, noting that the optimization variable is now a real
number xb,k ∈ [0, 1] indicating the percentage of block b ∈ B
assigned to the service k ∈ K,

[P1] max
xb,k∈[0,1]

∑
b∈B

∑
k∈K(c)

rb,kxb,k , (16)

s.t.
∑
b∈B

rb,kxb,k ≥ qk , k ∈ K(`), (17)∑
b∈B

∑
k∈K

ab,ixb,k ≤ r̃, i ∈ I. (18)

r̃ ≥ 1 denotes the normalized sum throughput per block
achieved with NOMA [32]. Note that the corresponding
OMA constraint (6) is upper bounded to unity, pointing
out a further gain in using NOMA due to the increase in
per resource block utilization. However, as in this work we
aim primarily at demonstrating the gains brought about due
to conflict avoidance, in the numerical results presented in
Section V we simply use r̃ = 1.

A known issue of mNOMA is that error cascades in decod-
ing can compromise performance; to alleviate such effects
NOMA with user pairing has recently gained a lot of atten-
tion. In this framework, we implement the 2-user NOMA
(2u-NOMA) scheme, since this approach provides lower
decoding complexity, shorter delay and higher reliability in
comparison to mNOMA [33]. Considering the power alloca-
tion problem in a downlink NOMA 2-user system, it has been
proven in [33] that the achievable rate of the 2u-NOMA user
with lower channel gain is equal to that of theOMAuserwhen
the power allocation is optimal and the remaining power is
allocated to the strong 2u-NOMA user.

In contrast to the scheduling optimization problem as for-
mulated in P1, 2u-NOMA allows overlapping amongst at
most two blocks, either full or partial (of some mini-slots).
In light of this, P1 is reformulated to amixed integer program-
ming (MIP) problem, by adding the supplementary binary
variable yb,k ∈ {0, 1} to indicate weather block b is assigned
to service k . To construct yb,k , we let d∗e. be the operator that
maps a real number x to the smallest integer greater than or
equal to x. The newMIP problem, referred to as ˜[P1] follows,

˜[P1] max
{xb,k ,yb,k }

∑
b∈B

∑
k∈K(c)

rb,kxb,k , (19)

s.t. yb,k = d∗exb,k , k ∈ K, b ∈ B (20)∑
b∈B

rb,kxb,k ≥ qk , k ∈ K(`), (21)∑
b∈B

∑
k∈K

ab,ixb,k ≤ r̃, i ∈ I, (22)∑
b∈B

∑
k∈K

ab,iyb,k ≤ 2, i ∈ I, (23)∑
b∈B

∑
k∈K(`)

ab,iyb,k ≤ 1, i ∈ I, (24)

αb,irb,k ′xb,k ′ × 1xb,k′<1 < αb,irb,k ′′xb,k ′′ ,

i ∈ I, b ∈ B, k ′ ∈ K(`), k ′′ ∈ K(c). (25)

The additional constraint (23) ensures that at most two
overlapping blocks are allowed per mini-slot. Furthermore
(24) forbids the overlapping URLLC resource blocks in
order to avoid induced overheads in decoding. Finally, (25)
ensures that if URLLC is overlapping with an eMBB resource
block, the throughput of the eMBB resource block is higher.
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(20) and (21) guarantee that the URLLC is always the weak
user and thus, in the downlink NOMA, has to be decoded
first [33], so that no extra latencies are introduced for URRL
users due to the NOMA decoding order.

V. NUMERICAL RESULTS
In this section, we present numerical results for both OMA
and NOMA schemes, for different 5G URLLC configura-
tions and numerologies; fixed, multiple-fixed and flexible
numerology. This exercise allows us to highlight the impor-
tance of flexible numerology, while motivating NOMA as
a conflict mitigation approach. Here, we mainly focus on
the conflicts aspect, rather than on deployment, feasibility or
coordination issues, which are important enough to deserve
an independent study.We thenmove on to a comparative anal-
ysis of the proposed heuristic Algorithms 1 (conflict aware,
CA) and 2 (bin packing based, BPB) for OMA, to provide
proof-of-concept for the potential of the proposed conflict
aware scheduling.

We use the simulation setup given in [1], implemented
based on the control channel overhead model for support-
ing the flexible numerology defined in [34] and considering
the effect of guard band (i.e., of the cyclic prefix) on the
achievable data rate, as modeled in [35]. The computation
of the throughput per block rb,k relies on the configura-
tion of block b (see Table 2), with a total number of nine
multipath channel profiles [36], calculating the throughput
based on the model introduced in [37]; for URLLC users
the throughput values incorporate the delay constraints so
that non-zero throughput is available only in these block in
which the delay constraint is met. The throughput model
also considers intersymbol-interference (ISI) depending on
CP, and approximates the inter-channel interference (ICI)
between the neighboring subbands of different numerologies.

In detail, the simulation parameters are given in Table 3.
We assume a time-frequency grid, where each slot relies on a
2 msec and 2MHz domain (i.e., of dimensions 16× 11). As a
result, this produces, for each slot, a set of I = {1, . . . , 176}
mini-slots and a corresponding set of B = {1, . . . , 549}
candidate blocks with respect to the numerology, where every
candidate block consists of 4 elements of I. The resource
block details are given in Table 2. Blocks of shape 1 (cor-
responding to a shape of 4× 1 minislots), B1 ⊂ B, include a
multitude of |B1| = 143 resource blocks. Blocks of shape 2
(2 × 2 minislots), B2 ⊂ B, include a multitude of |B1| =

150 resource blocks. Blocks of shape 3 and 4 (1×4minislots),
B3,B4 ⊂ B include the same multitude of blocks |B3| =

|B4| = 128. Moreover, the chosen latency tolerance and bit
rate demands for the URRLC users are τ = {0.5, 1, 1.5, 2}
msec and q = {16, 32, 64, 128, 256, 512} kbits/sec (kbps),
respectively. The latency tolerance for the eMBB users is
fixed and equal to τ = 2 msec. The SNR range is generated
by numbers uniformly distributed in the interval [5, 30] dB.
In the following, we refer to the ‘‘optimal shceduling’’ to
denote the solutions provided by the Gurobi optimization

TABLE 3. Simulation parameters.

solver, used as a benchmark for the evaluation of the opti-
mality gap of the proposed heuristics.

Finally, we consider three scenarios for the arrival of the
URLLC and the eMBB services on each slot: i) 5 URLLC
and 5 eMBB constant users per slot, i.e., |K(c)

| = |K(`)
| = 5,

ii) 10 users in total per slot, where the arrival rate of the
URLLC services is a random variable following the Poisson
distribution, i.e., |K(`)

| ∼ Pois(5), |K| = 10 and |K(c)
| =

|K| − |K(`)
|, and, iii) 5 constant eMBB users, |K(c)

| = 5 and
|K(`)
| ∼ Pois(5). The outputs of all the simulation results are

assessed overM = 1000 Monte Carlo iterations.

A. PERFORMANCE COMPARISON BETWEEN NOMA AND
OMA SCHEDULING UNDER DIFFERENT NUMEROLOGIES
First, we compare the performance of OMA and NOMA
schemes for different numerologies. In the case of fixed
numerologies, shape 1 (horizontal), shape 2 (square) and
shape 3 (vertical) type of blocks are considered separately.
Furthermore, capturing a common scenario in practical sys-
tems [5], we define as the multiple-fixed numerology the one
in which eMBB uses resource blocks of shape 1 (horizontal)
and URLLC of shape 3 (vertical). Finally, in the case of
flexible numerology all type of shapes, given in Table 2, are
available to all services. In this subsection, we consider for
the users arrivals, |K(`)

| = |K(c)
| = 5.

In Fig. 2, the sum bit rate for the eMBB services, K(c)

when applying the optimal i) OMA, ii) 2u-NOMA, and
iii) mNOMA scheduling are shown. The NOMA sum bit
rate gains with respect to the OMA are depicted with the
lighter color in each bar. The latency tolerance and bit
rate demands considered are τ = 1 msec and q =
{16, 32, 64, 128, 256, 512} kbps, respectively, for five K(`)

and fiveK(c) users. In all cases, as expected, flexible numerol-
ogy significantly outperforms the fixed and multiple-fixed
numerology. Moreover, multiple-fixed overpasses the per-
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FIGURE 2. Sum bit rate of K(c) services when employing OMA, 2-user NOMA (2u-NOMA) and multiple-user NOMA (mNOMA),
considering fixed, multiple and flexible numerology, under several qk data demands and delay tolerance of k ∈ K(`)

τk = 1 msec. The lighter colors depict the NOMA sum bit rate gains in comparison to the OMA. Fixed and multiple-fixed
numerologies result in infeasible outputs for qk = 512 kbps.

FIGURE 3. Normalized (to NOMA) gap of the sum bit rate of the K(c) services between NOMA and OMA schemes. The y-axes measure percentages.
Non existing values indicate infeasible solutions.

formance of fixed numerology in the OMA case. From
these results it becomes apparent that flexible numerology
in combination with NOMA can offer distinct gains across
varying URLLC demands. Notably, as the URLLC demands
increase, flexible numerology is the only approach that

avoids infeasibility issues, i.e., not servicing all of URLLC
demands.

Focusing on the comparison between OMA and NOMA,
both NOMA schemes consistently outperform OMA. More
precisely, NOMA based scheduling is shown to increase
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particularly the sum throughput of eMBB users under fixed
numerology, although NOMA also improves the overall per-
formance when using flexible numerology as well. On the
other hand, NOMA does not affect the performance under
multiple-fixed numerology; this is due to the fact that in the
specific grid used in the simulations, overlapping of blocks is
limited in the case of multi-fixed numerology. Furthermore,
the gains in using NOMA are more accentuated in lower
URLLC demands. Finally, the gains of mNOMA are negli-
gible compared to these of 2u-NOMA for the specific grid;
especially for lower qk demands.
Furthermore, in Fig. 3, the normalized to NOMA per-

formance gap between OMA and NOMA (expressed as a
percentage) is shown, for different numerologies. The supe-
riority of NOMA is reconfirmed both for fixed and flexible
numerology, for different values of the URLLC latency toler-
ance τk = {0.5, 1, 1.5, 2} msec, k ∈ K(`). Finally, in the case
of flexible numerology, the lower the delay tolerance τk , the
higher the gains in using NOMA as opposed to OMA. The
performance fluctuations, illustrated in Fig. 3, are strongly
related to the different values of the bit rate demands qk , k ∈
K(`). More precisely, after a close inspection of the simulation
outputs, we came to the conclusion that the gap between the
demand of a service k ∈ K(`) and the achievable throughput
of the block, in which the service is allocated, plays an
important role. A higher gap between the two corresponds
to a decisive reduction of the overall available throughput for
the scheduling of the K(c) services in the OMA case, which
in turn offers a crucial advantage to the NOMA scheme that
allows sharing of resource blocks.

In Fig. 4 examples of scheduling on the time-frequency
grid is depicted in the case of OMA, 2u-NOMA and
mNOMA, for τk = {0.5, 1} msec and qk = {32, 256} kbps,
respectively, for all k ∈ K(`). In the case of OMA and
qk = 32 depicted in Fig. 4(a), sharing of resource blocks
is not allowed, while, in the case of NOMA, depicted in
Figs. 4(c), (e), the opportunity of sharing resource blocks
increases the sum throughput for eMBB, i.e., all of the blocks
assigned to URLLC services are shared with these assigned
to the eMBB services. Notice also that total number of
blocks assigned to the eMBB services, for both mNOMA and
2u-NOMA, are the same; even if mNOMA concludes to a
higher number of sharing blocks.

Similar outcomes are depicted in Fig. 4(b), when using
OMA, and Figs. 4(d), (f), when using NOMA, in which a
higher value of qk = 256 is considered. In this case, though,
not all of the blocks are assigned to eMBB services (for both
NOMA scheduling) due to the higher URLLC demand.

B. PERFORMANCE OF PROPOSED HEURISTIC
ALGORITHMS
Although NOMA clearly outperforms OMA, its use might
be prohibited by a number of factors, including the need for
multiple decoding steps and the impact of imperfect succes-
sive interference cancelation (SIC). As a result, the evalu-
ation of OMA scheduling approaches is paramount. In this

FIGURE 4. Resource allocation of URLLC (light green) and eMBB (green)
services, for OMA (first row), 2u-NOMA (second row) and mNOMA (third
row). Light yellow denotes zero throughput mini-slots. Dark green
denotes sharing of mini-slots thanks to using NOMA.

subsection, we discuss the proposed heuristics. As a valida-
tion step, we first evaluate and compare the optimality gaps of
the baseline heuristic (presented in [1]) and the proposed con-
flict aware heuristics with utilities (utotal , uavg and ulast pl.),
denoted by CA(·) with input one of the corresponding utility
matrices, against the global optimum of P0. Then, we pro-
vide additional results with all proposed heuristics employing
flexible numerology. For the above experimental results we
assume that the URLLC users follow |K(`)

| ∼ Pois(5) and
the total amount of users in each slot is constant, |K| = 10.

Fig. 5 depicts the optimality gap: i) of the baseline, the
variations of the conflict-aware and the bin packing based
approaches (first row), and, ii) of the LP-LD relaxation of P0
(second row), for several values of maximum sub-gradient
iterations, with respect to the bit rate demand and the latency
tolerance of the K(l) services.
In the first row of Fig. 5 the conflict-aware and bin packing

based heuristics are shown, in most cases, to outperform
the baseline heuristic approach, especially for higher latency
tolerance values, see Fig. 5(b) and (c), and to provide similar
results for lower latency tolerance values, Fig. 5(a). The
only exception is CA(ulastpl.) which outperforms the baseline
approach only for τ = 1.5 msec. More precisely, CA(utotal),
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FIGURE 5. a) Optimality gaps: a) of the baseline heuristic [1] and the variations of the conflict-aware heuristic CA, and, b) of the baseline LP-LD heuristic
and thresholds for the sub-gradient iterations M = {10, 20, 50}. Against the global optimum of P0, for latency tolerance values τk = {0.5, 1, 2} ms. The
y-label express the relative deviation to the optimum, expressed as percentage.

CA(uavg) BP clearly outperform all other approaches, main-
taining an optimality gap below to 10% for τk = 0.5 msec
and close to 7% for τk = {1, 1.5} msec.

The second row of Fig. 5 depicts the optimality gap of
the LP-LD heuristic solutions, for various threshold values
M = {10, 20, 50} of the maximum sub-gradient iterations,
against the global optimum. Incorporating the utility matrices
uLP, uLD ∈ RB×K leads to similar results (not depicted for
compactness). As it is expected, higher threshold values ofM
lead to a further reduction in the optimality gap, at the cost of
a higher computational time. The choice ofM = 10 results on
very high optimality gaps, near to 20% in most cases. On the
other hand forM = 20 andM = 50 the heuristics are shown
to maintain the optimality gap close and lower than 10% for
the chosen latency tolerance values. Note that the optimality
gaps of the proposed heuristics are comparable to that of the
LP-LD variations in all cases, as it can be seen by comparing
the two rows of Fig. 5. On the other hand, the reduction of
the optimality gap using LP-LD utility matrices comes with
a significant increase of the computational time.

Furthermore, we utilize our implementation to quantify
the performance of the optimal and the heuristic approaches,
in terms of processing cost. The computational time is mea-
sured on a Lenovo IdeaPad 510-15IKB laptop, with an Intel
Core i7-7500U @ 2.70 GHz processor and 12 GB RAM.
In Fig. 6, we depict the processing cost of i) the optimal solu-
tion; ii) the baseline heuristic variations (without the usage of
the LP-LD utilities); iii) the bin packing based approach; and,

FIGURE 6. The processing cost of: i) the optimal, ii) the baseline heuristic
variations, iii) the bin packing based approach, and, iv) the LP-LD
(M = 20), for τ = 1 msec and qk = {16, 32, 64, 128, 258} (kbps).

iv) the LP-LD heuristic with threshold value M = {10, 20},
for qk = {16, 32, 64, 128, 256} and a conventional latency
tolerance value τ = 1 ms. As shown, the LP-LD solution
is much more computational intensive than other heuristic
approaches, even compared to the optimal solution. Note that
higher threshold values increase drastically the processing
cost, e.g., for M = 50 the processing cost is of 22 sec.
On the other hand, the processing cost of the bin packing
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FIGURE 7. Cumulative optimality gap over time, when the latency
tolerance and the bit rate demands of the K(`) users are randomly
chosen, for each time instance, from qk = {16,32,64,128,256} kbps and
τ = {0.5,1,1.5,2} msec.

FIGURE 8. Sum bit rate of K(c) services for various values for the latency
tolerance of K(`) services, when the bit rate demands of K(`) users are
all equal and set to 16 kbps.

and the conflict-aware heuristics is between 0.3 and 0.5 sec,
noting that the complexity of the conflict-aware and bin
packing based heuristics is of O = (N logN ). Based on the
computational complexity comparison, we exclude from the
next experiments the approaches including the calculation of
the LP-LD utility matrices.

Finally, in Fig. 7 we illustrate the cumulative optimal-
ity gap over time, where the throughput demands and
the latency tolerance of the URLLC services are ran-
domly chosen (in each time instance) from the vectors
qk = {0.016, 0.032, 0.064, 0.128, 0.256} kbps and τk =
{0.5, 1, 1.5, 2} msec, respectively. The results demonstrate
the superior performance of the conflict aware and the bin
packing based heuristics, i.e., the optimality gap converges to
6% for BP,CA(utotal) andCA(uavg), while, the optimality gap
of the baseline approach converges to 10%.

FIGURE 9. Sum bit rate of K(c) services for various values for the latency
tolerance of K(`) services, when the bit rate demands of K(`) users are
all equal and set to 32 kbps.

FIGURE 10. Sum bit rate of K(c) services for various values for the
latency tolerance of K(`) services, when the bit rate demands of K(`)

users are all equal and set to 64 kbps.

In the next set of experiments, we assume that the total
number of the URLLC services follow the Poisson distribu-
tion, |K(`)

| ∼ Pois(5) and the eMBB services are constant per
slot, |K(c)

| = 5. Figs. 8 - 10 show that the performance of the
heuristic algorithms compares well with the global optimum
(obtained through Gurobi solvers), while keeping the com-
plexity very low. Note that the proposed algorithms, exceed
the performance of the baseline heuristic, especially for τ >
0.5 msec, verifying the results of the previous experiments
Figs. 5(a), 7. This showcases that indeed, the reformulation
of the optimal scheduling as a conflict minimization problem
is highly pertinent and allows shedding light on how to jointly
address the constraints (5) and (6) of P0. It is also noteworthy
that more elaborate heuristics could be proposed in the same
context, by looking at algorithms with lower optimality gaps
to the optimal bin packing solution.
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FIGURE 11. Sum bit rate of K(c) services for various values for the
latency tolerance of K(`) services, when the bit rate demands of K(`)

users are all equal and set to 128 kbps.

FIGURE 12. Sum bit rate of K(c) services for various values for the
latency tolerance of K(`) services, when the bit rate demands of K(`)

users are all equal and set to 256 kbps.

The same conclusions can be reached in Figs. 11 and 12 for
URLLC demands of 128 and 256 kbps, respectively. In these
cases, all the conflict-aware choices exceed the performance
of the baseline heuristic; the choice of CA(ulastpl.) metric
is the only one with lower performance to that of baseline
heuristic for τ = 1 ms and for qk = 256 kbps and τ =
0.5msec. Also, theCA(utotal),CA(uavg) and the BP heuristics
provide similar performance rates.

Finally, in Fig. 13 we illustrate the cumulative optimality
gap over time, considering random qk and τk values for
each k ∈ K(`) (according to Fig. 7), further assuming that
|K(`)
| ∼ Pois(6) and |K(c)

| = 5. The superior performance of
the proposed heuristics is reconfirmed, especially for the BP
and the CA(uavg), CA(utotal) approaches, which significantly
reduce the gap; converge to 6% when the baseline heuristic
converges to 11%.

FIGURE 13. Cumulative optimality gap over time, when the total number
of the URLLC users follow the Poisson distribution and the eMBB services
are constant. The latency tolerance and the bit rate demands of the K(`)

users are randomly chosen, for each time instance, from
qk = {16,32,64,128,256} kbps and τ = {0.5,1,1.5,2} msec.

VI. CONCLUSION AND FUTURE WORK
In 5G and beyond networks, URLLC services will coex-
ist with eMBB services, giving rise to challenging layer
2 scheduling. To address the latter, we have reformulated
the standard eMBB throughput maximization problem as an
equivalent conflict minimization, which points at minimizing
the overall amount of conflicts. Building on this premise,
two lightweight and efficient scheduling approaches were
proposed; a family of conflict-aware heuristics that employ
conflict aware utilities and a heuristic inspired by the bin
packing problem. In addition to the proposed scheduling
using orthogonal multiple access (OMA), we further pro-
posed the use of non-orthogonal multiple access (NOMA) to
mitigate conflicts. We investigated the potential advantages
of allowing for non-orthogonal sharing of radio resources
with flexible numerology and frame structure. The intuition
for NOMA’s superior performance, as a result of alleviating
conflicts, was demonstrated to hold; importantly, NOMA
can potentially offer significant advantages particularly in
the case of ultra-low latency constraints for the URLLC
users. Extensive simulations were performed for URLLC
services with different QoS requirements both for OMA
and NOMA scenarios. The simulation results showed that
i) all of the proposed heuristics have near-optimal perfor-
mance, demonstrating that conflict minimization is indeed
key to layer 2 scheduling and that there are significant
gains in terms of resource utilization, when employing
NOMA.

In the future work we will extend the existing approach
targeting on a wider range of performance metrics for the
eMBB users, e.g., minimum expected achieved range and
fairness. In this framework, we would also consider schedul-
ing schemes for the uplink.
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