
Experimenting with Control Operations in
Software-Defined Infrastructures

Stuart Clayman, Lefteris Mamatas†, and Alex Galis
Dept. of Electronic and Electrical Engineering, University College London, London, UK

† Dept. of Applied Informatics, University of Macedonia, Thessaloniki, Greece
Emails: s.clayman@ucl.ac.uk, emamatas@uom.edu.gr, a.galis@ucl.ac.uk

Abstract—Recent years have seen a trend in network and
service infrastructures adopting software networking paradigms.
Traditional hardware, such as servers, network equipment and
middleboxes, are evolving towards flexible equivalent software
technologies: namely virtualized servers, routers and network
functions, respectively. At this stage, such Software-Defined In-
frastructures (SDI) are mixing traditional with modern solutions.
Virtual servers host traditional operating systems, resulting in
heavy virtual machines with most of their codebase often un-
needed, and also a mismatch between the flexibility capabilities
of the new entities and their equivalent management facilities,
especially towards providing holistic service-aware capabilities.

Along these lines, we present an open-source experimentation
solution for flexible and service-aware management facilities on
top of heterogeneous softwarized network resources, the Very
Lightweight Software-Driven Network and Services Platform
(VLSP). VLSP exhibits the following properties: (i) it provides a
complete integrated management platform for SDI environments
as a basis for experimentation; and (ii) it is distributed and
scalable through adopting lightweight virtual entities, making it
suitable for testing a wide-range of management features over
diverse topologies. Here, we give the implementation details of
VLSP and experimentally validate its operational advantages.

I. INTRODUCTION

Software Defined Infrastructures (SDIs) have advanced in
the last few years to address the flexibility requirements of
the network infrastructure to meet the proliferation of new
network-demanding services and the increasing variety in user
and application requirements. For example, a pool of resources
can be jointly optimized and utilized on-demand from dynamic
services. The difficulties in upgrading hardware equipment
and network protocol functionality are being addressed using
carefully designed abstractions and open interfaces.

In practice, the softwarization of hardware equipment re-
drew the line in between hardware and software, allowing
better adaptability to the resource constraints and the user
requirements. Cloud environments, using virtual machines
(VMs) as compute facilities, brought a step change in how
management of infrastructure was considered, given its flexi-
bility and dynamic nature. Hardware middleboxes are evolving
towards Virtualized Network Functions (VNFs) according to
the Network Function Virtualization (NFV) paradigm, allow-
ing them to act as dynamic building-blocks realizing novel
services. Furthermore, the rigid architectural constraints of
network protocols are being tackled by the Software-Defined
Networks (SDNs) performing logically-centralized network

control that is decoupled from the data plane, enabling holistic
network management.

There are many open-source systems in the area of pro-
viding and managing SDN and/or NFV environments, such
as OpenStack [1], OpenDaylight [2] and OPNFV [3]. Open-
DayLight is based on a loosely-coupled architecture, whereby
service and virtual network device plugins realize the targeted
behaviour based on a common API. OpenOverlayRouter [4]
is an edge-oriented solution that instantiates programmable
overlay networks and is based on the LISPmob.org code [5].
OpenMANO [6] is an open source implementation of ETSI’s
reference architecture for Management and Orchestration NFV
ISG [7]. On the standardization front, ONF is working on
OpenFlow (the prominent SDN protocol) aspects [8] and ETSI
[9] is studying the architecture of NFV from the network
operators’ perspective.

A number of management solutions have been proposed
for flexible infrastructures. The CONTENT architecture [10]
proposes an orchestrator (at the cloud service layer) federating
the IT resources from distributed sites with user-to-data-centre
and inter-data-centre multi-layer connectivity services, man-
aged by a SDN-based network layer. The UNIFY consortium
[11] devises means to orchestrate, verify and observe end-to-
end service delivery from premises and enterprise networks
through aggregation and core networks to data centres. The
T-NOVA project [12] plans to exploit the concept of NFV
allowing operators to deploy VNFs for their own needs, and
also to offer them to their customers, as value-added services.

The above proposals provide management facilities focus-
ing on one of the three discussed paradigms mainly (Clouds,
NFV or SDN) and other aspects are being provided through
relevant extensions. For example, Neutron augments Open-
Stack clouds [13] with networking as a service capabilities,
bringing the support of SDN/NFV entities to the Cloud.
However, its management facilities are not optimized for a
unified and integrated operation of Clouds with SDN/NFV.

Furthermore, some aspects of the new paradigms may be
misaligned, mixing new with old technologies. It is common in
deployed networks, including cloud and data center networks,
to use system-level virtual machines (e.g. Xen, VMware) plus
embedded software routers (e.g. Click [14] or Quagga [15]).
However, these are heavy for large-scale operation and VM
migration capabilities. Our previous experience [16] with such
technologies has highlighted some serious issues with such
systems. Namely, the number of virtual machines that can run
on a physical host is limited, the speed of startup of a virtual978-1-4673-9486-4/16/$31.00 c© 2016 IEEE



machine can be quite slow, the size of a virtual machine image
is quite large, and in terms of highly dynamic networks, and
virtualized routers in particular, we observered that 98% of the
code functionality was never utilized in any run.

To address the above issue, researchers proposed a number
of open-source lightweight virtual servers and routers, such
as Mirage OS [17], OSv [18] and ClickOS [19]. These
solutions are based on unikernels (or Cloud OS) [20], where
the application can be defined with a high-level programming
language and its compilation output is a very lightweight and
single-purpose virtual machine keeping the essential part of
the OS system only (i.e. called for this reason Library OS).
These virtual machines may be few megabytes in size and boot
up so quickly that they can startup with the establishment of
a TCP connection or the reception of a DNS request packet
[21]. So far, such proposals are being deployed within existing
cloud or SDN environments that are not designed especially
for these lightweight virtualized network devices.

From our point of view, the above solutions should be com-
bined together, resulting in high levels of flexibility in Software
Defined Infrastructure operations. These unified environments
require new efficient and distributed management facilities that
are characterized by scalability, reliability, and adaptability
to the dynamic conditions, in terms of resource availability
and changing service and infrastructure requirements. This
shift in approach calls for better, unified, and more efficient
management and control with relevant implemented software
targeting a number of challenges, such as: (i) efficient service
operation, adaptability and deployment, (ii) service and VNF
lifecycle automation, and (iii) efficient resource utilization and
dynamic scaling (i.e. elasticity).

In order to assist research in this direction, we have
developed a fully distributed facility for testing and evaluating
the management aspects of such SDIs, the Very Lightweight
Software-Driven Network and Services Platform (VLSP), that:
(i) integrates our own management and control components
along these lines, and (ii) supports lightweight virtual entities.
VLSP is an experimentation solution for scalable high-level
management features, rather than aiming at production Cloud,
SDN or NFV environments. The platform has a simplified view
of the whole SDI, as we have abstracted away some of the
complex details, but we still retain the same runtime dynamics.
On this basis, it allows novel management features to flourish
which can then be integrated into production solutions.

VLSP supports the following main capabilities:

Distributed infrastructure implementing logically-centralized
management and control: to support optimizations fol-
lowing centralized decisions based on the global view of
the system derived using a monitoring infrastructure, i.e.
our own integrated monitoring system called Lattice [22].

Experimentation on management facilities: focusing on the
experimentation of distributed management and control
components of SDI rather than on the data plane per-
formance. Enhanced distributed management, control and
monitoring evaluations can be carried out which is diffi-
cult to achieve in a running environment using a number
of deployed data centers.

Lightweight virtual entity implementation: allowing evalua-
tion of diverse scenarios, including testing of various man-

agement lifecycle schemes. The benefits of VLSP over
using a hypervisor with virtual machines and standard
OS are: (i) better scalability providing lower resource
utilization and better resource allocation; and (ii) quicker
startup speed and reduced heaviness, eliminating the issue
where most of the functionality is not needed.

Last but not least, VLSP supports a number of features
assisting in experimentation, such as: (i) visualization tools
depicting the topology, the software running on each entity, the
network state and the interactions between the VLSP compo-
nents; (ii) common topological representations and scripts that
manipulate topologies based on known distributions, allowing
arbitrary topologies to be created; (iii) example virtual entity
applications (e.g. for VNFs) with configurable loads in terms
of CPU, memory and network utilization; (iv) tailor-made
monitoring capabilities supporting information aggregation,
custom monitoring probes and adaptability to the monitoring
requirements; and (v) a number of virtual entity placement
algorithms assisting the optimal data flow establishments.

In this paper, we present the implementation details of
VLSP and demonstrate its efficient operation over diverse
virtual network topologies. In our paper [23] there is a
discussion on the main VLSP architectural artefacts plus a
presentation of representative VLSP use-cases. The VLSP
open source solution is available at [24] and is not based on
any existing software stack, rather the whole system, including
a virtual infrastructure manager, a host-level supervisor, and a
lightweight virtual entity were designed and built from scratch.

A summary of the remaining paper follows: Section II
discusses the VLSP system design and implementation details.
Section III shows our evaluation results and discusses a number
of different use-cases we investigated experimentally based on
the VLSP codebase. Finally, Section IV concludes the paper.

II. THE VLSP SYSTEM

VLSP provides a complete environment and solution for
experimenting with scalable high-level management features.
It has elements from the service management level down to
protocol stack, including a tailor-made monitoring facility.
Consequently, we are able to experiment with a new and
complete management and control facility over virtual infras-
tructures based on our lightweight virtual entity resembling
both servers and routers. The VLSP architecture consists of
three main layers to provide a system that is both scalable
and modular for Virtual Infrastructure Management. Figure 1
depicts an overview of the architecture. The VLSP layers are:

1) the Application Layer which executes Management Ap-
plications that define the software components and net-
work functions of a network service together with their
configuration parameters and operations.

2) the Orchestration Layer which performs most of the
management and orchestration activities and is in charge
of: (i) managing the full lifecycle operations of the
virtual resources in the system, and (ii) allocating the
applications running on the virtual nodes.

3) the Infrastructure Layer contains both the physical ma-
chines hosting the virtual entities and a Host Controller
which works in a similar way to a standard hypervisor. It
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Fig. 1. Overall system architecture and components

manages the virtual resources, and is responsible for the
runtime operation of those virtualized resources and the
applications they host.

In order to manage the challenging and dynamic nature of
virtual infrastructures there needs to be a monitoring system
which collects data and reports on the behavior of both the
physical resources (e.g. cpu usage, memory usage) and the
virtual resources (e.g. virtual link level utilization). The moni-
toring data is sent to an Infrastructure Controller components,
whereby the monitoring information is used to take decisions.

A. Implementation

To validate our design, we created a working implementa-
tion of the architecture described above. The VLSP has been
implemented by University College London for the purpose of
testing and evaluating various aspects of managing Software
Defined infrastructures and highly dynamic virtual environ-
ments, and is available as an open-source software at [24]. The
VLSP consists of the management components plus potentially
a large number of virtualized entities, each running inside Java
Virtual Machines. The virtual entities execute on a number of
physical machines and are independent software elements that
communicate with each other via REST interfaces.

To highlight how these components are distributed across
the physical resources, consider a setup with 4 hosts. In
Figure 2 we depict how these components are placed and
how they interact. In the bottom left host the Infrastructure
Controller is executing. It includes the Service and Placement
Engine as subcomponents. The Infrastructure Controller is in
close collaboration with management applications such as an
Infrastructure Optimizer. The other 3 hosts each run a Host
Controller. The dashed line shows the control path from the
Infrastructure Controller to all of the Host Controllers. After
requests have been sent to create virtual routers, servers, and

virtual links, we observe a virtual topology that spans across
these 3 hosts, although any number of topologies can be
created across the hosts. The solid black line represents the
virtual links.
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Fig. 2. Mapping and allocation of elements to hosts

B. Lifecycle Management and Control

To start the whole VLSP system, we execute the Infrastruc-
ture Controller and pass in an XML file which has the config-
uration options for each particular run, specifying a Java class
called: usr.globalcontroller.GlobalController. The op-
tions include information such as the ports to listen on;
the hosts that the Host Controller is to execute on and
its associated ports; its monitoring elements; the place-
ment engine to use; and other virtual entity options. When
the Infrastructure Controller starts it attempts to setup
all of the monitoring elements and start all of the Host
Controllers on the specified hosts, this is a Java class
called: usr.localcontroller.LocalController. Once this
has been achieved the VLSP system is ready for experiments.

The interface between all the VLSP components uses
HTTP. All communicated information is transmitted using
REST and JSON descriptions. To maintain the lightness of the
system we use the monoid Resty jar library, which is only
120K. This compares to the commonly used, but fully featured,
Jersey library which is 1.5Mb. Some example REST calls to
the Infrastructure Controller from Management Applications
are shown in Table I. There are many more REST calls which
are all described in the associated documentation of VLSP,
available at [24].

Function HTTP Call Result

Create a router POST /router/ Router ID
List all routers GET /router/ List of Router IDs
Get router info GET /router/r Router info for ID r

Destroy a router DELETE /router/r Confirm router r is gone

Create a link POST /link/?router1=r&router2=s Link ID
List all links GET /link/ List of Link IDs
Get link info GET /link/i Link info for ID i

Delete a link DELETE /link/i Confirm link i is gone

TABLE I. EXAMPLE INFRASTRUCTURE CONTROLLER REST CALLS

The start up and shutdown of virtual routers is managed
by the Infrastructure Controller but is performed by the Host



Controller which resides on each host after receiving REST
calls. The Host Controller is also used to control the connec-
tion of virtual routers with virtual links. The Host Controller
behaves in the same way a hypervisor does in other virtualised
environments, and it also passes on Infrastructure Controller
commands to Routers. A virtual entity will be started on the
same physical machine as the Host Controller.

C. Monitoring

The monitoring software used in VLSP is called Lattice and
has been used for monitoring virtualised services in federated
cloud environments [25], for monitoring virtual networks [26],
and as the monitoring system for an information management
platform that aggregates, filters, and collects data in a scalable
manner within virtual networks [27] [16]. Lattice [22], which
is also an open-source software, has been proven to be ideal
for the task of collecting monitoring data for various types of
dynamic network environments.

Each virtual router has a set of probes which generate data
for virtual link usage, cpu / memory usage per thread, and
virtual applications resource consumption. This data is sent
to the Monitoring Engine of the Orchestration Layer which
processes it. This data is used by the Placement Engine for
determining where a new virtual router is placed.

D. Virtual Entity Networking

The virtual entity component (e.g. router or network
function) is implemented in Java. The routers have virtual
network connections to the other virtual routers they it directly
connected to, and exchange routing tables to determine the
shortest path to all other routers. A system of sockets and
ports is exposed with a DatagramSocket interface very similar
to standard “sockets”. Virtual applications can be run on the
virtual routers, thus acting as virtual servers or VNFs, and
these can listen to and send data on their associated virtual
sockets. Data packets are sent between routers and queued
at input and output. Datagrams have headers with a source
address, destination address, protocol, source port, destination
port, length, checksum and TTL. Many of the features of real
IP packets are replicated in the virtual domain. As such, we
can take existing Java software that runs on real hosts, and
run it on the virtual routers, with a small effort required for
porting in order to make the Socket code conform our virtual
DatagramSocket interface.

Virtual routers in the system send all traffic, including
routing tables and other control messages, via the virtual
network interface. Our implementation supports both UDP
and TCP communication with virtual and physical network
interfaces.

E. Probabilistic Experiment Control

Many experiments that are undertaken in the networking
domain are based on arrival rates that are taken from a
probability distribution. Within VLSP we have an event engine
that can generate events to create a router, destroy a router,
create a link, and delete a link, all based on probability
distributions. For any particular run we can specify these
distributions together with their associated parameters in an
XML configuration file. The options for the distribution are set

in a Type field as one of: Uniform, Exponential, LogNormal,
or PoissonPlus, matching well-known topology models. Fur-
thermore, we are providing pre-defined configuration files with
realistic topologies, e.g. for data centers.

F. Dynamic Programmable Control

A dynamic programmable control environment allows the
definition of scenarios, resources, or other software entity
parameters using appropriate functions. In our case, we use
the Clojure language [28] for the dynamic configurations. This
allows us to perform fully Software-Defined Operations using
a functional language that has an expressive representation of
the configuration settings, while being very brief.

In the following example, we define a linear topology with
n nodes and their associated links:

;;; Create linear topology
(defn topo-line

"Create a linear topology with a given name and size"
[name_val size]
(let [topo-name (if (symbol? name_val)

name_val
(symbol name_val)) ]

(if (< size 2)
(throw (Exception. "Size too small. Minimum size 2."))
(do

(topo-create-fn topo-name)
;; Create r0
(topo-add-router-fn topo-name (str topo-name "-" "r0"))

(loop [i 1]
(when (< i size)

(let [r-name (str topo-name "-" "r" i)
prev-r-name (str topo-name "-" "r" (- i 1))]

;; create router r-i
(topo-add-router-fn topo-name r-name)
;; create link r-i
(topo-add-link-fn topo-name prev-r-name r-name)
(recur (inc i)) ;; i will be incremented
)))

(eval topo-name) ) ) ) )

Calling (topo-line linear-example 10) defines a network
structure of 10 nodes and 9 links. This structure is only a
software representation of the virtual network. We have an-
other function the activates the network onto the infrastructure,
and hence deploys the virtual routers and virtual links. We
use Clojure for networks, for services, and also for static
configuration files.

G. VLSP Visualization

One of the management tools we have built for VLSP is
a Network Visualization tool. It takes a logical graph view of
the virtual topology, including the routers and the links, and
presents a visualization graph by using the graphviz tool.
From data held by the Orchestration Controller, a version of
the network is generated in the dot language that graphviz
uses. As dot is very flexibile, it is easy to create extensions
to the visualizations which include the virtual applications that
execute on the routers. Furthermore, we are able to present key
nodes in different shapes and colours in order to highlight the
different features of a topology. As an example, consider the
topology in Figure 3 which represents a partial snapshot from
one of the experiments in [29]. Those with a similar colour are
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Fig. 3. Snapshot from Network Topology Visualization Tool

logically connected for managing the same data streams, and
those nodes represented as a diamond shape are running a Data
Proxy application. It allows us to see how data management
applications are deployed across the whole topology.

Now the VLSP environment has been described, exper-
imental results derived from test runs undertaken on the
implemented infrastructure will be presented.

III. EXPERIMENTATION SCENARIOS

In this section we present our evaluation and validation of
VLSP for managing virtual entities. Some of this has been
presented in our paper [29], where we present two evaluation
scenarios in detail, whereas this paper has a more general
overview of the experimentation.

A. Deployment

Here we show: (i) the scalability, the flexibility, and the
adaptability of the VLSP for a diverse set of topologies and
network service deployments; and (ii) that VLSP can operate
with a wide range of network and service environments. In
all of our tests we used the following hardware: (i) 2 servers
with 2 Intel 2.5GHz CPUs (4 cores) and 8GB of memory,
(ii) 4 servers with 8 AMD Opteron 2.347GHz CPUs (4 cores)
and 32GB of memory, and (iii) 5 servers with 16 Intel Xeon
2.27GhZ CPUs (4 cores) and 32GB of memory.

We deployed various topologies across a set of servers
in our testbed, showing the rapid creation and removal of
topologies that can enable dynamic services. Our goal is
to highlight the following management aspects: efficient re-
source utilization, dynamic resource elasticity, SDI lifecycle
automation, and service placement automation. We see the
speed of creating virtual routers and virtual links, as well as
their deletion times. We measure the lightweightness of VLSP
through observing the router / link startup and deletion times
for creating a number of representative virtual topologies. We
created: (i) a 10 X 10 grid; (ii) a tree with a spanout of 4 and
depth of 4; and (iii) a tree with a spanout of 16 and depth of 2.

We programmatically created the topology descriptions using
the Clojure language. The function (topo-grid 10 10) creates
a 10 X 10 Grid, the function (topo-tree 4 4) creates a Tree
(4, 4), and the function (topo-tree 16 2) creates a Tree (16,
2). Any size grid, tree, or any other topology can be devised
and created by VLSP.

To demonstrate the distributed nature of VLSP which
operates over a number of physical servers, we deployed
each of the 3 topologies across all of our machines in the
physical test-bed. After 10 iterations each time, we gradually
decreased the number of servers by one, under the control
of the Orchestration Layer. The experiment stops when the
number of physical servers is too small to accept the required
number of virtual routers. In table II, we show the number of
virtual routers and virtual links in each of the three topologies.

Topology No of routers No of links
Grid (10 X 10) 100 188
Tree (4, 4) 85 84
Tree (16, 2) 17 16

TABLE II. TOPOLOGY SIZES W.R.T ROUTER AND LINK NUMBERS

Each experimental run starts with the creation of a new
network topology. During this time, we gathered the following
metrics for our analysis:

Router Startup Time - the time taken to start a virtual router.
This time includes the JVM creation time, the loading of
the relevant classes, and the time to initiate the required
elements to ensure the router is in a ready state.

Link Startup Time - the time taken to start a virtual link
between two virtual routers. This process includes the
negotiation between the routers to set up both ends of
the link and ensuring it is in a ready state.

After the topology is created, it is shut down to gather the
deletion times.

Router Deletion Time - the time taken to delete a virtual
router. Deletion includes stopping all executing virtual ap-
plications and shutting down all the virtual links attached
to that particular router. Deleting a link also requires
negotiating with the other end of the link to ensure its
disconnection and consistent state. Finally the JVM exits.

Across all of the tests, our average measurements were: (i)
router creation around 800ms, (ii) link creation time around
180ms, and (iii) router (plus link) deletion times around
30ms. The test runs have been executed 10 times to ensure
replicability of our observations. We saw that 10 replications
produced a very low standard deviation of the values.

B. Experimentation

VLSP has been used in many experimental situations that
have benefited from its flexibility, adaptability, lightweightness,
and scalability.

We have experimented with various placement algorithms,
more details of which can be found in our works [30], [31]
and [27]. The Placement Engine of VLSP is the management
component in charge of performing the actual placement of the
virtual entities and the application nodes they host, according
to the initial topology and the resource usage of the virtual
network elements. This is an important feature because, when



we configure a network or a service, given initial context
information, some of these parameters may change during the
course of the system’s operation and a reconfiguration may be
required to maintain optimized behaviour. Consequently, our
approach has a mechanism to achieve adaptation in a flexible
manner. The decision of the Placement Engine, which can be
changed at run-time under software control, is encoded in an
algorithm which can be either rather simple, such as counting
the number of virtual routers on a host, or it can be complex,
based on a set of constraints and policies that represent the
network properties.

A management application we also designed and imple-
mented is the Virtual Infrastructure Information Service (VIS)
[32]. VIS realizes logically-centralized information handling
for management applications, including optimization of infor-
mation exchange using the orchestration facilities of VLSP.
In general, any logically-centralized service or management
facility can be built on top of these abstractions. All the
facilities are distributed, but have the advantages of centralized
systems as well, i.e. the global view and holistic operation. A
Flow Controller optimizes the deployed data flows and aligns
their configuration parameters (such as routing policies) to
the global performance goals in the system and the locally
expressed requirements from the data sources and data clients.
The latter components set their requirements at the data flow
establishment phase. The Flow Controller balances the local
and global requirements using a negotiation heuristic that
considers the existing conditions in the network environment as
well. We have carried out a number of data flow optimization
experiments using VLSP, described in [23].

The VLSP has been used to implement an Information-
Centric Networking (ICN) testbed. Specifically, it has been
utilized in the implementation of the CURLING ICN algo-
rithm [33], which employs a hop-by-hop hierarchical content-
based publish-subscribe paradigm to content distribution. It
is the foundation of a proof-of-concept implementation of
CURLING (also known as the coupled approach) of the EU
FP7 COMET project [34] In CURLING, two main entities are
specified, namely the Content Resolution and Mediation Entity
(CRME) located at the control plane which is responsible for
resolving content request and the Content-Aware Forwarding
Entity (CAFE) located at the data plane which is responsible
for the correct delivery of the content towards content clients.
In the platform, they are implemented as applications on top
of VLSP’s virtual routers. These entities enforce the content
resolution protocol based on the provider route forwarding rule
over VLSP including one of the main ICN components, the
in-network caching capability.

Within the DOLFIN project [35], the aim is to optimize
the energy consumption within the confines of a single Data
Center and also across a group of Data Centers, based on
system virtualization techniques and the optimal distribution
and placement of virtual machines. To realize such a system,
we created a software Data Center using a VLSP topology
mapped over many physical servers. We then augmented the
VLSP with energy-aware monitoring, energy-aware resource
allocation, coupled with energy modeling, which gave us the
ability to model the amount of energy being used by a virtual
element. These extentions where integrated with a Smart Grid
system called Open ADR, which dispatches energy prices to

consumers. Using this system we were able to model the actual
cost of energy per Virtual Machine, cost of energy per host,
and cost of energy per DC.

IV. CONCLUSIONS

We introduced the Very Lightweight Software-Driven Net-
work and Services Platform (VLSP), which is specially de-
signed to meet the characteristics of managing flexible and
dynamic environments such as SDIs. It has integrated network
management and control operations for important software
defined elements (i.e. virtual routers, servers and network
functions) through a logically centralized element. We have
evaluated VLSP and shown that: (i) it is lightweight and
suitable for scalability and stability tests, (ii) it is an imple-
mentation allowing the evaluation of diverse scenarios.

VLSP achieved better simplicity and non-functional char-
acteristics over using a hypervisor running a standard virtual
machine and standard OS (i.e. improved scalability; lower
resource utilization; quicker startup speed; reduced heaviness;
eliminate the issue where most of the router functionality is
not needed; and more networking flexibility). Finally, VLSP
is fully distributed and modular. This has been achieved, as
the management components as well as the host controllers
and the virtual entities themselves can be deployed across any
number of physical hosts interacting via REST calls.

From the experimental usage of VLSP we have determined:

What is VLSP good for?
• Testing and evaluating alternative SDN / NFV scenarios
• Mid scale tests of network software written in Java (100s

and likely 1000s of virtual routers).
• Testing software robustness to “unexpected" network

conditions (sudden “rude" start up/shut down exposes
software deficiencies).

• Testing software robustness to unreliable networks.
• A compromise between simulation (realism questionable)

and large testbed (requires many physical machines).
• Comparing simulation with testbed results

What is VLSP not yet good for?
• It is not optimized for forwarding performance, compared

to a real router it routes packets at a slower speed and uses
more overhead (i.e. due to the focus on the support of new
network management and control features).

• It is difficult to support facilities and protocols that rely on
maximum bandwidth calculations, e.g. traffic engineering
algorithms estimating the link bandwidth.

• The direct interaction with or the driving of hardware
interfaces is out not currently addressed.

Finally, we plan to explore the usage of VLSP for flexible
service creation within the context of Software-Defined In-
frastructures, especially focusing on network service chaining
[36], [37]. This involves extensions of the VLSP with methods
and processes for continuous dynamic operation of services,
service composition, and aggregation of service blocks, includ-
ing service delivery based on orchestration, programmability
and automatic (re)deployment [38]. Further extensions include
augmenting the internal routing functions with flow table traffic
forwarding mechanisms to allow SDN style management.
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