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Abstract
In this paper we propose the use of the maximum entropy method to extract pricing
densities directly from the weather market prices. The proposed methodology can
overcome the data sparsity problem that governs the weather derivatives market
and it is model free, non-parametric, robust and computationally fast. We propose
a novel method to infer consistent pricing probabilities, and illustrate the method
with a motivating example involving market prices of temperature options. The
probabilities inferred from a smaller subset of the data are found to consistently re-
produce out-of-sample prices, and can be used to value all other possible derivatives
in the market sharing the same underlying asset. We examine two sources of the
out-of-sample valuation error. First, we use different sets of possible physical state
probabilities that correspond to different temperature models. Then, we apply our
methodology under three scenarios where the available information in the market is
based on historical data, meteorological forecasts or both. Our results indicate that
different levels of expertise can affect the accuracy of the valuation. When there is a
mix of information available, non-coherent sets of prices are observed in the market.
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1. Introduction

Weather fluctuations affect the economy both directly and indirectly. Even minor
weather changes often have significant impact on the day-to-day operations and rev-
enues of many businesses in sectors such as agriculture, energy, tourism, transporta-
tion and construction, Bertrand et al. (2015), Challis (1999), Hanley (1999). Extreme
temperatures significantly impact earnings in over 40% of industries, Addoum et al.
(2020). Similarly many businesses are sensitive to even small changes in weather. It is
estimated that in 2012, 3.4% of US GDP was affected by routine weather variation,
Zhou et al. (2019). A dry period could destroy farmers crops, and warm winters could
cost millions to energy companies, caused by the reduced energy consumption for heat-
ing. Investors around the world desire products that allow them to hedge against the
realizations of climate risk, Engle et al. (2020). Due to the recent economic crisis and
the increased weather volatility caused by climate change, the need for efficient and
effective weather risk management is evident, Stulec (2017), Weagley (2019), Engle
et al. (2020).

In consideration of the attractive characteristics of weather derivatives, it is clear
that their use can have significant managerial implications to a firm. As it is demon-
strated in Perez-Gonzalez and Yun (2013) the use of weather derivatives can lead to
higher firm value, investments, and leverage. In Buxey (1988) the importance of pro-
duction planning under seasonal demand is highlighted. Similarly, weather derivatives
can be used to create profitable investment portfolios for diversification purposes,
Alexandridis and Zapranis (2013), Gulpinar and Canakoglu (2017), Jewson et al.
(2005). In Buchholz and Musshoff (2014) it is shown that weather derivatives have
the potential to substantially affect and alter farm plans. The optimal utilisation of
weather derivatives by risk managers can provide a competitive advantage in the mar-
ketplace and increased profits, Chen and Yano (2010). Hence, an accurate and fast
tool for valuation of weather derivatives and for identification of inconsistent subsets
of market prices is essential for efficient and effective weather risk management.
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The weather derivatives market is a classic incomplete market, because the underly-
ing weather variables have no value, cannot be traded or stored. Despite the increasing
number of studies in weather derivatives pricing Cao and Wei (2004), Davis (2001),
Alaton et al. (2002), Benth et al. (2007), Benth and Saltyte-Benth (2013), Zapranis
and Alexandridis (2008), Alexandridis and Zapranis (2013) the market still lacks a
general accepted pricing framework. Furthermore, the market is characterized by a
lack of liquidity, which increases its level of incompleteness, and most observed prices
are theoretical market valuations or ranges, rather than traded levels.

In order to derive the option prices, often stochastic differential equations are used to
describe the dynamics of the daily average temperatures (DAT), Alaton et al. (2002),
Benth and Saltyte-Benth (2007, 2013), Benth et al. (2007), Alexandridis and Zapranis
(2013), Zapranis and Alexandridis (2008), Sun and van Kooten (2015), Zong and Ender
(2018). Alternatively, regime switching, Elias et al. (2014), Autoregressive Moving
Average, Gulpinar and Canakoglu (2017), Campbell and Diebold (2005), Castellano
et al. (2020) and Neural Networks, Zapranis and Alexandridis (2008), Cao et al. (2012),
have been proposed in the literature to estimate the temperature process. However,
modelling the DAT is not a straightforward process and various assumptions about
the temperature model and the noise-generating process are made. More precisely,
agents face the issue of model risk, since the estimation of the market price of risk
depends on the assumed model. Small misspecifications in the DAT model can lead to
large mispricing errors, Zapranis and Alexandridis (2008). Furthermore, it is usually
difficult to solve the stochastic differential equation in order to price the financial
weather products, and often it is impossible to find closed-form solutions for the pricing
equations. Additionally, one is faced with the problem of illiquidity and data sparsity
that characterizes this market. Finally, as a result of data unavailability, previous
studies model the underlying temperature process but do not proceed on testing the
accuracy of the forecasted contract prices against real market data.

In this study, we propose an alternative approach where we extract the pricing
probabilities directly from the market prices of temperature options, which avoids all
the aforementioned drawbacks. Our approach intends to add to the existing literature
for pricing and risk management, hence providing the more time-sensitive traders and
decision-makers with fast and efficient tools to re-consider these markets for their trad-
ing universe. Our proposed methodology is based on the maximum entropy methods,
Jaynes (1957), Borwein and Lewis (2000), Zhou et al. (2013). This is a very powerful
technique which needs only few market data points in order to extract the pricing
probabilities, and can be used for density reconstruction, Borwein et al. (1996), and
for the valuation of the prices of other option contracts traded in the market. Hence,
the maximum entropy approach naturally overcomes the problem of data sparsity. The
advantage of extracting the probabilities directly from the market prices is that volatil-
ity and other moments can easily be calculated independently of any particular model,
Hardle et al. (2015). Additionally these results can be incorporated to the portfolio
management/risk management/systematic trading tools for online decision-making.
The concept of entropy has been used with great success in various finance related ap-
plications, Abbas (2006), Cozzolino and Zahner (1973), Gulko (1999a,b, 2002), Gzyl
and Mayoral (2017), Judge and Mittelhammer (2011), Rajasekera and Yamada (2001),
Rouge and El Karoui (2000).

Due to their guaranteed asymptotic exactness Markov chain Monte Carlo (MCMC)
methods have become the mainstream followed approach, Gelman et al. (2013). For
example in Hardle et al. (2015) the Bayesian quadrature method has been applied
in order to derive the state price densities. Since MCMC’s can take very long to
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run and to converge, Variational Bayes (VB), is also becoming widely used because
of its tractability, detectable convergence, and parameter estimation performance in
practice, Jordan et al. (1999), Wainwright and Jordan (2008). However, our approach
improves over those methods because:

(1) Approaches such as the Bayesian quadrature need to specify prior assumptions
on the model parameters to overcome problems with data sparsity, while our
approach can provide estimates with very small numbers of observations without
imposing strict prior constraints. This is especially relevant as the number of
available points observable can oscillate significantly over time.

(2) The processing speed of our method to calculate densities allows for online
decision-making.1 Our method is extremely fast to run and does not need any
MCMC tuning nor convergence diagnostics, Gelman et al. (2013). This is a clear
contrast with MCMC-based quadrature methods, which require larger amounts
of computational time, plus performance of diagnostics of convergence. Speed of
processing makes our approach more suitable for automatization and embedment
into existing management and trading tools.

(3) Our method allows for range-based definitions of possible states of the underly-
ing, as further discussed in our motivating example - this aligns with weather
derivative decision-making, where the impact of different states of the nature
may be discretized (for example, when a range of temperatures can have similar
effect on crops).

These characteristics make maximum entropy methods highly suitable for
online/automatizable-decision making within the weather derivative pricing literature.

The main contributions of our approach are the following: we present a novel model-
free, non-parametric and robust approach to determine numerically the state prices,
or equivalently the implied pricing probabilities, for any prior physical probabilities.
The proposed method overcomes the data sparsity problem that governs the weather
derivatives market. Hence, an advantage of the method is that we do not have to
calibrate for model parameters, nor to provide prior knowledge about them, which
would potentially require constant model feedback. In addition, the maximum entropy
based procedure allows us to determine which data points (call or put contracts)
are more informative. To numerically implement the maxentropic methodology we
propose a market driven, systematic and intuitive discretisation procedure, in which
any prior information consisting of the physical probabilities of the market is integrated
in a natural way in the methodology. Furthermore, we decompose the out-of-sample
valuation error in two components. The first component shows the proportion of the
error that arises from the level of available meteorological information in the market
while the second one shows the proportion of error that arises from the temperature
model used to derive the prior physical probabilities.

The purpose of the paper is to introduce our new methodology, and provide illus-
trative examples from the motivating weather derivatives problem. The remainder of
the paper is organized as follows. Section 2 briefly presents the weather market. In
Section 3 the proposed maximum entropy method is presented. The data, numerical
examples and results are presented in Section 4. Finally, in section 5 we present our
concluding remarks.

1Computations can be performed in around 0.15 seconds with a 2.8Ghz dual core PC.
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2. The weather market

Weather can disrupt the operations and project schedules of various types of business,
Bowers and Mould (1994), Bowers (2001). Retailers have used weather-linked promo-
tions, such as weather rebates, to protect against adverse financial outcomes caused by
unfavourable weather, Caliskan Demirag (2013), Chen and Yano (2010). However, the
outcome of this strategy is unknown and can lead to significantly volatile returns. The
necessity to hedge adverse weather effects and unseasonal weather resulted in the cre-
ation of a new class of financial assets called weather derivatives. In general, weather
derivatives are designed to cover non-catastrophic weather events, i.e. high probability,
low risk events. Non-catastrophic weather risk is gaining importance as climate change
becomes more pronounced, Stulec (2017). Weather derivatives were developed to hedge
volume or quantity risk, rather than the price risk, Brockett et al. (2005). The payoff
of a weather derivative depends on the measurement of the underlying weather index.
Clearly, weather derivatives can provide superior hedging opportunities. The majority
of weather derivatives are written on temperature, and more precisely on the Heating
Degree Day (HDD) index. Hence, in this study we focus on temperature derivatives.
The weather market, although more recently stagnant, was a fast developing mar-
ket greatly affected by liquidity and the ability/willingness of traders to participate.
According to the Weather Risk Management Association the market grew by 20%
in 2010-2011, to a total notional value of $11.8 billion, and further understanding of
the uncertainty about weather trends or increased variability will potentially enhance
even further its expansion. The weather derivatives market has undertaken a move
toward OTC trading, vastly affected by the inability to maintain sufficient market
participation to justify exchange-traded trading.

Temperature derivatives are settled in three main temperature indices: the HDDs,
the Cooling Degree Days (CDDs) and the Cumulative Average Temperature (CAT).
The CAT index is the sum of the DATs over the contract period. HDD is the number of
degrees by which the daily temperature is below a base temperature, Tbase, and CDD is
the number of degrees by which the daily temperature is above the base temperature.
The base temperature is usually 65 degrees Fahrenheit (or 18oC). A HDD measures
the extra energy needed for heating in a cold day. Similarly, a CDD measures the
extra energy that is needed for cooling in a hot day where. It is assumed that no extra
energy is needed when the temperature is 65 degrees Fahrenheit (or 18oC). HDDs and
CDDs are accumulated over a period, usually over a month or a season. The value of
the three indices for a measurement period in the time interval [τ1, τ2] is given by the
following expressions:

CAT (τ1, τ2) =

τ2∑
t=τ1

T (t) (1)

HDD(τ1, τ2) =

τ2∑
t=τ1

max
(
Tbase − T (t), 0

)
(2)
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CDD(τ1, τ2) =

τ2∑
t=τ1

max
(
T (t)− Tbase, 0

)
(3)

where the DAT, T (t), is the average of the daily maximum and minimum temperature,
T (t) =

(
Tmaxt + Tmint

)
/2.

Focusing on a specific temperature index given by equations (1)-(3) we are interested
in deriving the value of a temperature derivative. For a measurement period [τ1, τ2]
the value of a forward (or futures) contract can be derived by:

e−r(τ2−t)EQ
[
Index− FIndex(t, τ1, τ2) | Ft

]
= 0

where Index is the CAT, HDD or CDD, FIndex is the value of a contract written on
the specific index, r is the risk-free interest rate, Ft is the filtration (i.e. all historical
information) at time t ≤ τ1 < τ2 and Q is the pricing probability. Since FIndex is
Ft-adapted, we derive the value of the contract to be

FIndex(t, τ1, τ2) = EQ
[
Index | Ft

]
. (4)

Consequently, the European temperature call option price written on the futures price
with a strike price KIndex at exercise time τ ≤ τ1 is defined as2:

CIndex(t, τ, τ1, τ2,KIndex) = e−r(τ−t)EQ
[
max

(
FIndex(t, τ1, τ2)−KIndex, 0

)
| Ft

]
. (5)

The majority of weather derivatives are written on a temperature and specifically
on the HDD index. In this study we focus only on this class of weather derivatives,
although our methodology can be easily adapted and applied in any weather derivative.

3. Methodology

3.1. The market model

In this section we present the market model. More precisely we focus on temperature
derivatives written on the HDD index. The first step is to discretise the temperature
index into K non-overlapping intervals:

[X0, X1), . . . , [XK−2, XK−1), [XK−1, XK ]

There will be a market state associated to each temperature index interval. The
values X0 and XK can be chosen flexibly using historical data, in such a way that
the probability of the temperature index to be greater than XK or lower than X0 is
effectively zero. Average temperatures will be sufficiently bounded in practice, and

2The time τ is the exercise time of the option. At that time, the holder has the option to buy a futures

contract with a measurement period [τ1, τ2]. In reality τ ≤ τ2, however, the most interesting case is when

τ < τ1. Otherwise, the transaction takes place after the start of the futures contract and the measurement
period. Please see Chapter 6 of Alexandridis and Zapranis (2013) for a rigorous treatment of these cases.
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our method does not rely on actual estimation of plausible average temperatures, so a
practical solution is to determine the lower and upper bounds that would be physically
impossible to observe in the geographical area. Note that the above partition still
reflects the continuous nature of the underlying weather variable.

Second, we need to estimate the reference (physical) probabilities

pj = P (Xj−1 ≤ X < Xj), j = 1, 2, . . . ,K. (6)

where X is the temperature index at the time horizon of interest, i.e. the probability of
the temperature index computed using a preferred temperature model3 to lie between
Xj−1 and Xj . Next, we choose appropriate “levels” X̂j such that X̂j occurs when
the actual temperature index is Xj−1 ≤ X < Xj . As the temperature ranges are
homothetically related to the HDD or the CDD, the simplest choice is to take the
levels to be the mid points of the ranges as the value of the asset in the corresponding
market state. The levels are not to be confused with market prices. Their role is to
determine the cash flow associated with the available options.

Fixing “today” as t = 0, we consider all temperature options on the HDD index
that have the same maturity day, t = T . We consider the mid points of the intervals
as the possible outcomes of the temperature index (HDD) for the measurement period

[τ1, τ2], and denote as Ŝj the possible values of the underlying in the market.
Table 1 describes the characteristics of the data. The first row lists the market

states. In the second row the asset level that characterizes each state is presented,
while in the third row we list the corresponding ranges. Finally, in the last row the
physical probabilities are listed. As shown in Section 4, we use three different sets of
physical probabilities to test the robustness and stability of the performance of the
proposed methodology.

[Table 1 about here.]

In this market there exist both European call and put options, where the underlying
asset is the price of a futures on the HDD temperature index. Our aim is to determine
the pricing probabilities that are used by traders to value these options. For this
purpose, the maximum entropy method will be used. Although not of focus in this
study, a method that can reconstruct the put and call curves in full, such as the one
proposed in this manuscript, automatically unveils the no-arbitrage price, which may
not be available either.

Suppose for the sake of definiteness we consider M < K European call options with
strike prices Km = Sjm , where {j1, . . . , jM} ⊂ {1, . . . ,K} and K is the number of
intervals. Observe that we are interested in the case in which there are more market
states (K) than market data (M) in order to have an interesting inverse problem to
solve.

The observed price is given by the discounted expected payoff. Thus, the problem
that we want to solve consists of determining the probabilities {qj , |j = 1, . . . ,K} such
that

πm = e−rT
K∑
j=1

qjO
(
Ŝj ,Km

)
m = 1, . . . ,M (7)

3For example one might use any of the temperature models for weather derivatives pricing proposed in
Alexandridis and Zapranis (2013), Benth and Saltyte-Benth (2013) or Alaton et al. (2002)
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where M is the number of option prices used, Km the corresponding strikes,

O
(
Ŝj ,Km

)
is the payoff of the m−th option (which will be either a call or a put

of European type), and πm is its observed price.

3.2. The maximum entropy method

In this section we describe the maximum entropy method that we use in order to solve
(7). This method was originally proposed in Jaynes (1957) and the mathematical
details are worked out in Section 3.3 of Borwein and Lewis (2000). To continue, first,
we rewrite (7) as

πm =

K∑
j=1

ρjO
(
Ŝj ,Km

)
pj , m = 1, . . . ,M (8)

where ρj is the density of the pricing probability measure q with respect to the proba-
bility measure p. Note, that the discount factor in (7) is dropped in (8) for simplicity.
If we assume a constant interest rate then we can simplify the notation by making the
discount factor part of the option prices by replacing πm with erTπm.4

The constraint for ρj , j = 1, ...,K to be a density (or equivalently for q to be a
probability) is:

K∑
j=1

ρjpj = 1 (9)

Consider the set D = {ρj : j = 1, . . . ,K} satisfying (8) and (9). Then, D is a closed
and convex (in RK) set. We can then select a point from within that set by solving
the following optimization problem

max
ρ
H(ρ) = −

K∑
j=1

ρj ln ρjpj (10)

s.t. constraints (8) and(9) are satisfied

The solution is given by

ρ∗j =
1

Z(λ∗)
exp

(
−

M∑
m=1

λ∗mO
(
Ŝj ,Km

))
(11)

where the normalization factor Z(λ) is given by

Z(λ) =

K∑
j=1

exp

(
−

M∑
m=1

λmO
(
Ŝj ,Km

))
pj . (12)

4Note, that we assume a constant interest rate for simplicity however this is not restrictive for the proposed

method.
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calculated at λ∗. The λ∗ is computed minimizing the “dual entropy”

Λ(λ,π) = lnZ(λ) + 〈λ,π〉 (13)

as explained below.

3.2.1. Heuristics of the duality argument

To understand where (11) comes from and the connection between the maximization
of H(ρ) and the minimization of (13), we begin by observing that for any two densities
ρ(1) and ρ(2), an application of Jensen’s inequality yields

K∑
i=1

ρi(1) ln

(
ρi(1)

ρi(2)

)
pi ≥ 0,

with equality occurring whenever ρ(1) = ρ(2). Now, let ρ(1) = ρ satisfy the con-
straints (8)-(9), and let ρ(2) = ρ(λ) be given by (11) computed at an arbitrary
λ ∈ RM . An application of the inequality yields

K∑
i=1

ρi ln

(
ρi

ρi(λ)

)
pi = −H(ρ) + Λ(λ,π) ≥ 0.

The entropy H(ρ) of any density ρ satisfying the constraints is always bounded above
by the entropy H (ρ(λ)) = Λ(λ,π) of a density of the type ρ(λ). The problem is to find
a λ such that the density ρ(λ) satisfies the constraints. Note as well that the first order
condition on λ∗ to be a minimizer of Λ(λ,π) is for ρ(λ∗) to satisfy the constraints,
and therefore to maximize the entropy. Furthermore H(ρ(λ∗)) = Λ(λ∗,π).

The key step in the maxentropic procedure is the minimization of the dual entropy
described by (13). A modified Newton algorithm is carried out, Lange (2010). The
(fast) algorithm stops when the gradient of the function is less than 10−6. Finding the
minimizing vector λ∗, the pricing density is obtained according to equation (11), and
consequently the pricing probabilities can be determined. In all cases the condition∑

i ρipi = 1 of constraints (9) holds. Each optimization took, on average, around 0.15
seconds in R to derive the pricing probabilities, making this tool suitable for online
monitoring/pricing and trading within these markets.

To complete, we remark that equation (11) can be used for the computation of any

derivative with payoff f(Ŝj) at time T by computing the expected values

π(f) =

K∑
j=1

ρ∗jf(Ŝj)pj . (14)
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3.3. Boundedness of dual entropy function

In this section we present more analytically the case where Λ(λ,π) can be unbounded
below. To understand this, first we write the dual entropy function as

Λ(λ,π) = ln

 K∑
j=1

e−〈λ,(Oej−π)〉


where ej are the standard basis vectors for RK , and O is the payoff matrix where Om,j
denotes the payoff of the m−th option in the j−th state.

Lemma 3.1. If there exists a λc ∈ RM such that 〈λc, (Oej − π)〉 > 0 for all j =
1, . . . ,K, then the dual entropy function is unbounded below.

Proof. Suppose that such a λc exists and let m = min{〈λc, (Oejπ)〉 | j = 1, . . . ,K} >
0. Then for g > 0,

Λ(gλc,π) ≤ ln
(
Ke−gm

)
= lnK − gm

which tends to −∞ as g → ∞. Therefore, along λc the dual entropy is not bounded
below and the minimum of Λ(λ,π) on RM does not exist.

Remark. If we think of O as (the matrix of) a linear mapping O : RK → RM , and
any probability p as a point in the simplex P := {p ∈ RK |

∑
pj = 1}, then the possible

price vectors are in the points in O(P). If Lemma 3.1 holds, then π /∈ O(P). This is
because π and O(P) are separated by the hyper-plane defined by λc, as indicated in
the Lemma 3.1. In this case we can say that some prices have not been consistently
assigned.

4. Results

This section is separated into two parts. In the first part we describe the data utilized
to illustrate the methodology, and in the second we present a summary of the results
of applying the maxentropic technique for a few stylized examples.

4.1. The market data

We use CME options and futures daily closing prices, written on the temperature
HDD index as measured in the meteorological station in New York. We focus on New
York since it is the biggest temperature market with volume around 20% of the total
market volume. The data availability ranges from 6/3/2006 to 30/11/20105.

For this study we are interested in examining whether our maximum entropy ap-
proach can extract the pricing probabilities and whether we can use these probabilities
in order to value new (unobserved) contracts. Additionally, we want to examine the
effectiveness of the method by decomposing the out-of-sample valuation error in two
components. There are two ways in which the level of information can affect the pricing.

5The high cost involved in obtaining historical weather derivatives prices prohibit us from using more recent
and diverse data.
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First, meteorological forecasts can be used in order to approximate the temperature
index. Second, when temperature derivatives are traded before the measurement pe-
riod, and meteorological forecasts are not available, advanced statistical models can be
used for forecasting the DAT and hence the HDD index. We assume different scenarios
in order to examine the performance and robustness of the proposed framework.

First, since meteorological forecasts are not accurate for more than 10 days, Alexan-
dridis and Zapranis (2013), Wilks (2011, 2002), we examine the performance of the
maximum entropy method with 3 different remaining times to maturity. More pre-
cisely, we apply our method: 1) before the contract’s measurement period; 2) at the
beginning of the measurement period; and 3) in the middle of the measurement pe-
riod. Usually weather derivatives are monthly contracts. In general, traders are not
very active long before the measurement period. However, as we get closer to the
measurement period, trading becomes more active. In the first case, accurate mete-
orological forecasts are not available for the traders. Therefore, their decisions are
based solely on historical data (or seasonal forecasts). In the second case, we set the
beginning of the measurement period as the first 1-5 days of the contract’s measure-
ment period. Therefore, meteorological forecasts are available for some days during the
measurement period but not until the end of the contract. In the last case, we define
as middle of the measurement period the last two weeks of the measurement period
(middle of the measurement month). Hence, meteorological forecasts are available for
all days until the maturity day.

Second, we assume three different scenarios in the computation of the physical prob-
abilities described in section 3.1. The first one corresponds to the scenario where all
market states have an equal probability (EQP) to occur. The second set of probabili-
ties corresponds to a simple model often used by practitioners, namely the Historical
Burn Analysis (HBA) method. In other words, by studying the possible HDD out-
comes in the previous 30 years we compute the corresponding probabilities for each
market state6. Finally, the last set of probabilities corresponds to a more advanced
model. More precisely, a CAR(p) model proposed by Benth et al. (2007) is estimated,
and then it is used to forecast the DAT and the HDD index for the corresponding
period of interest. This analysis will help us evaluate the robustness of the proposed
method and its dependence on the initial assumption of the physical probabilities.

The above scenarios examine roughly all the possible combinations of the availability
of meteorological forecasts based on the remaining time to maturity and of the physical
probability distributions based on the complexity of the temperature model.

The weather market is characterised by data sparsity and lack of liquidity. We
want to examine the number of contracts that are needed in order to extract pricing
probabilities. For each day and dataset, we consider all the contracts with different
strike prices but with the same maturity. We illustrate our methodology with a sample
of fourteen datasets, as considering the both the number of strike prices and the set of
probabilities the total number of scenarios that we analyse grows exponentially. More
precisely, as it is presented in the next section, for these fourteen datasets we examine
8,214 different scenarios.

In Table 2 the datasets are presented. This includes the day t where our methodology
is applied, the maturity date, and the number of available calls and puts. We do not
include details of each of the 8,214 optimizations obtained for each subset within those
datasets, as reporting that would be prohibitive. Instead we will provide some stylized
examples of results. The purpose of these datasets is to provide an illustration of

6For an analytical description of the HBA we refer to Alexandridis and Zapranis (2013).
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the methodology, rather than a full representation of the weather derivatives market
characteristics.

[Table 2 about here.]

4.2. The market states

In this section we will describe the market model for the aforedescribed datasets. More
precisely, we will present a description of the underlying market model. As described
in Table 1, first we are interested in the number of states, along with the range of
values of the HDDs, and the level that characterises each state. Second we need a set
of physical probabilities for each state. As explained in the previous section, we will
use three different sets of probabilities representing a naive, a semi-advanced and a
state of the art temperature model. Third, we need a collection of European options
specifying their types, strikes and prices. Due to space limitations we present only two
cases that exhibit typical behaviour: using 3 or 4 options we were able to obtain the
pricing probabilities that reproduce the market prices of the remaining options in the
market not used as input for the proposed maxentropic procedure. All 8,214 cases are
available on-line in the supplementary material of this paper7.

As it is described in Table 2 the difference between some datasets is the time at
which the physical probability is known, and the time at which the data about the
price of the option was collected, which influence the price considerably. For example
when the remaining time to maturity is just a couple of weeks, future weather is more
certain.

In Table 3 we describe the data behind the market model for contract 1, which has
10 states and 6 assets. In Table 3 the level and range of each state is given, as well as
the three different sets of probabilities. A closer inspection of Table 3 reveals that the
three sets of probabilities are significantly different.

[Table 3 about here.]

To calibrate the pricing probability we consider the collection of options of the
European type that are available in the market at the day of interest, e.g. 20/11/2007,
which is before the measurement period of the contract. The details of the options are
presented in Table 4.

[Table 4 about here.]

In Table 4, the types of the options are listed in the first row, and the strikes and
prices are defined in the following two rows, respectively. In the next section we will
use a subset of the available options to calibrate the pricing probabilities, and then use
those probabilities to obtain further option prices of different strike prices, including,
but not limited to, those not used during the calibration. To examine the consistency
of the prices we compare the predicted price of the options not used for calibration
versus their prices as quoted in the market.

Let us label the options from left to right according to the first row of Table 4, and
denote their payoff at the exercise time by Oi(Ŝj ,Ki), where Oi(Ŝj ,Ki) = (Ŝj −Ki)

+

if the option is a call or Oi(Ŝj ,Ki) = (Ki − Ŝj)+ if it is a put. Table 5 presents the
payoffs of all options depending on the strike price and the state of the market.

7Full set of results available online as supplementary material.

12



[Table 5 about here.]

Note that in this case there are only 6 assets while there are 10 states. Thus the
(constrained) linear problem (8) is quite undetermined. As it is shown in the next
section, we do not even need all the equations to determine the pricing probabilities
consistently.

Next we consider the 8th dataset. This refers to the same contract as dataset 7, but
with different remaining time to maturity. This contract is very interesting since the
final outcome of the HDDs is significantly different from the historical average.

In this case we have nine states and there are nine options available in the market.
The dataset for this case is displayed in the next three tables. In Table 6 we specify the
underlying market model. The available options traded in the market together with
their prices and strikes are presented in Table 7. Finally, in Table 8 the payoffs of the
9 options for the different states are presented.

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

4.3. Summary of results

4.3.1. In-sample

As it is described in Section 4.1 we consider fourteen datasets to illustrate our methods.
The number of available options varies from 6 in the first dataset to 9 in the last one.
For each dataset we consider all possible subsets of the options and their prices. Using
the physical state probabilities as reference, we determine the pricing probabilities for
each subset. Next, using the estimated pricing probabilities we compute the option (call
and put) prices for a fine grid of strikes. Finally, we examine the predictive power of the
methodology by predicting the price of the options not included in the data (sub)set.
We repeat our methodology for the three different sets of physical probabilities.

As it was expected the accuracy of the prediction of the option prices varies de-
pending on the number of options used, the subset and the selected options within the
subset.

In the cases in which the dual entropy was bounded below, usually 4 options (total of
puts and calls observed) were sufficient to completely characterize the pricing measure
in a consistent and accurate fashion, and provide a full representation of both put and
call curves.

Next, we analyse the results obtained by dataset 1. The data described in Tables 3
– 5 were used. In order to derive the risk pricing probabilties, for this particular set,
we consider a subset of two puts and two calls with strike prices of 710, 760, 825 and
850 respectively.

[Table 9 about here.]

We can compute the price of any derivative using those 4 options. First, we want
to confirm whether the prices in the market are reproduced.

Figure 1 shows the price of the options computed using the pricing probabilities
shown in Table 9. We estimated three sets of prices, one for each set of physical
probabilities, and proceeded to reconstruct the prices of the remaining options (marked
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by dots), whereas the predicted prices of the options are marked by circles. Figure 1
reveals that the proposed method can reconstruct the option prices and can be used
for valuation of the remaining options. The results are similar for the three sets of
probabilities indicating the robustness of the proposed methodology.

[Figure 1 about here.]

The second case that we present corresponds to dataset 8. The market data for this
case was detailed in Tables 6 – 8. Using the three options with the highest strikes as
data, we applied the proposed maxentropic method and obtained the pricing proba-
bilities presented in Table 10.

[Table 10 about here.]

Next, in Figure 2 the curves of the option prices are presented. The description of
the panels is as above. From Figure 2 it is clear that using only three options, we can
confirm consistency of the valuation of the remaining six options. A closer inspection
of Figure 2 reveals that using physical probabilities derived from the CAR model we
obtain a more accurate valuation.

[Figure 2 about here.]

4.3.2. Out-of-sample

In Table 11 we present the out-of-sample mean absolute distance (MAD) between the
fitted curve and the options observed but not used for fitting, as a function of the
probability and the number of options used for fitting across sets. Our results indicate
that using only one or two options for fitting produces large out-of-sample pricing
errors. For datasets 1-3, 9 and 11 EQP is best for small number of options, but as the
number of options used is increasing, the results become similar for all the sets of initial
probabilities. On the other hand for datasets 4-8, 10 and 12-14 the CAR and HBA
probabilities produce the lower out-of-sample pricing errors. However, the differences
between the three methods, especially if three or more options are used, are very close
to each other. This highlights our initial claim that our approach can provide accurate
estimates even with a very small number of observations and without imposing strict
prior constraints. The results in the rest of this section and in the simulation study
presented in section 4.5 show that the proposed method is model free, non-parametric,
and robust.

The above results are confirmed by Table 12. Table 12 groups the datasets by
contract. Hence, we can isolate the error in MAD that arises from a specific contract.
For the first contract (datasets 1+2+3) the EQP produces the lowest error followed by
CAR and HBA. On the other hand, for the second (datasets 4+5+6), third (datasets
7+8), fourth (datasets 9+10+11) and fifth contract (datasets 12+13+14) CAR and
HBA produce lower errors while the highest MAD is obtained when EQP is used. It
is worth mentioning that for both the first and the fifth contracts the realised HDDs
indices (817.5 and 872 for the first and fifth contract respectively) are very close to
the historical average of the last 30 years which are 837.5 and 831 respectively. On
the contrary, the realised HDDs index for the second contract is only 467 while the
historical average is 505.9. Finally, for both the third and the forth contracts the
realised HDDs indices (672.5 and 850 respectively) are significantly lower than the
historical average of 764.2 and 1003 respectively.

Finally, Table 13 represents the MAD between the fitted curve and the observed
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prices, not used for fitting, across converging sets of the same dimension, i.e. sets with
the same number of observations used for fitting. The grouping was done column-
wise by combining datasets 1+4+9+12 (first group), datasets 2+5+7+10+13 (second
group) and datasets 3+6+8+11+14 (third group). This grouping will help us isolate
the time effect and analyse whether it affects the accuracy of the pricing versus other
observed prices. In other words, in the first group all contracts are traded before the
measurement period when meteorological forecasts are not available. In the second
group all contracts are traded at the beginning of the measurement period while the
third group contains all the contracts that are traded in the middle and near the end
of the measurement period.

A closer inspection of Table 13 reveals that CAR probabilities appear to be more
consistent for the reconstruction of the observed option prices not used for fitting,
followed by HBA and EQP. Moreover, when using four or more options all methods
produce similar out-of-sample MADs. In fact it appears that using 4 or 5 options for
fitting is the optimal since more than that, for our dataset, options that are not coher-
ent with each other are included, which increases the likelihood of non-convergence.
This aligns with the natural sparsity in the weather derivatives markets, where ob-
serving large numbers of market prices is rare. We observe that the MAD when the
CAR probabilities are used is decreasing at a much faster rate. Finally, if 3 or more
options are used all methods give very similar results indicating that the proposed
method can extract the pricing densities without depending strictly on the accuracy
of the prior physical probabilities.

Even under the (strong) assumption that prices are coherent between each other, the
benchmark MAD under perfect fit would be 0.25, given the integer-based granularity of
the premium data in the exchange (any observed price X could be any value between
X-0.5 and X+0.5, with an expected absolute error of 0.25 if we assume they are
uniformly distributed in that range). For example, the mean absolute distances in the
three plots in Figure 2 are 1.40, 0.49 and 0.66 for HBA, CAR and EQP respectively
indicating that option prices were, on average, only 1.15, 0.24 and 0.41 away from the
benchmark.

Assuming market pricing being coherent, one might expect that as we get closer to
the maturity date the accuracy of our pricing will increase, with curves fitting better
out-of-sample observed prices. On the contrary, if we expect lack of coherence, it will
manifest itself most often during times when there can be disagreement about the in-
puts and models, probably at the beginning of the measurement period, where there is
still a number of potential ways in which the information available is used. Indeed our
results in Table 13 confirm this. The first and the third group have smaller errors. For
contracts traded in group 1 traders rely on historical data, while for group 3 traders
rely mostly on meteorological forecasts. On the other hand for the second group some
meteorological information is available but traders also have to rely on historical data.
The mix of information in group 2 also means higher room for subjective interpreta-
tion/valuation by ad hoc approaches. Uncertainty may be higher when the volatility
from all information sources is higher. This scenario is expected in the beginning of
the measurement period where there is room for subjective approaches by traders and
not before, where most of the information arises from historical data, or at the end
of the measurement period, where most of the information arises from meteorological
forecasts. Hence the second group is the one where most diverse pricing can occur,
while there may be more coherence in groups 1 and 3, i.e. more of a “standard” ap-
proach taken by traders versus a higher set of inputs that could be used when pricing
during periods of group 2. Inconsistent sets of market prices are a reality of life, and
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identifying them opens the gate for arbitrage opportunities.

[Table 11 about here.]

[Table 12 about here.]

[Table 13 about here.]

4.4. Discussion on unboundedness

Note that in all cases we were dealing with an undetermined linear system of equations
subject to convex constraints. Data will often contain option prices that are inconsis-
tent between them. This induces unboundedness in the dual entropy, but it is not
a problem nor does it preclude our method from finding a solution. For example, in
all 2,339 (28.5%) sets where the dual entropy was unbounded, we found a bounded
solution when a subset of the options was used for fitting. This is an expected out-
come and it has the added advantage of helping the agent identify options which are
not consistently priced between themselves. For our particular dataset, the percentage
of converging sets is negatively correlated to the number of options used for fitting
(100%, 97%, 87%, 65%, 33%, 7%, 0%, 0% and 0% for 1, . . . , 9 respectively), indicating
that multiple options were potentially mispriced. Note that mispricing under exchange
constraints can happen even if options are priced correctly. This can be a consequence
of the observable granularity of prices in the exchange (for example two options with
different strike may have the same observed price; the exchange does not admit dec-
imal granularity in the pricing, and a theoretical price of 1.76 would be observed as
the same value as a theoretical price of 1.99). Also, as a result of the same granularity
constraint, a drop of 1 unit in the strike can be accompanied by 1 unit drop in the price
for every out-of-the-money (OTM) option, which would seem counter-intuitive. Our
method is able to extract a solution by simply sampling from subsets of the observed
set.

Out of the
(
9
2

)
= 36 sets in dataset 8 containing only 2 options, our algorithm

converged in 35 sets. The set where convergence was not achieved was the case where
only the 640 and 650 puts were used (first and fourth options in dataset 8). In our
context, we use the Barzilai and Borwein (1988) algorithm to numerically minimize
the Entropy function and by convergence we mean it in the Bayesian sense of the
Markov Chain Monte Carlo to the Ergodic distribution. Convergence of the Barzilai
and Borwein (1988) algorithm does not depend on the probabilities used, but on the
characteristics of the set of options used. For each set of options comprising a given set,
if that set did not converge, i.e. the entropy problem didn’t have a finite solution, there
was a subset of options of that set which would converge. This is achieved by simply
sampling within the original set, to capture a smaller subset with consistently-priced
options, which will always provide a solution. Additionally note that this problem is
most likely to appear with deep OTM options, where mispricing is more often following
the aforementioned exchange-imposed granularity. Note, for the aforementioned two
options, that a choice of λ = (−2.5, 1), for example, aligns with the condition in Lemma
3.1 for the unboundedness of the entropy function when using solely these two options
for the optimization. We found that often unboundness occurs when OTM options too
close to each other (and of the same nature, whether puts or calls) are included in the
optimization. These two options, for example, are the ones with the lowest premium
in dataset 8.

In the remaining 5,875 (71.5%)cases, the method provided us directly with a so-
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lution. We have mentioned in Section 4.3 that in most cases only 4 options were
sufficient to completely characterize the pricing measure in a consistent and accurate
fashion. This is an asymptotic result, as described in Gzyl (2017). When the number
of observations increases, the entropy value decreases and converges to its true value.
This implies that when we are close to the minimum value of the entropy, its value
does not change much when we add an additional data point. This result is based on
the reported experiment that included all 8,214 different combinations of options over
which the model was calculated. As indicated earlier, we achieve convergence in 65%
of the times with only 4 options. This is what we also observe in our simulation study
which we present in the next section.

Additionally, consistency among prices is a key factor. If more options are available,
and the prices are not consistent among them, bootstrapping subsets of options that
converge is a possible solution. Then, uncertainty about the curves could be measured
with each subset providing a different, valid solution. However, we do not have a
theoretical quantification for this relationship, since it will probably be determined by
the consistency among prices rather than the absolute number of observed prices. As
liquidity increases, we expect prices to be more consistent and therefore higher rates
of convergence would be observed. However, the relationship between the amount and
type of inconsistency of observed prices and the convergence of the model is not trivial
to explore from a theoretical standpoint.

4.5. Simulation study

In the marketplace, different classes of weather derivatives are available. The prior
model for the physical probability might be different for each class of weather deriva-
tives and as a result it might have an impact on the extracted pricing probabilities.
In the previous section we have shown that the proposed methodology is robust to
different physical probabilities. Furthermore, two of the methods are “no method” at
all: namely, the EQP and the HBA.

Note that the role of the prior physical is ancillary while we estimate a density
(maxentropic probability/physical probability). In the option valuation stage the final
probability as it appears in (8) is used. More precisely, the density ρ∗ is multiplied by
the physical prior p to obtain the maxentropic probability ρ∗p of the state which in
turn is used to compute the option prices.

In this section we conduct a simulation study to assess the sensitivity of our frame-
work to the prior probabilities. It is important to note that the purpose of our study is
to reconstruct accurately the unknown options curves. Hence, in this simulation study
we examine the distance between the observed out-of-sample options prices that were
not used for the fitting of our method and the reconstructed option prices. We achieve
this through the following simulation:

(1) Choose a dataset i where i = 1, .., 8
(2) Choose of subset of observed options
(3) Calculate the MAD for the HBA, CAR and EQP sets of probabilities following

the procedure described in the previous sections
(4) Generate 1, 000 simulations of possible physical probabilities P where P ∼

Dirichlet(1/n, ...1/n) which is centered around the EQP vector and n is the
number of options in the selected dataset.

(5) Calculate the MAD for each simulation.
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Note that the variance in the probabilities P is very large and we are able to explore
the n−dimensional space of physical probabilities for each combination of dataset and
subset of observed option prices. However, the above approach induces high levels
of noise and it will generate many sets of physical probabilities that are highly non-
informative or not possible in reality. We expect to observe the largest errors in the
reconstructed curves in these sets.

Figure 3 shows the distribution of the MAD under a non-informative Dirichlet prior
on the model probabilities. For illustration reasons we focus on dataset 8 and we
select 4 options, 2 calls and 2 puts for fitting. Then we try to value the remaining
5 options. We repeat our method for all three methods, i.e. we compute the MAD
for the EQP, HBA and CAR physical probabilities. We choose to present dataset 8
because we observe a large difference between the realised and the historical average
HDDs. Hence, we expect the worst performance to occur in this dataset.

The values for MAD for HBA, CAR, and EQP in Figure 3 are represented by
a circle, a triangle, and a diamond, respectively, at the x-axis level. The histogram
represents the distribution of the MAD for the simulations.

A closer inspection of Figure 3 reveals that the reconstructed curves are somewhat
affected by the quality of the physical model behind the derivation. However, it is
noteworthy the resilience of the method to the choice of physical probabilities. Even
when generating them from a highly non-informative model (centered at EQP and
with high levels of noise), the reconstructed curves have similar values of MAD to
those coming from more informative physical density choices. In all cases the model
converged, meaning that convergence was not dependent on the physical model, but
only on the observed prices, confirming our analysis in Section 4.4 that coherence
between observed prices is the key factor for convergence of the method.

For this particular example, HBA and EQP appear to provide similar MAD levels,
while CAR is slightly larger. However, all three are better than the great majority
of random probability draws, many of which led to very extreme physical probabil-
ity values which are highly implausible caused by the high variance of the proposed
Dirichlet distribution.

[Figure 3 about here.]

5. Conclusions

We have provided a computationally fast, non parametric, robust and model-free
method for inferring pricing probabilities, along with their densities, with respect
to several possible physical state probabilities. Clearly, when presented with a collec-
tion of prices of options, a market analyst does not have a way to decide which ones
are more informative than the others. The methodology that we have developed can
handle that issue in a simple way: a subset of the data is more informative if it can
consistently reproduce the data not used to determine the pricing probabilities. When
this is the case, we feel more confident for the prices of any other derivative computed
using the same pricing probabilities.

Our out-of-sample results indicate that the proposed method can extract the pricing
probabilities using only few market data points for in-sample fitting, and it can be used
for valuation of other options traded in the market. Hence, the proposed method is
ideal to overcome the data sparsity problem that governs the weather market.

It is worth mentioning that we were able to value options accurately even in the
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cases where the realized underlying HDDs indices were significantly different from the
historical average. Our results show that our methodology produces similar results
independently of the initial set of physical probabilities. Furthermore, when the final
option’s payoff is very close to the historical average even simplistic and naive set of
probabilities produce accurate results. In cases where, the final payoff is quite different
than the historical average, the accuracy of the valuation can be improved by utilising
physical probabilities from more advanced models such as the CAR model. The above
results are confirmed from our simulation study where even unrealistic and impossible
sets of physical probabilities produce relatively similar values of MAD – albeit higher
– to the EQP, CAR and HBA.

In an extensive analysis we examined whether different sets of physical probabili-
ties, indicating different levels of expertise, can affect the accuracy of out-of-sample
valuation. The three sets of probabilities are derived by a naive, a semi-advanced and
a state of the art modelling procedure. Our results indicate that the CAR and HBA
probabilities can provide a better reconstruction of the original option prices, and also
produce a lower MAD in the valuation of the options not used in the fitting procedure.
As the number of options used for fitting increases the differences between the three
methods become smaller. Finally, we observe that regardless the set of probabilities
that is used, our methodology is robust.

Our results indicate that when the available information in the market arrives from
historical data or from meteorological forecasts pricing is more coherent. However
when there is a mix of information in the market, non-consistent sets of market prices
are observed. Testing for consistency using different data subsets should be regarded
part of the procedure.

While high frequency trading in these types of illiquid assets is unlikely, con-
stant/online monitoring of prices and densities is a must for portfolio management of
positions, as well as speedy decision-making within lower frequency trading when op-
portunities arise. Our approach is especially useful for time-sensitive decision-makers
who will need constant feeds of up-to-date pricing densities for every asset in their
portfolios, including those of more illiquid nature and with limited information avail-
able. By providing fast estimates while overcoming the issue of sparsity, our method
allows for more efficient trading and management of illiquid assets in incomplete mar-
kets, allowing traders and portfolio/risk managers to more safely expand their trading
universes to these assets.

Finally our results show that the proposed method already produces excellent results
when as little as 4 options are used for fitting. On the other hand, including OTM
options too close to each other usually generates convergence issues, perhaps related to
the granularity of the pricing in the exchange, where lower premium options will suffer
the most impact as a proportion of the true price, or related to potential incoherent
pricing.

An interesting by-product of our methodology becomes apparent when regarding
the call and put price curves. If we make use of the put-call parity, we can obtain a no-
arbitrage price as the value at which a put and a call of the same strike intersect. This
is interesting because these prices are not really available from the market. Hence,
an interesting future research strand would be the building on this methodological
approach for unveiling prices of unobservable no-arbitrage prices in a wider context.
Furthermore, it would be interesting to examine how the extracted price can be used
for valuation of 1) weather derivatives on a different temperature index, such as the
CAT or CDD, 2) weather derivatives on a different but correlated weather variable such
as precipitation, 3) derivatives in correlated markets such as agricultural commodities
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or energy contracts, and 4) derivatives in other illiquid asset classes.

Acknowledgement

The authors would like to thank the editor and the anonymous referees for their
constructive comments that helped to substantially improve the final version of this
paper.

References

Abbas, A. E. (2006). Maximum entropy utility. Operations Research, 54(2):277–290.
Addoum, J., Ng, D., and Ortiz-Bobea, A. (2020). Temperature shocks and establish-

ment sales. The Review of Financial Studies, 33(3):1331–1366.
Alaton, P., Djehince, B., and Stillberg, D. (2002). On modelling and pricing weather

derivatives. Applied Mathematical Finance, 9:1–20.
Alexandridis, A. and Zapranis, A. (2013). Weather Derivatives: Modeling and Pricing

Weather-Related Risk. Springer, New York.
Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. IMA

Journal of Numerical Analysis, 8(1):141–148.
Benth, F. E. and Saltyte-Benth, J. (2007). The volatility of temperature and pricing

of weather derivatives. Quantitative Finance, 7(5):553–561.
Benth, F. E. and Saltyte-Benth, J. (2013). Modeling and Pricing in Financial Markets

for Weather Derivatives. World Scientific, Singapore.
Benth, F. E., Saltyte-Benth, J., and Koekebakker, S. (2007). Putting a price on

temperature. Scandinavian Journal of Statistics,, 34:746–767.
Bertrand, J.-L., Brusset, X., and Fortin, M. (2015). Assessing and hedging the cost

of unseasonal weather: Case of the apparel sector. European Journal of Operational
Research, 244(1):261–276.

Borwein, J. and Lewis, A. (2000). Convex Analysis and Nonlinear Optimization. CMS
Books in Mathematics. Springer-Verlag, New York.

Borwein, J. M., Lewis, A. S., and Noll, D. (1996). Maximum entropy reconstruc-
tion using derivative information, part 1: Fisher information and convex duality.
Mathematics of Operations Research, 21(2):442–468.

Bowers, J. (2001). The cost of weather in a floating oil production system. Journal of
the Operational Research Society, 52(2):135–142.

Bowers, J. and Mould, G. (1994). Weather risk in offshore projects. Journal of the
Operational Research Society, 45(4):409–418.

Brockett, P., L., Wang, M., and Yang, C. (2005). Weather derivatives and weather
risk management. Risk Management and Insurance Review, 8(1):127–140.

Buchholz, M. and Musshoff, O. (2014). The role of weather derivatives and portfolio
effects in agricultural water management. Agricultural Water Management, 146:34–
44.

Buxey, G. (1988). Production planning under seasonal demand: A case study perspec-
tive. Omega, 16(5):447–455.

Caliskan Demirag, O. (2013). Performance of weather-conditional rebates under dif-
ferent risk preferences. Omega, 41(6):1053–1067.

Campbell, S., D. and Diebold, F., X. (2005). Weather forecasting for weather deriva-
tives. Journal of the American Statistical Association, 100:6–16.

20



Cao, M. and Wei, J. (2004). Weather derivatives valuation and market price of weather
risk. Journal of Future Markets, 24(11):1065–1089.

Cao, Q., Ewing, B. T., and Thompson, M. A. (2012). Forecasting wind speed with
recurrent neural networks. European Journal of Operational Research, 221(1):148–
154.

Castellano, R., Cerqueti, R., and Rotundo, G. (2020). Exploring the financial risk of a
temperature index: a fractional integrated approach. Annals of Operations Research,
284:225–242.

Challis, S. (1999). Bright forecast for profits. Reactions, June edition.
Chen, F. Y. and Yano, C. A. (2010). Improving supply chain performance and

managing risk under weather-related demand uncertainty. Management Science,
56(8):1380–1397.

Cozzolino, J. M. and Zahner, M. J. (1973). The maximum-entropy distribution of the
future market price of a stock. Operations Research, 21(6):1200–1211.

Davis, M. (2001). Pricing weather derivatives by marginal value. Quantitative Finance,
1:1–4.

Elias, R. S., Wahab, M. I. M., and Fang, L. (2014). A comparison of regime-switching
temperature modeling approaches for applications in weather derivatives. European
Journal of Operational Research, 232(3):549–560.

Engle, R. F., Giglio, S., Kelly, B., Lee, H., and Stroebel, J. (2020). Hedging climate
change news. The Review of Financial Studies, 33(3):1184–1216.

Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2013). Bayesian Data Analysis. Chapman and Hall/CRC.

Gulko, L. (1999a). The entropic market hypothesis. International Journal of Theo-
retical and Applied Finance, 2(03):293–329.

Gulko, L. (1999b). The entropy theory of stock option pricing. International Journal
of Theoretical and Applied Finance, 2(03):331–355.

Gulko, L. (2002). The entropy theory of bond option pricing. International Journal
of Theoretical and Applied Finance, 5(04):355–383.

Gulpinar, N. and Canakoglu, E. (2017). Robust portfolio selection problem under
temperature uncertainty. European Journal of Operational Research, 256(2):500–
523.

Gzyl, H. (2017). Superresolution in the maximum entropy approach to invert laplace
transforms. Inverse problems in Science and Engineering, 25(10):1536–1545.

Gzyl, H. and Mayoral, S. (2017). Maxentropic solutions to a convex interpolation
problem motivated by utility theory. Entropy, 19(4):153.

Hanley, M. (1999). Hedging the force of nature. Risk Professional, 1:21–25.
Hardle, K. W., Lopez-Cabrera, B., and Teng, H.-W. (2015). State price densities

implied from weather derivatives. Insurance: Mathematics and Economics, 64:106–
125.

Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical
Review, 106:620–630.

Jewson, S., Brix, A., and Ziehmann, C. (2005). Weather Derivative Valuation: The
Meteorological, Statistical, Financial and Mathematical Foundations. Campbridge
University Press, Cambridge, UK.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233.

Judge, G. G. and Mittelhammer, R. C. (2011). An Information Theoretic Approach
to Econometrics. Cambridge University Press.

Lange, K. (2010). Numerical Analysis for Statisticians, volume 1. Springer.

21



Perez-Gonzalez, F. and Yun, H. (2013). Risk management and firm value: Evidence
from weather derivatives. The Journal of Finance, 68(5):2143–2176.

Rajasekera, J. and Yamada, M. (2001). Estimating the firm value distribution func-
tion by entropy optimization and geometric programming. Annals of Operations
Research, 105(1):61–75.

Rouge, R. and El Karoui, N. (2000). Pricing via utility maximization and entropy.
Mathematical Finance, 10(2):259–276.

Stulec, I. (2017). Effectiveness of weather derivatives as a risk management tool in
food retail: The case of Croatia. International Journal of Financial Studies, 5(1):2.

Sun, B. and van Kooten, G. C. (2015). Financial weather derivatives for corn pro-
duction in northern China: A comparison of pricing methods. Journal of Empirical
Finance.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–
305.

Weagley, D. (2019). Financial sector stress and risk sharing: Evidence from the weather
derivatives market. The Review of Financial Studies, 32(6):2456–2497.

Wilks, D. S. (2002). Realizations of daily weather in forecast seasonal climate. Journal
of Hydrometeorology, 3(2):195–207.

Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences, volume 100 of
International Geophysics Series. Academic Press, Oxford, UK, 3rd edition.

Zapranis, A. and Alexandridis, A. (2008). Modelling temperature time dependent
speed of mean reversion in the context of weather derivetive pricing. Applied Math-
ematical Finance, 15(4):355 – 386.

Zhou, R., Cai, R., and Tong, G. (2013). Applications of entropy in finance: A review.
Entropy, 15:4909–4931.

Zhou, R., Li, J. S.-H., and Pai, J. (2019). Pricing temperature derivatives with a filtered
historical simulation approach. The European Journal of Finance, 25(15):1462–1484.

Zong, L. and Ender, M. (2018). Comparison of stochastic and spline models for
temperature-based derivatives in China. Pacific Economic Review, 23(4):547–589.

22



Table 1.: Market states for the discrete model

State ω1 ω2 . . . ωK

Level Ŝ1 Ŝ2 . . . ŜK

Range [S0, S1) [S1, S2) . . . [SK−1, SK)
Phys. Prob. p1 p2 . . . pk
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Table 2.: Data description

Dataset t Maturity Number of Calls Number of Puts
1 20/11/2007 31/12/2007 3 3
2 03/12/2007 31/12/2007 3 3
3 14/12/2007 31/12/2007 3 3
4 21/10/2010 30/11/2010 4 2
5 01/11/2010 30/11/2010 4 2
6 15/11/2010 30/11/2010 4 2
7 06/03/2006 03/04/2006 4 3
8 14/03/2006 03/04/2006 6 3
9 20/12/2007 31/01/2008 3 2
10 02/01/2008 31/01/2008 3 2
11 15/01/2008 31/01/2008 5 3
12 24/11/2009 31/12/2009 4 2
13 01/12/2009 31/12/2009 6 2
14 11/12/2009 31/12/2009 6 2
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Table 3.: Market model for dataset 1

State ω1 ω2 ω3 ω4 ω5

Level 347.5 715 737.5 765 796
Range [0, 695) [695, 725) [725, 750) [750, 780) [780, 812)
Phys. Prob. HBA 0.1282 0.0769 0.0001 0.1026 0.1537
Phys. Prob. CAR 0.1692 0.0924 0.0910 0.1248 0.1311
Phys. Prob. EQP 0.1000 0.1000 0.1000 0.1000 0.1000

State ω6 ω7 ω8 ω9 ω10

Level 824.5 846 861.5 884 1100
Range [812, 837) [837, 855) [855, 868) [868, 900) [900, 1300)
Phys. Prob. HBA 0.1026 0.0769 0.0256 0.1282 0.2051
Phys. Prob. CAR 0.0957 0.0662 0.0391 0.0796 0.1109
Phys. Prob. EQP 0.1000 0.1000 0.1000 0.1000 0.1000

HBA = Historical Burn Analysis, CAR = Continuous Autoregressive, EQP = Equal
probabilities
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Table 4.: Call and Put HDD options for dataset 1

Type Put Put Put Call Call Call
Strike 710 740 760 800 825 850
Price 18 27 34 47 36 27
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Table 5.: Option payoffs for dataset 1

Option ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

O1 362.5 0 0 0 0 0 0 0 0 0
O2 392.5 30 2.5 0 0 0 0 0 0 0
O3 412.5 50 22.5 0 0 0 0 0 0 0
O4 0 0 0 0 0 24.5 46 61.5 84 300
O5 0 0 0 0 0 0 21 36.5 59 275
O6 0 0 0 0 0 0 0 11.5 34 250
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Table 6.: Market model for dataset 8

State ω1 ω2 ω3 ω4 ω5

Level 250 560 632.5 652.5 666.25
Range [0, 500) [500, 620) [620, 645) [645, 660) [660, 672.5)
Phys. Prob. HBA 0.0001 0.0270 0.0270 0.0001 0.0541
Phys. Prob. CAR 0.0064 0.1461 0.0809 0.0574 0.0495
Phys. Prob. EQP 0.1111 0.1111 0.1111 0.1111 0.1111

State ω6 ω7 ω8 ω9

Level 677.5 688.75 747.5 900
Range [672.5, 682.5) [682.5, 695) [695, 800) [800, 1000)
Phys. Prob. HBA 0.1350 0.1080 0.2973 0.3514
Phys. Prob. CAR 0.0452 0.0564 0.4146 0.1435
Phys. Prob. EQP 0.1111 0.1111 0.1111 0.1111

HBA = Historical Burn Analysis, CAR = Continuous Autoregressive, EQP = Equal
probabilities
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Table 7.: Call and Put HDD options for dataset 8

Type Put Call Call Put Call Call Put Call Call
Strike 640 640 650 650 670 675 690 690 700
Price 1 61 53 3 36 33 14 24 21
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Table 8.: Option payoffs for dataset 8

Option ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

O1 390 80 7.5 0 0 0 0 0 0
O2 0 0 0 12.5 26.25 37.5 48.75 107.5 260
O3 0 0 0 2.5 16.25 27.5 38.75 97.5 250
O4 400 90 17.5 0 0 0 0 0 0
O5 0 0 0 0 0 7.5 18.75 77.5 230
O6 0 0 0 0 0 2.5 13.75 72.5 225
O7 440 130 57.5 37.5 23.75 12.5 1.25 0 0
O8 0 0 0 0 0 0 0 57.5 210
O9 0 0 0 0 0 0 0 47.5 200
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Table 9.: Pricing probabilities for dataset 1 using 4 option prices

PP q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
HBA 0.0497 0.2703 0.0002 0.0868 0.1301 0.0868 0.1012 0.0346 0.1551 0.0853
CAR 0.0497 0.2208 0.1101 0.0865 0.0908 0.0663 0.0988 0.0652 0.1237 0.0882
EQP 0.0497 0.2146 0.1239 0.0790 0.0790 0.0790 0.0931 0.0958 0.0953 0.0906

PP = Pricing Probabilities, HBA = Historical Burn Analysis, CAR = Continuous
Autoregressive, EQP = Equal probabilities
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Table 10.: Pricing probabilities for dataset 8 determined from 3 option prices

PP q1 q2 q3 q4 q5 q6 q7 q8 q9
HBA 0.0001 0.0379 0.0479 0.0002 0.1071 0.2771 0.2299 0.2557 0.0443
CAR 0.0000 0.0137 0.0683 0.0888 0.1165 0.1496 0.2631 0.2557 0.0443
EQP 0.0000 0.0105 0.0595 0.0958 0.1330 0.1739 0.2274 0.2557 0.0443

PP = Pricing Probabilities, HBA = Historical Burn Analysis, CAR = Continuous
Autoregressive, EQP = Equal probabilities
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Table 11.: Mean absolute distance of out-of-sample points by dataset, probability, and
number of options used for fitting across experiments.

N Prob 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 HBA 22.9 23.1 24.3 7.9 3.9 18.0 36.9 18.6 37.8 41.0 54.4 5.6 5.9 8.8

CAR 16.7 16.9 22.6 7.8 4.6 18.4 20.5 18.7 18.1 20.7 40.2 16.3 17.1 7.9
EQP 7.7 8.1 15.2 23.1 24.5 31.0 33.8 21.5 24.7 26.6 28.2 15.2 10.7 14.5

2 HBA 10.1 10.3 9.8 3.9 2.6 5.4 8.9 3.7 23.7 25.1 30.3 3.5 3.6 5.3
CAR 7.2 7.3 7.9 3.5 2.9 5.8 5.2 5.1 9.2 10.9 21.5 7.3 7.8 2.6
EQP 4.8 5.0 5.9 10.9 11.1 11.4 15.4 7.6 13.9 14.9 14.4 9.7 7.0 8.4

3 HBA 5.1 5.0 4.8 2.1 2.1 2.9 4.5 1.6 10.2 10.6 15.3 3.4 3.1 3.0
CAR 4.3 4.0 4.2 1.8 2.1 2.7 4.7 1.9 4.1 5.3 11.5 4.2 5.0 1.3
EQP 2.4 2.3 2.8 6.0 5.1 5.4 10.8 3.6 6.2 6.8 7.7 7.8 6.4 5.6

4 HBA 1.9 2.2 2.2 1.1 2.3 1.1 5.1 1.2 2.8 4.0 7.0 2.7 2.6 1.8
CAR 1.8 1.8 2.0 0.9 2.2 0.9 5.1 1.3 2.6 3.7 5.8 3.1 4.0 0.9
EQP 1.2 1.1 1.3 1.6 3.1 1.1 6.6 2.2 3.7 4.5 4.1 3.2 5.2 3.7

5 HBA 0.8 1.2 1.3 0.2 1.4 -∗ 5.4 0.8 2.3 2.7 2.7 1.8 2.4 1.2
CAR 0.9 0.7 0.9 0.2 1.5 -∗ 5.4 1.1 2.2 2.6 2.3 1.8 3.5 0.7
EQP 0.9 0.6 0.7 0.3 2.0 -∗ 7.6 1.4 3.2 3.8 1.9 1.8 4.3 2.3

6 HBA -∗ -∗ -∗ -∗ -∗ -∗ -∗ 1.3 - - 1.3 -∗ 2.3 0.7
CAR -∗ -∗ -∗ -∗ -∗ -∗ -∗ 1.0 - - 1.0 -∗ 3.1 0.6
EQP -∗ -∗ -∗ -∗ -∗ -∗ -∗ 1.1 - - 1.3 -∗ 3.3 1.1

7 HBA - - - - - - - 0.7 - - 1.3 - 2.1 0.6
CAR - - - - - - - -∗ - - 1.2 - 2.7 0.7
EQP - - - - - - - -∗ - - 1.5 - 2.1 0.9

8 HBA - - - - - - - -∗ - - 0.4 - -∗ -∗

CAR - - - - - - - -∗ - - 1.1 - -∗ -∗

EQP - - - - - - - -∗ - - 1.7 - -∗ -∗

HBA = Historical Burn Analysis, CAR = Continuous Autoregressive, EQP = Equal
probabilities, * = No coherent solution
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Table 13.: The contribution of the time effect to the accuracy of out-of-sample pricing.

Datasets 1+4+9+12 Datasets 2+5+7+10+13 Datasets 3+6+8+11+14
N HBA CAR EQP HBA CAR EQP HBA CAR EQP
1 18.5 14.7 17.7 22.2 16.0 20.8 24.8 21.5 22.1
2 10.3 6.8 9.8 10.1 6.8 10.7 10.9 8.6 9.5
3 5.2 3.6 5.6 5.1 4.2 6.3 5.5 4.3 5.0
4 2.1 2.1 2.4 3.2 3.4 4.1 2.7 2.2 2.5
5 1.3 1.3 1.5 2.6 2.7 3.7 1.5 1.3 1.6
6 -∗ -∗ -∗ 2.3 3.1 3.3 1.1 0.9 1.2
7 - - - 2.1 2.7 2.1 0.9 0.9 1.2
8 - - - -∗ -∗ -∗ 0.4 1.1 1.7

HBA = Historical Burn Analysis, CAR = Continuous Autoregressive, EQP = Equal
probabilities * = No coherent solution
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Figure 1.: Option prices across strikes for dataset 1, determined from four options
under each of the 3 different probabilities. Dots represent the option prices used for
fitting, and circles represent the observed option prices not used for fitting.
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Figure 2.: Option prices across strikes determined for dataset 8, from three options
under each of the 3 different probabilities. Dots represent the option prices used for
fitting, and circles represent the observed option prices not used for fitting.
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Figure 3.: Distribution of mean absolute differences under an non-informative Dirichlet
prior on the model probabilities. The MAD for HBA, CAR and EQP are represented
by a circle, a triangle and a diamond respectively at the x-axis level.
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