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ABSTRACT 

An important parameter in deciding to eliminate technical debt 

(TD) is the probability of a module to generate interest along 

software evolution. In this study, we explore code smells, which 

according to practitioners are the most commonly occurring type 

of TD in industry, by assessing the associated interest probability. 

As a proxy of smell interest probability we use the frequency of 

smell occurrences and the change proneness of the modules in 

which they are identified. To achieve this goal we present a case 

study on 47,751 methods extracted from two well-known open 

source projects. The results of the case study suggest that: (a) 

modules in which “code smells” are concentrated are more 

change-prone than smell-free modules, (b) there are specific types 

of “code smells” that are concentrated in the most change-prone 

modules, and (c) interest probability of code clones seems to be 

higher than the other two examined code smells. These results can 

be useful for both researchers and practitioners, in the sense that 

the former can focus their research on resolving “code smells” 

that produce more interest, and the latter can improve accordingly 

the prioritization of their repayment strategy and their training.  

CCS CONCEPTS 

• Software and its engineering → Software creation and man-

agement → Software development techniques → Object-oriented 

development • Software and its engineering → Software crea-

tion and management → Software verification and validation → 

Empirical software validation • Software and its engineering → 

Software creation and management → Extra-functional properties 

KEYWORDS 

Change proneness; interest probability; technical debt; case study 

1. INTRODUCTION 

Technical Debt Items (TDIs) [22] are different types of artifacts, 

like modules, design decisions, or requirements that suffer from 

technical debt. According to industrial experience [12], com-

pletely eliminating technical debt from all TDIs is unrealistic and 

sometimes undesirable. Particularly, technical debt that is concen-

trated on TDIs that are not being maintained, will not produce any 

interest in future maintenance activities. Therefore, spending 

effort on repaying technical debt from such TDIs will not be cost-

effective. To quantify this varying need for repayment, Seaman et 

al. [21] have introduced the term interest probability, which 

represents the probability of a TDI to produce interest. Therefore, 

interest probability is of great importance in the process of techni-

cal debt management as it helps to prioritize which technical debt 

to repay.  

In this study, we focus on code TD, which is the most relevant 

type of TD in industry [2]. In the case of code TD, when assess-

ing the interest probability of a module, we need to evaluate its 

change proneness, i.e., the probability for this module to change 

in the future. This includes all possible types of changes: changes 

in requirements, changes from bug fixing, and changes due to 

ripple effect [3], [7]. The most usual proxy of module change 

proneness is its change frequency in past versions (i.e., system 

history) [6]. The most common way to identify code TD is to 

detect the existence of code smell occurrences [1].  

The goal of this study is to assess the interest probability incurred 

by specific code smells. Conceptually, interest probability for a 

smell X represents the probability that at least one module of the 

system (that contains an occurrence of smell X) will change in 

the next version of the system. For example interest probabilitys-

mell X = 0.5 suggests that there is a 50% chance that at least one 

module suffering from smell X will change in the next version of 

the system. This offers awareness of which code smells are more 

probable to generate interest along maintenance and can thus help 

to: (a) prioritize the refactoring of the most risky smells; and (b) 

train staff accordingly, in order to prevent their future introduc-

tion into software systems. The interest probability of a code 

smell in a specific system can be calculated by considering: (a) 

the occurrence frequency of the investigated code smells, and (b) 

the change proneness of modules in which code smells reside, and 
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then we will synthesize these results to calculate interest probabil-

ity (for more details see Section 3.4). The code smells that we 

investigate in this study are detectable at the method level. The 

selection of the studied smells along with their selection process 

is thoroughly discussed in Section 3. In order to achieve the 

aforementioned goal, we have performed a case study on 47,751 

methods, extracted from two open source projects, namely Spring 

Framework and AndEngine. More details on these projects can be 

found in Section 4.2.  

The rest of the paper is organized as follows: In Section 2, we 

present related work and in Section 3, we present the studied 

types of technical debt and the tools that we have used for their 

identification. In Section 4, we present the case study design, 

whose results are presented and briefly discussed in Section 5. 

Further discussion concerning the implications to researchers and 

practitioners is presented in Section 6. Threats to validity are 

presented in Section 7, and finally the paper is concluded in Sec-

tion 8. 

2. RELATED WORK 

As related work to this study we consider papers that investigate 

the frequency of “code smells” [13] and the change proneness of 

the modules in which smells are identified. Specifically we pre-

sent: (a) studies investigating the frequency of code smell occur-

rences and studies exploring the frequency of applying refactor-

ings; (b) studies on the impact of code smells on change prone-

ness, and (c) the contribution of this paper to the technical debt 

field. 

Code Smells / Refactoring Application Frequency: In order to 

investigate the occurrences of bad smells in real projects, Chat-

zigeorgiou and Manakos conducted a case study to investigate the 

presence and evolution of four types of code smells (i.e., Long 

Method, Feature Envy, State Checking and God Class) using two 

Open Source Systems [9]. According to the results of the study, 

the existence of long methods, (i.e. methods of large size, which 

have semantic distance between what the method is supposed to 

do and how it does it), is the most common smell. 

Murphy-Hill et al. [15] conducted an extensive study on the ap-

plication of refactorings, using four data sets and gathering data 

from 3,400 version control commits. The findings of the study 

showed that refactoring activity is often not reported in commit 

logs as assumed in the past, while refactoring tasks are often 

blended within other programming changes. Additionally, refac-

toring identification from version systems has been performed by 

Ratzinger et al. [17]. Here the authors analyzed five open-source 

projects to investigate the relation between refactorings and the 

probability of future software defects. To achieve this goal the 

authors have analyzed project commit messages and extracted the 

required information. 

Code Smells and Change proneness: Olbrich et al. [16] investi-

gated the impact of two code smells (God Class and Shotgun 

Surgery) on change-proneness, by analyzing the historical data of 

two open-source projects. According to their results, there are 

different phases in the evolution of code smells during the system 

development affecting the change proneness of the components 

that suffer by code smells. However, it was observed that the 

classes infected by the examined smells suffer more changes than 

the non-infected ones.  

Similarly, Khomh et al. [14] studied the impact of classes with 

code smells on change-proneness, by analyzing two open-source 

projects, and additionally investigated fault-proneness, as well as 

particular kinds of changes occurring on classes participating in 

certain anti-patterns. The results indicated that the likelihood for 

classes with code smells to change is in general very high, but 

having some combinations of code smells can result to classes 

which are more difficult to change and thus, are less change-

prone than others.   

Contribution: To the best of our knowledge this is the first study 

that investigates the relationship of change proneness and the 

existence of code smells in the context of technical debt manage-

ment. This different perspective (TDM instead of smell occur-

rence or change frequency) provides a contextual meaning to our 

findings. This is an important contribution, in the sense that it 

enables us to discuss the results in a way that they can be directly 

exploitable by the technical debt community. Finally, to the best 

of our knowledge this is the first study that focuses on the specific 

code smells (detectable in the method body), which enables us to 

perform a more concrete interpretation of the results that we have 

obtained. 

3. TYPES OF TECHNICAL DEBT AND 

IDENTIFICATION TOOLS 

In this section of the paper we discuss the code smells that we 

investigate in this study. Upon the selection of these smells, we 

will present the tools that can be used for their occurrence identi-

fication, and those selected for this study.  

The most popular catalogue of source code smells is the one pre-

sented by Fowler and Kent [13] in the seminal book on software 

refactorings. According to Fowler, each refactoring can be 

mapped to a “code smell”, which represents a symptom of “bad” 

design or implementation. The book presents 22 code smells, 

which we categorized based on their scope as follows: (a) smells 

spreading across classes (e.g., feature envy), (b) smells spreading 

across multiple methods (e.g., message chain), (c) smells related 

to the interplay between method and attributes of the same class 

(e.g., god class), and (d) smells that are focused on the body of 

specific methods (e.g., long method).  

In this study, we have selected to investigate code smells that are 

limited to the body of a single method (i.e. the fourth category). 

Although, we do not imply that the rest of the smells are less im-

portant, or that they are not detectable at the source code level, the 

fact that they can be detected by design-level artifacts (e.g., class 

or sequence diagrams) make them more ambiguous to categorize 

between code or design smells; our scope is clearly on code 

smells. The special case of the comments smell (that belongs to 

the fourth category) has not been considered since: (a) their cate-

gorization as superfluous or useful would require the processing 

of textual information, and (b) the mapping between comments 

and the methods that they correspond to could not always be 



automated without the manual inspection of the code1. Therefore, 

we have selected to investigate three smells: 

 Long method. The long method code smell exists when a 

method is large in size and holds many responsibilities. This 

smell can be resolved by extracting smaller methods from the 

long one, so that each one conforms to the single responsibility 

principle [13]. 

 Conditional Complexity. The problem with conditional state-

ments (i.e., if or switch) that perform type checking is essentially 

that of duplication. The object-oriented notion of polymorphism 

provides an elegant way to deal with this problem [13]. 

 Code clones exist when the same code structure is identified in 

more than one places of the code base. The existence of this 

smell hinders maintainability and testability, and it can be re-

solved by applying the extract method refactoring [13]. 

To identify methods suffering from the aforementioned code 

smells of interest, we used three existing tools (using the default 

configuration), which parse Java code, are available online, and 

whose accuracy has been evaluated in previous studies. Regard-

ing the identification of long methods we used the SEMI tool 

[10][11], which is a standalone tool that calculates the need for a 

method to be refactored and proposes potential extract method 

opportunities, ranked based on an estimate of their fitness for 

extraction. The evaluation of the approach, conducted on both 

open source and industrial data, suggested that SEMI was more 

accurate than other existing tools serving similar goals (i.e. JDe-

odorant (Long Method Detector) [24] and JExtract [23]) 

Concerning the identification of conditional complexity occur-

rences, which corresponds to the lack of polymorphism, we used 

JDeodorant (Type Checking Detector) [25]. JDeodorant is an 

Eclipse plugin that provides a recommender on refactoring oppor-

tunities that facilitates the use of polymorphism, through type 

checking. To the best of our knowledge, no other tools exist on 

identifying the corresponding smell. Thus, we did not have the 

option to choose among multiple tools. However, in the original 

introduction of the JDeodorant methodology, the tool has been 

evaluated in three ways: first, in terms of precision and recall, 

showing moderate precision and relatively high recall scores; 

second according to experts’ opinion about the importance of the 

identified refactoring opportunities; and third in terms of scalabil-

ity for analyzing large projects. 

Finally, to identify instances of the duplicate code smell, we used 

NiCad [19]. NiCad is a command line tool that provides as output 

sets of lines of code that have been duplicated in the source code. 

Due to the large number of tools that are able to extract duplicate 

code statements, we based our selection on the results of an inde-

pendent study that compared 42 clone detection tools and ap-

proaches on 4 different scenarios [18]. By considering the point 

system proposed in the paper, we came up with NiCad as the 

most prominent tool for the identification of duplicate code. 

                                                                    
1  Although in some cases comments might reside in a method’s body, 

and thus the mapping is evident, we believe that the accuracy of the 
dataset would be threatened by the amount of false-negatives, i.e., 
comments that refer to a specific method, but are located outside of its 
body. 

4. CASE STUDY DESIGN 

The case study presented in this paper, has been designed and is 

reported according to the linear-analytic structure template sug-

gested by Runeson et al. [20]. In particular, in the upcoming sec-

tions we present the: (a) research objectives and the correspond-

ing research questions, (b) case and subjects selection process, (c) 

data collection procedure, and (d) data analysis process. 

4.1 Objectives and Research Questions 

The of this case study in terms of Goal Question Metric (GQM) 

[8] is formulated as follows: “analyze code smells with the pur-

pose of evaluation, with respect to their interest probability (based 

on their frequency of occurrence and the change proneness of 

modules in which they are identified), from the point of view of 

software engineers, in the context of technical debt management”. 

This leads to the following main research question (RQ): What is 

the interest probability incurred by code smells? To answer this 

research question we will first investigate the following sub-

questions: 

RQ1:  What is the occurrence frequency for each code smell? 

This research question aims at identifying the most commonly 

occurring code smells at the method level. The more occurrences 

of a code smell exist in the code-base, the more probable it is for 

the software engineers to face interest, due to the existence of the 

specific smell, while maintaining the software.  

RQ2: What is the mean change proneness of the modules in which 

each type of code smell is identified? 

This research question explores whether the identified methods 

suffering from code smells tend to change frequently, increasing 

the chances of producing interest. To answer the research question 

we will report on the average change proneness of modules that 

suffer from each code smell. 

We note that the answer to the main question will be provided 

after answering RQ1 and RQ2, since the calculation of smell inter-

est probability requires a synthesis of the information gathered 

when answering the two sub-questions. 

4.2 Case Selection and units of analysis 

Our study is an embedded multiple case study that has been con-

ducted on Java open source code. In this study as cases we con-

sider the different projects, whereas as units of analysis we con-

sider their methods. The reason for restricting our case selection to 

Java projects was a limitation of the tools used for identifying code 

smell occurrences. The two open source projects that we used in 

our study, and the rationale of their selection are presented below: 

 Spring is a framework that provides a comprehensive pro-

gramming and configuration model for modern Java-based 

enterprise applications on any kind of deployment platform. 

Spring is a very successful project with more than 100 re-

leases and 14,000 commits and it can be considered as a 

piece of software of good quality since it adheres to well-

known principles and patterns. From Spring Framework, we 

have extracted 5,284 classes that offer us 44,746 units of 

analysis (i.e., methods). 

 



 AndEngine is a successful engine for developing Android 

games. AndEngine holds a substantial history with more 

than 1,800 commits and offered us 459 classes with 3,005 

methods. The rationale of selecting a game engine as our 

second subject was our motivation not to focus this study 

only on “good” quality software. Thus, we selected a project 

from the application domain of computer games, which ac-

cording to existing literature often lacks in terms of struc-

tural quality [4]. 

4.3 Data Collection 

The data collection process can be divided into two main parts: 

(a) the identification of code smell occurrences, and (b) the as-

sessment of method change proneness. The identification of code 

smell occurrences has been performed with the tools that have 

been presented in Section 3, namely: SEMI, JDeodorant, and 

NiCad. The assessment of change proneness has been performed 

through a rather simple metric, named Percentage of Commits in 

which a Method has Changed (PCMC), calculated through a tool 

that has been developed by Arvanitou et al. [5]. On the comple-

tion of data collection the following variables have been recorded 

for every unit of analysis (i.e. method)2: 

[V1] Method name: The name of the considered method 

[V2] Class name: The class in which the method belongs to 

[V3] Long Method: Is the method classified as long by the SEMI 

tool (yes / no)? 

[V4] Code Clone: Number of clones identified in the method’s 

body by NiCad 

[V5] Conditional Complexity: Number of conditional statements 

in the method that have been flagged as unnecessary (i.e., 

they can be replaced with polymorphism) by Deodorant 

[V6] PCMC: Percentage of commits in which the method has 

changed. The complete history of the method is considered. 

4.4 Data Analysis 

In order to answer the research questions set in Section 4.1, we 

statistically analyze the collected data, through descriptive statis-

tics and hypothesis testing.  

To answer RQ1 we use frequency tables and a heatmap as a 

means of visualization. To assess the occurrence frequency of 

each smell we use: (a) the actual values for comparison among 

types of code smells, and (b) the occurrences per mille (‰) to 

check the reliability of our findings across the two projects. We 

note that for answering RQ1, the number of occurrences of the 

same smell in the same method is irrelevant, because even the 

existence of one smell type in a method, would generate interest 

upon the method’s change. To avoid confusion, we note that in 

methods that involve multiple smells, the interest amount would 

increase, in the sense that the effort required to maintain the code 

would be higher. However interest probability would remain the 

same independently of the number of smells. Thus, the existence 

of any number of smells should be equally counted as a reason for 

increasing interest probability. Therefore regarding [V4] and [V5] 

                                                                    
2 http://www.cs.rug.nl/search/uploads/Resources/MTD17_dataset.zip 

we only count the number of methods for which the values are ≥ 

1, rather than summing-up the actual occurrences. 

To answer RQ2 we will perform both descriptive statistics and 

hypothesis testing. To provide a fair comparison of the relatively 

small amount of methods that suffer from code smells, compared 

to those that do not, we have avoided the use of independent sam-

ple t-testing. Thus, we have preferred to calculate the mean 

change proneness ([V6]) of all methods per system and perform 

one-sample testing against this value. In this way, we can observe 

if the change proneness of methods that suffer from one smell is 

statistically different from the change proneness of the population 

(regardless of the existence/absence of code smells). In order to 

perform this analysis, for each type of smell, we filtered out 

methods that do not suffer from the corresponding smell. An 

overview of our data analysis plan (test, variables used, and notes) 

is presented in Table I. 

Table I. Data Analysis Overview 

Question Variables Statistical Analysis 

RQ1 

[V3]  

[V4] 

[V5] 

Frequency Table (actual value)  

Heatmap (per mille) 

RQ2 

[V3]  

[V4] 

[V5] 

[V6] 

One-sample Hypothesis Testing of [V6] 
against the mean [V6] of all project’s 
methods 

Select cases based on [V3], [V4], or [V5] 

Finally, to calculate the smell interest probability based on the 

results obtained from answering RQ1 and RQ2, we calculate the 

joint probability of events. Specifically, as an event we consider 

the action of maintaining a module that suffers from a specific 

smell. This event holds a specific probability to occur. The prob-

ability that at least one of the modules suffering from the same 

smell will change (i.e., the interest probability of the smell), is 

calculated as the joint probability of any maintenance event to 

occur. The calculation of smell interest probability (vertical axis), 

contrasted with TDI interest probability (horizontal axis) is pre-

sented in Fig. 1. For example, for Smell-2, we can observe that its 

occurrence frequency is 3/n, since it appears in three modules 

(i.e., 2, 3 and n) and the mean change proneness of the modules it 

appears in is: (cp2 + cp3 + cpn) / 3. 

 

Fig. 1: Smell Interest Probability 



To calculate the joint probability, we use the data obtained from 

RQ1 and RQ2. In particular, the answer from RQ1 provides us 

with the number of smells in the system. In terms of the calcula-

tion, this corresponds to the number of events, in the sense that 

there can be one maintenance action for resolving each smell 

occurrence. The answer to RQ2 provides us with the probability 

of each maintenance event to occur (i.e., the probability of each 

module that contains the smell to change and produce interest). 

Based on the mathematical formula, the joint probability of two 

events is calculated as follows, and accordingly scales to more 

than two events: 

P(A|B) = P(A) + P(B) – P(A)*P(B) 

5.  RESULTS 

In this section, first we present the answers to RQ1 and RQ2 (see 

Section 5.1) and then a synthesis of these results as an answer to 

the main research question (see Section 5.2).  

5.1 Smell Interest Probability Factors 

5.1.1 Occurrence Frequency of Code Smells (RQ1) 

Table II presents the actual count of methods in which we have 

identified smell occurrences, whereas in Fig. 2, we visualize a 

different view of the same information through a heatmap, by 

considering the frequency of smells per thousand methods. Fig. 2 

allows to filter out project size, since the Spring Framework is 

substantially larger than the AndEngine. Based on the above, the 

results of Table II can be used only for within project interpreta-

tion, whereas the results of Fig. 2, for within smell interpretation. 

Table II. Number of methods with smell occurrences 

Project 

Long 

Method 

Conditional 

Complexity 

Code 

Clones Total 

Spring 166  28  1689  1883 

AndEngine 5  20  45  70  

The results of Table II suggest that code clones are in both pro-

jects the most frequently detected code smell, while the ranking 

of long methods and conditional complexity smells (in terms of 

occurrence frequency) differs between the two projects. This 

outcome suggests that most of the code TD items (i.e. methods) 

identified into the projects suffer from code duplication. 

By observing the findings presented in Fig. 2, and contrasting 

them to those of Table II, we can claim that the difference in the 

number of identified long methods across the two projects is not 

as large as it seems from the actual values. In particular, the level 

of magnitude for long methods is not substantially different, in 

the sense that we have identified approximately 4 long methods 

for every thousand methods for the Spring Framework, and 2 for 

every thousand methods of the AndEngine. However, the results 

for the Conditional Complexity are quite different: 0.6‰ for 

Spring and 6.6‰ for the AndEngine. The same happens for the 

total number of smells, as well: approx. 44‰ for Spring and 24‰ 

for AndEngine. A possible interpretation of this result is the (nec-

essarily) higher complexity of the Spring Framework compared to 

the AndEngine. However, we note that this comparison is out of 

the scope of this manuscript, which basically aims at the compari-

son of different types of smells. 

 
Fig. 2: Smell Frequency per Thousand Methods 

The most frequent type of code TD is code clones. However, their 

frequency-level is project-related. Concerning long methods, 

approximately 2-4 can be identified in a thousand methods. The 

frequency of Conditional Complexity is also project related since 

it varies between less than one to 6 per mille in the two projects. 

5.1.2 Change Proneness of Code Smells (RQ2) 

To perform one sample t-tests, we first needed to calculate the 

mean change proneness of all classes of the Spring Framework 

and the And Engine. Then, we could compare the change prone-

ness of technical debt items (i.e., methods) suffering from each 

smell individually, to the specific value, and we check the exis-

tence of a statistically significant difference. The results of the 

hypothesis testing are presented in Table IV and Table V, respec-

tively. In each table, we denote the significant differences with 

italic fonts in the sig. column. 

Table IV. Change proneness of methods of Spring              

(test value: 0.39) – in 14,000 commits 

95% conf. interval 
Smell Mean 

Std. 

Dev. 
Sig. 

Low Up 

Long Method 2.00 4.549 .000 0.91 2.31 

Conditional 
Complexity 

2.36 3.793 .011 0.50 3.44 

Code Clones 0.45 1.434 .106 -0.01 0.12 

 Table V. Change proneness of methods of AndEngine       

(test value: 0.72) – in 1,800 commits 

95% conf. interval 
Smell Mean 

Std. 

Dev. 
sig. 

Low Up 

Long Method 3.60 4.615 .235 -2.85 8.61 

Conditional 
Complexity 

3.21 3.735 .009 0.69 4.29 

Code Clones 1.86 3.921 .060 -0.05 2.34 

The results of both tables suggest that methods suffering from the 

Conditional Complexity smell are more change prone than the 

average method of a system, and this finding has proven to be 

statistically significant for both projects. On the other hand, Code 

Clones are usually identified into parts of the system whose 

change proneness is not statistically different than the rest of the 



methods of the system. Finally, technical debt items that suffer 

from the Long Method smell, are significantly more change prone 

in the Spring Framework, but not in the AndEngine. However, 

even regarding the AndEngine the Long Methods are in average 

located to the most change prone methods of the system. The fact 

that this difference is not statistically significant is probably due 

to the small number of smells identified in the AndEngine (N=5). 

This observation can be explained by the fact that long methods 

serve more than one functionality. Thus, they subject to more 

“reasons to change” leading to a higher change proneness. 

Methods that suffer from code smells are more change prone than 

TD-free methods. Among specific types of code smells, long 

methods and the use of conditionals instead of polymorphism are 

usually encountered in change prone methods. On the other hand 

code clones are usually positioned in system parts that do not 

change frequently. 

5.2 Calculation of Smell Interest Probability 

To assess interest probability of various types of code TD, we 

have quantified two parameters: (a) how many items suffer from 

each code smell (i.e., type of TD), and (b) what is the probability 

of each item to change in an upcoming commit, based on change 

history. Based on the outcome of RQ1 and RQ2 the two parame-

ters do not uniformly rank the encountered code smells (e.g., code 

clones are the most frequently occurring smells, but are identified 

in the least change prone methods). Therefore there is a need of 

synthesizing the two pieces of information so as to assess the 

interest probability for each smell (as explained in Section 3.4). 

Based on the above information, we calculate the interest prob-

ability for the studied systems. The results are presented in Table 

VI (Spring Framework) and Table VII (AndEngine). 

Table VI. Interest Probability per Code-Smell (Spring) 

 
Long 

Method 
Conditional 

Complexity 

Code 

Clones 

#TDIs (#events) 166  28  1689  

Mean Change Probability 

(mean probability of event 

to occur) 

0.14e-3 0.16e-3 0.03e-3 

Interest Probability          2.07% 0.44% 14.34% 

Table VII. Interest Probability per Code-Smell (AndEngine) 

 
Long 

Method 
Conditional 

Complexity 

Code 

Clones 

#TDIs (#events) 5  20  45  

Mean Change Probability 

(mean probability of event 

to occur) 

2.00e-3 1.78e-3 1.03e-3 

Interest Probability          0.99% 3.50% 4.53% 

Based on the results of Table VI and VII, we can observe that 

interest probability can significantly vary for different projects. 

The interpretation of the results is as follows: in the best case 

scenario—i.e., AndEngine, there is an almost 4.5% probability 

that at least one method with a code clone (out of 45) will change 

in every commit, along system maintenance. The aforementioned 

results are considered intuitive in the sense that a single code 

clone is spread into multiple methods. Therefore, the same smell 

occurrence is affecting more than one method, whereas concern-

ing the rest smells, each occurrence is located in a single TDI.  By 

considering that, based on our observations, each clone is on av-

erage spread across 3.5 methods, the code clone occurrences are 

approximately at the same levels as the other two smells. How-

ever, we need to note that interest probability is correctly pre-

sented at method level rather than smell-occurrence level, because 

all clones will need to be updated (interest presence), even if one 

method of the clone is changed. Additionally, we can observe that 

the long method smell is the one showing the smallest deviation 

in terms of smell interest probability, in the examined projects, 

suggesting that this result is more reliable than the others. 

Code clones is the smell that has the higher probability to pro-

duce interest in future maintenance activities in the two examined 

projects. This characteristic is mostly attributed to the smell oc-

currence frequency rather than its identification in change prone 

methods. The long method smell is the code TD type that presents 

the most similar smell interest probability in the examined pro-

jects 

6. DISCUSSION 

In this section we discuss the main findings of the case study and 

present the implications that this study provides to researchers 

and practitioners. In parallel we present interesting future work 

opportunities. The findings of the study suggest that: 

 Long Methods are code smells of which 1.6 – 3.7 occur-

rences can be identified per mille methods, which however 

are changing 0.14 – 2.00 times per mille commits. Leading 

to an interest probability of 1.0%-2.0% per commit. 

 Conditional Complexity is a smell that occurs in approxi-

mately 0.6 – 6.7 occurrences per mille methods, which are 

changing 0.16 – 1.78 times per mille commits. Leading to 

an interest probability of 0.5%-3.5% per commit. 

 Code Clones is the most frequently occurring smell, since 

we have identified 14.9 – 37.7 occurrences per thousand 

methods. These methods were changing 0.03 – 1.03 times 

per thousand commits. Leading to an interest probability of 

4.5%-14.0% per commit. 

From the above information it becomes clear that the most fre-

quently occurring bad smells (i.e., code clones) are placed in the 

least change prone parts of the system, whereas long methods, 

which are the rarest have been identified in the most frequently 

changing ones. The synthesis of the results suggests that code 

clones, despite their identification in less change prone methods, 

are the smell with the highest interest probability. The findings of 

this study can be used by practitioners in the following ways: 

 Existence of smells and method change proneness. Al-

though this case study was not meant to explore whether 

heavy maintenance is responsible for introducing smells, or 

if the existence of smells is responsible for the change fre-

quency of the methods, we have revealed that a relation be-

tween the two exists. More particularly, more smells exist in 



more change-prone methods. Thus, we advise practitioners 

to be careful in the development and maintenance of 

change-prone modules, so as not to introduce code smells to 

them. 

 Training in TD repayment. The findings of this case study 

suggest that the interest probability for method-level smells 

is quite high (ranging from 9% to 16%, by summing up the 

probabilities of all smells). This finding suggests that the 

maintenance cost indeed increases due to code smells and 

that technical debt does not only lie in parts of the system 

that are not maintained. Thus, we advise practitioners to 

train on: (a) ways to prevent the creation of TD at the 

source code level, and (b) techniques to repay technical debt 

(e.g., refactorings).  

 Alert on types of code TD. Based on the results of this case 

study, we advise quality managers to alert developers, espe-

cially concerning the frequency of code clones occurrences. 

The amount of clones and the fact that a single smell occur-

rence can trigger interest on the modification of various 

modules, renders this type of code TD as one of paramount 

importance. 

Regarding researchers, the methodology of this study has pro-

vided a structured way to assess the interest probability of various 

types of technical debt. The methodology can be reused / tailored 

in many ways, as follows: 

 more smells. The methodology can be applied to more code 

smells that are described in the book of Fowler et al. [13]. 

Applying the method to more smells would: (a) provide a 

holistic evaluation of code smells, and (b) make the results 

of such a study more accurate in the sense that in the current 

study we considered as TD-free the modules that do not in-

volve instances of the three bad smells under investigation. 

 different levels of granularity. The methodology can be tai-

lored to fit different levels of granularity, such as require-

ments, or architecture. Such an analysis would be of great 

importance in the sense that TD is a multi-perspective no-

tion that spans across all development phases. 

 more projects. The application of the method to more pro-

jects would increase the reliability of the presented results. 

Also, it could possibly unveil differences in the interest 

probability of smell types in projects with different charac-

teristics (e.g., size, maturity, history, levels of quality, etc.). 

An interesting special case of such an extension would be 

the application of the proposed approach to industrial pro-

jects, checking if there are differences compared to open-

source ones. 

7. THREATS TO VALIDITY  

In this section, we present and discuss construct, reliability, exter-

nal, and internal validity threats for this study.  

Construct validity reflects to what extent the phenomenon under 

study really represents what is investigated according to the re-

search questions [20]. Thus, concerning construct validity, the 

potential threats are related to the accuracy of the tools used to 

assess the change proneness of methods and to detect code smells 

(TD) in the source code. This is a construct validity threat in the 

sense that inaccurate results might lead to measuring a different 

phenomenon than the one that we originally intended to investi-

gate. However, to mitigate this threat we used tools that have 

been evaluated in previous studies in terms of accuracy of the 

results they provide. Additionally we should mention that a poten-

tial threat is related to our definition of TD-free methods. As men-

tioned in Section 6, in this study as TD-free methods we consider 

methods that present none of the three studied smells. Thus, if 

additional code smells were studied this number would differ. In 

terms of external validity, i.e. possible threats while generalizing 

the findings derived from the sample to a general population [20], 

three potential threats have been identified. First, in our study we 

used systems written in Java and there is a possibility that the 

results would be different for other object-oriented languages. 

Second, results cannot be generalized to other code smells, or 

other types of TD, e.g., design, architecture etc. Finally, since the 

results have been obtained by studying two open source projects 

they cannot be generalized to the compete OSS population. 

The reliability of the case study concerns the replicability of the 

collected data and the analysis performed, so that same results to 

be reproduced [20]. The study has limited reliability threats, since 

all research questions were answered by statistical analysis of 

automatically generated results, which involves no researcher 

bias. However, to assure the correct data analysis, two researchers 

collaborated and the one double-checked the results of the data 

analysis performed by the other researcher. Finally, all primitive 

data can be reproduced by using the dataset collected by GitHub 

(i.e. source code of the two projects and their evolution data), and 

the tools mentioned in Section 3. Nevertheless, we need to ac-

knowledge that a replication with different tools for identifying 

code smell occurrences, might lead to different results. However, 

as mentioned before the accuracy of the employed tools has been 

successfully validated in empirical ways. Finally, internal validity 

is related to the identification of confounding factors, i.e., factors 

other than the independent variables that might influence the 

value of the dependent variable [20]. Internal validity is not rele-

vant for our study since no causal relationships have been ex-

plored. 

8. CONCLUSIONS  

Efficient technical debt management requires the prioritization of 

repayment activities, since the complete repayment of technical 

debt is not feasible with limited resources. A rule of thumb for the 

selection of which technical debt items should be refactored and 

which should remain intact, suggests that quality assurance teams 

should first refactor modules that are more prone to produce in-

terest, i.e., be maintained in the future. The quality attribute that 

assesses this possibility is change proneness. 

In this study we performed an exploratory case study to identify 

the types of code TD that are more commonly placed in spots of 

the system that tend to change more frequently. In this way, we 

assess the interest probability of each type of TD, so as to aid 

quality managers in their decision making process. To achieve 

this goal we have studied more than 45,000 methods retrieved 

from two well-known open source projects. The projects have 



been statically analyzed with state-of-the-art tools to identify code 

smell occurrences and assess the change proneness of the corre-

sponding methods. The results of the study have indicated that 

source code spots, in which code smells are concentrated, present 

a higher probability to change compared to TD-free parts of the 

system. Additionally, the obtained results suggested that TDIs 

suffering from code clones present the highest interest probability 

(max: approximately 35%) compared to other types of code 

smells. Based on the findings of this study valuable implications 

to researchers and practitioners have been reported. 
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