
Assessing Code Smell Interest Probability: A Case Study

Sofia Charalampidou
Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands

s.charalampidou @rug.nl

Apostolos Ampatzoglou
Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands

a.ampatzoglou@rug.nl

Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr

Paris Avgeriou
Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands

paris@cs.rug.nl

ABSTRACT

An important parameter in deciding to eliminate technical debt

(TD) is the probability of a module to generate interest along

software evolution. In this study, we explore code smells, which

according to practitioners are the most commonly occurring type

of TD in industry, by assessing the associated interest probability.

As a proxy of smell interest probability we use the frequency of

smell occurrences and the change proneness of the modules in

which they are identified. To achieve this goal we present a case

study on 47,751 methods extracted from two well-known open

source projects. The results of the case study suggest that: (a)

modules in which “code smells” are concentrated are more

change-prone than smell-free modules, (b) there are specific types

of “code smells” that are concentrated in the most change-prone

modules, and (c) interest probability of code clones seems to be

higher than the other two examined code smells. These results can

be useful for both researchers and practitioners, in the sense that

the former can focus their research on resolving “code smells”

that produce more interest, and the latter can improve accordingly

the prioritization of their repayment strategy and their training.

CCS CONCEPTS

• Software and its engineering → Software creation and man-

agement → Software development techniques → Object-oriented

development • Software and its engineering → Software crea-

tion and management → Software verification and validation →

Empirical software validation • Software and its engineering →

Software creation and management → Extra-functional properties

KEYWORDS

Change proneness; interest probability; technical debt; case study

1. INTRODUCTION

Technical Debt Items (TDIs) [22] are different types of artifacts,

like modules, design decisions, or requirements that suffer from

technical debt. According to industrial experience [12], com-

pletely eliminating technical debt from all TDIs is unrealistic and

sometimes undesirable. Particularly, technical debt that is concen-

trated on TDIs that are not being maintained, will not produce any

interest in future maintenance activities. Therefore, spending

effort on repaying technical debt from such TDIs will not be cost-

effective. To quantify this varying need for repayment, Seaman et

al. [21] have introduced the term interest probability, which

represents the probability of a TDI to produce interest. Therefore,

interest probability is of great importance in the process of techni-

cal debt management as it helps to prioritize which technical debt

to repay.

In this study, we focus on code TD, which is the most relevant

type of TD in industry [2]. In the case of code TD, when assess-

ing the interest probability of a module, we need to evaluate its

change proneness, i.e., the probability for this module to change

in the future. This includes all possible types of changes: changes

in requirements, changes from bug fixing, and changes due to

ripple effect [3], [7]. The most usual proxy of module change

proneness is its change frequency in past versions (i.e., system

history) [6]. The most common way to identify code TD is to

detect the existence of code smell occurrences [1].

The goal of this study is to assess the interest probability incurred

by specific code smells. Conceptually, interest probability for a

smell X represents the probability that at least one module of the

system (that contains an occurrence of smell X) will change in

the next version of the system. For example interest probabilitys-

mell X = 0.5 suggests that there is a 50% chance that at least one

module suffering from smell X will change in the next version of

the system. This offers awareness of which code smells are more

probable to generate interest along maintenance and can thus help

to: (a) prioritize the refactoring of the most risky smells; and (b)

train staff accordingly, in order to prevent their future introduc-

tion into software systems. The interest probability of a code

smell in a specific system can be calculated by considering: (a)

the occurrence frequency of the investigated code smells, and (b)

the change proneness of modules in which code smells reside, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from permissions@acm.org

XP '17 Workshops, May 22-26, 2017, Cologne, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5264-2/17/05...$15.00
https://doi.org/10.1145/3120459.3120465

then we will synthesize these results to calculate interest probabil-

ity (for more details see Section 3.4). The code smells that we

investigate in this study are detectable at the method level. The

selection of the studied smells along with their selection process

is thoroughly discussed in Section 3. In order to achieve the

aforementioned goal, we have performed a case study on 47,751

methods, extracted from two open source projects, namely Spring

Framework and AndEngine. More details on these projects can be

found in Section 4.2.

The rest of the paper is organized as follows: In Section 2, we

present related work and in Section 3, we present the studied

types of technical debt and the tools that we have used for their

identification. In Section 4, we present the case study design,

whose results are presented and briefly discussed in Section 5.

Further discussion concerning the implications to researchers and

practitioners is presented in Section 6. Threats to validity are

presented in Section 7, and finally the paper is concluded in Sec-

tion 8.

2. RELATED WORK

As related work to this study we consider papers that investigate

the frequency of “code smells” [13] and the change proneness of

the modules in which smells are identified. Specifically we pre-

sent: (a) studies investigating the frequency of code smell occur-

rences and studies exploring the frequency of applying refactor-

ings; (b) studies on the impact of code smells on change prone-

ness, and (c) the contribution of this paper to the technical debt

field.

Code Smells / Refactoring Application Frequency: In order to

investigate the occurrences of bad smells in real projects, Chat-

zigeorgiou and Manakos conducted a case study to investigate the

presence and evolution of four types of code smells (i.e., Long

Method, Feature Envy, State Checking and God Class) using two

Open Source Systems [9]. According to the results of the study,

the existence of long methods, (i.e. methods of large size, which

have semantic distance between what the method is supposed to

do and how it does it), is the most common smell.

Murphy-Hill et al. [15] conducted an extensive study on the ap-

plication of refactorings, using four data sets and gathering data

from 3,400 version control commits. The findings of the study

showed that refactoring activity is often not reported in commit

logs as assumed in the past, while refactoring tasks are often

blended within other programming changes. Additionally, refac-

toring identification from version systems has been performed by

Ratzinger et al. [17]. Here the authors analyzed five open-source

projects to investigate the relation between refactorings and the

probability of future software defects. To achieve this goal the

authors have analyzed project commit messages and extracted the

required information.

Code Smells and Change proneness: Olbrich et al. [16] investi-

gated the impact of two code smells (God Class and Shotgun

Surgery) on change-proneness, by analyzing the historical data of

two open-source projects. According to their results, there are

different phases in the evolution of code smells during the system

development affecting the change proneness of the components

that suffer by code smells. However, it was observed that the

classes infected by the examined smells suffer more changes than

the non-infected ones.

Similarly, Khomh et al. [14] studied the impact of classes with

code smells on change-proneness, by analyzing two open-source

projects, and additionally investigated fault-proneness, as well as

particular kinds of changes occurring on classes participating in

certain anti-patterns. The results indicated that the likelihood for

classes with code smells to change is in general very high, but

having some combinations of code smells can result to classes

which are more difficult to change and thus, are less change-

prone than others.

Contribution: To the best of our knowledge this is the first study

that investigates the relationship of change proneness and the

existence of code smells in the context of technical debt manage-

ment. This different perspective (TDM instead of smell occur-

rence or change frequency) provides a contextual meaning to our

findings. This is an important contribution, in the sense that it

enables us to discuss the results in a way that they can be directly

exploitable by the technical debt community. Finally, to the best

of our knowledge this is the first study that focuses on the specific

code smells (detectable in the method body), which enables us to

perform a more concrete interpretation of the results that we have

obtained.

3. TYPES OF TECHNICAL DEBT AND

IDENTIFICATION TOOLS

In this section of the paper we discuss the code smells that we

investigate in this study. Upon the selection of these smells, we

will present the tools that can be used for their occurrence identi-

fication, and those selected for this study.

The most popular catalogue of source code smells is the one pre-

sented by Fowler and Kent [13] in the seminal book on software

refactorings. According to Fowler, each refactoring can be

mapped to a “code smell”, which represents a symptom of “bad”

design or implementation. The book presents 22 code smells,

which we categorized based on their scope as follows: (a) smells

spreading across classes (e.g., feature envy), (b) smells spreading

across multiple methods (e.g., message chain), (c) smells related

to the interplay between method and attributes of the same class

(e.g., god class), and (d) smells that are focused on the body of

specific methods (e.g., long method).

In this study, we have selected to investigate code smells that are

limited to the body of a single method (i.e. the fourth category).

Although, we do not imply that the rest of the smells are less im-

portant, or that they are not detectable at the source code level, the

fact that they can be detected by design-level artifacts (e.g., class

or sequence diagrams) make them more ambiguous to categorize

between code or design smells; our scope is clearly on code

smells. The special case of the comments smell (that belongs to

the fourth category) has not been considered since: (a) their cate-

gorization as superfluous or useful would require the processing

of textual information, and (b) the mapping between comments

and the methods that they correspond to could not always be

automated without the manual inspection of the code1. Therefore,

we have selected to investigate three smells:

 Long method. The long method code smell exists when a

method is large in size and holds many responsibilities. This

smell can be resolved by extracting smaller methods from the

long one, so that each one conforms to the single responsibility

principle [13].

 Conditional Complexity. The problem with conditional state-

ments (i.e., if or switch) that perform type checking is essentially

that of duplication. The object-oriented notion of polymorphism

provides an elegant way to deal with this problem [13].

 Code clones exist when the same code structure is identified in

more than one places of the code base. The existence of this

smell hinders maintainability and testability, and it can be re-

solved by applying the extract method refactoring [13].

To identify methods suffering from the aforementioned code

smells of interest, we used three existing tools (using the default

configuration), which parse Java code, are available online, and

whose accuracy has been evaluated in previous studies. Regard-

ing the identification of long methods we used the SEMI tool

[10][11], which is a standalone tool that calculates the need for a

method to be refactored and proposes potential extract method

opportunities, ranked based on an estimate of their fitness for

extraction. The evaluation of the approach, conducted on both

open source and industrial data, suggested that SEMI was more

accurate than other existing tools serving similar goals (i.e. JDe-

odorant (Long Method Detector) [24] and JExtract [23])

Concerning the identification of conditional complexity occur-

rences, which corresponds to the lack of polymorphism, we used

JDeodorant (Type Checking Detector) [25]. JDeodorant is an

Eclipse plugin that provides a recommender on refactoring oppor-

tunities that facilitates the use of polymorphism, through type

checking. To the best of our knowledge, no other tools exist on

identifying the corresponding smell. Thus, we did not have the

option to choose among multiple tools. However, in the original

introduction of the JDeodorant methodology, the tool has been

evaluated in three ways: first, in terms of precision and recall,

showing moderate precision and relatively high recall scores;

second according to experts’ opinion about the importance of the

identified refactoring opportunities; and third in terms of scalabil-

ity for analyzing large projects.

Finally, to identify instances of the duplicate code smell, we used

NiCad [19]. NiCad is a command line tool that provides as output

sets of lines of code that have been duplicated in the source code.

Due to the large number of tools that are able to extract duplicate

code statements, we based our selection on the results of an inde-

pendent study that compared 42 clone detection tools and ap-

proaches on 4 different scenarios [18]. By considering the point

system proposed in the paper, we came up with NiCad as the

most prominent tool for the identification of duplicate code.

1 Although in some cases comments might reside in a method’s body,

and thus the mapping is evident, we believe that the accuracy of the
dataset would be threatened by the amount of false-negatives, i.e.,
comments that refer to a specific method, but are located outside of its
body.

4. CASE STUDY DESIGN

The case study presented in this paper, has been designed and is

reported according to the linear-analytic structure template sug-

gested by Runeson et al. [20]. In particular, in the upcoming sec-

tions we present the: (a) research objectives and the correspond-

ing research questions, (b) case and subjects selection process, (c)

data collection procedure, and (d) data analysis process.

4.1 Objectives and Research Questions

The of this case study in terms of Goal Question Metric (GQM)

[8] is formulated as follows: “analyze code smells with the pur-

pose of evaluation, with respect to their interest probability (based

on their frequency of occurrence and the change proneness of

modules in which they are identified), from the point of view of

software engineers, in the context of technical debt management”.

This leads to the following main research question (RQ): What is

the interest probability incurred by code smells? To answer this

research question we will first investigate the following sub-

questions:

RQ1: What is the occurrence frequency for each code smell?

This research question aims at identifying the most commonly

occurring code smells at the method level. The more occurrences

of a code smell exist in the code-base, the more probable it is for

the software engineers to face interest, due to the existence of the

specific smell, while maintaining the software.

RQ2: What is the mean change proneness of the modules in which

each type of code smell is identified?

This research question explores whether the identified methods

suffering from code smells tend to change frequently, increasing

the chances of producing interest. To answer the research question

we will report on the average change proneness of modules that

suffer from each code smell.

We note that the answer to the main question will be provided

after answering RQ1 and RQ2, since the calculation of smell inter-

est probability requires a synthesis of the information gathered

when answering the two sub-questions.

4.2 Case Selection and units of analysis

Our study is an embedded multiple case study that has been con-

ducted on Java open source code. In this study as cases we con-

sider the different projects, whereas as units of analysis we con-

sider their methods. The reason for restricting our case selection to

Java projects was a limitation of the tools used for identifying code

smell occurrences. The two open source projects that we used in

our study, and the rationale of their selection are presented below:

 Spring is a framework that provides a comprehensive pro-

gramming and configuration model for modern Java-based

enterprise applications on any kind of deployment platform.

Spring is a very successful project with more than 100 re-

leases and 14,000 commits and it can be considered as a

piece of software of good quality since it adheres to well-

known principles and patterns. From Spring Framework, we

have extracted 5,284 classes that offer us 44,746 units of

analysis (i.e., methods).

 AndEngine is a successful engine for developing Android

games. AndEngine holds a substantial history with more

than 1,800 commits and offered us 459 classes with 3,005

methods. The rationale of selecting a game engine as our

second subject was our motivation not to focus this study

only on “good” quality software. Thus, we selected a project

from the application domain of computer games, which ac-

cording to existing literature often lacks in terms of struc-

tural quality [4].

4.3 Data Collection

The data collection process can be divided into two main parts:

(a) the identification of code smell occurrences, and (b) the as-

sessment of method change proneness. The identification of code

smell occurrences has been performed with the tools that have

been presented in Section 3, namely: SEMI, JDeodorant, and

NiCad. The assessment of change proneness has been performed

through a rather simple metric, named Percentage of Commits in

which a Method has Changed (PCMC), calculated through a tool

that has been developed by Arvanitou et al. [5]. On the comple-

tion of data collection the following variables have been recorded

for every unit of analysis (i.e. method)2:

[V1] Method name: The name of the considered method

[V2] Class name: The class in which the method belongs to

[V3] Long Method: Is the method classified as long by the SEMI

tool (yes / no)?

[V4] Code Clone: Number of clones identified in the method’s

body by NiCad

[V5] Conditional Complexity: Number of conditional statements

in the method that have been flagged as unnecessary (i.e.,

they can be replaced with polymorphism) by Deodorant

[V6] PCMC: Percentage of commits in which the method has

changed. The complete history of the method is considered.

4.4 Data Analysis

In order to answer the research questions set in Section 4.1, we

statistically analyze the collected data, through descriptive statis-

tics and hypothesis testing.

To answer RQ1 we use frequency tables and a heatmap as a

means of visualization. To assess the occurrence frequency of

each smell we use: (a) the actual values for comparison among

types of code smells, and (b) the occurrences per mille (‰) to

check the reliability of our findings across the two projects. We

note that for answering RQ1, the number of occurrences of the

same smell in the same method is irrelevant, because even the

existence of one smell type in a method, would generate interest

upon the method’s change. To avoid confusion, we note that in

methods that involve multiple smells, the interest amount would

increase, in the sense that the effort required to maintain the code

would be higher. However interest probability would remain the

same independently of the number of smells. Thus, the existence

of any number of smells should be equally counted as a reason for

increasing interest probability. Therefore regarding [V4] and [V5]

2 http://www.cs.rug.nl/search/uploads/Resources/MTD17_dataset.zip

we only count the number of methods for which the values are ≥

1, rather than summing-up the actual occurrences.

To answer RQ2 we will perform both descriptive statistics and

hypothesis testing. To provide a fair comparison of the relatively

small amount of methods that suffer from code smells, compared

to those that do not, we have avoided the use of independent sam-

ple t-testing. Thus, we have preferred to calculate the mean

change proneness ([V6]) of all methods per system and perform

one-sample testing against this value. In this way, we can observe

if the change proneness of methods that suffer from one smell is

statistically different from the change proneness of the population

(regardless of the existence/absence of code smells). In order to

perform this analysis, for each type of smell, we filtered out

methods that do not suffer from the corresponding smell. An

overview of our data analysis plan (test, variables used, and notes)

is presented in Table I.

Table I. Data Analysis Overview

Question Variables Statistical Analysis

RQ1

[V3]

[V4]

[V5]

Frequency Table (actual value)

Heatmap (per mille)

RQ2

[V3]

[V4]

[V5]

[V6]

One-sample Hypothesis Testing of [V6]
against the mean [V6] of all project’s
methods

Select cases based on [V3], [V4], or [V5]

Finally, to calculate the smell interest probability based on the

results obtained from answering RQ1 and RQ2, we calculate the

joint probability of events. Specifically, as an event we consider

the action of maintaining a module that suffers from a specific

smell. This event holds a specific probability to occur. The prob-

ability that at least one of the modules suffering from the same

smell will change (i.e., the interest probability of the smell), is

calculated as the joint probability of any maintenance event to

occur. The calculation of smell interest probability (vertical axis),

contrasted with TDI interest probability (horizontal axis) is pre-

sented in Fig. 1. For example, for Smell-2, we can observe that its

occurrence frequency is 3/n, since it appears in three modules

(i.e., 2, 3 and n) and the mean change proneness of the modules it

appears in is: (cp2 + cp3 + cpn) / 3.

Fig. 1: Smell Interest Probability

To calculate the joint probability, we use the data obtained from

RQ1 and RQ2. In particular, the answer from RQ1 provides us

with the number of smells in the system. In terms of the calcula-

tion, this corresponds to the number of events, in the sense that

there can be one maintenance action for resolving each smell

occurrence. The answer to RQ2 provides us with the probability

of each maintenance event to occur (i.e., the probability of each

module that contains the smell to change and produce interest).

Based on the mathematical formula, the joint probability of two

events is calculated as follows, and accordingly scales to more

than two events:

P(A|B) = P(A) + P(B) – P(A)*P(B)

5. RESULTS

In this section, first we present the answers to RQ1 and RQ2 (see

Section 5.1) and then a synthesis of these results as an answer to

the main research question (see Section 5.2).

5.1 Smell Interest Probability Factors

5.1.1 Occurrence Frequency of Code Smells (RQ1)

Table II presents the actual count of methods in which we have

identified smell occurrences, whereas in Fig. 2, we visualize a

different view of the same information through a heatmap, by

considering the frequency of smells per thousand methods. Fig. 2

allows to filter out project size, since the Spring Framework is

substantially larger than the AndEngine. Based on the above, the

results of Table II can be used only for within project interpreta-

tion, whereas the results of Fig. 2, for within smell interpretation.

Table II. Number of methods with smell occurrences

Project

Long

Method

Conditional

Complexity

Code

Clones Total

Spring 166 28 1689 1883

AndEngine 5 20 45 70

The results of Table II suggest that code clones are in both pro-

jects the most frequently detected code smell, while the ranking

of long methods and conditional complexity smells (in terms of

occurrence frequency) differs between the two projects. This

outcome suggests that most of the code TD items (i.e. methods)

identified into the projects suffer from code duplication.

By observing the findings presented in Fig. 2, and contrasting

them to those of Table II, we can claim that the difference in the

number of identified long methods across the two projects is not

as large as it seems from the actual values. In particular, the level

of magnitude for long methods is not substantially different, in

the sense that we have identified approximately 4 long methods

for every thousand methods for the Spring Framework, and 2 for

every thousand methods of the AndEngine. However, the results

for the Conditional Complexity are quite different: 0.6‰ for

Spring and 6.6‰ for the AndEngine. The same happens for the

total number of smells, as well: approx. 44‰ for Spring and 24‰

for AndEngine. A possible interpretation of this result is the (nec-

essarily) higher complexity of the Spring Framework compared to

the AndEngine. However, we note that this comparison is out of

the scope of this manuscript, which basically aims at the compari-

son of different types of smells.

Fig. 2: Smell Frequency per Thousand Methods

The most frequent type of code TD is code clones. However, their

frequency-level is project-related. Concerning long methods,

approximately 2-4 can be identified in a thousand methods. The

frequency of Conditional Complexity is also project related since

it varies between less than one to 6 per mille in the two projects.

5.1.2 Change Proneness of Code Smells (RQ2)

To perform one sample t-tests, we first needed to calculate the

mean change proneness of all classes of the Spring Framework

and the And Engine. Then, we could compare the change prone-

ness of technical debt items (i.e., methods) suffering from each

smell individually, to the specific value, and we check the exis-

tence of a statistically significant difference. The results of the

hypothesis testing are presented in Table IV and Table V, respec-

tively. In each table, we denote the significant differences with

italic fonts in the sig. column.

Table IV. Change proneness of methods of Spring

(test value: 0.39) – in 14,000 commits

95% conf. interval
Smell Mean

Std.

Dev.
Sig.

Low Up

Long Method 2.00 4.549 .000 0.91 2.31

Conditional
Complexity

2.36 3.793 .011 0.50 3.44

Code Clones 0.45 1.434 .106 -0.01 0.12

 Table V. Change proneness of methods of AndEngine

(test value: 0.72) – in 1,800 commits

95% conf. interval
Smell Mean

Std.

Dev.
sig.

Low Up

Long Method 3.60 4.615 .235 -2.85 8.61

Conditional
Complexity

3.21 3.735 .009 0.69 4.29

Code Clones 1.86 3.921 .060 -0.05 2.34

The results of both tables suggest that methods suffering from the

Conditional Complexity smell are more change prone than the

average method of a system, and this finding has proven to be

statistically significant for both projects. On the other hand, Code

Clones are usually identified into parts of the system whose

change proneness is not statistically different than the rest of the

methods of the system. Finally, technical debt items that suffer

from the Long Method smell, are significantly more change prone

in the Spring Framework, but not in the AndEngine. However,

even regarding the AndEngine the Long Methods are in average

located to the most change prone methods of the system. The fact

that this difference is not statistically significant is probably due

to the small number of smells identified in the AndEngine (N=5).

This observation can be explained by the fact that long methods

serve more than one functionality. Thus, they subject to more

“reasons to change” leading to a higher change proneness.

Methods that suffer from code smells are more change prone than

TD-free methods. Among specific types of code smells, long

methods and the use of conditionals instead of polymorphism are

usually encountered in change prone methods. On the other hand

code clones are usually positioned in system parts that do not

change frequently.

5.2 Calculation of Smell Interest Probability

To assess interest probability of various types of code TD, we

have quantified two parameters: (a) how many items suffer from

each code smell (i.e., type of TD), and (b) what is the probability

of each item to change in an upcoming commit, based on change

history. Based on the outcome of RQ1 and RQ2 the two parame-

ters do not uniformly rank the encountered code smells (e.g., code

clones are the most frequently occurring smells, but are identified

in the least change prone methods). Therefore there is a need of

synthesizing the two pieces of information so as to assess the

interest probability for each smell (as explained in Section 3.4).

Based on the above information, we calculate the interest prob-

ability for the studied systems. The results are presented in Table

VI (Spring Framework) and Table VII (AndEngine).

Table VI. Interest Probability per Code-Smell (Spring)

Long

Method
Conditional

Complexity

Code

Clones

#TDIs (#events) 166 28 1689

Mean Change Probability

(mean probability of event

to occur)

0.14e-3 0.16e-3 0.03e-3

Interest Probability 2.07% 0.44% 14.34%

Table VII. Interest Probability per Code-Smell (AndEngine)

Long

Method
Conditional

Complexity

Code

Clones

#TDIs (#events) 5 20 45

Mean Change Probability

(mean probability of event

to occur)

2.00e-3 1.78e-3 1.03e-3

Interest Probability 0.99% 3.50% 4.53%

Based on the results of Table VI and VII, we can observe that

interest probability can significantly vary for different projects.

The interpretation of the results is as follows: in the best case

scenario—i.e., AndEngine, there is an almost 4.5% probability

that at least one method with a code clone (out of 45) will change

in every commit, along system maintenance. The aforementioned

results are considered intuitive in the sense that a single code

clone is spread into multiple methods. Therefore, the same smell

occurrence is affecting more than one method, whereas concern-

ing the rest smells, each occurrence is located in a single TDI. By

considering that, based on our observations, each clone is on av-

erage spread across 3.5 methods, the code clone occurrences are

approximately at the same levels as the other two smells. How-

ever, we need to note that interest probability is correctly pre-

sented at method level rather than smell-occurrence level, because

all clones will need to be updated (interest presence), even if one

method of the clone is changed. Additionally, we can observe that

the long method smell is the one showing the smallest deviation

in terms of smell interest probability, in the examined projects,

suggesting that this result is more reliable than the others.

Code clones is the smell that has the higher probability to pro-

duce interest in future maintenance activities in the two examined

projects. This characteristic is mostly attributed to the smell oc-

currence frequency rather than its identification in change prone

methods. The long method smell is the code TD type that presents

the most similar smell interest probability in the examined pro-

jects

6. DISCUSSION

In this section we discuss the main findings of the case study and

present the implications that this study provides to researchers

and practitioners. In parallel we present interesting future work

opportunities. The findings of the study suggest that:

 Long Methods are code smells of which 1.6 – 3.7 occur-

rences can be identified per mille methods, which however

are changing 0.14 – 2.00 times per mille commits. Leading

to an interest probability of 1.0%-2.0% per commit.

 Conditional Complexity is a smell that occurs in approxi-

mately 0.6 – 6.7 occurrences per mille methods, which are

changing 0.16 – 1.78 times per mille commits. Leading to

an interest probability of 0.5%-3.5% per commit.

 Code Clones is the most frequently occurring smell, since

we have identified 14.9 – 37.7 occurrences per thousand

methods. These methods were changing 0.03 – 1.03 times

per thousand commits. Leading to an interest probability of

4.5%-14.0% per commit.

From the above information it becomes clear that the most fre-

quently occurring bad smells (i.e., code clones) are placed in the

least change prone parts of the system, whereas long methods,

which are the rarest have been identified in the most frequently

changing ones. The synthesis of the results suggests that code

clones, despite their identification in less change prone methods,

are the smell with the highest interest probability. The findings of

this study can be used by practitioners in the following ways:

 Existence of smells and method change proneness. Al-

though this case study was not meant to explore whether

heavy maintenance is responsible for introducing smells, or

if the existence of smells is responsible for the change fre-

quency of the methods, we have revealed that a relation be-

tween the two exists. More particularly, more smells exist in

more change-prone methods. Thus, we advise practitioners

to be careful in the development and maintenance of

change-prone modules, so as not to introduce code smells to

them.

 Training in TD repayment. The findings of this case study

suggest that the interest probability for method-level smells

is quite high (ranging from 9% to 16%, by summing up the

probabilities of all smells). This finding suggests that the

maintenance cost indeed increases due to code smells and

that technical debt does not only lie in parts of the system

that are not maintained. Thus, we advise practitioners to

train on: (a) ways to prevent the creation of TD at the

source code level, and (b) techniques to repay technical debt

(e.g., refactorings).

 Alert on types of code TD. Based on the results of this case

study, we advise quality managers to alert developers, espe-

cially concerning the frequency of code clones occurrences.

The amount of clones and the fact that a single smell occur-

rence can trigger interest on the modification of various

modules, renders this type of code TD as one of paramount

importance.

Regarding researchers, the methodology of this study has pro-

vided a structured way to assess the interest probability of various

types of technical debt. The methodology can be reused / tailored

in many ways, as follows:

 more smells. The methodology can be applied to more code

smells that are described in the book of Fowler et al. [13].

Applying the method to more smells would: (a) provide a

holistic evaluation of code smells, and (b) make the results

of such a study more accurate in the sense that in the current

study we considered as TD-free the modules that do not in-

volve instances of the three bad smells under investigation.

 different levels of granularity. The methodology can be tai-

lored to fit different levels of granularity, such as require-

ments, or architecture. Such an analysis would be of great

importance in the sense that TD is a multi-perspective no-

tion that spans across all development phases.

 more projects. The application of the method to more pro-

jects would increase the reliability of the presented results.

Also, it could possibly unveil differences in the interest

probability of smell types in projects with different charac-

teristics (e.g., size, maturity, history, levels of quality, etc.).

An interesting special case of such an extension would be

the application of the proposed approach to industrial pro-

jects, checking if there are differences compared to open-

source ones.

7. THREATS TO VALIDITY

In this section, we present and discuss construct, reliability, exter-

nal, and internal validity threats for this study.

Construct validity reflects to what extent the phenomenon under

study really represents what is investigated according to the re-

search questions [20]. Thus, concerning construct validity, the

potential threats are related to the accuracy of the tools used to

assess the change proneness of methods and to detect code smells

(TD) in the source code. This is a construct validity threat in the

sense that inaccurate results might lead to measuring a different

phenomenon than the one that we originally intended to investi-

gate. However, to mitigate this threat we used tools that have

been evaluated in previous studies in terms of accuracy of the

results they provide. Additionally we should mention that a poten-

tial threat is related to our definition of TD-free methods. As men-

tioned in Section 6, in this study as TD-free methods we consider

methods that present none of the three studied smells. Thus, if

additional code smells were studied this number would differ. In

terms of external validity, i.e. possible threats while generalizing

the findings derived from the sample to a general population [20],

three potential threats have been identified. First, in our study we

used systems written in Java and there is a possibility that the

results would be different for other object-oriented languages.

Second, results cannot be generalized to other code smells, or

other types of TD, e.g., design, architecture etc. Finally, since the

results have been obtained by studying two open source projects

they cannot be generalized to the compete OSS population.

The reliability of the case study concerns the replicability of the

collected data and the analysis performed, so that same results to

be reproduced [20]. The study has limited reliability threats, since

all research questions were answered by statistical analysis of

automatically generated results, which involves no researcher

bias. However, to assure the correct data analysis, two researchers

collaborated and the one double-checked the results of the data

analysis performed by the other researcher. Finally, all primitive

data can be reproduced by using the dataset collected by GitHub

(i.e. source code of the two projects and their evolution data), and

the tools mentioned in Section 3. Nevertheless, we need to ac-

knowledge that a replication with different tools for identifying

code smell occurrences, might lead to different results. However,

as mentioned before the accuracy of the employed tools has been

successfully validated in empirical ways. Finally, internal validity

is related to the identification of confounding factors, i.e., factors

other than the independent variables that might influence the

value of the dependent variable [20]. Internal validity is not rele-

vant for our study since no causal relationships have been ex-

plored.

8. CONCLUSIONS

Efficient technical debt management requires the prioritization of

repayment activities, since the complete repayment of technical

debt is not feasible with limited resources. A rule of thumb for the

selection of which technical debt items should be refactored and

which should remain intact, suggests that quality assurance teams

should first refactor modules that are more prone to produce in-

terest, i.e., be maintained in the future. The quality attribute that

assesses this possibility is change proneness.

In this study we performed an exploratory case study to identify

the types of code TD that are more commonly placed in spots of

the system that tend to change more frequently. In this way, we

assess the interest probability of each type of TD, so as to aid

quality managers in their decision making process. To achieve

this goal we have studied more than 45,000 methods retrieved

from two well-known open source projects. The projects have

been statically analyzed with state-of-the-art tools to identify code

smell occurrences and assess the change proneness of the corre-

sponding methods. The results of the study have indicated that

source code spots, in which code smells are concentrated, present

a higher probability to change compared to TD-free parts of the

system. Additionally, the obtained results suggested that TDIs

suffering from code clones present the highest interest probability

(max: approximately 35%) compared to other types of code

smells. Based on the findings of this study valuable implications

to researchers and practitioners have been reported.

ACKNOWLEDGMENT

This research has been partially funded by the ITEA2 project

11013 PROMES.

REFERENCES

[1] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F.

Shull, and C. Seaman, “Identification and management of technical

debt: A systematic mapping study,” Information and Software

Technology, vol. 70, pp.100–121, 2016.

[2] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou,

P. Abrahamsson, A. Martini, U. Zdun, and K. Systa. The Perception

of Technical Debt in the Embedded Systems Domain: An Industrial

Case Study. In 8th International Workshop on Managing Technical

Debt (MTD’ 2016). IEEE Computer Society, 2016.

[3] A. Ampatzoglou, A. Chatzigergiou, S. Charalampidou, and P.

Avgeriou. The Effect of GoF Design Patterns on Stability: A Case

Study. IEEE Transactions on Software Engineering, 2015.

[4] A. Ampatzoglou, A. Gkortzis, S. Charalampidou, and P. Avgeriou.

An Embedded Multiple-Case Study on OSS Design Quality

Assessment across Domains. In Proceedings of the 2013

International Symposium on Empirical Software Engineering and

Measurement (ESEM). IEEE Computer Society, pages 255–258,

2013.

[5] E. M. Arvanitou, A. Ampatzoglou, A. Chatziogeorgiou, and P.

Avgeriou, “A Method for Assessing Class Change Proneness”,

Evaluation and Assessment in Software Engineering, ACM,

Karlskrona, Sweden, 15-16 June 2017 (under review)

[6] E. M Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster,

and P. Avgeriou. “A Mapping Study on Design-Time Quality

Attributes and Metrics”. Journal of Systems and Software,

127(5):52–77, 2017.

[7] E. M. Arvanitou, A. Ampatzoglou, A. Chatziogeorgiou, and P.

Avgeriou. Introducing a Ripple Effect Measure: A Theoretical and

Empirical Validation. In 9th International Symposium on Empirical

Software Engineering and Measurement (ESEM’ 15). IEEE, 2015.

[8] V. Basili, G. Caldiera, D. Rombach, “The Goal Question Metric

Approach”, Encyclopedia of Software Engineering, John Wiley &

Sons, pp. 528-532. 1994

[9] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of

code smells in object-oriented systems”, Innov. Syst. Softw. Eng.

10(1) , pp. 3-18. March 2014.

[10] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.

Gkortzis, and P. Avgeriou. Identifying Extract Method Refactoring

Opportunities based on Functional Relevance. IEEE Transactions on

Software Engineering, 43, 2017

[11] S. Charalampidou, A. Ampatzoglou, and P. Avgeriou. Size and

cohesion metrics as indicators of the long method bad smell: An

empirical study. In 11th International Conference on Predictive

Models and Data Analytics in Software Engineering (PROMISE

2015). ACM, 2015.

[12] R. Eisenberg, “Management of Technical Debt: A Lockheed Martin

Experience Report,” 3rd International Workshop on Managing

Technical Debt (MTD’ 13), Baltimore, USA, 2013.

[13] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.Roberts,

“Refactoring: Improving the Design of Existing Code”, Addison-

Wesley Professional, 1 edition. July 1999.

[14] F. Khomh, M. Di Penta, Y-G Guéhéneuc, “An exploratory study of

the impact of code smells on software change-proneness”, In:

Proceedings of the 16th working conference on reverse engineering

(WCRE). IEEE Computer Society Press, Piscataway. 2009

[15] E. Murphy-Hill, C. Parnin, A.P.Black. How we refactor, and how

we know it. In: Proceedings of 31st IEEE international conference on

software engineering (ICSE’09), Vancouver, Canada, pp 287–297,

2009

[16] S. Olbrich, D.S. Cruzes, V. Basili, N. Zazworka. The evolution and

impact of code smells: a case study of two open source systems. In:

Proceedings of 3rd international symposium on empirical software

engineering and measurement (ESEM’09), Florida,USA, pp 390–

400, 2009

[17] J. Ratzinger, T. Sigmund, H.C. Gall. On the relation of refactorings

and software defect prediction. In: Proceedings of 5thworking

conference on mining software repositories (MSR’2008), Leipzig,

Germany, pp 35–38, 2008

[18] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of

code clone detection techniques and tools: A qualitative approach,

Science of Computer Programming, Volume 74, Issue 7, 2009,

Pages 470-495

[19] C. K. Roy and J. R. Cordy, "NICAD: Accurate Detection of Near-

Miss Intentional Clones Using Flexible Pretty-Printing and Code

Normalization," 2008 16th IEEE International Conference on

Program Comprehension, Amsterdam, 2008, pp. 172-181.

[20] P. Runeson, M. Höst, A. Rainer, B. Regnell, “Case Study Research

in Software Engineering: Guidelines and Examples”, John Wiley

and Sons, Inc. 2012.

[21] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and

A.Vetró. “Using technical debt data in decision making: Potential

decision approaches”. In: 3rd International Workshop on Managing

Technical Debt (MTD’ 12), IEEE Computer Society, 2012

[22] C. Seaman, Y.Guo. “Measuring and Monitoring Technical Debt”.

Advances in Computers, Vol 82, pp. 25-46. Elsevier. 2011

[23] D. Silva, R. Terra, M. T. Valente, “Recommending automated

extract method refactorings”. In Proceedings of the 22nd

International Conference on Program Comprehension (ICPC 2014),

ACM, New York, NY, USA, pp.146-156. 2014.

[24] N. Tsantalis, A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods”, Journal
of Systems and Software, 84 (10), pp. 1757-1782. October 2011.

[25] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring
opportunities introducing polymorphism, Journal of Systems and
Software, Volume 83, Issue 3, pp. 391-404, March 2010

