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ABSTRACT   

Using U.S. post-war data, we investigate whether the interest rate response to inflation known as 

the Fisher effect could be asymmetric. The asymmetry considered is that the long-run change in 

the interest rate is larger when inflation rises than when it falls. The possibility follows from 

behavioral hypotheses about the relationship of inflation expectations to actual inflation. Using an 

asymmetric cointegration approach, we find asymmetric cointegration in the Fisher effect for the 

post-war period through 1979, but not subsequently. We then find that, starting in 1980, a 

breakdown developed in the relationship between inflation expectations from surveys and actual 

recent inflation rates, a breakdown not accounted for by asymmetry. If the survey results 

approximate true expectations, then econometric testing using actual recent inflation to compute 

expected inflation will suffer from mismeasurement, which could explain the finding of no 

cointegrating Fisher effect post-1979. The paper accounts for breakpoints and uses bootstrapping 

to conservatively estimate statistical significance.  
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1 | INTRODUCTION 

The relationship known as the Fisher effect, that a change in expected inflation will change the 

interest rate in the same direction by the same amount, has been a cornerstone of monetary and 

macroeconomic theories. Consistent empirical support for the Fisher effect has, however, 

remained elusive despite extensive research. A frequent conclusion is that the interest rate response 

to inflation in the long run is less than one for one, or even that there is no long-run relationship at 

all. If so, real interest rates respond permanently to monetary shocks and are nonstationary, effects 

that are problematic for various standard macroeconomic models (Neely & Rapach, 2008). 

Researchers have considered numerous reasons for the failure to resolve the Fisher effect puzzles, 

such as mismeasurement of expectations, use of short- versus long-term rates, breakpoints, and 

choice of estimator (Caporale & Pittis, 2004). Various nonlinearities have also been proposed (e.g., 

by Christopoulos & León-Ledesma, 2007), which if unspecified could impede accurate estimation.  

This paper’s purpose is to examine the Fisher effect while accounting for mismeasurement 

of expectations based on possible nonlinearity in the form of asymmetric expectation formation. 

The argument for asymmetry draws from behavioral economic hypotheses and findings related to 

loss aversion (Tversky & Kahneman, 1991) and a model of household inflation expectation 

formation with uncertain inflation news (Baqaee, 2020). People don’t like inflation (Shiller, 1997), 

and they tend to notice or take seriously increases in its rate more than decreases. If inflation 

expectation formation corresponds to these responses, then the rise in the interest rate when the 

inflation rate increases will be larger than the fall in the interest rate when the inflation rate 

decreases.  

Using quarterly U.S. post-war data, 1953:1-2019:1, we test whether such asymmetry has 

existed in the Fisher effect using the asymmetric cointegration procedure of Shin, Yu, and 

Greenwood-Nimmo (2014). The model assumes that the interest and inflation rates are 

nonstationary, I(1) variables, a typical finding in the literature and one our own tests support. 

Meanwhile, because the hypothesized asymmetric expectations are asymmetrically erroneous, 

there is likely to at some point be a noticeable divergence between perception and reality. In 

accordance with Hong, Stein, and Yu (2007), the divergence, although ignored for a while, would 

eventually bring on a regime change or break, and we therefore pay detailed attention to the 

specification of breaks.  
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We find statistically significant asymmetric cointegration between the interest rate and 

inflation rate for the post-war period until the end of 1979. The statistical significance is estimated 

via bootstrapping, which generates much more conservative results than does use of tabulated 

critical values. The asymmetry is in the direction predicted by our model: the interest rate responds 

in the long run more to increases than to decreases in inflation. Nevertheless, the estimated interest 

rate responses remain much smaller than the inflation rate changes.  

In contrast, after 1979 we do not find cointegration, symmetric or asymmetric, at 

statistically significant levels with any credibility. Our post-1979 results contradict several recent 

papers. The contradiction could reflect these papers’ specification of inaccurate breakpoints or use 

of tabulated critical values that are likely to give oversized results. However, if the Fisher effect 

did hold post-1979, our results could reflect the declining ability of actual recent inflation to be a 

basis for inflation expectations in econometric tests. Using survey forecasts as a measure of 

inflation expectations, Blanchard (2018) finds such a decline within the 1980-2016 period. Using 

a data set starting much earlier, we confirm the breakdown, finding a strong relationship between 

actual inflation and forecasts until 1980, but a poor relationship afterward, particularly in the recent 

post-financial crisis era. Thus, actual inflation is a plausible basis for expectation measurement for 

the period which gives Fisher-effect asymmetric cointegration, while the post-1980 deterioration 

in the actual inflation-expectations relationship can explain our finding of no cointegration in the 

Fisher effect from 1980 onward.  

 

2 | A CRITICAL SYNTHESIS OF RELATED LITERATURE 

To clarify the form of the asymmetry we investigate, and to compare our approach with previous 

empirical work on the Fisher effect, let us start with the basic Fisher equation: 

𝑖𝑖𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽𝑡𝑡𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜀𝜀𝑡𝑡.        (1) 

The nominal interest rate 𝑖𝑖𝑡𝑡 is the rate determined in period t for a bond maturing in period 

t + 1, and 𝜋𝜋𝑡𝑡+1 is the inflation rate between periods t and t + 1. 𝐸𝐸𝑡𝑡 indicates expectations formed 

in period t. In the basic case, 𝛼𝛼𝑡𝑡 and 𝛽𝛽𝑡𝑡 are constant, 𝛽𝛽𝑡𝑡 = 𝛽𝛽 = 1, and 𝜀𝜀𝑡𝑡 is stationary with a mean 

of 0. Estimation of the equation requires some observable measure of 𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1, and an estimation 

approach that avoids econometric problems such as errors-in-variables bias from mismeasurement 

of 𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1. The value used in the literature for expected inflation is generally the actual inflation 
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rate, 𝜋𝜋𝑡𝑡 or sometimes 𝜋𝜋𝑡𝑡+1 under an assumption of rational expectations. The result of central 

interest is the estimate of 𝛽𝛽.  

Table 1 gives a list of papers examining the Fisher effect, and summarizes their key 

empirical approaches and findings. Fisher (1930) concluded that 𝛽𝛽 < 1, and suggested the 

explanation was money illusion. Many other researchers listed in Table 1 have also concluded that 

𝛽𝛽 < 1. Although the Tobin-Mundell effect does suggest 𝛽𝛽 < 1, this is probably a rather small 

effect, and should be swamped in data starting in the mid-20th century by a tax effect giving 𝛽𝛽 ≈

1.3 (Darby, 1975; Summers, 1983). The finding that 𝛽𝛽 < 1 is thus a classic puzzle, although a 

number of more recent papers in Table 1 have not rejected the hypothesis that 𝛽𝛽 = 1. Table 1 also 

shows that over the last 30 years or so researchers have often concluded that 𝑖𝑖𝑡𝑡 and 𝜋𝜋𝑡𝑡 are well 

modeled as unit root (I(1)) variables. Consequently, researchers have looked for cointegration 

between 𝑖𝑖 and 𝜋𝜋. If it is found, there is a long-run relationship between the two variables and 𝛼𝛼 

and 𝛽𝛽 define the cointegration vector. The approach also avoids the bias from random 

mismeasurement of expected inflation (Stock, 1987; MacDonald & Murphy, 1989). 

< Table 1 here > 

In the cointegration context, the finding that 𝛽𝛽 < 1 not only contradicts the standard Fisher 

effect, but also implies that the real interest rate is nonstationary (even if 𝛼𝛼𝑡𝑡 is constant), which is 

another theoretical contradiction (Rose, 1988). The (expected) real interest rate 𝑟𝑟 = 𝑖𝑖𝑡𝑡 − 𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1 =

𝛼𝛼 + (𝛽𝛽 − 1)𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜀𝜀𝑡𝑡, and thus if 𝛽𝛽 < 1 then r incorporates the random walk component in the 

inflation rate. 

Papers have often allowed for the possibility that 𝛼𝛼 and 𝛽𝛽 are not constant. One way this 

has been specified, seen in many papers in Table 1, follows from some major change in the 

economic environment, usually the change in U.S. monetary policy in 1979. Results from papers 

in Table 1 that do not specify such changes could be wrong. Because changes could have affected 

𝛼𝛼, 𝛽𝛽, and lag parameters for the error term in (1), various papers have therefore allowed for breaks 

by dividing the data into subsamples, or simply used a dummy variable, although a dummy 

variable only allows a change in 𝛼𝛼. However, in most of these papers 𝛽𝛽 is constant within the 

subsamples, or even in the full sample in the dummy variable approach. 

Christopoulos and León-Ledesma (2007) consider a more radical case for fluctuations in 

𝛽𝛽 in which 𝛽𝛽 is a nonlinear function of the inflation rate: 𝛽𝛽𝑡𝑡 = 𝑓𝑓(𝜋𝜋𝑡𝑡) in Equation (1). They report 

evidence for of this, which appears mostly for the post-1979 period. They argue that the effect 
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could reflect Federal Reserve policies that vary with the inflation rate. The result is a form of 

asymmetry in which 𝛽𝛽 is smaller under low inflation than under high inflation. However, Haug, 

Beyer, and Dewald (2011) contradict the result, being unable to reject a linear cointegration vector. 

Tsong and Lee (2013) examine the Fisher effect using quantile cointegrating regression. Their 

finding of different quantile regression coefficients is a symptom that 𝛽𝛽 could be a possibly 

nonlinear and asymmetric function of shocks, i.e., 𝛽𝛽𝑡𝑡 = 𝑓𝑓(𝜀𝜀𝑡𝑡), an interpretation discussed by Xiao 

(2009). Million (2004) considers nonlinearity and asymmetry in the adjustment toward 

cointegrating equilibrium in the Fisher equation (1). The rate of adjustment to equilibrium depends 

on the size and sign of the deviation, 𝜀𝜀𝑡𝑡, from disequilibrium.  

 

3 | THE MODEL: ASYMMETRY IN THE FISHER EFFECT 

To explain the asymmetry we consider, we start with the finding that households significantly 

dislike inflation, because, among other things, they suspect that the purchasing power of their 

incomes is likely to fall and that inflation creates situations where the unscrupulous can take 

advantage of them (Shiller, 1997). The expectation of a fall in purchasing power is not rational for 

inflation that is a purely monetary phenomenon, but it is reasonable for inflation related to a 

negative supply-side shock (Mankiw, 1997). Next, loss aversion and reference dependence 

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1991) suggest that households view the loss 

from an increase in inflation as larger than the gain from a same-sized decrease in inflation, with 

the previous inflation rate being the reference point. The stronger impact on perceptions of bad 

relative to good events is also discussed in the general and economic psychology literature (Bates 

& Gabor 1986; Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001; Bruine de Bruin, van der 

Klaauw, & Topa, 2011). Soroka (2006) finds that the media are more likely to report bad economic 

news than good, which would contribute to households being more aware of increases in inflation 

than decreases. Ranyard et al. (2008) and Detmeister, Lebow, and Peneva (2016) present 

summaries of the issue, with reference to recent surveys of inflation perceptions and expectations. 

Consumer perceptions are biased in the direction of sensitivity to higher inflation. 

Baqaee (2020) provides a related model of asymmetric inflation expectations. Households 

view higher inflation as raising costs more than equal disinflation lowers them, and households 

have Knightian uncertainty about the quality of price change information (e.g., news of higher 

inflation could be false). They pursue a mini-max strategy, and thus particularly sensitive to worst-
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case scenarios. News of rising inflation is noisy and thus may be right or wrong, but the worst-

case scenario is that it is right, and therefore it is given weight. News of falling inflation may also 

be right or wrong, but now the worst-case scenario is that it is wrong, and therefore it tends to be 

ignored. Households’ expectations are, therefore, once again, biased toward sensitivity to increases 

in inflation. Using the Michigan Survey of Inflation Expectations over the years 1983-2015, 

Baqaee (2020) finds that households do indeed adjust their inflation expectations more to increases 

in recent inflation than to decreases. However, he finds that the Philadelphia Fed Survey’s 

professional forecasters do not exhibit the asymmetry. The importance of asymmetry for the Fisher 

effect thus depends on the importance of households relative to professional forecasters in financial 

markets. Some financial professionals might be more like the households than the professional 

forecasters in their expectations.  

Ball (2000) and Yellen (2007) argue on near-rationality grounds that people may simply 

use recent past inflation to form expectations of future inflation rather than behaving as if they use 

a more complete economic model. Use of simple models for forecasting is also hypothesized by 

Hong, Stein, and Yu (2007). Meanwhile, the behavioral arguments and survey findings we have 

noted suggest that it is perceptions of recent inflation rather than actual recent inflation that matter 

for expectations. Combining the ideas, we hypothesize that expected inflation is an asymmetric 

function of recent inflation (actual recent inflation is used as a proxy for expectations in every 

relevant paper in Table 1):  

 𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾 + 𝜓𝜓𝜓𝜓𝑡𝑡𝜋𝜋𝑡𝑡.         (2) 

In Equation (2), P is an asymmetrical “perceptions” operator. 𝑃𝑃𝑡𝑡𝜋𝜋𝑡𝑡 is the rate of inflation 

perceived (or paid attention to) in period t to have occurred between periods 𝑡𝑡 − 1 and 𝑡𝑡. The t 

subscript on P allows for occasional changes in the perceptions operator.  

Next, we assume that period t’s perceived inflation rate is period (t – 1)’s perceived rate 

plus period t’s perceived change in the inflation rate. Likewise, period (t – 1)’s perceived rate is 

period (t – 2)’s perceived rate plus period (t – 1)’s perceived change, and so on. Thus, today’s 

perceived inflation rate is the sum of its past perceived changes (plus the initial perceived rate). 

We assume for now that past perceptions are not revised. Let ∆𝜋𝜋𝑗𝑗 = (𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑗𝑗−1). Then: 

 𝑃𝑃𝑡𝑡𝜋𝜋𝑡𝑡 = 𝑃𝑃0𝜋𝜋0 + ∑ 𝑃𝑃�𝑗𝑗∆𝜋𝜋𝑗𝑗𝑡𝑡
𝑗𝑗=1 .        (3) 

The perception asymmetry for the level of inflation in (3) comes from asymmetry in past perceived 

changes in the inflation rate: 𝑃𝑃�𝑗𝑗∆𝜋𝜋𝑗𝑗 = 𝛿𝛿𝑗𝑗+∆𝜋𝜋𝑗𝑗 if ∆𝜋𝜋𝑗𝑗 > 0, and 𝑃𝑃�𝑗𝑗∆𝜋𝜋𝑗𝑗 = 𝛿𝛿𝑗𝑗−∆𝜋𝜋𝑗𝑗 if ∆𝜋𝜋𝑗𝑗 ≤ 0, with 0 <
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𝛿𝛿𝑗𝑗− < 𝛿𝛿𝑗𝑗+ in line with our behavioral economic assumption. Finally, let us (for now) assume that 

the perceptions operator for changes in the inflation rate is constant. Thus, the 𝛿𝛿’s are constant, 

and we drop their subscript j. With various substitutions, we obtain: 

𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾 + 𝜓𝜓(𝑃𝑃0𝜋𝜋0 + 𝛿𝛿+𝜋𝜋𝑡𝑡+ + 𝛿𝛿−𝜋𝜋𝑡𝑡−)      (4) 

where we have the partial sum processes: 

 𝛿𝛿+𝜋𝜋𝑡𝑡+ = ∑ 𝛿𝛿+∆𝜋𝜋𝑗𝑗+𝑡𝑡
𝑗𝑗=1 = ∑ max (𝛿𝛿+∆𝜋𝜋𝑗𝑗 , 0)𝑡𝑡

𝑗𝑗=1 ,     (5a) 

𝛿𝛿−𝜋𝜋𝑡𝑡− = ∑ 𝛿𝛿−∆𝜋𝜋𝑗𝑗−𝑡𝑡
𝑗𝑗=1 = ∑ min (𝛿𝛿−∆𝜋𝜋𝑗𝑗 , 0)𝑡𝑡

𝑗𝑗=1 .     (5b) 

And, finally, Equation (1) becomes: 

𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛽𝛽𝛽𝛽(𝑃𝑃0𝜋𝜋0 + 𝛿𝛿+𝜋𝜋𝑡𝑡+ + 𝛿𝛿−𝜋𝜋𝑡𝑡−) + 𝜀𝜀𝑡𝑡.     (6) 

Equation (6) presents the possible asymmetrical relationship of the interest rate with the 

inflation rate. Increases in the inflation rate tend to increase the nominal interest rate more than 

decreases in inflation reduce it. The simple Fisher effect, where the responses are symmetric, does 

not hold. If 𝑖𝑖𝑡𝑡 and 𝜋𝜋𝑡𝑡 are I(1) variables, then (6) is the basic asymmetric cointegration equation of 

Shin et al. (2014), which, with additions to deal with serial correlation and endogeneity (discussed 

below), leads to the Nonlinear Autoregressive Distributed Lag (NARDL) model. Like 𝛼𝛼 and 𝛽𝛽, 

the parameters 𝜓𝜓, 𝛿𝛿+, and 𝛿𝛿− could vary over time, but in Equation (6) we omit t subscripts on 

these coefficients to lessen the clutter. The cointegration vector coefficients 𝛽𝛽𝛽𝛽𝛿𝛿+ and 𝛽𝛽𝛽𝛽𝛿𝛿− in 

Equation (6) are equivalent to the value we call “𝛽𝛽” in Table 1 for past papers’ Fisher effect results. 

Past papers in effect assume that 𝜓𝜓 = 𝛿𝛿+ = 𝛿𝛿− = 1. 

Our model of inflation expectations is not rational, as eventually the perceived inflation 

rate could be significantly different from the actual inflation rate. At some point households will 

surely notice this and adjust their perceptions. This is consistent with the behavioral-finance, 

regime-change model of Hong, Stein, and Yu (2007). People prefer a simple model (such as one 

based only on recent inflation), and do not abandon it unless significant evidence against it appears. 

When this happens (here, when the inflation forecast errors become sufficiently large and 

persistent, perhaps noticed with the catalyst of a monetary policy regime change), the existing 

simple model is abandoned in favor of a now more plausible simple model. In our application, 

such a regime change would be reflected by a change in the parameters in (6), or a resetting of the 

calendar date associated with period 0. Either way, past perceptions are now adjusted. Thus, we 

should account for breaks in our empirical testing.   
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4 | THE ASYMMETRIC COINTEGRATION TESTS AND THE DATA 

Following Shin et al. (2014), we convert (6) to an error correction equation, an extension of the 

ARDL equation of Pesaran, Shin, and Smith (2001). The result is the NARDL equation:  

 ∆𝑖𝑖𝑡𝑡 = 𝜇𝜇 + 𝜌𝜌𝑖𝑖𝑡𝑡−1 + 𝜃𝜃+𝜋𝜋𝑡𝑡−1+ + 𝜃𝜃−𝜋𝜋𝑡𝑡−1−  

  +∑ 𝛾𝛾𝑗𝑗∆𝑖𝑖𝑡𝑡−𝑗𝑗 + ∑ �𝜙𝜙𝑗𝑗+∆𝜋𝜋𝑡𝑡−𝑗𝑗+ + 𝜙𝜙𝑗𝑗−∆𝜋𝜋𝑡𝑡−𝑗𝑗− � + 𝑒𝑒𝑡𝑡
𝑞𝑞
𝑗𝑗=0

𝑝𝑝
𝑗𝑗=1 ,   (7) 

where 𝜌𝜌 is the error correction adjustment coefficient, 𝛽𝛽𝛽𝛽𝛿𝛿+ = −𝜃𝜃+/𝜌𝜌, and 𝛽𝛽𝛽𝛽𝛿𝛿− = −𝜃𝜃−/𝜌𝜌. The 

values 𝛽𝛽𝛽𝛽𝛿𝛿+ and 𝛽𝛽𝛽𝛽𝛿𝛿− are the cointegration vector coefficients for 𝜋𝜋𝑡𝑡−1+  and 𝜋𝜋𝑡𝑡−1− when the vector 

coefficient for 𝑖𝑖𝑡𝑡−1 is normalized as −1. Then, 𝜇𝜇 = 𝛼𝛼 + 𝛽𝛽𝛾𝛾 + 𝛽𝛽𝛽𝛽𝑃𝑃0𝜋𝜋0, and the remaining terms 

in (7) control for endogeneity and possibly asymmetric dynamics. If 𝜌𝜌 = 0, then (7) is a first 

difference equation with no cointegration. After estimating Equation (7) with OLS, Shin et al. 

(2014) apply two tests for cointegration. One is the t test of Banerjee, Dolado, and Mestre (1998) 

for the null of 𝜌𝜌 ≥ 0 against the alternative of 𝜌𝜌 < 0. The other is the F test of Pesaran et al. (2001) 

for the joint null of 𝜌𝜌 = 𝜃𝜃+ = 𝜃𝜃− = 0. Finally, if the non-cointegration null is rejected, then a test 

of the null of long-run symmetry is of interest. As in Shin et al. (2014), we apply a chi square test 

of the null that  −𝜃𝜃+/𝜌𝜌 = −𝜃𝜃−/𝜌𝜌, equivalent to 𝛽𝛽𝛽𝛽𝛿𝛿+ = 𝛽𝛽𝛽𝛽𝛿𝛿−. 

 Our data are quarterly from 1953:1 through 2019:1 and were downloaded from FRED 

(dataset is available from the authors upon reasonable request). The starting date accounts for 

Fama’s (1975) points that interest rates were controlled prior to 1953 and that important 

improvements in the accuracy of the consumer price index (CPI) came into effect in 1953. Thus, 

Fama (1975) advises that data prior to 1953 should not be used to investigate the Fisher effect. The 

interest rate is the average three-month treasury bill rate in the third month of a given quarter. We 

then use an annualized three-month inflation rate available to economic agents to form inflation 

expectations in the third month. Because we assume that the economic agents are using a very 

recent inflation rate to form their expectations, we use the most recently available annualized three-

month CPI inflation rate. This is the three-month inflation lagged one and one-half months. Thus, 

our first usable observation is 1953:2. Since we use quarterly values at a quarterly, and not, say, a 

monthly frequency, we avoid the overlapping data problem possible in some papers in Table 1.1 

 

  

 
1 Use of overlapping data (e.g., quarterly inflation rates at monthly intervals) tends to generate moving average serial 
correlation in a regression, which is difficult to control for with standard autoregressive techniques. 
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5 | TESTING FOR LINEARITY, UNIT ROOTS, AND BREAK POINTS 

We begin the empirical work by testing whether the interest and inflation rate variables can be 

modeled as linear autoregressive processes. If so, then doubt would be cast on the effort to search 

for any sort of nonlinearity in their relationship. If, however, linearity is rejected, then the 

asymmetric responses we have proposed could be at least a partial explanation. We apply two 

tests: the BDS test of Brock, Dechert, Scheinkman, and LeBaron (1996), a broad misspecification 

test often used to test for linearity, and the Harvey and Leybourne (2007) test (HL), which is 

specifically a test of the null of linearity versus nonlinearity. The HL test has the advantage that 

the tested variable can be either I(0) or I(1).  

We apply the BDS test to the residuals of a (linear) AR(4) and AR(8) model for each 

variable. Acceptance of the null of i.i.d. residuals for a given AR model suggests the model does 

not suffer from significant omitted variable bias (among other problems) and consequently 

nonlinear processes including asymmetrical ones in the original series are trivial or absent. But a 

rejection allows for the possibility of nonlinearity in the original series. 

We apply the HL test to the series themselves. The null in this case is that a linear AR 

model is sufficient with no nonlinear terms needed. The HL procedure examines this by testing 

the significance of certain nonlinear terms added to a linear AR model. The nonlinear terms are 

from a Taylor series expansion meant to approximate the unknown nonlinear component. 

Table 2 shows the BDS test results from various specifications of the test statistic using 

residuals from the AR(8) model. The AR(4) results are quite similar; the AR(8) results seem 

preferable because of a statistically significant lag 8 coefficient in the AR model for each variable. 

The null of i.i.d. residuals is rejected. Table 3 shows the HL test results for three choices of the 

desired significance level. The null of zero coefficient values for the nonlinear terms is rejected. 

Unfortunately, these results do not give much guidance on the form of any nonlinearity. In 

fact, the BDS test rejections could reflect many other factors, not necessarily nonlinearity. 

Meanwhile, Harvey and Leybourne (2007) state that their Taylor expansion in the HL test is 

reasonable for ESTAR and LSTAR processes. But the test probably has power against other 

nonlinear processes including the asymmetry that the NARDL test focuses on. 

< Tables 2 and 3 here > 

Now we examine whether our two variables are more likely I(0) or I(1). Although the 

NARDL procedure allows for a mixture of I(1) and I(0) variables, interpretation of the results will 



10 

be aided with additional information about our two variables’ orders of integration. If both are I(1) 

and the NARDL tests indicate a relationship, it will be a long-run cointegrating one, which could 

be the Fisher effect as in Equation (6). However, if one variable is I(0), then any detected 

relationship (Fisher or otherwise) between the two will only reflect a correlation between 

stationary components, but not long-run co-movement. If both variables are I(0) and correlated, 

the NARDL tests will likely indicate a relationship that could be a Fisher effect, but we wouldn’t 

call it cointegration.2 Determining the level of integration of each variable also helps us formulate 

plausible data generating processes for our bootstrapping.  

As shown in Table 1, many authors have already concluded that both variables are I(1). 

We corroborate the conclusion using unit root tests that also allow for breaks as suggested by, e.g., 

Hong et al.’s (2007) behavioral argument. The tests are those of Carrion-i-Silvestre, Kim, and 

Perron (2009), using generalized least squares (GLS) detrending to gain power. They allow data-

determined breaks (under both the null and alternative hypotheses) and estimate the breakpoint 

dates. We specify constants in first differences under the null, and deterministic trends in levels 

under the alternative hypothesis, with breaks in levels and trends.  

We apply the tests specifying 0, 1, and 2 breaks. Lag order is from the modified Akaike 

Information Criterion (AIC) of Ng and Perron (2001). The maximum first-difference lag order is 

from Schwert’s (1989) formula 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑖𝑖(ℓ(𝑇𝑇/100).25) with ℓ = 12, the value working best 

with large moving average errors; maxlag = 15 for our full sample. Exceptions to using ℓ = 12 

are noted later in the paper when they occur. Table 4 presents the modified 𝑍𝑍𝛼𝛼 (𝑀𝑀𝑍𝑍𝛼𝛼) and ADF 

results. The unit root null is never rejected at anywhere near the 0.05 level.3  

< Table 4 here > 

The tests indicate break dates of 1972:2, 1980:1 (or 1980:2), and 2008:3. The dates give 

the final quarter of the pre-break subsample. The first two are approximately those used by one or 

more papers in Table 1, and the third coincides with the 2008 financial crisis. However, Gauss 

 
2 Here are two examples (without asymmetry, for clarity). Suppose 𝑥𝑥𝑡𝑡 and 𝑢𝑢𝑡𝑡 are i.i.d. with 0 means. Suppose 𝑦𝑦𝑡𝑡 =
 𝑦𝑦𝑡𝑡−1 + 𝛽𝛽𝛽𝛽𝑡𝑡 + 𝑢𝑢𝑡𝑡. Then x is I(0) and y is I(1) and the equation is equivalent to the ARDL equation Δ𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡−1 +
 𝛽𝛽Δ𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡 . The ARDL error correction term is absent and thus its sample t statistic would likely be small, but the 
ARDL F test could well be significant from the non-zero 𝛽𝛽 coefficient for 𝑥𝑥𝑡𝑡−1. Now suppose instead that 𝑦𝑦𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡 +
𝑢𝑢𝑡𝑡. Both x and y are now I(0). The corresponding ARDL equation is Δ𝑦𝑦𝑡𝑡 = −𝑦𝑦𝑡𝑡−1 + 𝛽𝛽𝑥𝑥𝑡𝑡−1 +  𝛽𝛽Δ𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡. This may 
well lead to results that could be interpreted as cointegration, but it is only a trivial version since both variables are 
I(0) and any linear combination is stationary. 
3 The same testing procedure indicates the first differences are probably stationary, supporting the I(1) conclusion for 
the variables in levels (results not reported to conserve space but available from the authors upon request). 
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code from Carrion-i-Silvestre does not give their statistical significance. To estimate it, we assume 

the two variables are related under the null hypotheses of no cointegration and no asymmetry, and 

first test the significance of the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF-suggested breaks using a bi-variate, first-difference 

vector autoregression (VAR), allowing all parameters to change at the breaks. We then apply 

multiple breakpoint tests of Bai and Perron (1998, 2003). 

We begin with Wald chi square tests of the null that all constants and lag parameters are 

unchanged across the three sub-periods defined by the two break dates. The lag order for the 

unconstrained VAR is determined using the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF-suggested breakpoints and the (standard) 

AIC; maxlag = 15 as before. The chosen lag order is 3. Given uncertainty about the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF-

suggested dates, we apply the tests to the break dates one quarter before and after the 𝑀𝑀𝑍𝑍𝛼𝛼 dates 

in addition to the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF dates of 1972:2, 1980:1, and 2008:3. With three break dates and the 

±1 quarter window, there are 27 tests. The three dates giving the most significant rejection of the 

hypothesis of no breaks are 1972:1, 1980:1 and 2008:2. The chi square statistic is 141.6 with 42 

degrees of freedom with a p-value of 1.0E-12. Thus, there are surely breaks. But can they be 

attributed to changes in only the constants and thus be specified simply with constant dummies? 

The chi square statistic for the null of no differences among the constants between time periods is 

5.39 with 6 degrees of freedom, giving a p-value of 0.50. The breaks are thus attributable to 

changes in the lag parameters. Indeed, the null of lag parameter equality is rejected with a chi 

square value of 129.92 with 36 degrees of freedom and a p-value of 1.5E-12. Thus, specifying a 

cointegration test only with constant dummies for the breaks will likely give misleading results.  

Are the breaks all significant? Chi square tests for differences in the VAR parameters show 

that the breakpoints between sub-periods 2 and 3, and between 3 and 4 are the significant ones, 

giving breakpoint dates of 1980:1 and 2008:2. See Table 5. 

< Table 5 here > 

 Our second approach to determining breaks employs the tests of Bai and Perron (1998, 

2003). They allow the researcher to (1) estimate one or more break dates for some or all 

coefficients in a regression, (2) compute the break dates’ statistical significance, and (3) generate 

confidence intervals for the break dates. We continue to assume all coefficients could change at 

the break dates. As with the 𝑀𝑀𝑍𝑍𝛼𝛼 test, the Bai-Perron approach tests for breaks in one regression, 

not in two simultaneously in a VAR. However, we do use the first difference VAR specification 

in that we apply the Bai-Perron approach to each equation in the bivariate VAR. 
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 The optimal lag order for the regressions is first estimated. In order to start afresh with a 

lag-length choice independent of past lag-length choices, and yet proceed under the nulls of no 

cointegration and no breaks as well as the notion that the two variables are related, we determine 

the lag orders using the AIC from the bivariate first difference VAR for the full sample period with 

no breaks. Unfortunately, the Bai-Perron Gauss code does not work with the 19 right-hand 

variables that result from the Schwert-formula’s maxlag = 15. But with maxlag = 8, the AIC lag 

order is 4 and the code works (our first exception to ℓ = 12 in the Schwert formula.) 

 Bai and Perron (1998, 2003) present many methods for finding breakpoints. However, their 

preferred approach is to use the sequential approach with the supF test, after having first checked 

the UD max (or WD max) test for the null of no breaks. The results are in Table 6. The UD max 

test clearly rejects the null of no breaks for both variables’ equations. For each equation, the supF 

sequential approach rejects the null of 0 breaks versus 1, but not 1 versus 2, which terminates the 

procedure (the null of 2 versus 3 breaks is also not rejected). For the interest rate the breakpoint is 

1980:3 and for the inflation rate it is 2008:2. The interest rate date is similar to the one we 

previously estimated (just two quarters later) and the inflation rate date is exactly the same. The 

previously suggested break dates of 1980:1 and 2008:2 clearly lie within the Bai-Perron confidence 

intervals. The various breakpoint tests thus give three subsamples. 

< Table 6 here > 

In the NARDL tests, we employ various ending and starting dates for the subsamples 

implied by the estimated break dates. This accounts for uncertainty about the break dates and for 

the possibility of gradual transitions. Including transition periods in subsamples could generate 

distortion. The beginning date for the first subsample is always the start of our data set, 1953:2. 

The ending dates range from two quarters before the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF/VAR suggested break date of 

1980:1 through the Bai-Perron break date of 1980:3, that is, the end dates are 1979:3-1980:3. The 

1979:3 date is the lower limit of one of the Bai-Perron confidence intervals. 

For the second subsample, the breakpoint analysis suggests possible starting dates of 

1980:2 from the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF/VAR-Wald analysis through 1980:4 from the Bai-Perron analysis.  

Both analyses suggest an ending date of 2008:2. We also examine results from later starting dates 

and earlier ending dates to account for transition periods and the 1981-1982 recession. The third 

subsample starts in 2008:4, derived from the 𝑀𝑀𝑍𝑍𝛼𝛼/ADF breakpoint and Bai-Perron upper 

confidence-interval date, and runs through the end of our data set, 2019:1. For each subsample, no 
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data prior to that period are used for lags; thus, there is no overlap in the data used for the 

subsamples.4 

 

6 | EMPIRICAL COINTEGRATION ANALYSIS 

 

6.1 | Procedure 

In estimating the NARDL Equation (7), we employ two methods to determine the lag order. First, 

the AIC is used, and p = q. In the second method, we start with the same maxlag value, but use 

sequential elimination of regressors (SEQ), suggested by Brüggemann and Lütkepohl (2001) and 

a version of general-to-specific modeling. It is the method used by Shin et al. (2014) in their 

empirical example. Starting with the maximum lag order, the least significant differenced variable 

is dropped, the equation re-estimated, and once again the least significant differenced variable is 

dropped. This is done until all remaining differenced variables give a p-value of at most 0.05 

according to standard OLS and t-table calculations. Thus, p might not equal q, and some number 

of shorter lag coefficients will be set to zero.  With both lag-order choice methods, after the lag 

order is chosen but before the NARDL statistics are computed, we adjust the sample period to the 

maximum possible sample size for the specified data period.  

Asymptotic critical values for the t and F cointegration tests are in Pesaran et al. (2001) 

and for the symmetry tests in chi square tables with one degree of freedom. However, many papers 

have found for other unit root and cointegration tests that p-values using the tabulated values are 

likely to be oversized. Thus, although we report whether test results give rejections with the 

Pesaran et al. (2001) and chi square critical values, we rely on bootstrapped results for our 

conclusions. Shin et al. (2014) also mention the problem and apply a bootstrap approach.5  

 
4 A popular approach for estimating a time series model with breaks is to use some form of the smooth 
threshold/transition autoregressive (STAR) model. STAR models can be, of course, very useful, but we do not use 
one for several reasons. (1) STAR models generally specify that a regime change occurs from a triggering value of a 
specific variable in the model. Our break-date determining approaches do not require this to be specified. (2) STAR 
models generally have the same specification of variables (such as their lag orders), error distributions, and 
cointegration restrictions (if any) across the various regimes. We do not impose these restrictions. (3) In addition to 
estimating parameters within regimes, STAR models must also specify transition functions. We avoid this additional 
specification by simply having gaps between regimes. And (4), most importantly, standard STAR models cannot 
easily model or test for the asymmetric responses in a cointegration framework, which is fundamental to our paper. 
For example, Rothman et al. (2001) are forced to use a prespecified cointegrating vector, rather than an estimated one, 
in their smooth-transition, money-output analysis. 
5 We do not bootstrap the already reported MZA results because they do not give any values close to rejections. 
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Our bootstrap approach generates data sets that have characteristics similar to the real data 

under the relevant null hypothesis. For the tests of no-cointegration, for each estimation period we 

estimate two first difference bivariate VAR models of i and 𝜋𝜋. In the first VAR the lag order is 

determined by the AIC, and in the second VAR the lag order is determined by the Schwarz 

Bayesian (BIC) approach. For the chi square test of asymmetric cointegration vector coefficients, 

two vector error correction (VECM) models are estimated. The data generating process (DGP) 

based on the VAR has no cointegration and no asymmetry, while one from the VECM has 

cointegration but no asymmetry. To create simulated data sets with the estimated VAR or VECM 

parameters, we also need random residuals (shocks) to apply to the equations over time, with their 

distribution to be similar to that in the actual data under the null.  

We wish our selected residuals to account for: (1) serial correlation; (2) homo- or 

heteroskedasticity; and (3) normality or non-normality. Ideally the AIC or BIC give lag orders 

whose VAR or VECM lag orders account for serial correlation. We can then create random 

residuals that possess the other two distributional characteristics of the residuals seen in the VAR 

or VECM model. To check for the three characteristics, we apply to every VAR/VECM the Ljung-

Box Q test for serial correlation, a Lagrange Multiplier test for heteroskedasticity, and the Jarque-

Bera test for non-normality. Results are in the Appendix. Serial correlation does not appear to be 

a problem, except sometimes the BIC is apparently too short. However, there are many rejections 

of homoskedasticity and normality, sometimes both. It would not be easy to account for both 

problems in a DGP unless we were willing to assume specific forms, but we have insufficient 

information to assume specific forms. However, lack of normality is the more frequent problem 

among the results. Therefore, we most often account for that. When heteroskedasticity seems more 

of a problem, we use a wild bootstrap based on Gonçalves and Kilian (2004). In either case, we 

make use of the estimated VAR’s residual matrix, which embodies any non-normality, 

heteroskedasticity, and also contemporaneous correlation. 

The bootstrap procedure uses the initial, actual data values as starting values for the lagged 

variables, and for each replication recursively builds up simulated data sets using the estimated 

VAR parameters and residuals. If the residuals seem to be normal and homoskedastic, or if non-

normality seems to be a greater problem than heteroskedasticity, the procedure randomly selects 

residual pairs from rows of the estimated VAR’s residual matrix. This accounts for 

contemporaneous correlation and any non-normality. If heteroskedasticity seems more of a 
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problem, the wild bootstrap is employed. In recursively building up the simulated data sets, the 

pair of residuals for time period 𝑡𝑡 are randomly selected from the bivariate normal distribution 

defined by the covariance matrix computed from the actual VAR residuals for periods t – 1 through 

t + 1.6 To minimize the influence of initial conditions, we follow Chang (2004): each simulated 

data set starts after additional simulated values. We use 30.  

From each such simulated data set, we compute the t and F statistics, or the chi square 

statistic if testing asymmetry, having chosen the NARDL lag order with the AIC and SEQ just as 

with the actual data. Hence, the method accounts for the influence of lag parameters, possible non-

normality and contemporaneous correlation (or heteroskedasticity if using the wild bootstrap), and 

the effect of choosing the lag order. Accounting for lag-order choosing gives what Murray and 

Nelson (2000) call exact p-values. For each DGP there are 4,000 replications when the AIC 

determines the NARDL lag order, and 2,000 replications when the SEQ does (fewer replications 

with the SEQ because the SEQ estimations take much longer). The resulting distributions of the 

simulated statistics are compared with the actual values to get the p-values.  

 

6.2 | Results 

Table 7 gives the results for the first-period samples ending in 1979 and 1980. Using the tabulated 

critical values from Pesaran et al. (2001), there is considerable support for cointegration.7 The 

bootstrapped p-values, however, give more conservative results. Using them, rejection of the non-

cointegration null at (or very near) the 0.05 level occurs for the data sets ending in 1979:3 and 

1979:4, but not for those ending later. The significant decline in statistical significance with 

bootstrapping compared with using the tabulated critical values suggests significant size distortion 

if the tabulated critical values are used. Therefore, we focus on the more conservative, 

bootstrapped results. They suggest a cointegrated relationship that ended just before 1980:1. The 

failures to reject when the next few quarters are included are consistent with our previously 

documented change in structure, which could introduce the appearance of non-cointegration in the 

longer data sets, even if cointegration exists in the shorter data sets. 

 
6 For observation 1 of a simulated data set, we use the covariance matrix computed for periods 1-3, and for the last 
observation (T), we use the covariance matrix computed for periods 𝑇𝑇 − 2 through T. For the initial 30 discarded 
simulated values, we use the covariance matrix from the estimated VECM 
7 The tabulated critical values depend on the number of right-hand variables, unclear for NARDL (k = 1 or 2). Our 
significance asterisks use the number giving the more conservative values for t and F (as in Shin et al., 2014). 
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< Table 7 here > 

We conclude there is cointegration from 1953:2 through 1979:4. But is it asymmetric? The 

various estimated cointegration vector coefficients for inflation increases are larger than for 

decreases, as earlier proposed. The chi square tests indicate, with the bootstrapped p-values, that 

the differences are statistically significant at the 0.05 level (0.01 in one case). Once again, 

bootstrapping gives much more conservative conclusions than using tabulated critical values – the 

computed chi square statistics are all very much larger than the 0.01 critical value of 6.64. Indirect 

support for asymmetry comes from the ARDL test of Pesaran et al. (2001), which is the same test 

but without asymmetry. The ARDL test gives no rejections of non-cointegration for any estimation 

period (specific results available upon request). That the (N)ARDL procedure finds cointegration 

with asymmetry, but not without, supports the significance of asymmetry.  

The magnitude of the difference in the relationship of the interest rate to increases versus 

decreases in the inflation rate is about 15% according to the AIC models (Panel (a) of Table 5), 

but close to 50% according to the SEQ models (Panel (b) of Table 5). The 50% figure is dramatic; 

the 15% figure is more plausible. But even 15% is likely an overestimate. Ioannidis (2008) points 

out that if a test is underpowered, a point estimate that is in the rejection region is likely to be 

larger than the true effect. Finally, the Table 5 cointegrating coefficient estimates have, in common 

with a lot of past work, the puzzling trait of having values far less than 1.0. 

Now let us turn to analysis of the 1980-2008 period. Table 8 gives the results for 1980:4-

2008:2 (the NARDL results for five similar periods with starting dates of 1980:2-1980:4 and 

ending dates of 2008:1:2008:2 are almost the same and omitted to save space. Just as before, the 

bootstrapped p-values give much more conservative results than do tabulated critical values. There 

is some support for rejection, but it is not robust, existing at the 0.05 level from only the SEQ lag 

approach with BIC-based DGPs. If there is cointegration, the estimated interest-inflation 

relationship is nearly absent or significantly negative, which is not in accordance with the Fisher 

effect. A cointegrating Fisher effect in this time period, therefore, seems doubtful. 

< Table 8 here > 

The 1980:4-2008:2 data period just analyzed includes the 1981:3-1982:4 recession, a 

period of highly fluctuating interest and inflation rates. Perhaps this period should be excluded. 

Mishkin (1992) does include a 1982 breakpoint. Also, the ending date of 2008:2 could 

conservatively be moved a quarter earlier. In fact, the most conservative period 2, based on the 
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relevant boundaries of the Bai-Perron 95% confidence intervals, is 1984:4-2006:1. We therefore 

apply the NARDL tests to the subsamples 1983:1-2008:1 and 1984:4-2006:1. Again see Table 6. 

Results are similar to those for 1980:4-2008:2, with little statistical significance for cointegration 

and, usually, negative vector coefficients that are sometimes substantially negative. With no 

cointegration, the asymmetry test results are irrelevant.8 

Finally, we turn to the 2008:4-2019:1 period. There are not enough observations to estimate 

the NARDL model with maxlag = 9 from using ℓ = 12 in the Schwert formula. So, we set ℓ = 6 

instead (the second exception to ℓ = 12 in the Schwert formula). The results, not reported but 

available upon request, show that the NARDL cointegration t test statistics are utterly insignificant 

(p-values of 0.99), reflecting a wrong-signed error correction coefficient. The NARDL F statistics 

are significant, but the wrong-signed error correction coefficient that drives the significance 

renders it irrelevant. Moreover, the estimated cointegration vector coefficients are nearly zero. The 

results surely reflect, at least in part, that the Fed held short-term interest rates at nearly zero for 

much of this estimation period. 

 

7 | WHY NO EVIDENCE SUPPORTING COINTEGRATION POST-1979? 

Our finding of no cointegration after 1979 contradicts several results in Table 1 that concern mostly 

the post-1979 period: Christopoulos and León-Ledesma (2007), Beyer and Farmer (2007), 

Westerlund (2008), and Haug et al. (2011). However, none of these papers employ bootstrapping, 

and they may thus be too optimistic that cointegration was present. Moreover, except for 

Westerlund (2008), the starting dates for the non-cointegration rejecting sample periods are earlier 

than ours. The biggest discrepancy occurs in Haug et al. (2011), who employ a breakpoint date for 

the U.S. of 1977:1, three years before ours. If a breakpoint in 1980 is better, then results from 

sample periods starting several years earlier could be misleading.  

Blanchard (2018) concludes that in the second half of a 1981-2016 data set forecasters’ 

and consumers’ inflation expectations became “largely nonresponsive to actual inflation” 

(Blanchard, 2018, p. 116). Analysis of the post-1980-break Fisher effect using actual inflation as 

a proxy for expected inflation, as done in every paper in Table 1 as well as the present one, would 

 
8 In the 1980-2008 period, the interest and inflation rates both appear to have downward trends (just as they both 
appear to have upward trends prior to 1980). The 1980-2008 lack of cointegration means either the variables did not 
have the same downward trend, or they did not share long-run random movements, or both. 
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then be distorted. The distortion, at least for the professional forecasters, would not be related to 

asymmetric response, because they did not exhibit it (Baqaee, 2020). 

If growing lack of expectation response to actual recent inflation explains finding no 

cointegration after 1980 while finding cointegration before, the implication is that there was 

responsiveness before 1980. We now present evidence to support this. Unfortunately, the Michigan 

consumer and Philadelphia Fed professional forecaster data used by Blanchard (2018) do not 

extend much (or at all) prior to 1981. Therefore, we use the inflation forecasts of Livingston survey 

of economists, which go back to 1946.9 The data come from surveys conducted each June and 

December. We compare the six-month inflation forecasts with the most recently available six-

month inflation rates, also in the survey data set. There is long-running discussion of whether the 

Livingston inflation forecasts accurately reflect people’s unobservable expectations (Croushore, 

1997). One claim is that the forecasts are not rational, but Ball (2000), Hong and Stein (2007), and 

Yellen (2007) suggest people’s expectations do not necessarily conform to theoretical rational 

expectations. 

Given the I(1) status of inflation already documented, and the corresponding I(1) status for 

the Livingston forecasts (see Table 9), we test for cointegration between the forecasts and recent 

inflation in our three sub-periods. Cointegration in a sub-period would mean the economists’ 

expectations were correlated with actual inflation in the long run. The closer to 1.0 is the vector 

coefficient, the more accurate the relationship. Forecasts adjusting to correct past forecast errors 

(lack of weak exogeneity) would also be expected. However, lack of cointegration (or a small 

cointegration coefficient), weak exogeneity, or unstable vector coefficients would imply an absent 

or weak relationship over the long run. In the absence of linear cointegration there could, however, 

be a nonlinear relationship, perhaps asymmetric, mis-specified using the linear approach. But if 

the Livingston economists have shared the professional forecasters’ lack of asymmetric response 

(Baqaee, 2020), and if the Livingston economists have had no other nonlinear response, then not 

finding a linear cointegration would clearly suggest a minimal long-run relationship between 

forecasts and actual inflation. We do, however, test for asymmetric cointegration between 

forecasted and actual inflation. 

 
9 The Philadelphia Fed forecasters’ data begin in 1981 (https://www.philadelphiafed.org/research-and-data/real-time-
center/survey-of-professional-forecasters/), the University of Michigan household survey expectations data begin in 
1978 (http://www.sca.isr.umich.edu/tables.html), and the Livingston inflation forecast data begin in 1946 
(https://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey). 

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
http://www.sca.isr.umich.edu/tables.html
https://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey
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We apply several cointegration and stability tests based on regressions of the Livingston 

forecasts on the most recently available actual inflation rate. The cointegration tests are the Engle-

Granger OLS detrended ADF t test, the GLS detrended ADF t and 𝑀𝑀𝑍𝑍𝜌𝜌 tests (Perron and 

Rodríguez, 2016), and the NARDL t and F tests. The stability tests are the Lc, MeanF, and SupF 

tests of Hansen (1992). The Lc test is also a test of the null of cointegration. The OLS and Hansen 

(1992) fully modified (FM) cointegration vector coefficients are reported, along with the error 

correction coefficient (estimated using the OLS error) and its statistical significance. In the final 

exception to ℓ = 12 in the Schwert formula, ℓ is set to 6 (and 5 for the final data period). This 

adjusts for the smaller number of semi-annual observations relative to quarterly observations over 

a given time period (and if the errors follow an ARMA(p, 1) process, a size-distorting moving 

average parameter will be smaller, reducing the need for a long AR lag order). 

The results are in Table 10. The bootstrap DGPs are first difference VARs for the tests of no-

cointegration nulls. The DGPs are VECMs for the remaining tests (for the error correction 

coefficient test, the forecast variable’s error correction coefficient is constrained to zero). DGP lag 

orders are from the AIC. The wild bootstrap is used except for the first- and third-period tests of 

no cointegration. There are 2,000 replications for each DGP and time period. The results are 

consistent with an economically significant and stable relationship between the forecasts and 

actual inflation before the 1980 breakpoint, but not after. For 1954:6-1980:6, the EG-ADF t test 

soundly rejects non-cointegration in favor of linear cointegration, and the stability tests suggest 

the vector is stable. The GLS-detrended tests do not reject non-cointegration, a seeming puzzle 

because Perron and Rodríguez (2016) point out that the GLS-detrended tests are generally more 

powerful than the EG-ADF-t test. However, they also point out that the OLS detrended EG-ADF-

t delivers more power in the presence of a large initial condition, and the residuals from the OLS 

regression for the EG test do have a very sizeable initial value. When this is eliminated by starting 

the sample period one quarter later, the two GLS-detrended tests show strong rejections while the 

results from all the remaining tests for the time period remain largely unchanged. Finally, the 

NARDL tests do not support asymmetric cointegration.  

< Tables 9 and 10 here > 

In the 1980:12-2008:6 period, neither non-cointegration nor stability are rejected. Because 

the Lc stability test is also a test of the null of cointegration, cointegration’s presence is ambiguous. 

If there is cointegration, the vector coefficient for actual inflation is much smaller than in the first 
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period (using either the OLS or FM estimate) and the error correction coefficient is insignificant 

with the wrong sign. Meanwhile, the FM procedure without the default pre-whitening does 

generate rejections for all three tests, with bootstrapped p-values between 0.03 and 0.07 (not shown 

in the table). The FM test results for the other time periods are virtually unaffected by not pre-

whitening. Finally, the results for the 2008:12-2018:12 period are certainly consistent with the 

deterioration in the relationship after 1980. Non-cointegration is not rejected by any test, and 

cointegration is rejected by the Lc test. The non-rejections by the NARDL tests for the two later 

periods are consistent with our conjecture that the breakdown in the Livingston economists’ 

inflation/forecast relationship would not be explained by asymmetric expectations. 

Overall, recent inflation seems to be a reasonable proxy for professional inflation 

expectations before 1980, but not after. There is no corresponding household evidence. But if 

households were the primary source of the asymmetric Fisher effect prior to 1980, and if their 

expectations subsequently became a more tenuous function of inflation, then an asymmetric 

cointegration relationship estimated from actual inflation would have broken down, as we find. 

 

8 | CONCLUSION 

We propose that asymmetric expectations could be relevant to the Fisher effect and use the 

NARDL approach of Shin et al. (2014) to test for cointegration under such a possibility and to 

assess the significance of any asymmetric relationship. Since asymmetric expectations will likely 

generate at some point a noticeable discrepancy between expectation and outcome, we expect 

breaks in the asymmetric Fisher effect when the discrepancies are (temporarily) corrected. We, 

therefore, expend considerable effort to identify and account for breaks in our testing.  

The subsequent NARDL analysis rejects non-cointegration in favor of asymmetric 

cointegration for U.S. data in the sample period 1953:2-1979:4. As in many past papers, the interest 

rate response to inflation is less than one-to-one, but our central finding is that it is asymmetric. 

Among several estimates, the most plausible is that the interest rate response to inflation rate 

increases is about 15% larger than to decreases.  

In contrast, we find no credible evidence for cointegration, asymmetric or otherwise, in post-

1979 subsamples. This may reflect that inflation expectations, assuming they are reasonably 

measured by surveys of inflation forecasts, have become increasingly disconnected from 

corresponding actual recent inflation, as found by Blanchard (2018) in a post-1980 data set. 
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Extending Blanchard’s (2018) work, we show that actual and expected inflation were cointegrated 

before 1980, but not afterward. Thus, use of actual inflation rates to study the Fisher effect is 

reasonable with the older data, but encounters problems with newer time periods. Consequently, 

it could be fruitful to examine the Fisher effect using survey data. 
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TABLE 1 Literature review 
Paper Countries Data period Techniques Breakpoints? General findings Paper concludes ß = ? Bootstrap 

test stats? 
Overlapping 
data? 

Fisher 
(1930) 

6 incl. USA various: 1800s to early 
1900s (latest 1927) 

Tables, graphs, 
correlations 

Various sub-periods Pos. corr(i,π) for full 
period, but they break 
down with sub-periods 
and lags/leads 

0 < ß < 1 No No 

Fama (1975) USA 1953-1971 (1959 start 
sometimes) 

Regression Various sub-periods 
for some results 

Constant (stationary) r, 
fluctuations in i reflect π 
predicted by past π 

ß = 1 No No 

Summers 
(1983) 

USA 1860-1979 Tables, band 
spectral regression 

WW II, and many 
sub-periods 

No relationship prior to 
1940; some response 
after 1940 

After 1940: 0 < ß < 1 (so 
also < 1.3, the 
hypothesized value with 
tax effects) 

No No 

Rose (1988) 18 incl. USA USA: annual 1892-
1970, quarterly 1957- 
?, monthly 1948-86 

Unit root tests, EG 
cointegration 

Various, using sub-
samples, early 70s, 
or 1979 for US 
monthly 

r is nonstationary, i and 
π are not cointegrated 
(and π is probably 
stationary) 

Not estimated No Usually no 

MacDonald 
& Murphy 
(1989) 

4 incl. USA 1955-86 Cointegration tests 1972 or 1973, using 
subsamples 

Non-cointegration is 
weakly rejected for 1st 
sub-period, not for 2nd 

In 1st sub-period, usually 
0 < ß < 1; ß < 0 for US 

No No 

Mishkin 
(1992) 

USA 1953-1990 Regression, unit 
root and EG 
cointegration tests 

1979 and 1982, 
using subsamples 

i and π are I(1); little sh. 
run forecast ability in 
regressions, but i and π 
are cointegrated until 
1979, but not later 

(1/ß) > 1 (so 0 < ß < 1) 
for 1953-1979 period (no 
cointegration in later 
periods) 

Yes Some-times, but 
account-ed for 

Evans & 
Lewis 
(1995) 

USA 1947-1987 Markov switching, 
JOH coint., but ß 
estimates from 
DOLS 

π process shifts are 
sometimes specified 
with Markov 
switching 

See next column 0 < ß < 1 with standard 
coint. approach, but 
cannot reject ß ≥ 1 with 
inflation process shifts 
included 

No Yes, with 3-mo. 
maturi-ties 

Crowder & 
Hoffman 
(1996) 

USA 1952-1991 JOH cointegration No Support for "tax-
adjusted" Fisher effect 

ß > 1 (without tax 
adjusted data, which is 
the usual approach); ß = 1 
not rejected with tax 
adjusted i 

No No 

Koustas & 
Serletis 
(1999) 

11 incl. USA 1957-1995 EG cointegration, 
then 1st difference 
VAR 

No i and π are I(1) but not 
cointegrated; 1st 
difference VARs 
estimate ß 

Depends on 
contemporaneous 
identifying restrictions, 
but generally conclude 0 
< ß < 1 

No Unclear, probably 
not 
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Atkins & 
Coe (2002) 

USA and 
Canada 

1953-1999 ARDL 
cointegration 

No i and π are probably I(1) 
and cointegrated 

ß = 1 not rejected. But 
higher values for tax-
adjusted ß not generally 
supported. 

No Yes 

Rapach 
(2003) 

14 incl. USA varies by country, US: 
1961-1996. 

Structural 1st 
difference VAR to 
estimate effect of 
permanent π shock 
on i; real GDP 
included in model 

No i and π are I(1) but not 
cointegrated; one 
exception, permanent π 
rise significantly 
reduces real i with US 
quarterly data 

Result implies ß < 1, so 
l.r. full Fisher effect is 
rejected, except using US 
quarterly data 

Yes, for the 
VAR results 

Yes (long term i is 
used) 

Million 
(2004) 

USA 1951-1999 Unit root tests; EG 
coint. with break in 
constant; tests EG 
residuals for asym-
metric and nonlin 
adjust to long-run 
equilibrium 

Not for unit root 
tests on i, π or r; but 
paper does specify 
breaks in mean for 
cointegration test: 
1979 

i, π, and r are I(1); but i 
and π are coint. when 
brk in mean included; 
residuals from assuming 
ß = 1 show asymmetric 
and nonlinear 
adjustment 

Estimates are not 
reported; ß = 1 is 
assumed in residual 
analysis 

No Yes 

Caporale & 
Pittis (2004) 

USA 1960-1999 28 estimators to 
estimate ß and test ß 
= 1 

Breaks only in 
cointegration vector 
variance in DGP for 
Monte Carlo 
analysis 

i and π are I(1) and 
cointegrated and ß = 1 is 
usually not rejected 

Estimators with best 
properties in Monte Carlo 
analysis do not reject ß = 
1 

Data-based 
Monte Carlo 
to analyze 
estimator 
properties 

No 

Christopou-
los & León-
Ledesma 
(2007) 

USA 1960-2004 JOH cointegration 
initially, then 
specify ß as a 
nonlinear function 
of π (not constant) 

1978-79, using 
subsamples 

i and π are I(1), but not 
cointegrated using JOH, 
but are cointegrated 
when ß is nonlinearly 
related to π 

0 < ß < 1 for linear model 
and nonlinear model in 
1st sub-sample; in 2nd 
sub-sample ß < 1 for low 
π but ß > 1 for high π 

No, except for 
most tests of 
non-linearity 

No 

Beyer & 
Farmer 
(2007) 

USA 1970-1999 JOH cointegration; 
test for break in 
vector and short-run 
parameters with 
DOLS.; model 
includes 
unemployment 

1979, using 
subsamples 

i and π are I(1) and 
cointegrated in an 
identified vector that 
excludes unemployment 

ß < 1 in 1st subsample, ß 
> 1 in 2nd sub-sample, 
but neither individually 
statitically significant so, 
but jointly ß = 1 rejected. 

No No 

Westerlund 
(2008) 

20 incl. USA 1980-2004 Panel cointegration 
test, several 
versions of OLS to 
est.  ß 

No, but data do not 
include typical 
breakpoint dates 

Non-cointegration null 
rejected for the panel 

Across the 20 coiuntries ß 
= 1 is usually not rejected 
(and not rejected for US) 

Not for coint. 
tests 

Unclear, probably 
not 

Haug et al. 
(2011) 

14 incl. USA varies by country, US: 
1957-2007. 

Unit root tests 
without breaks; 
cointegration break 
test with estimated 
break dates; JOH 

Varies by country, 
single variable, and 
multivariate tests; 
cointegration tests 
applied to 

i and π are I(1) with no 
brks specified. JOH 
shows coint. in 5 of 14 
no-break cases, but, 
with breaks, does in all 

For 5 countries with no 
breaks, ß=1 not rejected, 
but in remaining cases 
with subsamples ß=1 is 
usually rejected (US: ß=1 

No No 



29 

cointegration test 
but DOLS to 
estimate 
coefficients. Tests 
for nonlinear 
cointegration 
vectors. 

subsamples; break 
in 1977 for the US. 

pre- and post-break 
periods 

in 1st period, but ß>1 in 
2nd period). No evidence 
of nonlinear cointegration 
vector when breaks 
included 

Tsong & Lee 
(2013) 

6 incl. USA 1957-2010 Quantile 
cointegration, and 
EG cointegration 
for comparison 

In unit root tests but 
not in cointegration 
tests 

i and π are I(1); quantile 
cointegration is reported 

ß varies across quantiles, 
< 1 for lower quantiles, 
not significantly different 
from 1 for higher 
quantiles; results argued 
to be consistent with 
shocks affecting ß 

Yes for 
quantile 
cointegra-tion 
tests 

Unclear 

Panopoulou 
& Pantelidis 
(2016) 

19 incl. USA varies by country, US: 
1881-2009. 

9 cointegration tests 
to estimate ß; time-
varying serial 
correlation specified 
in DGP errors when 
testing ß = 1 using 
simulations 

No i and π are I(1), and 
cointegrated in JOH 
tests for 15 countries 
including the US; but 9 
tests of ß = 1 for each 
country are the main 
focus (see next column) 

Null of ß = 1 usually 
cannot be rejected, but ß 
estimates mostly differ 
substantially from 1; US: 
ß = 1.0 rejected for only 1 
of 9 tests, but ß estimates 
differ substantially from 
1.0 in 6 of 9 tests 

Yes for tests 
of ß = 1 with 
VAR(1) time-
varying error 
processes 

No 

Notes: DOLS denotes the Stock-Watson dynamic ordinary least squares, JOH denotes the Johansen cointegration approach; EG denotes the Engle-Granger cointegration approach. 
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TABLE 2  BDS tests (1953:2-2019:1) 
Interest rate Inflation rate 
 ε em BDS statistic  ε em BDS statistic 
0.5 × SD  0.43 2 10.129  (0.000) 0.5 × SD 0.97 2 4.468  (0.000) 
0.5 × SD 0.43 3 15.069  (0.000) 0.5 × SD 0.97 3 4.615  (0.000) 
0.5 × SD 0.43 4 20.103  (0.000) 0.5 × SD 0.97 4 5.233  (0.000) 
1.0 × SD 0.87 2 8.252  (0.000) 1.0 × SD 1.93 2 4.528  (0.000) 
1.0 × SD 0.87 3 9.859  (0.000) 1.0 × SD 1.93 3 5.511  (0.000) 
1.0 × SD 0.87 4 10.730  (0.000) 1.0 × SD 1.93 4 6.209  (0.000) 
1.5 × SD 1.30 2 6.453  (0.000) 1.5 × SD 2.90 2 3.960  (0.000) 
1.5 × SD 1.30 3 7.594  (0.000) 1.5 × SD 2.90 3 4.853  (0.000) 
1.5 × SD 1.30 4 8.124  (0.000) 1.5 × SD 2.90 4 5.588  (0.000) 
2.0 × SD 1.74 2 7.243  (0.000) 2.0 × SD 3.86 2 2.898  (0.003) 
2.0 × SD 1.74 3 8.508  (0.000) 2.0 × SD 3.86 3 3.468  (0.000) 
2.0 × SD 1.74 4 8.843  (0.000) 2.0 × SD 3.86 4 4.212  (0.000) 
2.5 × SD 2.17 2 10.356  (0.000) 2.5 × SD 4.83 2 1.889  (0.058) 
2.5 × SD 2.17 3 10.658  (0.000) 2.5 × SD 4.83 3 1.831  (0.067) 
2.5 × SD 2.17 4 10.267  (0.000) 2.5 × SD 4.83 4 2.618  (0.008) 
Notes: SD denotes the standard deviation of the data, ε (the given multiple of SD) denotes the 
maximum distance between data points used for computing the correlation integral, and em 
denotes the embedded dimension. The BDS statistic is asymptotically standard normal, and 
corresponding two-sided p-values are in parentheses.  

 
 
 
 
TABLE 3 Harvey and Leybourne (2007) linearity tests (1953:2-2019:1) 
 *

10%W  *
5%W  *

1%W  
Interest rate 64.06  (0.000) 64.46  (0.000) 65.17  (0.000) 
Inflation rate 10.04  (0.040) 10.09  (0.039) 10.16  (0.038) 
Notes: The subscript on W* indicates the desired significance level of the test, 
which determines 𝑏𝑏 in the formula at the bottom of p. 152 of Harvey and 
Leybourne (2007). The W* statistic asymptotically follows the 2

(4)χ  distribution. 

Resulting p-values are in parentheses. 
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TABLE 4 𝑀𝑀𝑍𝑍𝛼𝛼 and ADF unit root test statistics, critical values, and break dates 
(1953:2 - 2019:1) 
 
Interest rate 
number of breaks 𝑀𝑀𝑍𝑍𝛼𝛼 𝑀𝑀𝑍𝑍𝛼𝛼 0.05 ADF ADF 0.05 break dates 
0 -6.40 -17.33 -1.70 -2.90 

 

1 -12.67 -23.94 -2.49 -3.44 1980:1 
2 -23.85 -29.16 -3.37 -3.79 1972:2; 1980:1 
 
Inflation rate 
number of breaks 𝑀𝑀𝑍𝑍𝛼𝛼 𝑀𝑀𝑍𝑍𝛼𝛼 0.05 ADF ADF 0.05 break dates 
0 -6.19 -17.33 -1.82 -2.90 

 

1 -11.91 -20.47 -2.26 -3.19 2008:3 
2 -14.92 -28.00 -2.85 -3.73 1980:2; 2008:3 
Notes: The unit root null is rejected for sufficiently negative values of the test 
statistic. The breakpoint date designates the final quarter of the earlier regime. 
The new regime starts with the next quarter. 

 
 
 
TABLE 5 Tests for breaks between various periods in 
the first-difference VAR 
Periods compared Chi-square p-value 

1, 2 15.3 0.350 
1, 3 14.8 0.390 
1, 4 70.2 0.000 
2, 3 44.1 0.000 
2, 4 47.2 0.000 
3, 4 84.5 0.000 

Notes: Period 1 is 1953:2-1972:1, period 2 is 1972:2-
1980:1, period 3 is 1980:2-2008:2, and period 4 is 
2008:3-2019:1. The chi-square statistics have 14 
degrees of freedom.  
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TABLE 6 Bai-Perron breakpoint test results 
 
Interest rate equation 

 
Inflation rate equation 

UD max test     UD max test     
null; alt. statistic 0.05 crit. null; alt. statistic 0.05 crit. 
0; >0 breaks 50.19 26.48 0; >0 breaks 50.43 26.48 
supF test     supF test     
null; alt. statistic 0.05 crit. null; alt. statistic 0.05 crit. 
0; 1 break 50.19 26.20 0; 1 break 50.43 26.20 
0; 2 breaks 31.38 23.36 0; 2 breaks 33.29 23.36 
0; 3 breaks 27.84 21.63 0; 3 breaks 26.41 21.63 
1; 2 breaks 26.02 28.23 1; 2 breaks 19.53 28.23 
2; 3 breaks 16.36 29.44 2; 3 breaks 10.78 29.44 
conf. int. sequential procedure break conf. int. sequential procedure break 
0.025 val. 0.500 val. 0.975 val. 0.025 val. 0.500 val. 0.975 val. 
1979:3 1980:3 1984:3 2006:4 2008:2 2008:3 
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TABLE 7 First period NARDL results, 1953:2 through end date given in the table 
 
Panel A: NARDL regression lag order chosen by AIC 
End date 1979:3 1979:4 1980:1 1980:2 1980:3 
T -4.13*** -4.13*** -3.37* -3.45* -3.43* 
t p-val (AIC)  0.033 0.016 0.066 0.084 0.066 
t p-val (BIC)  0.056 0.054 0.15 0.12 0.19 
F  6.43** 6.64* 4.78* 4.29 4.26 
F p-val (AIC)  0.079 0.048 0.18 0.20 0.17 
F p-val (BIC)  0.066 0.060 0.17 0.19 0.25 
𝜌𝜌� -0.57 -0.58 -0.84 -1.15 -1.16 
𝛽𝛽𝛽𝛽𝛿𝛿+�  0.35 0.37 0.46 0.38 0.39 
𝛽𝛽𝛽𝛽𝛿𝛿−�   0.30 0.32 0.41 0.33 0.34 
chi sq. sym. test  12.46*** 12.28*** 10.50*** 11.72*** 11.54*** 
chi sq. p-val (AIC)  0.027 0.028 0.021 0.040 0.018 
chi sq. p-val (BIC)  0.053 0.051 0.045 0.035 0.028 
 
Panel B: NARDL regression lag order chosen by SEQ 
T -5.72*** -5.49*** -3.06 -3.69** -4.45*** 
t p-val (AIC)  0.058 0.047 0.34 0.50 0.33 
t p-val (BIC)  0.039 0.061 0.43 0.35 0.12 
F  13.17*** 11.88*** 4.26 6.38** 7.65** 
F p-val (AIC)  0.053 0.065 0.56 0.47 0.37 
F p-val (BIC)  0.024 0.059 0.48 0.27 0.13 
𝜌𝜌� -0.40 -0.40 -0.24 -0.33 -0.39 
𝛽𝛽𝛽𝛽𝛿𝛿+�  0.20 0.23 0.28 0.14 0.22 
𝛽𝛽𝛽𝛽𝛿𝛿−�   0.13 0.16 0.21 0.07 0.15 
chi sq. sym. test  32.55*** 29.39*** 8.67*** 8.58*** 10.08*** 
chi sq. p-val (AIC)  0.008 0.012 0.094 0.11 0.19 
chi sq. p-val (BIC)  0.014 0.013 0.093 0.11 0.088 
Notes: t = t statistic for 𝜌𝜌; p-val (AIC or BIC) = bootstrapped p-values for t and F 
statistics using VAR with AIC or BIC lag choice for the DGP; 𝜌𝜌 = error correction 
coefficient; 𝛽𝛽𝛽𝛽𝛿𝛿+ and 𝛽𝛽𝛽𝛽𝛿𝛿− = estimated cointegration vector coefficients for 𝜋𝜋𝑡𝑡−1+  and 
𝜋𝜋𝑡𝑡−1− when the vector coefficient for 𝑖𝑖𝑡𝑡−1 is normalized as −1; chi sq. sym. test = chi 
square statistic with 1 degree of freedom for the null that 𝛽𝛽𝛽𝛽𝛿𝛿+ = 𝛽𝛽𝛽𝛽𝛿𝛿−; chi sq. p-val 
(AIC or BIC) = bootstrapped p-values for the chi square statistic using VECM with AIC 
or BIC lag choice. The statistical significances of the test statistics from tables are 
indicated by *** for the 0.01 level, ** for the 0.05 level, and * for the 0.10 level. The 
tables for t and F are from the I(1) columns in Tables CII(iii) and CI(iii) in Pesaran et al. 
(2001) and for chi square are from its standard distribution. Bootstrapped p-values 
significant at the 0.10 level are reported to three decimal places instead of two, and 
those additionally significant at the 0.05 level are highlighted in boldface italics. 
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TABLE 8 Second period NARDL results 
 
Panel A: NARDL with AIC lag choice 
Estimation period 1980:4-2008:2 1983:1-2008:1 1984:4-2006:1 
T -3.90** -2.56 -3.58** 
t p-val (AIC)  0.13 0.34 0.11 
t p-val (BIC)  0.062 0.35 0.11 
F  5.62* 2.32 5.43* 
F p-val (AIC)  0.16 0.56 0.13 
F p-val (BIC)  0.090 0.64 0.13 
𝜌𝜌� -0.31 -0.19 -0.25 
𝛽𝛽𝛽𝛽𝛿𝛿+�  -0.32 -0.38 -0.80 
𝛽𝛽𝛽𝛽𝛿𝛿−�   -0.21 -0.25 -0.65 
chi sq. sym. test  64.04*** 35.22*** 25.50*** 
chi sq. p-val (AIC)  0.010 0.059 0.034 
chi sq. p-val (BIC)  0.005 0.009 0.054 
 
Panel B: NARDL with SEQ lag choice 
Estimation period 1980:4-2008:2 1983:1-2008:1 1984:4-2006:1 
T -5.47*** 2.86 -4.69*** 
t p-val (AIC)  0.13 0.43 0.12 
t p-val (BIC)  0.015 0.38 0.087 
F  10.05*** 3.03 7.54** 
F p-val (AIC)  0.18 0.62 0.25 
F p-val (BIC)  0.032 0.62 0.17 

𝜌𝜌� -0.21 -0.12 -0.22 
𝛽𝛽𝛽𝛽𝛿𝛿+�  0.02 -0.07 -0.04 

𝛽𝛽𝛽𝛽𝛿𝛿−�   0.11 0.04 -0.16 
chi sq. sym. test  43.85*** 28.37*** 47.40*** 
chi sq. p-val (AIC)  0.020 0.11 0.021 
chi sq. p-val (BIC)  0.012 0.015 0.028 
Notes: See notes to Table 5. 
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TABLE 9 MZA unit root test statistics for Livingston forecast data 
Estimation period forc Infl 0.05 crit. 
1953:12-1980:6 -8.52 -13.42 -17.33 
1980:12-2008:6 -4.76 -0.81 -17.33 
2008:12-2018:12 -8.51 -2.54 -17.33 

Notes: The MZA unit root test without breaks is applied to the three 
sub-periods identified in the main text. The ℓ coefficient in the Schwert 
formula for max lag order is reduced from 12 to 6 to adjust for the fewer  
observations for the given span of time in the sample of semi-annual 
frequency compared with our usually available quarterly frequency. forc is 
the Livingston forecasted annualized six-month CPI inflation rate for June 
to December and December to June (the survey months). infl is the Base 
Period rate, the rate from the previous April to October and October to 
April. The number after the colon in the estimation period is the month of 
the survey. There are no rejections of the unit root at the 0.05 level. 
 
 
 
TABLE 10 Cointegration and stability tests for the Livingston forecast and actual inflation data 
Estimation period 1953:12-1980:6 1954:6-1980:6 1980:12-2008:6 2008:12-2018:12 
EG-ADF t -5.97*** (0.001) -4.40*** (0.036) -1.51 (0.49) -1.27 (0.79) 
EG coint. vec. coef. 0.69 0.68 0.59 0.05 
EG e.c. coef. -0.33** (0.017) -0.37*** (0.011) 0.20 (0.85) 0.41 (0.23) 
ADF-GLS t -2.44 (0.25) -4.36*** (0.020) -0.43 (0.77) -1.26 (0.77) 
𝑀𝑀𝑀𝑀𝜌𝜌 -9.95 (0.28) -19.03** (0.088) 0.34 (0.82) -2.30 (0.74) 
FM coint. coef. (s.e.) 1.25 (0.09) 1.22 (0.09) 0.60 (0.09) 0.09 (0.05) 
Lc 0.11 (0.78) 0.13 (0.77) 0.53* (0.40) 2.30*** (0.040) 
MeanF 1.15 (0.84) 1.35 (0.79) 4.13* (0.36) 27.54*** (0.13) 
SupF 4.26 (0.76) 4.22 (0.79) 5.61 (0.67) 76.49*** (0.19) 
NARDL t -3.60** (0.12)  -3.43** (0.22) -3.59** (0.28) 0.67 (0.94) 
NARDL F 4.86* (0.18)  5.18* (0.20) 12.16*** (0.057) 0.65 (0.94) 
Notes: The dates give the month of the Livingston survey. Asterisks on the test statistics indicate rejection 
using tabulated critical values as in previous tables. Except for the FM cointegration coefficient, numbers in 
parentheses give test statistic p-values bootstrapped from VARs or VECMs as described in the main text 
(for the EG error correction coefficient, the test statistic is its t statistic). For the FM cointegration 
coefficient, the numbers in parentheses give the standard errors. 
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APPENDIX  

The following tables give the p-values from diagnostic tests applied to various DGP equations. 

The tests are for three possible problems in the residuals: heteroskedasticity, non-normality, and 

serial correlation. The heteroskedasticity test, LM, is the Lagrange multiplier test from the 

regression of the squared residuals on the right-hand variables. The non-normality test, JB, is the 

Jarque-Bera test that compares the skewness and kurtosis of the sample residuals with the 

skewness and kurtosis of the normal distribution. The serial correlation test is the Ljung-Box Q 

test, where the tables report the most significant p-value for the 10 tests for autocorrelation orders 

1–10. In interpreting the normality results, one should keep in mind that if the residuals are 

heteroskedastic, the JB test will tend to suggest they are non-normal even if they are normal for a 

given variance. 
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TABLE A1 P-values of diagnostic tests for DGP equations, 1953:2 
through 1979 or 1980 
 
Panel A: VAR DGP with AIC lag order 

 Interest rate (i) equation Inflation rate (π) equation 
End date LM JB Q LM JB Q 
1979:3 0.98 0.15 0.41 0.63 0.39 0.58 
1979:4 0.37 0.15 0.37 0.76 0.69 0.36 
1980:1 0.21 0.000 0.88 0.72 0.68 0.32 
1980:2 0.000 0.000 0.80 0.63 0.32 0.22 
1980:3 0.000 0.000 0.81 0.87 0.49 0.38 
 
Panel B: VAR DGP with BIC lag order 

 Interest rate (i) equation Inflation rate (π) equation 
End date LM JB Q LM JB Q 
1979:3 0.73 0.15 0.056 0.23 0.86 0.12 
1979:4 0.37 0.19 0.11 0.23 0.89 0.12 
1980:1 0.22 0.000 0.41 0.11 0.88 0.12 
1980:2 0.000 0.000 0.51 0.47 0.70 0.047 
1980:3 0.16 0.000 0.38 0.76 0.57 0.010 
 
Panel C: VECM DGP with AIC lag order 

 Interest rate (i) equation Inflation rate (π) equation 
End date LM JB Q LM JB Q 
1979:3 0.002 0.20 0.055 0.12 1.00 0.31 
1979:4 0.001 0.23 0.10 0.19 0.98 0.35 
1980:1 0.000 0.000 0.40 0.38 0.92 0.35 
1980:2 0.000 0.000 0.69 0.002 0.66 0.12 
1980:3 0.000 0.000 0.81 0.001 0.54 0.47 
 
Panel D: VECM DGP with BIC lag order 

 Interest rate (i) equation Inflation rate (π) equation 
End date LM JB Q LM JB Q 
1979:3 0.007 0.081 0.000 0.30 0.81 0.043 
1979:4 0.000 0.17 0.001 0.29 0.77 0.050 
1980:1 0.000 0.000 0.004 0.51 0.79 0.038 
1980:2 0.000 0.000 0.63 0.000 0.84 0.042 
1980:3 0.000 0.000 0.15 0.000 0.58 0.12 
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TABLE A2 P-values of diagnostic tests for DGP equations, 1980-2008 
 
Panel A: VAR DGP with AIC lag order ending 2008:2, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.000 0.014 0.13 0.25 0.000 0.39 
1980:3 0.001 0.11 0.32 0.021 0.020 0.45 
1980:4 0.016 0.001 0.66 0.014 0.003 0.74 
1983:1 0.78 0.16 0.69 0.27 0.035 0.47 
 
Panel B: VAR DGP with BIC lag order ending 2008:2, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.058 0.000 0.072 0.089 0.000 0.35 
1980:3 0.056 0.000 0.15 0.37 0.000 0.19 
1980:4 0.000 0.000 0.22 0.51 0.000 0.100 
1983:1 0.42 0.000 0.24 0.34 0.000 0.029 
 
Panel C: VAR DGP with AIC lag order ending 2008:1, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.000 0.004 0.11 0.39 0.000 0.41 
1980:3 0.003 0.000 0.021 0.34 0.000 0.46 
1980:4 0.075 0.000 0.68 0.021 0.003 0.76 
1983:1 0.95 0.57 0.46 0.29 0.018 0.47 
 
Panel D: VAR DGP with BIC lag order ending 2008:1, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.053 0.000 0.057 0.084 0.000 0.32 
1980:3 0.077 0.000 0.12 0.40 0.000 0.12 
1980:4 0.000 0.000 0.18 0.55 0.000 0.056 
1983:1 0.58 0.000 0.16 0.32 0.000 0.015 
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Panel E: VECM DGP with AIC lag order ending 2008:2, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.34 0.40 0.22 0.39 0.14 0.42 
1980:3 0.39 0.34 0.34 0.37 0.015 0.47 
1980:4 0.23 0.019 0.63 0.21 0.002 0.76 
1983:1 0.78 0.16 0.69 0.27 0.035 0.47 
 
Panel F: VECM DGP with BIC lag order ending 2008:2, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.000 0.000 0.078 0.085 0.000 0.31 
1980:3 0.000 0.000 0.13 0.20 0.000 0.16 
1980:4 0.000 0.000 0.19 0.18 0.000 0.087 
1983:1 0.42 0.000 0.24 0.34 0.000 0.029 
 
Panel G: VECM DGP with AIC lag order ending 2008:1, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:2 0.003 0.044 0.082 0.28 0.000 0.41 
1980:3 0.023 0.004 0.019 0.32 0.000 0.47 
1980:4 0.017 0.000 0.28 0.34 0.000 0.35 
1983:1 0.95 0.57 0.46 0.29 0.018 0.47 
 
Panel H: VECM DGP with BIC lag order ending 2008:1, with start date 
given in table 

 Interest rate (i) equation Inflation rate (π) equation 
Start date LM JB Q LM JB Q 
1980:1 0.000 0.000 0.19 0.158 0.000 0.054 
1980:2 0.58 0.000 0.16 0.317 0.000 0.015 
1980:3 0.000 0.000 0.000 0.000 0.000 0.000 
1980:4 0.000 0.000 0.006 0.081 0.000 0.30 
1983:1 0.000 0.000 0.039 0.056 0.000 0.26 
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