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Abstract

The local polynomial smoothing of the Kaplan–Meier estimate for fixed designs is explored and analyzed. The

first benefit, in comparison to classical convolution kernel smoothing, is the development of boundary aware

estimates of the distribution function, its derivatives and integrated derivative products of any arbitrary order.

The advancements proceed by developing asymptotic mean integrated square error optimal solve-the-equation

plug–in bandwidth selectors for the estimates of the distribution function and its derivatives, and as a byproduct,

a mean square error optimal bandwidth rule for integrated derivative products. The asymptotic properties of

all methodological contributions are quantified analytically and discussed in detail. Three real data analyses

illustrate the benefits of the proposed methodology in practice. Finally, numerical evidence is provided on the

finite sample performance of the proposed technique with reference to benchmark estimates.
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1. Introduction1

Let T denote a continuous lifetime variable with cumulative distribution function (c.d.f.) FT (t) = P (T ≤2

t). Frequently the available data are beyond the experimenter’s control and come in the form of scatterplot3

observations. For example, this is the case in lifetable analyses in the actuarial science, in data analyses in4

demography e.t.c., see Müller et al. (1997) and Wang et al. (1998). In such an occasion, the coordinates of5

the available data pairs consist of the response, which is usually an empirical estimate of the target curve, and6

the center of the associated time interval at which the curve is being estimated. Still, continuous estimates are7

desirable, especially when the analysis additionally depends on the estimate’s derivatives. For this reason, the8

present research considers the local polynomial smoothing of the well-known Kaplan-Meier estimate (Kaplan9

and Meier, 1958), with first objective to provide continuous, boundary aware estimates for the distribution10

function, its derivatives of any arbitrary order and integrated c.d.f. derivative products for fixed designs under11

the random right censorship model. The reasoning for pursuing this approach becomes immediately obvious when12

observing that smoothing of scatterplot data intrinsically corresponds to formulating a reasonable nonparametric13

regression problem. The asymptotic unbiasedness property of the Kaplan-Meier estimate together with its14
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strong representation as the underlying c.d.f. plus an asymptotically negligible error term, prompts its use as the15

response. At the same time, the center of each equidistant time interval in which the observed data range is split16

is used as the design. Hence, application of the local polynomial technique yields estimates of F
(ν)
T , ν = 0, 1, . . .17

by matching the coefficients of polynomials fitted locally – through kernel weighted least squares – and the18

derivatives of FT in a Taylor expansion of the regression function at a nearby point; precise formulation and19

details are provided in Section 2. This approach enables the development, also in Section 2, of local polynomial20

estimates for integrated c.d.f. derivative products of any arbitrary order. These are useful on their own right21

since they are necessary for the implementation of automatic bandwidth selectors, in estimation of population22

characteristics, statistical distance measures and in a variety of other settings.23

Multiple benefits arise from the local polynomial smoothing of the Kaplan–Meier estimate. First, its definition24

does not involve a bandwidth and thus its use as the response in the aforementioned nonparametric regression25

problem greatly simplifies implementation of the resulting estimates which now depend on just one bandwidth;26

this is in contrast to the traditional approach which needs two bandwidths. In terms of performance, the27

Asymptotic Mean Integrated Square Error (AMISE) and central limit theorem for the estimates of F
(ν)
T , quantified28

analytically in Section 3, are valid throughout the region of estimation and imply the absence of inflated bias at29

the endpoints. Further, the asymptotic properties of the integrated derivative product estimates, also quantified30

in Section 3, ensure efficient estimation of the functionals as opposed to using conventional kernel smoothers. A31

subsequent advantage thus results by their utilization in developing (in Section 4) a solve–the–equation AMISE–32

optimal plug–in bandwidth rule applicable to all estimates proposed here. The rule is built as a direct extension of33

the corresponding density estimation bandwidth selector for complete data proposed in Cheng (1997). The gain is34

its stable performance across the region of estimation; this is also reflected in its asymptotic properties, quantified35

analytically together with its convergence rate and asymptotic distribution in Section 4. It is worth noting here36

that the literature is rather thin on AMISE optimal bandwidth rules for convolution smoother estimates for right37

censored data. Since the plug-in rule proposed here is also applicable to classical kernel approach, it can also be38

thought as filling this important gap in the literature.39

Section 5 investigates the finite sample performance of the proposed methodology. First, the analysis of40

three real world data sets illustrates how the proposed technique can help in capturing data patterns that41

remain undiscoverable either by the conventional kernel smoothing approach or by parametric estimates. Finally,42

distributional data are used to simulate and compare the finite sample MISE performance of the proposed43

estimates in comparison to frequently used estimates in the literature and in practice.44

2. Local polynomial smoothing of the Kaplan–Meier estimate.45

Let T1, T2, . . . , Tn be a sample of i.i.d. survival times censored on the right by i.i.d. random variables

U1, U2, . . . , Un, which are independent from the Ti’s. Let fT be the common probability density function (p.d.f.)

and FT the c.d.f. of the Ti’s. Denote with H the c.d.f. of the Ui’s. Typically the observed right censored data are

denoted by the pairs (Xi, δi), i = 1, 2, . . . , n with Xi = min{Ti, Ui} and δi = 1{Ti≤Ui} where 1{·} is the indicator

random variable of the event {·}. The distribution function of the Xi’s satisfies 1− F = (1− FT )(1−H). It is
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assumed that estimation happens in the interval [0,M ] where M satisfies the relationship

M = sup{x : 1− F (x) > ε} for a small ε > 0.

We are interested in estimating F
(ν)
T (x), ν = 0, 1, . . . . The Kaplan-Meier, introduced in Kaplan and Meier (1958),

is the classical nonparametric estimate of FT ≡ F (0)
T and is defined by

F̂T (x) =


0, 0 ≤ x ≤ X(1),

1−
∏k−1
i=1

(
n−i
n−i+1

)δ(i)
, X(k−1) < x ≤ X(k), k = 2, . . . , n,

1, x > X(n),

(1)

where (X(i), δ(i)), i = 1, . . . , n are the ordered Xi’s, along with their censoring indicators. According to the fixed

design local polynomial principle, first partition the interval [0,M ] into g disjoint subintervals of equal length

b; denote with xj = (j − 1
2 )b, j = 1, . . . , g, the center of the jth interval. Denote with σ2(xi) the variance

of F̂T (xi) at xi and let εi, i = 1, . . . , g be independent random vectors with mean 0 and variance 1. Also, set

m(xi) = FT (xi). Since F̂T (x) is an asymptotically unbiased estimate of FT (x) it can be used as the response to

the local nonparametric regression problem

F̂T (xi) = m(xi) + σ(xi)εi, i = 1, . . . , g.

Then, given a bandwidth h, the data {F̂T (xi), xi}, i = 1, . . . , g for which |xj − x| ≤ h are smoothed by locally

fitting polynomials of fixed degree p. The polynomial coefficients are obtained by solving the optimization

problem

min
βk,k=0,...,p

g∑
j=1

{
F̂T (xj)−

p∑
k=0

βk(xj − x)k

}2

K

(
xj − x
h

)
. (2)

Here K is a kernel function, usually a symmetric density, assumed to be supported on a symmetric and compact

interval; however see also Funke and Hirukawa (2020) for an alternative approach based on asymmetric kernel

functions in the closely related regression setting. Denote with β̂k the estimates of βk resulting by the solution

of (2). A Taylor expansion of the regression function m(x) in a nearby point x0 such that |x − x0| ≤ ε for an

arbitrarily small ε, yields that F̂
(ν)
L (x) = ν!β̂ν is an estimate of F

(ν)
T (x), ν = 0, . . . , p. According to Fan and

Gijbels (1996), the optimal order of the local polynomial to use in (2) depends on the order of the derivative

being estimated and is given by p = ν + 1. This yields the solution

F̂
(ν)
L (x) = ν!

g∑
i=1

Kν

(
xi − x
h

)
F̂T (xi), ν = 0, 1, 2, . . . , (3)

where

Kν(u) = eTν+1S
−1(1, hu, . . . , (hu)ν , (hu)ν+1)TK(u).

Here eTν+1 denotes a vector with ν + 2 elements with 1 in the (ν + 1)th position and zeros elsewhere and S is the

(ν + 2)× (ν + 2) matrix (Sn,j+l)0≤j,l≤ν+1 with

Sn,l(x) =

g∑
i=1

K

(
xi − x
h

)
(xi − x)l, l = 0, 1, . . . , 2ν + 2.
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Expression (3) shows that F̂
(ν)
L (x) is very similar to a conventional kernel estimate with the difference that Kν

is defined as a function of the design points and locations. However there are some fundamental differences with

the random design setting for censored data, explored in Bagkavos and Ioannides (2020). In the random design,

smoothing is applied to the increments of the Kaplan–Meier estimate and the smoothing weights Sn,l are random.

In the fixed design the weights Sn,l are deterministic and operate on the bin centers xi. As a consequence, the

quotient of the weights applied to the empirical estimate tend to 1 as n → ∞; further, smoothing weights are

identical irrespectively of whether the target is e.g. the distribution or the density function in both complete

and censored data settings, see Cheng (1997). An equivalent representation for F̂
(ν)
L (x) which sheds light on

the inner mechanism of the technique can be defined as follows. Without loss of generality assume that K is

supported on [−1, 1]. Let 0 < c < 1 so that x = ch ∈ [0, h) is a boundary point. Correspondingly, in the interior

we have x = ch, c > 1, so that x ∈ [h,M − h]. Set Ŝc = (µi+j,c(K))0≤i,j≤ν+1 where for any function g, for

i = 0, . . . , 2ν + 2,

µi,c(g) =


∫ c
−∞ uig(u) du, when u ∈ [0, h),∫
uig(u) du ≡ µi(g), when u ∈ [h,M − h],∫∞
−c u

ig(u) du, when u ∈ (M − h,M ].

From the proof of Lemma 5 in Cheng (1994),

b

hl+1
Sn,l = µl + o(1), l = 0, 1, . . . , 2ν + 2, (4)

Kν(t) =
b

hν+1
K∗ν,c(t) + o

(
bh−(ν+1)

)
, (5)

where for any two real valued deterministic sequences an and bn, an = o(bn) as n → ∞ if and only if

limn→∞ |an/bn| = 0; thus choosing b� h as suggested by assumption A.3 below means that the asymptotic term

in the right hand side of (5) is negligible. Let K∗ν,c denote the so called equivalent kernel, defined by

K∗ν,c(u) = eTν+1Ŝ
−1
c (1, u, . . . , uν , uν+1)TK(u)I[−c,∞)(u).

An asymptotically equivalent representation for F̂
(ν)
L (x) is given by

F̂
(ν)
L (x) =

bν!

hν+1

g∑
i=1

K∗ν,c

(
xi − x
h

)
F̂T (xi)(1 + o(1)).

The equivalent kernel satisfies throughout the region of estimation the moment conditions∫
uqK∗ν,c(u) du = δν,q, 0 ≤ ν, q ≤ ν + 1, (6)

where δν,q is Kronecker’s delta, i.e. δν,q = 1 for ν = q and 0 otherwise. It is immediately seen from (6) that46

F̂
(ν)
L (x) automatically adjusts at the endpoints, without the extra modifications and without the undesirable side47

effects of boundary kernels such as negative estimate values.48

Notice that the definition of K∗ν,c for x ∈ [h,M − h] does not depend on c. To see this first assume,

without loss of generality, that the support of K is [−1, 1]. In the interior, i.e. for c → ∞, Ŝc is equivalent to

Ŝ = (µi+j(K))0≤i,j≤ν+1 and I(−∞,c](u) = 1 = I[−c,∞)(u). Hence K∗ν,c = K∗ν where

K∗ν (u) = eTν+1Ŝ
−1(1, u, . . . , uν , uν+1)TK(u),
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with Ŝ = (µi+j(K))0≤i,j≤ν+1. Therefore in the interior F̂
(ν)
L (x) can be written with slightly simpler notation as

F̂
(ν)
L (x) =

bν!

hν+1

g∑
i=1

K∗ν

(
x− xi
h

)
F̂T (xi)(1 + o(1)).

It will be easier to study the statistical properties of F̂
(ν)
L (x) by considering the following equivalent formulation

F̂
(ν)
L (x) =

bν!

hν

g∑
i=1

W ∗ν

(
xi − x
h

)
f̂T (xi)(1 + o(1))

≡ bν!

hν

g∑
i=1

W ∗ν,c

(
xi − x
h

)
f̂T (xi)(1 + o(1)),

where

W ∗ν (u) =

∫ u

−∞
K∗ν (t) dt and W ∗ν,c(u) =

∫ u

−∞
K∗ν,c(t) dt.

To see the equivalence, for fixed j and for k ∈ {1, . . . , g} set

ckj = 1[xk− b2 ,xk+ b
2 ](Xj , δj = 1).

Since the X1, X2, . . . , Xn are i.i.d., the strong law of large numbers yields

n−1b−1
n∑
j=1

cij
a.s.→ b−1

∫ xi+
b
2

xi− b2
fT (y)(1−H(y)) dy ' b−1bfT (xi)(1−H(xi)) = fT (xi)(1−H(xi)). (7)

Dividing the empirical estimate of fT (xi)(1 − H(xi)) by an estimate of the survival function 1 − H(x) of the

censoring distribution yields an estimate of fT (xi). Following Marron and Padgett (1987), by reversing the

intuitive role played by Ti and Ui, 1−H(x) can be estimated by the (sightly modified) Kaplan–Meier estimator,

1− Ĥ(x) =


1, 0 ≤ x ≤ X(1),∏k−1
i=1

(
n−i+1
n−i+2

)1−δ(i)
, X(k−1) < x ≤ X(k), k = 2, . . . , n,∏n

i=1

(
n−i+1
n−i+2

)1−δ(i)
, X(n) < x.

For x ∈ [0,M ], Ĥ converges strongly to H as according to Theorem 2.1 of Chen and Lo (1997), for 0 < p < 1/2

sup
x≤M

|Ĥ(x)−H(x)| = o(n−p) a.s.. (8)

Hence, for fixed i and for xi ∈ [0,M ] an empirical estimate of fT (xi) at the ith bin center is obtained by

f̂T (xi) =
1

n

n∑
j=1

cij

1− Ĥ(xi)
=

1

n

n∑
j=1

cij
1−H(xi)

(1 + o(n−p)) = bfT (xi)(1 + o(n−p)).

By assumption A.3 below, b = n−λ with 1/2 < λ < 1 and thus the term o(bn−p) is asymptotically negligible.

Also, for Xi ∈ [xj− b/2, xj + b/2], Ĥ(Xi) = Ĥ(xj)(1+o(1)). This, together with the asymptotic results in Satten

and Datta (2001) page 209, allow writing the Kaplan–Meier as

F̂T (xk) = n−1
k∑
j=1

n∑
i=1

1[xj−b/2,xj+b/2](Xi, δi = 1)

1− Ĥ(Xi)
=

k∑
j=1

bf̂T (xj)(1 + o(1)),
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from which the equivalence between the two formulations of F̂
(ν)
L (x) immediately follows. Now, consider the

functional

θµ,γ =

∫ M

0

F
(µ)
T (x)F

(γ)
T (x) dx, µ, γ ≥ 0,

where µ + γ is an even integer. Estimates of θµ,γ are routinely employed in automatic (plug-in) bandwidth

selectors. Using classical kernel smoothers in the place of F
(µ)
T (x) and F

(γ)
T (x) will likely lead to inefficient

endpoint estimation and diminish the global MSE rate of convergence of the resulting functional estimate. The

absence of endpoint effects of F̂
(ν)
L (x) motivates its use for effectively estimating θµ,γ by

θ̂µ,γ(a) ≡ θ̂µ,γ ≡
∫ M

0

F̂
(µ)
L (x)F̂

(γ)
L (x) dx ' b

g∑
i=1

F̂
(µ)
L (xi)F̂

(γ)
L (xi) dx

= bµ!γ!

g∑
i=1

g∑
j=1

g∑
k=1

Kµ

(
xk − xi

a

)
Kγ

(
xk − xj

a

)
F̂T (xi)F̂T (xj), (9)

where a denotes a bandwidth, typically different than hν . The asymptotic properties of F̂
(ν)
L (x) and θ̂µ,γ(a) are49

discussed next.50

3. Asymptotic properties.51

Denote the bias and variance of F̂
(ν)
L (x) respectively by

bL(,c)(x) =

bL,c(x), x ∈ [0, h) ∪ (M − h,M ]

bL(x), x ∈ [h,M − h]

,

σ2
L(,c)(x) =

σ
2
L,c(x), x ∈ [0, h) ∪ (M − h,M ]

σ2
L(x), x ∈ [h,M − h]

.

Set

g(x) = fT (x)(1−H(x))−1, G(x) =

∫ x

0

g(t) dt,

and define the constant

C1 =

∫ M

0

g(x) dx. (10)

Similarly to the definition of bL(,c)(x) and σ2
L(,c)(x), let K∗ν(,c) and W ∗ν(,c) stand for K∗ν,c and W ∗ν,c respectively

in the boundary and K∗ν and W ∗ν in the interior. In what follows, focus is given on the left boundary, i.e.

x = ch ∈ [0, h), 0 < c < 1, since treatment of the right boundary, i.e. x ∈ [M − h,M ] is similar in an obvious

manner. The case of estimation in the interior, i.e. x = ch, c > 1 so that x ∈ [h,M − h) is obtained by letting

c→∞. Let,

Ai,j(,c) =

Ai,j,c =
∫ +∞
−c xi{K∗ν,c(x)}jW ∗ν,c(x) dx, i = 0, 1, 2 . . . , j = 1, 2, . . . , 0 < c < 1,

Ai,j =
∫ +∞
−∞ xi{K∗ν (x)}jW ∗ν (x) dx, i = 0, 1, 2 . . . , j = 1, 2, . . . , c > 1,

that is, Ai,j(,c) stands for Ai,j,c for x ∈ [0, h) and Ai,j when x is in the interior. Similarly, for a positive integer52

l, let µl(,c)(K
∗
ν(,c)) denote µl(K

∗
ν ) in the interior and µl,c(K

∗
ν,c) in the boundary. Let hν denote the bandwidth53

used when estimating the νth derivative of FT . The following conditions are used throughout.54
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A.1 The kernel K is symmetric about the origin and satisfies∫
K2 < +∞,

∫
|u2K| < +∞, and

∫
uK = 0.

55

A.2 The kernel K has bounded support, vanishes at its endpoints and its first ν derivatives exist.56

A.3 Assume b = n−λ, where 1/2 < λ < 1, g is such that gb → ∞ and g/n → 0. Also, for ν = 1, . . . , hν → 057

and b−1hν+1
ν →∞ as n→∞, i.e. as n grows, the bandwidth grows much faster than b.58

A.4 As n→ +∞, hν → 0 and for ν = 1, . . . , nhνν →∞.59

A.5 For fixed ν, F
(ν)
T (x) is Lipschitz continuous and differentiable.60

The asymptotic properties of F̂
(ν)
L are summarized in the next theorem which is proved in Ioannides and61

Bagkavos (2019).62

Theorem 1. Assume that for l = 0, . . . , ν+ 1,K(l) is bounded, absolutely integrable, with finite second moments

and FT is l + 2 times differentiable. Assume also that as n → +∞, hν → 0, nh2ν
ν → +∞ and b/hν → 0. Then,

the asymptotic bias and variance of F̂
(ν)
L (x) are given by

bL(,c)(x) = h2
ν

ν!

(ν + 2)!
µν+2(,c)(K

∗
ν(,c))F

(ν+2)
T (x) + o(h2

ν),

σ2
L(,c)(x) =

(ν!)2

nh2ν
ν

[
G(x)− 2hνg(x)

∫
tK∗ν(,c)(s)W

∗
ν(,c)(s) ds

−
{
F

(ν)
T (x) + h2

νν!((ν + 2)!)−1µν+2,c(K
∗
ν(,c))F

(ν+2)
T (x)

}2
]

+O(n−1h2ν
ν ) + o(h4

ν),

where

g(x) = fT (x)(1−H(x))−1, G(x) =

∫ x

0

g(t) dt, W ∗ν(,c)(s) =

∫ s

−∞
K∗ν(,c)(u) du.

Further,

F̂
(ν)
L (x) ∼ N

(
F

(ν)
T (x) + bL(,c)(x), σ2

L(,c)(x)
)
.

Remark 1. The above results imply that F̂
(ν)
L achieves the same rate of convergence in the boundary and in the63

interior and that the derivative order leaves the bias rate of convergence unaffected. However the second term64

on the right hand side of the variance expression is negative which implies that kernel smoothing improves the65

estimate variance by a second order effect.66

Remark 2. Theorem 1 indicates two limitations that might be encountered in finite sample implementations of67

F̂
(ν)
L . One issue is the presence of 1 − H(x) in the denominator of the leading term in σ2

L(,c)(x). Even though68

this does not affect the variance rate of convergence it is expected to disproportionately inflate the estimate’s69

variance in comparison to the uncensored case. Thus large amounts of censoring are expected to diminish the70

estimate’s precision. Another point where caution is needed is that F̂
(ν)
L might exhibit diminished finite sample71

performance at the right end point, as a consequence of the unreliable behavior of F̂T for x ∈ [MF ,M ] where72
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typically MF denotes the largest uncensored observation, see for example Chen and Lo (1997). On the contrary,73

for x ∈ [0,MF ], from (2.7) in Karunamuni and Yang (1991), F̂T converges in probability to FT with rate n−1/2
74

implying a robust behavior there also for F̂
(ν)
L .75

Turning attention to the asymptotic properties of θ̂µ,γ(a), these are given in the next theorem. Its proof is76

based on the strong convergence of Ĥ to H, repeated use of Lemma 1 of Ioannides and Bagkavos (2019) as well77

as repeated Riemannian approximations of integrals by sums using Lemma 2 in Bagkavos and Patil (2008). A78

full proof is available from the authors; see also the proof of Theorem 7 in Cheng (1994) (equiv. Theorem 2 in79

Cheng (1997)) for a very similar proof on the complete data density estimation setting.80

Theorem 2. Assume that FT is µ + γ times differentiable. Assume also K is compactly supported and twice

differentiable. Then, as n→∞, a→ 0, naµ+γ+1 →∞ and b/hν → 0,

Eθ̂µ,γ(a)− θµ,γ =
µ!γ!

naµ+γ−1

{∫ (
fT (u)

1−H(u)

)
du

}∫
W ∗µK

∗
γ

+
(1 + δµγ)γ!

(γ + 2)!
a2θµ,γ+2µγ+2(K∗γ) +O(n−1a−(µ+γ)) + o(a2),

Var
{
θ̂µ,γ(a)

}
=

2(µ!γ!)2

n2a2(µ+γ)−1
R(g)R(W ∗µK

∗
γ)

+
4

n

{∫
FT

(
F

(µ+γ)
T

)2

− θµ,γ
}

+ o(n−2a−2(µ+γ)+1) + o(n−1).

Remark 3. The immediate conclusion from Theorem 2 is that the leading squared bias term is of order n−2a−2(µ+γ−1)
81

while the variance leading term is of order n−2a−2(µ+γ)+1. Therefore bias dominates variance in the MSE ex-82

pression of θ̂µ,γ(a). This fact implies that in minimizing the functional’s MSE expression with respect to a, it is83

enough to consider only the bias part.84

4. Plug in bandwidth selection.85

By Theorem 1 and since the Lebesgue measure of [0, h) tends to zero and therefore the corresponding integral

is zero, the MISE of F̂
(ν)
L (x) can be decomposed as

MISE
{
F̂

(ν)
L (x)

}
=

∫ hν

0

MSE
{
F̂

(ν)
L (x)

}
dx+

∫ M

hν

MSE
{
F̂

(ν)
L (x)

}
dx

' h4
ν

4
µ2
ν+2(K∗ν )R

(
F

(ν+2)
T

)
+

(ν!)2

nh2ν
ν

∫ M

hν

G(x) dx− 2
(ν!)2

nh2ν−1
ν

C1A1,1

− hν
∫ M

hν

{
F

(ν)
T (x) + h2

νν!((ν + 2)!)−1µν+2(K∗ν )F
(ν+2)
T (x)

}2

dx

+O(n−1h2ν
ν ) + o(h4

ν), (11)

where an = O(bn) if and only if lim supn→∞ |an/bn| <∞. Write

MISE
{
F̂

(ν)
L

}
= AMISE

{
F̂

(ν)
L

}
+O(n−1h−2ν

ν ) + o(h4
ν), (12)

where

AMISE
{
F̂

(ν)
L

}
=
h4
ν

4
µ2
ν+2(K∗ν )R

(
F

(ν+2)
T

)
− 2

(ν!)2

nh2ν−1
ν

C1A1,1. (13)

8



Note that under assumption A.4 the asymptotic terms in (12) vanish as the sample size increases. This means

that the MISE of the local polynomial estimator can be effectively approximated by its AMISE. In turn this

facilitates approximation of the MISE optimal bandwidth by the minimizer of (13), obtained by solving

∂AMISE
{
F̂

(ν)
L

}
∂hν

= h3
νµ

2
ν+2(K∗ν )R(F

(ν+2)
T ) + 2(2ν − 1)

(ν!)2

nh2ν
ν

C1A1,1 = 0,

for hν . This yields the optimal bandwidth rule

hν = (−1)ν+1

(
2

n

) 1
2ν+3

{
(2ν − 1)(ν!)2C1A1,1

µ2
ν+2(K∗ν )R(F

(ν+2)
T )

} 1
2ν+3

. (14)

Obviously hν cannot be used in practice as it depends on C1 and R(F
(ν+2)
T ) which are unknown. R(F

(ν+2)
T ) is

estimated by θ̂µ,γ(a) for µ = γ = ν + 2. Of course, θ̂ν+2,ν+2(a) requires an optimal bandwidth rule for a. Based

on Remark 3, the MSE optimal bandwidth for θ̂µ,γ , denoted by aµ,γ , is given by

aµ,γ =

{
χC2A0,1

nµγ+2(K∗γ)θµ,γ+2

} 1
µ+γ+1

, (15)

with

χ =

−1 if θµ,γ+2 < 0

(µ+γ+1)µ!(γ+2)!
γ!(1+δµγ) if θµ,γ+2 > 0

and C2 =

∫ M

0

g(ν+2)(u) du.

From (14) and (15) with µ = γ = ν + 2, the optimal AMISE bandwidth for F̂
(ν)
L (x) is the solution of

ĥν = (−1)ν+1

(
2

n

) 1
2ν+3

{
(2ν − 1)(ν!)2C1A1,1

µ2
ν+2(K∗ν )θ̂ν+2,ν+2(a(ĥν))

} 1
2ν+3

, (16)

with respect to ĥν , where

a(ĥν) = C(K)D(θ)ĥ
2ν+1
2ν+3
ν , (17)

with

C(K) =

{
µ2
ν+2(K∗ν )A0,1

2
1

2ν+3 (2ν − 1)(ν!)2C1A1,1µν+4(K∗ν+2)

} 1
2ν+3

, (18)

D(θ) =

(
χC2θν+2,ν+2

θν+2,ν+4

) 1
2ν+3

. (19)

When no analytic solution to (16) is feasible, ĥν is obtained by a numerical procedure such as the Newton-

Raphson method. Of course, implementation of D(θ) depends on estimation of θν+2,ν+2 and θν+2,ν+4. According

to the conventional solve-the-equation approach one would go a stage further and apply local polynomial fitting

for estimation of both functionals before using a parametric reference model. However, such an approach is

subject to inherit large amount of variability from the data which results in the bandwidth selector to become

unstable. Moreover it requires computations of inverses of matrices of increasingly large dimensions and thus in

a considerable decrease in computational speed. For these two reasons it is more effective to adopt a parametric

9



reference at this stage; this has been also advocated by Cheng (1997). A suitable default parametric estimate of

θµ,γ for µ = ν + 2 and γ = ν + 4, say θ̃µ,γ , is the two parameter Weibull distribution given by

θ̃µ,γ =

∫ M

0

(
e−(ρt)κ

)(µ) (
e−(ρt)κ

)(γ)

dt,

where κ, ρ are the scale and location parameters of the Weibull model estimated by maximum likelihood. The

choice of this particular distribution is justified by its wide use in survival analysis and by its flexibility as it can

mimic the behavior of other distributions such as the Rayleigh and the normal. It goes without saying that in

presence of even partial information about the underlying density, θ̃µ,γ should be adjusted accordingly. Thus the

suggested bandwidth ĥν results by (16) after substituting D(θ) in (17). Now, let

α1 =


2(2µγ+1)+µ+γ+1
2(µ+γ+1)(µ+γ−1) , if θµ,γ < 0

2µγ+1
(µ+γ+1)(µ+γ−1) , if θµ,γ > 0

,

and set

µDPI = nα1

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗γ)θγ+2,γ+2

} 1
2γ+3

µ
µ+γ
µ+γ−1
γ θ

1
µ+γ−1
µ,γ

+
nα1(1 + δµγ)γ!

(γ + 2)!(µ+ γ + 1)
µ

µ+γ
µ+γ−1

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗γ)θγ+2,γ+2

} 3
2γ+3

× θ
2−(µ+γ)
µ+γ−1
µ,γ θµ,γ+2µγ+2(K∗γ)1[θµ,γ>0],

σ2
DPI =

2(µ!γ!)2

µ+ γ − 1
n2α1−2µ

2(µ+γ)
µ+γ−1
γ

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗ν )θγ+2,γ+2

} 2(2γ+3)−(2γ+1)(2(µ+γ)−1)

(2γ+3)2

× {C(K)D(θ)}−2(µ+γ)+1
R(g)R(Cnµ ∗Wn

γ )θ
4−2(µ+γ)
µ+γ−1

µ,γ .

The rate of convergence of ĥν to the ideal bandwidth hν and its asymptotic distribution are quantified in the86

next theorem. First, let an = Op(bn) denote that the sequence an is bounded in probability at the “rate” bn, i.e.87

for each ε > 0 there exist M,N depending on ε such that P (|an| ≤M |bn|) > 1− ε, for all n ≥ N .88

Theorem 3. Under conditions A.1–A.2, as n→∞,

ĥν
hν

= 1 +Op(n
−α),

where

α =


µ+γ−1

2(µ+γ+1) , if θµ,γ < 0,

2
µ+γ+1 , if θµ,γ > 0.

Further,

nα

(
ĥν
hν
− 1

)
d→ N(µDPI , σ

2
DPI).

The conclusion from Theorem 3 is that the proposed bandwidth selector is expected to achieve optimal results89

faster (i.e. with smaller samples) compared to traditional approaches such as those based on cross validation or90

the Akaike Information Criterion. Its practical performance is exhibited by three applications to real world data91

sets and finite sample MISE simulations in the next section.92
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5. Numerical examples93

Throughout this section, binning of each sample (Xi, δi), i = 1, . . . , n is performed by splitting the observed

data range into g = [(X(n) − X(1))/b] disjoint intervals of equal length. In accordance to assumption A.3 the

length is set to b = x2−x1 = n−3/4. Now, let F̂
(0)
L ≡ F̂L be the estimate of FT and let ŜL(x) = 1− F̂L(x) be the

corresponding survival function estimate. In all examples F̂L and ŜL are implemented with the MISE optimal

bandwidth obtained by (16) for ν = 0 after replacing the unknown quantities by suitable estimates i.e.

ĥ0 =

(
2

n

) 1
3

{
Ĉ1A1,1

µ2
2(K∗0 )θ̂2,2(a(ĥ0))

} 1
3

. (20)

In (20) and throughout the section Ĉ1 is the estimate of C1 defined in (10), obtained by replacing the unknown

quantities by consistent data driven estimates, i.e.

Ĉ1 =

∫ M

0

f̂(x)(1− Ĥ(x))−1 dx, (21)

where M = X(n) and f̂(x) is the density estimate of Marron and Padgett (1987) given by

f̂(x) =

n∑
i=1

δi

n(1− Ĥ(x))s
K

(
x−Xi

s

)
. (22)

Estimator f̂(x) is implemented with the Integrated Square Error optimal bandwidth s resulting by the cross94

validation rule of Marron and Padgett (1987). Integration in (21) is performed by Simpson’s rule. Both A1,195

and µ2(K∗0 ) are calculated analytically based on the Epanechnikov kernel which is also used in all kernel imple-96

mentations throughout this section. θ̂2,2(a(ĥ0)) is calculated by combining (9) with µ = γ = 2 and (17) with97

a(ĥ0) = C(K)D(θ)ĥ
1/3
0 . C(K) is approximated by setting ν = 0 in (18), estimating C1 by Ĉ1 and calculating98

analytically the values of µ2
2(K∗0 ), A0,1, A1,1 and µ4(K∗2 ). Similarly, D(θ) is approximated by replacing θ2,2 and99

θ2,4 in (19) with θ̃2,2 and θ̃2,4 respectively, obtained by either a Weibull reference model or, when available as100

it is the case in the first two real data examples below, by utilizing any existing maximum likelihood estimate.101

Throughout this section, integration in the definition of θ̃µ,γ is performed analytically (when feasible) or otherwise102

numerically by adaptive quadrature (function integrate in R). The constant C2 in (19) is estimated by applying103

Simpson’s rule on the second derivative of f̂(x)(1− Ĥ(x))−1, calculated by numerical differentiation. Using the104

estimates of D(θ) and C(K) in a(ĥ0), substituting back to (20) and solving for ĥ0 with Newton-Raphon yields105

the bandwidth used with F̂L.106

The conventional kernel survival function estimate of Gulati and Padgett (1996) is also used throughout the

section for comparison. The estimate is given by Ŝ(x) = 1− F̂ (x) where

F̂ (x) = ĥ−1
n∑
i=1

K

(
x−Xi

ĥ

)
F̂T (Xi). (23)

In (23) ĥ ≡ ĥ(x) is the default asymptotic MSE optimal rule of Gulati and Padgett (1996) given by

ĥ =

{
2f̂(x)A1,1

n(1− Ĥ(x))(f̂ ′(x))2µ2
2(K)

}1/3

,

11



where f̂ ′(x) is the first derivative of f̂(x) calculated by analytical differentiation of (22). The performance of the

density estimate F̂
(1)
L (x) ≡ f̂L(x), resulting from (3) for ν = 1, is also investigated in this section. Its bandwidth

ĥ1 is obtained by (16) for ν = 1 as the solution (by Newton-Raphson) of

ĥ1 =

(
2

n

) 1
5

{
Ĉ1A1,1

µ2
3(K∗1 )θ̂3,3(a(ĥ1))

} 1
5

. (24)

In (24), Ĉ1 is again provided by (21), while A1,1 and µ3(K∗1 ) are calculated analytically. θ̂3,3(a(ĥ1)) is calculated107

by combining (9) with µ = γ = 3 and (17) with a(ĥ1) = C(K)D(θ)ĥ
1/5
1 . C(K) is approximated by setting108

ν = 1 in (18), estimating C1 by Ĉ1 and calculating µ2
3(K∗1 ), A0,1, A1,1 and µ5(K∗3 ) analytically. Similarly, D(θ)109

is approximated by estimating θ3,3 and θ3,5 in (19) by θ̃3,3 and θ̃3,5 respectively, obtained by either the Weibull110

reference model or, if available, by utilizing any existing maximum likelihood estimates. The constant C2 in (19)111

is estimated by applying Simpson’s rule on the third derivative of f̂(x)(1 − Ĥ(x))−1, calculated by numerical112

differentiation. Using the estimates of D(θ) and C(K) in a(ĥ1), substituting back to (24) and solving for ĥ1113

yields the estimate of the AMISE optimal bandwidth h1.114

5.1. Danish fire loss data example115

The first example is from the insurance practice and analyzes the Danish Fire Loss data, collected at Copen-116

hagen Reinsurance. The data set comprises of 2167 fire losses over the period 1980 to 1990 and have been117

adjusted for inflation to reflect 1985 values. The observations are expressed in millions of Danish Krones. McNeil118

(1997) analyzed two subsets of the data, one consisting of values greater than 10 and the second with values of119

20 million Krones respectively. Focusing on the first data set which consists of 109 observations, McNeil (1997)120

modeled the c.d.f. of the fire losses by testing three different distributions. These are the truncated lognormal, the121

Pareto and the Generalized Pareto distribution (GDP), with their parameters estimated by maximum likelihood.122

McNeil (1997) concluded that no single parametric model is totaly satisfactory, however the GDP with location123

parameter 10, scale parameter 6.98 and shape parameter 0.497 is perhaps the most suitable. Fig. 1 replicates124

the survival function estimate resulting from this model and compares it with ŜL and Ŝ.125

The first outcome from Fig. 1 is that as expected, ŜL corrects the boundary bias problem of Ŝ. The second126

outcome is that ŜL suggests a change in the fire loss data distribution between approximately 25 to 40 million127

Krones. Even though this is also expected based on the discussion in McNeil (1997), it is not captured by either128

the parametric nor the conventional kernel estimate. Even though the maximum likelihood estimate is based on129

the three parameter GDP distribution, still the shape restrictions imposed throughout the region of estimation130

dominate and mask the important features of the curve such as this shape change. The conventional kernel131

estimate Ŝ is somewhat more flexible and close to ŜL in the interior. However the edge effects of f̂ , which are132

carried over in f̂ ′, inherit excessive bias in the calculation of ĥ resulting to a higher value than ĥ0. In turn this133

results in an oversmoothed estimate which masks the true survival function shape. This can be seen also by134

the inflated estimation between approximately 15 to 20 million Krones as well as from the overestimation of the135

pattern change between x = 25 and x = 40. On the contrary ŜL with the proposed bandwidth selector readily136
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adjusts its estimation at the boundary and offers precise estimation of the true curve throughout the region of137

estimation, resulting in enhanced insights and inference.138
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Figure 1: Parametric and local polynomial estimates for the Danish fire loss data.

5.2. Air conditioning unit failure data example139

The second example is based on the well known air conditioning unit failure data set of Proschan (1963),140

available in Table 11.9, Lai and Xie (2006). The pooled data set consists of 213 time intervals (observations),141

in hours, between successive failures of the air conditioning system of each member of a fleet of 13 Boeing142

720 jet airplanes. Multiple attempts in the literature are based on modeling the underlying survival function143

parametrically by maximum likelihood, assuming a specific distribution; see Kus (2007) and the references therein144

for an account of important contributions up to that point. However adopting a single parametric model at fleet145

level would imply that all failure times follow the same distribution irrespective of which plane they come from.146

This imposes a strong assumption which a practitioner would find rather unrealistic since it is expected that147

different planes are exposed to different conditions which affect failure occurrences. Even though using mixtures148

of distributions provides flexibility in capturing different data patterns in a single model, in practice this model149

would be uncertain as adding or deleting one plane from the sample would change the mixture.150

Fig. 2 illustrates the survival function estimate suggested by ŜL. For comparison the survival function estimate151

proposed by Proschan (1963), given by SP (t) = exp{−t/93.14} is also included. Even though SP is not regarded152

as a realistic model since it is based on the exponential distribution and hence suggests that failures decline153

with time, its inclusion as a benchmark estimate (among many other parametric models) is justified because154

its goodness of fit is not rejected by the Kolmogorv–Smirnov test and hence corroborates with the overall data155

pattern. Fig. 2 exemplifies the versatility of ŜL. The probability of failure changes pattern as the time between156

successive failures increases. On the contrary SP , even though it is close to ŜL, seems unable to capture this157
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change proposing a strictly decreasing failure probability model. Consequently ŜL would be more useful to a158

practitioner for reliability assessment and maintenance planning at fleet level.159
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Figure 2: Parametric (SP ) and local polynomial ŜL estimates for the air conditioning unit failure data.

5.3. Rear dump truck data example160

The third application utilizes the rear dump truck data, analyzed among many others in Pulcini (2001) and161

Hua et al. (2017). The data set represents the time (in 1000’s of hours) between failures of a 180-ton rear dump162

truck. The values in the data set indicate a bathtub failure model since the majority of observations occur either163

at the beginning of the data range (implying a faulty construction), or towards the end (implying ageing or164

wear out effects). In this and in similar occasions, practitioners are mostly interested on the shape of the failure165

pattern rather than estimating the probability of a failure occurring after a certain time point. Hence the most166

appropriate model for analyzing this data set would be an estimate of the hazard rate function which expresses167

the instantaneous probability of a failure in the next time instant, given that no failure has occurred up to that168

point. Now, the hazard rate function is defined as the ratio of the underlying density over the corresponding169

survival function. Thus, a sensible hazard rate estimate, say λ̂L(x) will result by dividing f̂L(x) with ŜL(x).170

λ̂L(x) is implemented in Fig. 3. The estimate confirms the bathtub nature of the process, first identified in the171

histogram estimate of Pulcini (2001) and further explored in the semiparametric estimate of Hua et al. (2017).172

The discontinuity (i.e. the crude nature) of the histogram estimate in Pulcini (2001) prevents it from capturing173

the more subtle features of the failure pattern. This was achieved in Hua et al. (2017) where the change in failure174

was quantified in accordance to the increase of time in operation. However, the functional form of the parametric175

components in Hua et al. (2017) led to suggesting different patterns of failure on the same time frame. First176

λ̂L(x) corrects the end point effects of the estimate in Hua et al. (2017) and second provides an unbiased point177

of view on the various shape changes free from the distributional assumptions. Specifically the local polynomial178
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Figure 3: Local polynomial hazard rate estimate for the rear dump truck data.

estimate suggests that the first decline in failure starts at about 2,000 hours of operation up to approximately179

4,000 hours. This is followed by a slight increase in failure up to approximately 5,000 hours and then declines180

until about 10,000 hours of operation where it shortly stabilizes, followed by a sharp increase afterwards which181

indicates the kick in of ageing and wear out effects.182

5.4. MISE simulation examples183

The last set of numerical examples uses distributional data to simulate the finite sample MISE performance

of F̂L and f̂L. Three distributions with different shape, routinely employed in modeling lifetime data, are used

for this purpose. These are the positive truncated normal mixtures 2
3N

+(4, 0.42) + 1
3N

+(3, 0.22) (NM1) and

0.6N+(−3, 9)+0.4N+(10, 9) (NM2), where N+ denotes a truncated normal distribution. The positive truncated

normal density (Navarro and Hernandez, 2004) is defined by

f+(t) = c exp

{
− (t− µ)2

2σ2

}
, c > 0, c = c(µ, σ) =

1

σ
√

2π

1

Φ(µσ−1)
,

where Φ denotes the standard normal c.d.f.. The third distribution is the one parameter Birnbaum–Saunders

(BS, also known as fatigue life distribution) given by

f(x;α) =

√
x+

√
1
x

2αx
φ

√x+
√

1
x

α

 . (25)

In all examples (25) is implemented with the shape parameter α = 1.75. For benchmarking purposes, the

performance of F̂L is compared to the kernel c.d.f. estimate F̂ defined in (23) and to the corresponding parametric

(maximum likelihood) estimate of each distribution, denoted by F̃ . The comparison is performed on four different

sample sizes, n = 50, 100, 150 and 250 and at four levels of censoring: 0% (no censoring), 15%, 30% and 50%.
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Random censoring is implemented by independently generating n random censoring times from the uniform

U [0, k] distribution where k is selected so that the desired percentage of censoring is achieved on average across

all iterations. Since U [0, k] does not depend on the parameters of any of the three distributions considered here,

the likelihood function is given by

L =

n∏
i=1

{f(Xi;θ)}δi {1− F (Xi;θ)}1−δi . (26)

In (26) θ denotes the vector of unknown parameters and F ′ = f . In the case of the two normal mixture

distributions

f(Xi;θ) ≡ f(Xi;µ1, σ1, µ2, σ2) = pf+(Xi;µ1, σ1) + (1− p)f+(Xi;µ2, σ2),

where for NM1 (µ1, σ1, µ2, σ2) = (4, 0.4, 3, 0.2) and for NM2 (µ1, σ1, µ2, σ2) = (−3, 9, 10, 9). For the Birnbaum–184

Saunders distribution θ = α. Maximization of (26) with respect to the unknown parameters is performed with185

the R package maxLik. Similarly, the performance of f̂L is benchmarked against f̂ , implemented as described in186

(22) and the corresponding maximum likelihood density estimates, denoted by f̃ .187

For each distribution, sample size and level of censoring the approximate Mean Integrated Squared Error188

of each estimate is calculated as follows. The differences (F̆ (ν)(xi) − F (ν)(xi))
2, ν = 0, 1, with F̆ (ν) being any189

of the three estimates considered here and F (ν)(xi) the true curve at xi, are calculated for all equally spaced190

grid points xi, i = 1, . . . , 50. Simpson’s extended rule is then applied to obtain the integrated square error191

approximation for each estimate. The averaged integrated differences across 10,000 iterations are reported on192

the tables. In every iteration the same sample values are used in calculating all estimators. Note that selection of193

the classical convolution kernel distribution and density estimates for benchmarking the MISE figures of the local194

polynomial estimates is sought so as to understand the gain in precision from the boundary correction and from195

the utilization of MISE optimal bandwidth selection rules. Similarly, inclusion of maximum likelihood estimates196

in the comparison is sought, not with purpose to identify which estimate is the best, but rather as a benchmark197

of the achieved improvements. For this reason, in cases where maximization of the likelihood function for a198

specific sample failed, calculation of the MISE for all estimates was repeated by drawing another sample until199

achieving convergence. In other words, the maximum likelihood MISE figures should be regarded as an ideal but200

nevertheless useful indication of the heights to which a very precise estimation procedure might achieve.201

The results of the simulation in Tables 1 and 2 illustrate the benefits from both the boundary correction202

and the bandwidth selectors introduced with the local polynomial smoothing of the Kaplan-Meier estimate. The203

MISE comparison between F̂L, f̂L and their corresponding convolution kernel counterparts confirms that the204

local polynomial smoothers introduced in (3), implemented with the MISE optimal bandwidth (16), improve205

the precision in estimation across all three example distributions, sample sizes and levels of censoring. Taking206

into account the ‘ideal’ nature of the parametric MISE figures, the results in Tables 1 and 2 suggest that the207

performance of F̂L and f̂L is closer to F̃ and f̃ rather than to the performance of F̂ and f̂ . Another useful208

outcome from the simulation is drawn by comparing the MISE increase between samples of the same magnitude209

so as to understand the effect of censoring. Specifically, the effect of censoring on F̂L and f̂L starts becoming210

visible on the MISE figures of F̂L, f̂L when the samples contain 30%-50% censored observations and more (i.e.211
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Table 1: Approximate MISE’s of F̂L, F̂ and F̃ for the truncated normal mixtures and the Birnbaum–Saunders distribution.

NM1 NM2 BS

Cens. n F̂L F̂ F̃ F̂L F̂ F̃ F̂L F̂ F̃

0%

50 0.318 0.615 0.25 0.194 0.206 0.137 0.281 0.299 0.228

100 0.237 0.571 0.189 0.123 0.134 0.083 0.178 0.194 0.139

150 0.212 0.544 0.169 0.09 0.115 0.068 0.131 0.167 0.113

250 0.181 0.514 0.145 0.066 0.092 0.048 0.095 0.134 0.081

15%

50 0.341 0.616 0.271 0.206 0.299 0.145 0.298 0.433 0.242

100 0.262 0.557 0.214 0.153 0.156 0.095 0.222 0.226 0.159

150 0.226 0.525 0.183 0.121 0.125 0.072 0.175 0.181 0.121

250 0.196 0.493 0.157 0.09 0.102 0.055 0.131 0.148 0.091

30%

50 0.434 0.703 0.334 0.219 0.563 0.128 0.317 0.816 0.213

100 0.355 0.622 0.324 0.213 0.293 0.111 0.308 0.425 0.183

150 0.324 0.561 0.299 0.193 0.237 0.095 0.28 0.344 0.158

250 0.29 0.519 0.281 0.178 0.197 0.081 0.258 0.285 0.135

50%

50 0.506 0.758 0.378 0.289 0.533 0.262 0.448 0.773 0.436

100 0.468 0.683 0.353 0.266 0.492 0.241 0.429 0.713 0.401

150 0.395 0.617 0.321 0.243 0.328 0.204 0.381 0.476 0.339

250 0.361 0.554 0.302 0.228 0.288 0.195 0.359 0.417 0.324

medium to heavy censoring). On the contrary lower levels of censoring seem to have negligible effect on the212

precision of the estimates. This increase is predominantly driven by the presence of the censoring distribution’s213

survival function in the denominator of the estimate’s variance leading terms and by the slow convergence rate214

of the Kaplan–Meier on the right tail beyond the last uncensored observation, see Remark 2. Even though215

not reported here, exactly the same numerical experiments were repeated by restricting the estimation range to216

[0,MF ] where the Kaplan–Meier behaves quite robustly. Thus the experiments simulated solely the impact of217

censoring on the estimate’s variance. The MISE figures exhibited significant increase only for the censoring level218

of 50%; in turn this verifies the suggestion at the end of Remark 2 for the robust performance of F̂
(ν)
L in [0,MF ].219

Finally, it should be noted that, even though to a lesser extent and for reasons related to maximization of (26)220

under censoring, medium to heavy censoring is also obvious on the performance of F̃ .221

6. Conclusions and future work222

This research investigated the local polynomial smoothing of the Kaplan–Meier and showed that it leads to223

an effective and reliable way to estimate the c.d.f., its derivatives and auxiliary functionals for right censored data224

in the fixed design setting. The theoretical properties of all estimates and bandwidth selectors introduced herein225
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Table 2: Approximate MISE’s of f̂L, f̂ and f̃ for the truncated normal mixtures and the Birnbaum–Saunders distribution.

NM1 NM2 BS

Cens. n f̂L f̂ f̃ f̂L f̂ f̃ f̂L f̂ f̃

0%

50 0.098 0.135 0.077 0.083 0.078 0.101 0.256 0.511 0.191

100 0.073 0.084 0.044 0.039 0.039 0.111 0.151 0.371 0.111

150 0.039 0.068 0.035 0.027 0.029 0.029 0.113 0.311 0.082

250 0.027 0.051 0.028 0.018 0.021 0.017 0.083 0.242 0.055

15%

50 0.116 0.165 0.102 0.096 0.096 0.112 0.328 0.513 0.252

100 0.058 0.096 0.054 0.044 0.048 0.047 0.175 0.373 0.131

150 0.043 0.074 0.042 0.031 0.035 0.033 0.125 0.301 0.101

250 0.031 0.054 0.033 0.021 0.026 0.019 0.084 0.231 0.062

30%

50 0.156 0.232 0.152 0.128 0.135 0.131 0.256 0.602 0.247

100 0.097 0.149 0.096 0.078 0.083 0.083 0.281 0.412 0.211

150 0.066 0.106 0.071 0.053 0.059 0.053 0.176 0.312 0.131

250 0.042 0.069 0.051 0.033 0.039 0.032 0.116 0.253 0.101

50%

50 0.451 0.512 0.488 0.433 0.461 0.384 0.442 0.487 0.436

100 0.311 0.388 0.463 0.397 0.432 0.359 0.354 0.412 0.411

150 0.251 0.351 0.453 0.382 0.418 0.316 0.316 0.385 0.385

250 0.184 0.337 0.445 0.382 0.413 0.316 0.282 0.375 0.381

suggest a robust asymptotic behavior throughout the region of estimation. The MISE simulations indicate that226

this robust behavior is valid also for finite samples in the interval from the left endpoint up to at least the largest227

uncensored observation. The same simulations, in combination with Remark 2 indicate that two limitations are228

the impact of large amounts of censoring on the estimate’s precision as well as possibly a diminished estimate229

performance at the right end point.230

The methodological advances explored herein can be extended towards multiple directions. An natural step231

forward is calibration of the estimates and associated bandwidth rule towards incorporating covariate information.232

Another extension, especially useful for practitioners, is the development of statistical inference for goodness-of-fit233

hypothesis testing and confidence intervals for e.g. assessing the validity of parametric estimates. While research234

in both directions is already underway in ongoing work, multiple other topics arise by considering the adjustment235

and analytical study of this technique to different censoring schemes.236

18



7. Appendix237

First recall that for 0 < p < 1/2, by (8),

1

n

g∑
j=1

n∑
j=1

cij

1− Ĥ(xj)
W ∗µ

(
xi − x
a

)
=

1

n

g∑
j=1

n∑
j=1

cij
1−H(xj)

W ∗µ

(
xi − xj
a

)
(1 + o(n−p)).

7.1. Auxiliary lemmas238

Lemma 1. Assume that FT is twice differentiable, continuous and that b = o(h). Then, as n → ∞, for

i 6= j 6= k 6= l ∈ {1, . . . , g}

E(ci) = bfT (xi)(1−H(xi))(1 + o(b)),

E(c2j ) =
bfT (xj)(1−H(xj)) + (n− 1)b2f2

T (xj)(1−H(xj))
2

n
(1 + o(1)),

E(cjck) = b2fT (xj)fT (xk)(1−H(xj))(1−H(xk))(1 + o(b)),

E(c2i c
2
j ) =

1

n4

{
n(n− 1)b2 +

n!b3

(n− 3)!
fT (xi)(1−H(xi)) +

n!b3

(n− 3)!
fT (xj)(1−H(xj))

+
n!b4

(n− 4)!
fT (xi)(1−H(xi))fT (xj)(1−H(xj))

}

× fT (xi)(1−H(xi))fT (xj)(1−H(xj))(1 + o(b)),

E(c2i cjck) =
1

n4

{
n!b3

(n− 3)!
+

n!b4

(n− 4)!
fT (xi)(1−H(xi))

}

× fT (xi)(1−H(xi))fT (xj)(1−H(xj))fT (xk)(1−H(xk))(1 + o(b)),

E(cicjckcl) =
1

n4

n!

(n− 4)!
b4fT (xi)fT (xj)fT (xk)fT (xl)

× (1−H(xi))(1−H(xj))(1−H(xk))(1−H(xl))(1 + o(b)),

E(c4i ) =
1

n4

{
nbfT (xi)(1−H(xi)) + 7n(n− 1)b2f2

T (xi)(1−H(xi))
2

+
6n!b3

(n− 3)!
(fT (xi)(1−H(xi)))

3 +
n!b4

(n− 4)!
(fT (xi)(1−H(xi)))

4

}
(1 + o(b)).

Proof. Only the last equation is proved here as the others are proved by straightforward calculus in an entirely

similar manner. Using Lemma 1 in Ioannides and Bagkavos (2019) and noting that the same sample point cannot

be in two distinct intervals say 1i and Ij which implies that E(circjr) = 0, then

E(c4i ) = E

(
1

n

n∑
r=1

cir

)4

=
1

n4

n∑
r=1

n∑
l=1

n∑
m=1

n∑
s=1

E(circilcimcis)

=
1

n4

{
n∑
r=1

E(c4ir) + 3
∑∑
r 6=l

E(circil)
2 + 4

∑∑
r 6=l

E(c3ircil)

}

r fixed
=

1

n4

{
nE(cir) + 7n(n− 1)(Ecir)

2 + 6n(n− 1)(n− 2)(Ecir)
3 +

n!

(n− 4)!
(Ecir)

4

}
,

from which the last result immediately follows.239
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An important consequence of Lemma 1, used throughout this section is

E

{
c2j

(1−H(xj))2

}
=

{
b

n

fT (xj)

1−H(xj)
+

(n− 1)b2f2
T (xj)

n

}
(1 + o(1)), (27)

E

{
cj

1−H(xj)

ck
1−H(xk)

}
= b2fT (xj)fT (xk)(1 + o(b)), (28)

E

{
c2i c

2
j

(1−H(xi)2(1−H(xj)2

}
=

{
n(n− 1)b2

fT (xi)fT (xj)

(1−H(xi))(1−H(xj))

+
n!b3

(n− 3)!

f2
T (xi)fT (xj)

1−H(xj)
+

n!b3

(n− 3)!

fT (xi)f
2
T (xj)

1−H(xi)

+
n!b4

(n− 4)!
f2
T (xi)f

2
T (xj)

}
(1 + o(b)), (29)

E

{
c4i

(1−H(xi))4

}
=

{
nbfT (xi)

(1−H(xi))3
+

7n(n− 1)b2f2
T (xi)

(1−H(xi))2

+
6n!b3

(n− 3)!

fT (xi)

1−H(xi)
+

n!b4

(n− 4)!
fT (xi)

}
(1 + o(b)). (30)

Further,

E

{
c2i cjck

(1−H(xi))2(1−H(xj))(1−H(xk))

}
={

n!b3

(n− 3)!

fT (xi)fT (xj)fT (xk)

1−H(xi)
+

n!b4

(n− 4)!
f2
T (xi)fT (xi)fT (xj)fT (xk)(1 + o(b))

}
(1 + o(b)), (31)

E

{
cicjckcl

(1−H(xi))(1−H(xj))(1−H(xk))(1−H(xl))

}
=

n!b4

(n− 4)!
fT (xi)fT (xj)fT (xk)fT (xl)(1 + o(b)). (32)

Define

ω(t, u) =

∫
u− s
a

Kn
ρ

(
u− s
a

)
Wn
ν

(
t− s
a

)
ds.

Also let C∗ρ(r) = rKn
ρ (r).240

Lemma 2. Under assumptions A.1–A.2,∫
ω(t, t)g(t) dt = ag(s)

∫
uKn

ρ (u)Wn
ν (u) du(1 +O(a)), (33)∫

ω(t, u)g(t) dt = − aν+ρ−1

ν!(ρ− 1)!
G(ρ−1)(u)(1 +O(aρ−1)), (34)∫∫

ω(t, u)fT (t)fT (u) dt du = − aν+ρ

(ρ− 1)!ν!

∫
F

(ρ)
T (z)F

(ν)
T (z) dz(1 +O(amax(ρ,ν))), (35)∫∫

fT (t)fT (u)

(1−H(t))(1−H(u))
ω2(t, u) dt du = a3R(g)R(Cnρ ∗Wn

ν ) +O(a4), (36)∫∫
fT (t)fT (u)

(1−H(t))(1−H(u))
ω(t, t)ω(t, u) dt du = − aν+ρ

ν!(ρ− 1)!

{∫
g(u)g(ρ−2)(u) du

}
×
{∫

rKn
ρ (r)Wn

ν (r) dr

}
(1 +O(aρ)), (37)∫∫∫

fT (t)fT (u)fT (v)

1−H(t)
ω(t, u)ω(t, v) dt du dv =

a2(ν+ρ)

(ν!(ρ− 1)!)2

∫
g(t)

(
f

(ρ−2)
T (t)

)2

dt(1 +O(a2ν)), (38)∫
fT (t)

(1−H(t))3
ω2(t, t) dt = a2

{∫
fT (t)

(1−H(t))3
dt

}{∫
rKn

ρ (r)Wn
ν (r) dr

}2

(1 + o(1)). (39)
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Proof. First, note that since Wn
ν is a distribution function Wn

ν (−∞) = 0 and Wn
ν (∞) = 1. Also by the moment

conditions of Kn
ρ , ∫

uKn
ρ (u) du = 0 unless ρ = 1.

Then,∫
u− s
a

Kn
ρ

(
u− s
a

)[
Wn
ν (v)G(av + s)

]+∞
−∞ =

G(s)

∫
u− s
a

Kn
ρ

(
u− s
a

)
Wn
ν (∞) ds−G(s)

∫
u− s
a

Kn
ρ

(
u− s
a

)
Wn
ν (−∞) ds

= G(s)

∫
u− s
a

Kn
ρ

(
u− s
a

)
ds = 0 unless ρ = 1. (40)

Starting with (33) ∫
ω(t, t)g(t) dt =

∫∫
t− s
a

Kn
ρ

(
t− s
a

)
Wn
ν

(
t− s
a

)
g(t) dt ds

t−s=ua
= a

∫∫
uKn

ρ (u)Wn
ν (u)g(s+ ua) du ds

= ag(s)

∫
uKn

ρ (u)Wn
ν (u) du(1 +O(a)),

after expanding g(s+ua) in Taylor series around s and using the Lipschitz continuity of g. The proof of (34)–(39)241

is entirely similar (albeit longer) and therefore is omitted. Full details are available from the authors.242

Now, define

Aγ,µ(a) = −3b3
µ!γ!

aγ+5

g∑
i=1

g∑
j=1

g∑
k=1

Kn
µ

(
xk − xi

a

)
Kn
γ

(
xk − xj

a

)
F̂T (xi)F̂T (xj),

Bγ,µ(a) = −b3 µ!γ!

aγ+5

g∑
i=1

g∑
j=1

g∑
k=1

(
xk − xi

a

)
Kn
µ
′
(
xk − xi

a

)
Kn
γ

(
xk − xj

a

)
F̂T (xi)F̂T (xj).

Lemma 3. Assuming that K is max(γ, µ) times differentiable. Provided b = o(a) and that ba−max(γ,µ) → 0 as

n→∞, then
d

da
θ̂µ,γ(a) = (Aγ,µ(a) +Bγ,µ(a)) (1 + op(1)).

Proof. First, recall that

θ̂µ,γ(a) = bµ!γ!

g∑
i=1

g∑
j=1

g∑
k=1

Kµ

(
xk − xi

a

)
Kγ

(
xk − xj

a

)
F̂T (xi)F̂T (xj)(1 + o(b)).

Thus,

d

da
θ̂µ,γ(a) = bµ!γ!

g∑
i=1

g∑
j=1

g∑
k=1

[{
d

da
Kµ

(
xk − xi

a

)}{
Kγ

(
xk − xj

a

)}

+

{
Kµ

(
xk − xi

a

)}{
d

da
Kγ

(
xk − xj

a

)}]
F̂T (xi)F̂T (xj)(1 + op(1)). (41)

The central concept of the proof is calculation of d
daKν(·). Recall the definition of Kν

Kν(u) = eTν+1S
−1(1, hu, . . . , (hu)ν , (hu)ν+1)TK(u),
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and S is the (ν + 2)× (ν + 2) matrix (Sn,j+l)0≤j,l≤ν+1 with

Sn,l(x) =

g∑
i=1

K

(
xi − x
a

)
(xi − x)l, l = 0, 1, . . . , 2ν + 2.

Since Sn,l(x) ≡ Sn,l depends on a we need to also calculate the derivative of the matrix S−1. For this, from

standard linear algebra we know that for a (ν + 2)× (ν + 2) matrix A given by

A =


a11 a12 . . . a1 ν+2

a21 a22 . . . a2 ν+2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

aν+2 1 an2 . . . aν+2 ν+2

 ,

its determinant is given by

det(A) =
∑

σ∈sν+2

ε(σ)aσ(1),1aσ(2),2 . . . aσ(ν+1),ν+1aσ(ν+2),ν+2, (42)

where for every permutation σ(1), . . . , σ(ν + 2) of sν+2 = {1, 2, . . . , ν + 2}, the products ε(σ) · aσ(1),1 · aσ(2),2 ·

· · · · aσ(ν+2),ν+2 across the set sν+2 in (42) result by multiplying aσ(1),1, which is in the σ(1) row and 1st column

of A, with aσ(2),2, which is in the σ(2) row and 2nd column of A, . . . , with aσ(ν+2),ν+2 in the σ(ν + 2) row and

(ν+2)th column of A. ε(σ) is −1 or +1 depending on whether σ is odd or even respectively. Let l ∈ {l1, . . . , lν+2}.

Applying this to the matrix eTν+1S
−1 yields

eTν+1S
−1 =

1

det(S)

(
A

(1)
S , . . . , A

(ν+1)
S , A

(ν+2)
S

)
,

where for any matrix M ,

A
(i)
M = . . . , i = 1, . . . , ν + 2.

Note that by (42),

det(M) =

ν+2∑
i=1

Mi+1A
(i)
M . (43)

From (4) bh−(l+1)Sn,l = µl + o(1), l = 0, 1, . . . , 2ν + 2 and thus

S−1 =
b

aν+1
Ŝ−1 + o(bh−(ν+1)),

or equivalently, by setting Kn
ν (u) = eTν+1Ŝ

−1(1, hu, . . . , (hu)ν , (hu)ν+1)TK(u),

Kν(u) = ba−(ν+1)Kn
ν (u) + o(bh−(ν+1)).

From (4) and (5), for b = o(a) (see also the proof of Lemma 5 in Cheng (1994))

d

da

b

al
Sn,l = µl + o(1), l = 0, . . . , 2γ + 2. (44)

By (43),
bν+2

al1+···+lν+2
det(S) =

bν+2

al1+···+lν+2

∑
l∈sν+2

(−1)p(l)Sn,l1Sn,l2 . . . Sn,lν+2 .
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Thus,

d

da

(
bν+2

al1+···+lν+2
det(S)

)
=
∑
l∈sν+2

(−1)p(l)
d

da

{(
b

al1
Sn,l1

)(
b

al2
Sn,l2

)
. . .

(
b

alγ+2
Sn,lν+2

)}

=
∑
l∈sν+2

(−1)p(l)

{(
d

da

b

al1
Sn,l1

)(
b

al2
Sn,l2

)
. . .

(
b

alν+2
Sn,lν+2

)

+

(
b

al1
Sn,l1

)(
d

da

b

al2
Sn,l2

)
. . .

(
b

alν+2
Sn,lν+2

)
+ · · ·

+

(
b

al1
Sn,l1

)(
b

al2
Sn,l2

)
. . .

(
d

da

b

alν+2
Sn,lν+2

)}
.

By (4), for any k = 1, . . . , ν + 2, ba−lkSn.lk = aµlk(1 + o(1)) and thus

bν+2

al1+···+lν+2
det(S) = aν+2

∑
l∈sν+2

(−1)p(l)µl1µl2 . . . µlν+2
(1 + o(1))

= aν+2 det(Ŝ)(1 + o(1)). (45)

Differentiating (45) and noticing that det(Ŝ) no longer depends on a yields,

d

da

(
bν+2

al1+···+lν+2
det(S)

)
= (ν + 2)aν+1 det(Ŝ)(1 + o(1)). (46)

Similarly, using (4) yields

bν+1

al1+···+lν+2−l
A

(l)
S = aν+1A

(l)

Ŝ
(1 + o(1)), l = 1, . . . , ν + 2. (47)

Differentiating (47) and noticing that A
(l)

Ŝ
no longer depends on a yields,

d

da

(
bν+1

al1+···+lν+2−l
A

(l)
S

)
= (ν + 1)aνA

(l)

Ŝ
(1 + o(1)). (48)

Now, combine (45)–(48) to get

d

da

a1+lA
(l)
S

bdet(S)
=

d

da

bν+1

al1+···+lν+2−1−lA
(l)
S

bν+2

al1+···+lν+2
det(S)

=

(
d
da

bν+1

al1+···+lν+2−1−lA
(l)
S

)(
bν+2

al1+···+lν+2
det(S)

)
(

bν+2

al1+···+lν+2
det(S)

)2

= −
A

(l)

Ŝ

a2 det(Ŝ)
(1 + o(1)), l = 1, 2, . . . , ν + 2. (49)

Also, from (45) and (47) we conclude that for l = 1, 2, . . . , ν + 2

a1+lA
(l)
S

bdet(S)
=
a1+l

b

al1+···+lν+2−1−l

bν+1 (ν + 1)aνA
(l)

Ŝ
(1 + o(1))

al1+···+lν+2

bν+2 aν+2 det(Ŝ)(1 + o(1))
=

A
(l)

Ŝ

adet(Ŝ)
(1 + o(1)). (50)

Thus

d

da
Kν

(
xk − xj

a

)
=

d

da
eTν+1S

−1(1, au, . . . , (au)ν , (au)ν+1)TK(u)
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(49),(50)
=

ν+2∑
l=1

[(
−

A
(l)

Ŝ

a2 det(Ŝ)
(1 + o(1))

){
b

a2
K

(
xk − xi

a

)(
xk − xi

a

)l−1
}

+

(
A

(l)

Ŝ

adet(Ŝ)
(1 + o(1))

)
d

da

{
b

a2
K

(
xk − xi

a

)(
xk − xi

a

)l−1
}]

=

ν+2∑
l=1

A
(l)

Ŝ

det(Ŝ)

[
−3b

a4
K

(
xk − xi

a

)(
xk − xi

a

)l−1

+
b

a3

d

da
K

(
xk − xi

a

)(
xk − xi

a

)l−1
]

(1 + o(1)). (51)

Use (51) back to (41) in the second step below together with the assumption ba−max(γ,µ) → 0 as n → ∞ to

obtain

d

da
θ̂µ,γ(a) = bµ!γ!

g∑
i=1

g∑
j=1

g∑
k=1

[{
d

da
Kµ

(
xk − xi

a

)}{
Kγ

(
xk − xj

a

)}

+

{
Kµ

(
xk − xi

a

)}{
d

da
Kγ

(
xk − xj

a

)}]
F̂T (xi)F̂T (xj)(1 + o(b))

= bµ!γ!

g∑
i=1

g∑
j=1

g∑
k=1

{(
µ+2∑
l=1

A
(l)

Ŝ

det(Ŝ)

[
−3b

a4
K

(
xk − xi

a

)(
xk − xi

a

)l−1

+
b

a3

d

da
K

(
xk − xi

a

)(
xk − xi

a

)l−1
])

b

aγ+1
Kn
γ

(
xk − xj

a

)

+

(
γ+2∑
l=1

A
(l)

Ŝ

det(Ŝ)

[
−3b

a4
K

(
xk − xj

a

)(
xk − xj

a

)l−1

+
b

a3

d

da
K

(
xk − xj

a

)(
xk − xj

a

)l−1
])

b

aµ+1
Kn
µ

(
xk − xi

a

)}
× F̂T (xi)F̂T (xj)(1 + o(1)). (52)

From the definition of the equivalent kernel (see also (5)),

Kn
ν

(
xk − xi

a

)
=

ν+2∑
l=1

A
(l)

Ŝ

det(Ŝ)
K

(
xk − xi

a

)(
xk − xi

a

)l−1

(1 + o(1)), (53)

1

a

(
xk − xi

a

)
Kn
ν
′
(
xk − xi

a

)
=

d

da

ν+2∑
l=1

A
(l)

Ŝ

det(Ŝ)
K

(
xk − xi

a

)(
xk − xi

a

)l−1

(1 + o(1)). (54)

Using (53) and (54) back to (52) and by straightforward calculations completes the proof.243

Lemma 4. Assume that K has compact support, it vanishes at the endpoints, is symmetric about its origin and

its first µ+ 2 derivatives exist. Then, as n→∞, h→ 0 and nµ+γ+1 →∞,

E {Bν,ρ(a)} =

{
ρaρ−5

∫
F

(ρ)
T (z)F

(ν)
T (z) dz − 1

n

ν!ρ!

aν+4
g(s)

∫
uKn

ρ (u)Wn
ν (u) du

}(
1 + o(n−p)

)
,

Var {Bν,ρ(a)} =
2(ν!ρ!)2

n2a2(ν+3)
aR(g)R(Cnρ ∗Wn

ν ) + o(n−1a−2),

with C∗ν (x) = x(W ∗ν )′(x).244
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Proof. By the definition of Bν,ρ(a),

Bν,ρ(a) = −b
3ν!ρ!

aν+5

g∑
i=1

g∑
j=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ
′
(
xk − xi

a

)
Kn
ν

(
xk − xj

a

)
F̂T (xi)F̂T (xj)

= −b
3ν!ρ!

aν+5

{
g∑
i=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xi

a

)
c2i

(1− Ĥ(xi))2

+

g∑
i=1

g∑
j=1

i6=j

g∑
k=1

(
xk − xi

a

)
K∗ρ

(
xk − xi

a

)
W ∗ν

(
xk − xj

a

)
ci

1− Ĥ(xi)

cj

1− Ĥ(xj)

}
(1 + o(1)). (55)

Now, using (8), together with (27) and (28) yields

E(Bν,ρ(a)) = −b
3ν!ρ!

aν+5

{
g∑
i=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xj

a

)
1

nb

fT (xi)

1−H(xi)

+

g∑
i=1

g∑
j=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xj

a

)
fT (xi)fT (xj)

}(
1 + o(n−p)

)
. (56)

Now, the two sums can be approximated as

b2
g∑
i=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xj

a

)
fT (xi)

1−H(xi)

=

∫∫ (
x− y
a

)
K∗ρ

(
x− y
a

)
W ∗ν

(
x− y
a

)
fT (x)

1−H(x)
dx dy + o(b), (57)

and

b3
g∑
i=1

g∑
j=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xj

a

)
fT (xi)fT (xj)

'
∫∫∫ (

x− z
a

)
Kn
ρ

(
x− z
a

)
W ∗ν

(
y − z
a

)
fT (x)fT (y) dx dy dz + o(b2). (58)

Use (57) and (58) back to (56) to obtain

E(Bν,ρ(a)) = − ν!ρ!

aν+5

{∫∫
x− y
a

Kn
ρ

(
x− y
a

)
Wn
ν

(
x− y
a

)
1

n

fT (x)

1−H(x)
dx dy

+

∫∫∫
x− z
a

Kn
ρ

(
x− z
a

)
Wn
ν

(
y − z
a

)
fT (x)fT (y) dx dy dz

}(
1 + o(n−p)

)
= − ν!ρ!

aν+5

{
1

n

∫
ω(x, x)g(x) dx+

∫∫
ω(x, y)fT (x)fT (y) dx dy

}
︸ ︷︷ ︸

I

(
1 + o(n−p)

)

= − ν!ρ!

aν+5

{
ag(s)

n

∫
uKn

ρ (u)Wn
ν (u) du− aν+ρ

(ρ− 1)!ν!

∫
F

(ρ)
T (z)F

(ν)
T (z) dz

}(
1 + o(n−p)

)
,

from which the result immediately follows. Regarding the variance, first set

π(xi, xj) =

g∑
i=1

xj − s
a

Kn
ρ

(
xj − s
a

)
Wn
ν

(
xj − s
a

)
b.

Then,

E(B2
ν,ρ(a)) = E

{
b3ν!ρ!

aν+5

g∑
i=1

g∑
j=1

g∑
k=1

(
xk − xi

a

)
Kn
ρ

(
xk − xi

a

)
Wn
ν

(
xk − xj

a

)
ci

1− Ĥ(xi)

cj

1− Ĥ(xj)

}2
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=
b2(ν!ρ!)2

a2(ν+5)

g∑
i=1

g∑
j=1

g∑
k=1

g∑
l=1

ω(xi, xj)ω(xk, xl)E (cicjckcl)

(1−H(xi))(1−H(xj))(1−H(xk))(1−H(xl))︸ ︷︷ ︸
II

(1 + o(n−p)).

By (27)–(32) and the multinomial theorem,

EII =
n!

(n− 4)!

(∫∫
fT (t)fT (u)ω(t, u) dt du

)2

+
2n!

(n− 3)!

(∫
g(t)ω(t, t) dt

)(∫∫
fT (t)fT (u)ω(t, u) dt du

)
+

4n!

(n− 3)!

∫∫∫
fT (t)fT (u)fT (v)

1−H(t)
ω(t, u)ω(t, v) dt du dv

+
2n!

(n− 2)!

∫∫
fT (t)fT (u)

(1−H(t))(1−H(u))

(
ω(t, u)2 + 2ω(t, t)ω(t, u)

)
dt du

+ n

∫
fT (t)

(1−H(t))3
ω2(t, t) dt.

Rearranging and using (33)–(39),

EII − (EI)2 =

[
n!

(n− 4)!
− (n(n− 1))2

]
a2(ν+ρ)

((ρ− 1)!ν!)2

(∫
F

(ρ)
T (z)F

(ν)
T (z) dz

)2

−
[

2n!

(n− 3)!
− 2n2(n− 1)

n

]
ag(s)aν+ρ

(ρ− 1)!ν!

(∫
uKn

ρ (u)Wn
ν (u) du

)(∫
F

(ρ)
T (z)F

(ν)
T (z) dz

)
+

4n!

(n− 3)!

a2(ν+ρ)

(ν!(ρ− 1)!)2

∫
g(t)

(
f

(ρ−2)
T (t)

)2

dt+
2n!

(n− 2)!
a3R(g)R(Cnρ ∗Wn

ν )

− 4n!

(n− 2)!

aν+ρ

ν!(ρ− 1)!

{∫
g(u)g(ρ−2)(u) du

}{∫
rKn

ρ (r)Wn
ν (r) dr

}
+ na2

{∫
fT (t)

(1−H(t))3
dt

}{∫
rKn

ρ (r)Wn
ν (r) dr

}2

− n
(
ag(s)

n

∫
uKn

ρ (u)Wn
ν (u) du

)2

+O(n2a4) + o(n−1a−2).

Rearranging the above expression, multiplying by (ν!ρ!)2a−2(ν+5) and noticing that the dominant term is245

a3R(g)R(Cnρ ∗Wn
ν ) yields the result.246

Lemma 5. As n→∞, h→ 0 and naµ+γ+3 →∞, and b = o(a)

naµ+γ−1
(
θ̂µ,γ(a)− θµ,γ

)
d→ N(µ∗, σ

2
∗),

where

µ∗ = µ!γ!

{∫ (
fT (u)

1−H(u)

)
du

}∫
W ∗µK

∗
γ +

(1 + δµγ)γ!

(γ + 2)!
naµ+γ+1θµ,γ+2µγ+2(K∗γ) +O(a),

σ2
∗ = 2(µ!γ!)2a−1R(g(γ))R

(
W ∗µK

∗
γ

)
.

Proof. Set

ψlk,ν =

g∑
i=1

Wn
ν

(
xi − xk

a

)
ckl

1− Ĥ(xk)
,

and

µk,ν = E(ψ1k,ν).
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Now, note that by Lemma 2 in Bagkavos and Patil (2008) in the third step below,

µk,ν = E

g∑
i=1

Wn
ν

(
xi − xk

a

)
ci1

1− Ĥ(xi)
=

g∑
i=1

Wn
ν

(
xi − xk

a

)
bfT (xi) dt(1 + o(bn−p))

=

∫
Wn
ν

(
t− xk
a

)
fT (t) dt(1 + o(bn−p)). (59)

By (6) of Bagkavos and Ioannides (2020), Lemma 2 of Bagkavos and Patil (2008) gives

E(ψ1k,µψ1l,γ) =

∫
Wn
µ

(
t− xk
a

)
Wn
γ

(
t− xl
a

)
f(t)

1−H(t)
dt(1 + o(n−1)). (60)

By the independence of X1 and X2 and using (7) of Bagkavos and Ioannides (2020),

E(ψ1k,µψ2l,γ) =

g∑
i=1

Wn
µ

(
xi − xk

a

)
Wn
γ

(
xi − xl
a

)
b2f2

T (xi)(1 + o(n−2p))

+
∑∑
i 6=j

Wn
µ

(
xi − xk

a

)
Wn
γ

(
xj − xl
a

)
b2fT (xi)fT (xj)(1 + o(n−2p)). (61)

Then,

θ̂µ,γ(a) =
µ!γ!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

b (ψlk,µ − µk,γ)(ψmk,γ − µk,µ)

+
µ!γ!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

b(ψlk,µµk,µ + ψmk,γµk,γ)− µ!γ!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bµk,µµk,γ . (62)

The next step is to prove

Un =
∑∑

1≤l<m<n

{
b

g∑
k=1

(ψlk,µ − µk,γ)(ψmk,γ − µk,µ)

}
d→ N

(
0,

n2b2

2a2(µ+γ)−1
R(g)R(C∗µ ∗W ∗γ )

)
, (63)

µ!ν!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bψlk,νµk,ν → µ!ν!a−ν×{
aν

ν!
R(F

(ν)
T ) +

aν+2

(ν + 2)!

∫
F

(ν)
T F

(ν+2)
T

∫
uν+2K∗ν

}
(1 + o(n−p)), (64)

and
µ!ν!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bµk,µµk,ν →
1

b2

{
θν,µ +

(1 + δνµ)a2

(µ+ 1)(µ+ 2)
θν,µ+2µµ+2(K∗µ) + o(a2)

}
. (65)

Then, asymptotic normality of θ̂µ,γ(a) will follow by using (63)–(65) in (62). Establishing (63)–(65) depends on

repeated use of the following approximation. By (59),

µk,νµl,µ =

{∫
Wn
ν

(
t− xk
a

)
fT (t) dt

}{∫
Wn
µ

(
t− xl
a

)
fT (t) dt

}
=

b2

aν+µ

{∫
W ∗ν

(
t− xk
a

)
fT (t) dt

}{∫
W ∗µ

(
t− xl
a

)
fT (t) dt

}
(1 + o(b2a−(ν+µ)))

=
b2

aν+µ

{∫
K∗ν

(
t− xk
a

)
FT (t) dt

}{∫
K∗µ

(
t− xl
a

)
FT (t) dt

}
(1 + o(b2a−(ν+µ)))

=
b2

aν+µ
a2

{∫
K∗ν (u)FT (xk + ua) du

}{∫
K∗µ(u)FT (xl + ua) du

}
(1 + o(b2a−(ν+µ)))

27



=
b2

aν+µ

{
aν+µ

µ!ν!
F

(ν)
T (xk)F

(µ)
T (xl) +

(1 + δνµ)aν+µ+2

ν!(µ+ 2)!
F

(ν)
T (xk)F

(µ+2)
T (xl)µµ+2(K∗µ) + o(aν+µ)

}
(1 + o(b2a−(ν+µ))). (66)

In showing (63), Theorem 1 of Hall (1984) is applied to Un. Let

Hn(X1, X2) = b

g∑
k=1

(ψ1k,µ − µk,γ)(ψ2k,γ − µk,µ),

Hn(X1, x) = b

g∑
k=1

(ψxk,µ − µk,γ)(ψ1k,γ − µk,µ),

ψxk,ν = (nb)−1

g∑
i=1

Wn
ν

(
xi − xk

a

)
I[xk− b2 ,xk+ b

2 ](x)

1− Ĥ(xk)
, x ∈ R,

Gn(x, y) = E {Hn(X1, x)Hn(X1, y)}

= b2
g∑
k=1

g∑
l=1

(ψxk,µ − µk,γ)(ψyl,µ − µl,γ)E(ψ1k,γ − µk,µ)(ψ1l,γ − µl,µ).

By definition, Hn is symmetric and E(Hn(X1, X2)|X2) = 0, thus

Un =
∑∑

1≤l<m≤n

Hn(Xl, Xm)

is a degenerate U -statistics. Proof of (63) will follow by application of Theorem 1 in Hall (1984), according to

which Un → N(0, 1
2n

2EH2
n(X1, X2)). According to the theorem, (2.1) in Hall (1984) must be verified first. For

this, first note that

E[H2
n(X1, X2)] = b2E

(
g∑
k=1

(ψ1k,µ − µk,γ)(ψ2k,γ − µk,µ)

)2

= b2E

g∑
k=1

g∑
l=1

(ψ1k,µ − µk,γ)(ψ2k,γ − µk,µ)(ψ1l,µ − µl,γ)(ψ2l,γ − µl,µ)

= b2E

g∑
k=1

g∑
l=1

(ψ1k,µψ2k,γ − µk,µψ1k,µ − µk,γψ2k,γ + µk,γµk,µ)

× (ψ1l,µψ2l,γ − µl,µψ1l,µ − µl,γψ2l,γ + µl,γµl,µ)

' b2
g∑
k=1

g∑
l=1

{E(ψ1k,µψ1k,γ − µk,µψ1k,µ − µk,γψ2k,γ + µk,γµk,µ)}2

= b2
g∑
k=1

g∑
l=1

{Eψ1k,µψ1l,γ − µk,γµl,γ − µk,µµl,µ + µk,γµl,µ}2 . (67)

Using (60) and (66) in (67) yields

E[H2
n(X1, X2)] = b2

g∑
k=1

g∑
l=1

{
E(ψ1k,µψ2l,γ)− b2

(γ!)2
F

(γ)
T (xk)F

(γ)
T (xl)

− b2

(µ!)2
F

(µ)
T (xk)F

(µ)
T (xl) +

b2

γ!µ!
F

(γ)
T (xk)F

(µ)
T (xl) +O(a2)

}2

(1 + o(b2n−p))

=
b4

a2(µ+γ)

∫∫
ω2(t, u)g(t)g(u) dt du(1 + o(b2n−p))
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− 2b4

a2(µ+γ)

∫∫∫
ω(t, u)ω(t, v)g(t)fT (u)fT (v) dt du dv(1 + o(b2n−p))

+
b4

a2(µ+γ)

{∫∫
ω(t, u)fT (u)fT (u) dt du

}2

(1 + o(b2n−p))(1 + o(b2n−p)). (68)

Using (35), (36) and (38) in (68),

E[H2
n(X1, X2)] = b2

g∑
k=1

g∑
l=1

{
− aµ+γ

(γ − 1)!µ!

∫
F

(γ)
T (z)F

(µ)
T (z) dz

+
a2(µ+γ)

(µ!(γ − 1)!)2

∫
g(t)

(
f

(γ−2)
T (t)

)2

dt(1 +O(a2µ)) + aR(g)R(Cnρ ∗Wn
ν ) +O(a4)

}
=

b2

a2(µ+γ)−1
R(g)R(C∗µ ∗W ∗γ )(1 + o(1)). (69)

Working in an entirely similar way

E[H4
n(X1, X2)] ≤ b4

a4(µ+γ)−1
R(K∗γ)4(1 + o(1)),

E[G4
n(X1, X2)] = O

(
b8a−4(µ+γ)

)
,

which concludes the proof of (63). Regarding (64), first note that

µ!ν!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bψ1k,νµk,ν =
µ!ν!

nb

n∑
l=1

g∑
k=1

ψ1k,νµk,ν . (70)

Now, using (70) in the sixth step below that Wn
ν (t) = ba−νW ∗ν (t), we have,

1

nb

n∑
l=1

g∑
k=1

ψlk,νµk,ν =
1

b2
E

g∑
k=1

bψlk,νµk,ν =
1

b2

g∑
k=1

bµk,ν(Eψ1k,ν) =
1

b2

g∑
k=1

bµ2
k,ν

=
1

b2

g∑
k=1

b

(
g∑
i=1

Wn
ν

(
xi − xk

a

)
bfT (xi)(1 +Op(bn

−1/2))

)2

= a−ν
{
aν

ν!
R(F

(ν)
T ) +

aν+2

(ν + 2)!

∫
F

(ν)
T F

(ν+2)
T

∫
uν+2K∗ν

}
(1 + o(n−p)).

Thus,

µ!γ!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bψlk,µµk,µ = µ!γ!a−ν
{
aν

ν!
R(F

(ν)
T ) +

aν+2

(ν + 2)!

∫
F

(ν)
T F

(ν+2)
T

∫
uν+2K∗ν

}
(1 + o(n−p)),

from which (64) immediately follows. For (65), first note that

µ!ν!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bµk,µµk,ν =
µ!ν!

b2

g∑
k=1

bµk,µµk,ν . (71)

Now,

g∑
k=1

bµk,µµk,ν =

g∑
k=1

b

{
g∑
i=1

Wn
ν

(
xi − xk

a

)
E(ckl)

1− Ĥ(xk)

}{
g∑
i=1

Wn
µ

(
xi − xk

a

)
E(ckl)

1− Ĥ(xk)

}

=
1

aν+µ

{
aν+µ

µ!ν!
θν,µ +

(1 + δνµ)aν+µ+2

ν!(µ+ 2)!
θν,µ+2µµ+2(K∗µ) + o(aν+µ)

}
. (72)
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By (71) and (72)

µ!ν!

(nb)2

n∑
l=1

n∑
m=1

g∑
k=1

bµk,µµk,ν =
1

b2aν+µ

{
aν+µ

µ!ν!
θν,µ +

(1 + δνµ)aν+µ+2

ν!(µ+ 2)!
θν,µ+2µµ+2(K∗µ) + o(aν+µ)

}
,

from which (65) immediately follows.247

Lemma 6. Assume that K has compact support, is Lipschitz continuous, is symmetric about its origin and its

first µ+ 2 derivatives exist. Then provided that h ∼ n−1/(µ+γ+3),

θ̂µ,γ
(
aλ̂(h)

)
− θ̂µ,γ (aλ(h)) = o(n−1/2).

Proof. From the expressions for E {Bµ,γ(a)} and Var {Bµ,γ(a)} in Lemma 4,

Bµ,γ = γaγ−5

∫
F

(γ)
T (z)F

(µ)
T (z) dz + op(a

−1). (73)

Moreover note that

Aµ,γ(a) =
−γ
aγ−1

∫
F

(γ)
T (z)F

(µ)
T (z) dz + op(a

−1). (74)

Now, by the mean value theorem

θ̂µ,γ
(
aλ̂(h)

)
− θ̂µ,γ (aλ(h)) =

d

da
θ̂µ,γ(a)

∣∣∣
a=a∗

(
aλ̂(h)− aλ(h)

)
, (75)

where a∗ lies between aλ̂(h) and aλ(h). By Lemma 3, (75) can be written as

θ̂µ,γ
(
aλ̂(h)

)
− θ̂µ,γ (aλ(h)) ={

(Aγ(a∗) +Bγ(a∗))
(
aλ̂(h)− aλ(h)

)
+ (Aµ(a∗) +Bµ(a∗))

(
aλ̂(h)− aλ(h)

)}
(1 + op(1)). (76)

Using (73) and (74) in (76) yields

θ̂µ,γ
(
aλ̂(h)

)
− θ̂µ,γ (aλ(h)) = op(1/a

∗)
(
aλ̂(h)− aλ(h)

)
(17)
= op(h

− µ+γ+1
µ+γ−1 )C(K)D(θ)h

µ+γ+1
µ+γ−1

(
λ̂

2
µ+γ−1 − λ

2
µ+γ−1

)
= op(1)

{(
λ+Op(n

−1/2)
) 2
µ+γ−1 − λ

2
µ+γ−1

}

= op(1)

λ 2
µ+γ−1 +

 2
µ+γ−1

1

λ−
µ+γ+1
µ+γ−1Op(n

−1/2)− λ
2

µ+γ−1

 = op(n
−1/2).

248

7.2. Proof of Theorem 3249

Let µν =
∫
uνK and define the function Lλ as

Lλ(h) = h
{
µµ+γ
µ θ̂µ,γ(aλ(h))

} 1
µ+γ−1 − n−

1
µ+γ−1R(K)

1
µ+γ−1 .

Assume that K is positive only on [−1, 1]. Then, for a fixed censored sample X1, . . . , Xn, Lλ̂(h)→∞ as h→∞

and Lλ̂(h) < 0 as aλ̂(h) ↓ b and 0 < b ↓ 0 (e.g. b ↓ 0 means b→ 0+ (i.e. b goes to zero from above). This means

that Lλ̂(h) has roots on the positive real line. Note that ĥ is a root of Lλ̂(h) and ĥ ∼ n−
1

µ+γ−1 . Then,

0 = Lλ̂(ĥ) = h
{
µµ+γ
µ θ̂µ,γ(aλ̂(h))

} 1
µ+γ−1 − n−

1
µ+γ−1R(K)

1
µ+γ−1 . (77)
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Using Lemma 6,{
θ̂µ,γ(aλ̂(h))

} 1
µ+γ−1

=
{
θ̂µ,γ(aλ(h)) + op(n

−1/2)
} 1
µ+γ−1

=
{
θ̂µ,γ(aλ(h))

} 1
µ+γ−1

+
1

µ+ γ − 1

{
θ̂µ,γ(aλ(h))

} 1
µ+γ−1−1

op(n
−1/2)

=
{
θ̂µ,γ(aλ(h))

} 1
µ+γ−1

+ op(n
−1/2). (78)

Using (78) back in (77) yields

Lλ̂(ĥ) = h
{
µµ+γ
µ

} 1
µ+γ−1

{
θ̂µ,γ(aλ(h))

} 1
µ+γ−1 − n−

1
µ+γ−1R(K)

1
µ+γ−1 ,

and thus

Lλ(ĥ) = Lλ̂(ĥ) +Op(n
−1/2n−

1
µ+γ−1 ) = Lλ̂(ĥ) +Op

(
n−

µ+γ+1
2(µ+γ−1)

)
. (79)

By Lemma 5 and the Delta method

nα1Lλ(h∗)
d→ N(µ1, σ

2
1), (80)

with

µ1 = E

{
nα1h∗µ

µ+γ
µ+γ−1
γ θ̂µ,γ(αλ(h))

1
µ+γ−1

}
= nα1h∗µ

µ+γ
µ+γ−1
γ E

{
θ̂µ,γ(αλ(h))

1
µ+γ−1

}
= nα1h∗µ

µ+γ
µ+γ−1
γ

[
θµ,γ +

µ!γ!

naµ+γ−1

{∫ (
fT (u)

1−H(u)

)
du

}∫
W ∗µK

∗
γ

+
(1 + δµγ)γ!

(γ + 2)!
h2
∗θµ,γ+2µγ+2(K∗γ)

] 1
µ+γ−1

= nα1h∗µ
µ+γ
µ+γ−1
γ θ

1
µ+γ−1
µ,γ +

nα1(1 + δµγ)γ!

(γ + 2)!(µ+ γ + 1)
h3
∗µ

µ+γ
µ+γ−1
γ θ

2−(µ+γ)
µ+γ+1
µ,γ θµ,γ+2µγ+2(K∗γ)

+
µ!γ!

naµ+γ−1

∫
W ∗µK

∗
γ , (81)

after using in the last step above the expansion

{θµ,γ(a) + g(x)}
1

µ+γ−1 = θµ,γ(a)
1

µ+γ−1 +
1

µ+ γ − 1
θµ,γ(a)

1
µ+γ−1−1g(x),

where g(x) is a generic function. Then, using the definition of h∗ (see (14)) in (81) yields

µ1 = nα1

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗γ)θγ+2,γ+2

} 1
2γ+3

µ
µ+γ
µ+γ−1
γ θ

1
µ+γ−1
µ,γ

+
nα1(1 + δµγ)γ!

(γ + 2)!(µ+ γ + 1)
µ

µ+γ
µ+γ−1 θ

2−(µ+γ)
µ+γ−1
µ,γ

×

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗γ)θγ+2,γ+2

} 3
2γ+3

θµ,γ+2µγ+2(K∗γ)(1 + χ−1) +O
(
n−1a−(µ+γ)+1

)
.

Also, σ2
1 is given by

σ2
1 = Var {nα1Lλ(h∗)} = Var

{
nα1h∗µ

µ+γ
µ+γ−1
γ θ̂µ,γ(αλ(h))

1
µ+γ−1

}
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= n2α1h2
∗µ

2(µ+γ)
µ+γ−1
γ

1

µ+ γ − 1
θ

2
2−(µ+γ)
µ+γ−1

µ,γ
2(µ!γ!)2

n2a2(µ+γ)−1
R(g)R(Cnµ ∗Wn

γ )

= n2α1−2h2
∗µ

2(µ+γ)
µ+γ−1
γ θ

4−2(µ+γ)
µ+γ−1

µ,γ
2(µ!γ!)2

a2(µ+γ)−1(µ+ γ − 1)
R(g)R(Cnµ ∗Wn

γ ).

Use the fact that from (17), a(ĥν) = C(K)D(θ)ĥ
2ν+1
2ν+3
ν as well as the definition of h∗ in (14) to obtain,

σ2
1 = n2α1−2h2

∗µ
2(µ+γ)
µ+γ−1
γ

2(µ!γ!)2aR(g)R(Cnµ ∗Wn
γ )

(µ+ γ − 1)

{
C(K)D(θ)ĥ

2γ+1
2γ+3
∗

}2(µ+γ)−1
θ

4−2(µ+γ)
µ+γ−1

µ,γ

=
2(µ!γ!)2

µ+ γ − 1
n2α1−2µ

2(µ+γ)
µ+γ−1
γ

{
2

n

(2γ − 1)(γ!)2C1A1,1

µ2
γ+2(K∗ν )θγ+2,γ+2

} 2(2γ+3)−(2γ+1)(2(µ+γ)−1)

(2γ+3)2

× {C(K)D(θ)}−2(µ+γ)+1
R(g)R(Cnµ ∗Wn

γ )θ
4−2(µ+γ)
µ+γ−1

µ,γ .

Further,

d

dh
Lλ(h) =

{
µµ+γ
γ θ̂µ,γ(aλ(h))

} 1
µ+γ−1

+ hµ
µ+γ
µ+γ−1
γ

1

µ+ γ − 1
{An,µ(aλ(h)) +Bn,µ(aλ(h) +An,γ(aλ(h)) +Bn,γ(aλ(h)}

× C(K)D(gλ)h
2−(µ+γ)
µ+γ−1

(73),(74)
=

{
µµ+γ
γ

−µ
aµ−1

∫
F

(µ)
T (z)F

(γ)
T (z) dz + op(a

−1) + µaµ−5

∫
F

(µ)
T (z)F

(γ)
T (z) dz

+
−γ
aγ−1

∫
F

(γ)
T (z)F

(µ)
T (z) dz + γaγ−5

∫
F

(µ)
T (z)F

(γ)
T (z) dz

} 1
µ+γ−1

+ op(1). (82)

Now,

Lλ(ĥ) = Lλ(h∗) +
d

dh
Lλ(h∗∗)(ĥ− h∗), (83)

where h∗∗ is between ĥ and h∗. By (79) and (83),

nα

(
ĥ− h∗
h∗

)
= nα

(
Lλ(ĥ)− Lλ(h∗)

h∗
d
dhLλ(h∗∗)

)
= nα

Op
(
n−

µ+γ+1
2(µ+γ−1)

)
− Lλ(h∗)

h∗
d
dhLλ(h∗∗)

 . (84)

Using (82) in the denominator of (84) and subsequently applying (80) yields

nα

(
ĥ− h∗
h∗

)
= nα

(
n

R(K)

) 1
µ+γ−1

Lλ(h∗)(−1 + op(1))
d→ N(µDPI , σ

2
DPI),

which completes the proof.250
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