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Abstract- This paper addresses the performance of wireless fading channels, namely, 

Rayleigh, Rician and Nakagami-m fading channels, taking both noiseless and additive 

noisy cases into account. The performance metrics investigated are channel capacity, 

channel model variance estimation, required average description length based on 

Shannon entropy and relative entropy and Symbol error probability assessment. Taylor 

expansion is considered as an approximation for the aforementioned metrics together 

with the Compressed Sensing (CS) compressibility rule. Technical comments are 

provided for supporting simulation results. Mathematical interpretations are provided 

to support the simulation results along with feasible applications in 5G wireless 

systems. Conclusions and future research directions finalize the paper. 
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1. INTRODUCTION 

The concept of wireless transmission is governed by randomness1. The transmitted 

information through the wireless medium is distorted by additive noise namely 

Additive White Gaussian Noise (AWGN) a random Gaussian distributed random 

quantity and fading as a multiplicative effect. The above necessitate the modeling of 

wireless channels by statistical distributions. 

Among fading distributions2, the Rayleigh fading distribution models the Non-Line-of-

Sight channel with multiple scatterers in the medium thus indicative of severe 

distortion. The Rician distribution, on the other hand, models a channel with a dominant 

Line-of-Sight component thus a link between transmitter and receiver. As a third fading 

channel, Nakagami-m fading also accounts for distortion and also approximates the two 

former distributions by proper parameter selection. 
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The majority of signal processing applications involve the procedure of estimation, 

thus, approximating a function, deterministic or random, by a sequence of basis 

functions with near optimal-minimum error representation. Many such schemes are 

theoretically formulated by the requirement of infinite number of terms to approach a 

vanishingly erroneous representation. Polynomial representations are most attractive in 

various applications. 

Taylor polynomial expansions are the best polynomial approximations. This means that 

if a power series representation is of minimum error, this must be the Taylor expansion 

of the function to be approximated. Categorized in the class of infinite required terms 

for zero error, the approximation in practical cases inevitably involve an approximation 

error, also known as Taylor remainder in the related mathematical literature. The nth 

order Taylor expansion require the nth times diffferentability of the function to be 

approached. Being a polynomial, the most important advantage of Taylor polynomial 

is the ease of mathematical manipulation i.e. elementary integration and differentiation 

rendering complex integrals calculation with no analytic solution which would 

otherwise require the application of numerical methods, directly solvable by the 

respective Taylor polynomial quantity. The convergence of Taylor expansions are point 

wise or more accurately in a neighborhood around a point called the expansion point as 

opposed to other infinite order schemes as the Fourier series resulting in interval-wise 

convergence. Thus, the Taylor polynomial convergence depends on both expansion 

point and number of terms as powers of the polynomial variable. Different expansion 

points may require different number of terms to achieve a certain acceptable 

approximation. Moreover, several terms of the Taylor polynomial may cancel out due 

to the respective derivative being zero. A pattern resulting in reduced polynomial terms 

is the even functions class with Taylor representation by even power terms only and the 

case of odd functions being approximated by Taylor polynomials of odd power terms. 

Compressed Sensing (CS)3 is a rapidly emerging scientific field aiming at significantly 

reducing computational and implementation complexity caused by traditional sampling 

and information processing. The mathematical tools that CS uses combine from diverse 

areas such as statistics, matrix theory, random processes and optimization theory. The 

fundamental assumption in CS theory and practice is that of sparsity borrowed by 

matrix algebra indicating the few nonzero elements as opposed to the bulk of zero 

values. The main concept used in the current paper is compressibility, instead of 

sparsity. The former sets a predefined threshold relative to elements magnitude thus 

keeping the values with magnitude above the threshold and discarding the rest. 

The concept of Shannon entropy4 quantifies the uncertainty relative to a random 

variable with respect to the possible outcomes of the former. Thus entropy is directly 

applied to random processes of the fading channels. A random variable is always 

characterized by a nonzero uncertainty while a zero value indicated non-randomness 

i.e. a deterministic mapping of the variable and its outcomes. A complementary entropy 

definition also used in Information Theory and Wireless Communications, is the 

relative entropy quantifying the penalty induced by approximating a supposed true 

distribution by an approximating one. The sum of the above two entropies results in the 

average required code description length with respect to a random variable. The above 

concepts, wireless fading distributions, Taylor expansions and CS together with 



Shannon and Relative Entropy, constitute the metrics for assessing performance of the 

considered fading channels. 

2. RELATED WORK AND CONTRIBUTION 

Concerning active research of applicability of CS in wireless communications, the 

authors5 cover these extensive applications in their review. Relative to 5G 

communications, channel estimation in Massive MIMO environment6 is conducted 

taking channel sparsity into account and solving via CS algorithm. Moreover, Taylor 

precoding of correlated Massive MIMO is investigated7 considering low complexity 

and convergence. 

Regarding Taylor approximation of probability density functions, a representative 

work8 approximates Normal, Weibull and lognormal densities by a higher degree 

polynomial based on calculated moments, whereas our work assumes quadratic Taylor 

polynomial, the first two moments i.e. mean and variance for Rayleigh, Rician and 

Nakagami-m probability densities. Extending to 5G applications of Taylor expansion, 

the authors9 Taylor expand the non-analytic distribution proposing a nonlinear 

equalization scheme while10 considers the Taylor expansion throughput in a Device-to-

Device interference environment. Furthermore, a nonstationary channel model 

accounting for Doppler frequency estimation11 is utilized by Taylor expansion of 

second degree, as is the case of our paper, to model channel parameters. 

Regarding capacity in MIMO Channel via Relative entropy consideration to model 

mismatch between unknown true distribution and partially known approximating one, 

the authors12 solve an optimization problem over distribution and covariance matrix 

indicating exploitation of correlation while our work involves independent branches 

and variance for each branch. Noise variance in Massive MIMO system is addressed13 

introducing maximum likelihood estimator verifying the effectiveness for 5G 

communications. Signal reconstruction14 defining criteria for distributions to be 

compressible is investigated, a concept similar to this paper employing compressibility 

in order to discard small values of channel gains produced by fading distribution. A key 

element differentiating this work to our paper is the consideration of second moment 

tending to infinity while the fading cases in our paper always assume finite moments. 

Additionally, compressibility has also been considered15 focusing on fourth moment, 

when the latter is large required multipath components required are in agreement to the 

number required by CS reconstruction. Finally, in our previous work16 fading channel 

coding is investigated employing CS to conduct optimization problem via Lagrange 

multiplier also solving the inverse distribution identification problem whereas in this 

paper extended metrics are used to evaluate channel performance via the CS and Taylor 

approximations. 

The contribution of this paper is stated in the following: instead of Taylor expanding 

the capacity curves or results of estimated variance, which would fail to capture the 

randomness of the channel gains, or deriving random Taylor coefficients for each 

fading channel case, we expand via quadratic Taylor polynomial the fading 

distributions, Rayleigh, Rician or Nakagami-m fading, inferring the same distribution 

category for the CS-based case. Taylor polynomial is used as the random channel gain 

generating distribution to assess the wireless fading channel performance just as the 



exact and CS-based cases, based on capacity, variance, required number of bits for 

channel coding and symbol error probability estimations. The excellent match of the 

above calculations to the distribution approximated curves verify the conclusions 

reached and extend their applicability in the rapidly evolving 5G wireless 

communications. 

3. SYSTEM MODEL AND MATHEMATICAL PRELIMINARIES 

3.1 System Model 

This paper assumes a single user Single-Input-Multiple-Output system model as shown 

in Figure 1, hence, a transmitter equipped with a single antenna and a receiver with 

multiple antennas. The model assumed is simplified not accounting for user mobility 

i.e. Doppler shift and interference by neighboring transmission. Furthermore, the model 

assumes that the reception conveys the diversity of independent branches 

corresponding to the path gain of each receive antenna. Hence, correlation between 

multipath is not assumed along with inter-element antenna correlation. Moreover, the 

time coherent model is assumed that is the channel gain over one symbol period is 

assumed constant.  

 

Figure 1 SIMO System Model. 

3.2 Mathematical Preliminaries 

This section reviews the mathematical tools utilized in this paper. 

3.2.1 Fading Distributions 

The Rayleigh fading channels is modeled by the following distribution and has the 

mean and variance below: 

                                                   
2

2

2

2

sigma

x

x e
sigma

x
xf



                                         (1)                        

                                                             
2


sigmamean                                                         (2) 

                                                            






 


2

422 
 sigma                                                      (3) 

where sigma is the scale parameter by which the first two moments mean and variance 

are calculated with arbitrary precision since the calculations involve irrational number. 



The Rayleigh channels is used in scenario where the medium is filled with multiple 

scatterers which is result in the multiple paths induced by single or more reflections in 

the objects. Rayleigh fading assumes severe distortion. 

The Rician distribution models wireless channels with a Line-of-Sight component 

between transmitter and receiver. Its mathematical expression includes apart from the 

exponent as the Gaussian and Rayleigh distributions, the modified Bessel function of 

first kind and zero order. The distribution, mean and variance are given below: 
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where sigma and v are parameters to be configured. For zero value of parameter v, the 

Rician distribution is equivalent to Rayleigh distribution with sigma scale parameter. 

In the moments expressions L1/2 is the Laguerre polynomial with parameter q=0.5. 

Finally, the Nakagami-m distribution with the parameter m is also indicative of severe 

signal distortion where the distribution and first and second moments are given as 

follows: 
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where m controls the shape of distribution and Ω determines the spread. The Nakagami-

m distribution can be considered a generalization of the Rayleigh distribution by setting 

m=1 while an approximation of Rician fading for m>1. The function Γ(.) denotes the 

gamma function. 

Finally, regarding the AWGN distribution the N(0,1) model i.e. zero mean unit variance 

Gaussian distribution is assumed as given below: 
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3.2.2 Taylor polynomial expansions 

The approximating Taylor polynomial given a function is given by the power series 

notation below: 
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The notation above complies with practical approximations thus necessarily truncating 

the theoretically requirement of infinite terms for exact approximations. The series 

coefficients are defined by the value of the nth derivative of the approximated function 

at the expansion point and then divided by the factorial quantity (n!). 

3.2.3 Shannon Entropy and Relative Entropy 

The concepts of Shannon and Relative Entropy are fundamental in Information Theory, 

the former quantifying uncertainty of a random variable and the latter being a means of 

quantifying the distance or dissimilarity between two distributions. The Shannon 

entropy and Relative Entropy in a discrete form (a summation assumed instead of a 

continuous integral) are given below: 
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where fx is the actual distribution and px used in the relative entropy expression is the 

approximating distribution.  

4. SIMULATIONS ANALYSIS 

The steps towards the simulations conducted by MATLAB are described as follows. 

The initial step is the CS based inferring of the considered fading distribution and the 

Taylor approximation of the latter. 

First, the independent channel gains based on the defined distribution are generated and 

50 realizations are carried out producing 50 channel gains each. Then the average 

channel gains are computed. By employing CS sparsity-enforcing scheme best 

described as compressibility only the channel gains larger in magnitude than a 

predefined threshold are kept discarding the rest. These reduced in number channel 

gains are used to infer the same as originally specified distribution of the same kind. 

Moreover, the Taylor polynomial approximating the specified distribution is used as 

the generating distribution producing same amount of channel gains. Based on exact 

distribution, Taylor polynomial distribution and CS based inferred distribution the 

capacity of each independent SIMO branch is computed and graphed. 

The next step is towards variance estimation based on the first and second order 

moments. All three cases corresponding to the above distributions are considered 

providing results by Taylor approximation of the related integrals. It must be noted that 

irrespective of the feasibility of analytic solutions of the integrals in some cases, the 

Taylor approximation is applied to all cases for variance estimation. Specifically, the 



cases of integrals with no analytic solution is where the Taylor expansion offers a 

tractable and easy to mathematically manipulate approach. The cases accounted for are 

exact integral calculations, the integral calculation based on the Taylor expansion of the 

former exact distribution expression and the inferred CS based distribution from the 

reduced number of channel gains. Proceeding one step further, the required number of 

bits to express the random channel distribution is calculated being the sum of the 

Shannon Entropy and the Relative entropy, the first term with respect to the random 

distribution and the second considering the exact distribution and its Taylor expansion 

as an approximation or as a second case the CS based inferred distribution as the 

approximation. The last metric considered is the Symbol Error Probability of the 

random channel and its comparison to the Taylor expansion and CS inferred 

distribution. 

In all the above investigations, both noiseless case as well as more practical noisy cases 

are included, the latter expressed by a distribution equal to the convolution of the fading 

distribution and the AWGN distribution, by assuming independence of fading and noise 

in the channel. 

4.1 Fading Distributions and Channel Capacity 

Regarding system model parameters, the SIMO model assumes 50 independent 

branches thus of transmitted power of 50mW for each branch and a 1GHz bandwidth.  

4.1.1 Rayleigh Fading 

The first case is Rayleigh fading without noise and Rayleigh fading with additive noise 

included. The CS based inferred distribution is based on the reduced number of samples 

with magnitude larger than the average value of the channel gains. Hence, the 

predefined threshold is set to the average value of channel gains. Regarding the Taylor 

approximation the quadratic expansion is assumed as the minimum polynomial order 

capturing curvature. This assumption is based on the convexity of all fading 

distributions considered. For Rayleigh noiseless, the exact Rayleigh distribution, the 

CS based inferred distribution and the Taylor approximation are plotted in the following 

Figure 2: 

 

Figure 2 Rayleigh noiseless fading distributions: exact, CS inferred and Taylor 

approximation. 



After running the realizations and computing the average channel gain the capacity with 

exact Rayleigh fading, Taylor expansion and CS inferred distribution for the noiseless 

case are depicted in the following Figure 3: 

 

Figure 3 Channel Capacity for noiseless Rayleigh Fading. 

Due to the randomness of the channel gains, the capacity preserves the same property. 

For reaching meaningful results the average values of the three curves is considered for 

verifying the approximation as well the variation with respect to the mean. The average 

capacity over the realizations conducted for exact Rayleigh distribution is 12.8Gbps. 

For CS based inferred distribution the average value was found equal to 12.7Gbps. 

Finally, for the Taylor approximation the average capacity was 9.82Gbps. The above 

observations indicate a 0.78% percentage of capacity penalty induced by the 

compressibility of CS approach equal to 100Mbps and a 23.3% percentage penalty for 

the Taylor approximated capacity, a quantity of 2.9Gbps. Hence, the two sub-optimal 

approaches underestimate the capacity. While the CS based inferred distribution case 

results in near optimal performance, the Taylor approximation approach leads to a 

significant error in average capacity and also exhibits more variation around its average 

value. The second case is Rayleigh fading with additive noise included. As in the 

previous case, the distributions of exact, CS inferred and Taylor approximation 

Rayleigh fading are shown in Figure 4: 

 

Figure 4 Rayleigh Noisy Fading Distributions: exact, CS inferred and Taylor 

approximations. 



Although in noiseless fading the CS and Taylor approximations provided optimal 

results the approximated distributions in this case convey the following: the Taylor 

approximation provides the best fit while the CS inferred distribution results in a 

distribution with larger variance and hence greater uncertainty for the same interval. 

 

Figure 5 Channel Capacity for Noisy Rayleigh Fading. 

The average capacity in Figure 5 for exact distribution equal to the convolution of 

Rayleigh fading and additive noise was found to be 9.22Gbps. For the CS inferred 

distribution, the average was found to be 9.44Gbps, 2.3% larger capacity, and for the 

Taylor approximation it was found equal to 9.48Gbps, 2.7% larger capacity. Hence, the 

approximation methods resulted to higher average capacity. This is a quite interesting 

result and can only be justified by the additive noise consideration. As the accurate 

value was computed by means of the exact Rayleigh noisy distribution, the 

overestimation observed is that due to noise, a larger interval of samples is needed for 

the average capacity to settle down and be at most comparable or less than the exact 

noisy distribution based average capacity. Hence, more samples are needed for the 

approximation methods to reach a representative value of average capacity. This effect 

can also be interpreted as increase of variance of the CS distribution compared to the 

exact average value. Finally, the reduced average capacity compared to the noiseless 

case is also a direct consequence of the additive noise. 

4.1.2 Rician Fading 

The second case is the Rician fading distribution both noiseless and noisy cases 

investigated. The noiseless Rician distribution exact, CS inferred and Taylor 

approximation are plotted in Figure 6. 

 



 

Figure 6 Rician Noiseless Fading Distributions: exact, CS inferred and Taylor 

approximation. 

 

Figure 7 Channel Capacity for Noiseless Rician fading. 

The average capacity in Figure 7 by the exact distribution expression was found equal 

to 13.5Gbps, the CS inferred distribution equal to 14.2Gbps and for the Taylor 

approximated distribution the average capacity was equal to 10Gbps, inducing a 26% 

capacity penalty. 

The Rician noisy fading distributions are given in Figure 8: 

 

Figure 8 Rician noisy Distributions: exact, CS inferred and Taylor approximation. 



 

Figure 9 Channel Capacity for noisy Rician fading. 

As observed from Figure 9, the average capacity for the exact distribution computation 

was found equal to 9.78Gbps, for the CS based inferred distribution equal to 8.89Gbps, 

therefore a 9.1% penalty, and for the Taylor approximated the average capacity was 

equal to 9.78Gbps, indicating an optimal match related to the Taylor approximation. 

The Taylor approximation of the distributions results in close approximation for all 

cases regardless of the effect of noise and focusing only on the specific distribution. A 

general remark regarding the CS based result is that there is no significant penalty 

induced by applying the specific strategy. 

4.1.3 Nakagami-m Fading 

First, the noiseless Nakagami-m fading case is considered with m shape parameter 

equal to one and the scale parameter Ω equal to one as well, distributions are given in 

Figure 10 below: 

 

Figure 10 Nakagami-m Fading Noiseless Distributions: exact, CS inferred and Taylor 

approximation. 



 

Figure 11 Channel Capacity for Nakagami-m noiseless fading. 

 

The average capacity, Figure 11, based on the exact distribution expression was found 

equal to 11.9Gbps, while the capacity based on the CS based inferred distribution was 

found equal to 12Gbps. The capacity based on the Taylor approximated distribution 

was equal to 9.58Gbps, indicating a penalty of 19.4% in capacity. The CS based result 

stems from the combined effect of inadequate number of samples to reach a 

representative mean value along with optimal capacity value. The noisy Nakagami-m 

fading distributions are given in Figure 12: 

 

Figure 12 Nakagami-m Noisy Fading Distributions: exact, CS inferred and Taylor 

approximation. 



 

Figure 13 Channel Capacity for Nakagami-m noisy fading. 

Based on the average capacity value computations, the average capacity in Figure 13 

for the expression was found equal to 8.7Gbps, for the CS inferred distribution the 

average value was equal to 9.5Gbps and for the Taylor approximated case the average 

capacity was calculated to be 9.6Gbps. 

Finally, the effect of capacity reduction due to additive noise included is evident in all 

three cases of fading distributions, verifying the accuracy of results in noiseless as well 

as noisy fading.  

4.2 Variance Estimation 

This section investigates variance estimation for the three fading channel models 

considered both for the noiseless as well as the noisy cases. The variance estimation is 

carried out by means of the equation of computing variance based on the first moment 

(mean of distribution) and the second moment, the latter two quantities given by the 

equivalent integrals having the product of independent variable and the corresponding 

fading distribution as the integrand quantity. The value resulting from these calculations 

applying the exact distribution expressions, the CS inferred distributions and the Taylor 

approximated distribution, are then compared to the standard value of the formula for 

the variance calculation for each distribution. A further note is that the equivalent 

variance for the noisy cases is equal to the noiseless variance plus one, a direct result 

from the fading and noise independence assumption and the unit variance noise. For 

the three fading distributions with noiseless and additive noise included cases, the 

variances are given in Table I below: 

Table 1 Variance Values for fading distributions 

Fading Distributions/No 

noise-Noise included 

Noiseless case Additive noise included 

Formula 

Calculation/Rayleigh 

fading exact 

0.429/0.429 1.429/1.258 

Rayleigh CS inferred 0.3935 0.1206 

Rayleigh Taylor 

Approximation 

0.2 0.7 



Formula Calculation/ 

Rician Fading exact 

0.61/0.61 1.61/1.481 

Rician CS inferred  0.1 0.2 

Rician Taylor 

Approximation 

0.468 0.9 

Formula Calculation/ 

Nakagami Fading exact 

0.214/0.214 1.214/0.946 

Nakagami CS inferred 0.005 0.012 

Nakagami Taylor 

Approximation 

0.1459 0.476 

 

Based on the results derived by the extensive simulations conducted, the first 

observation is the perfect match regarding the values from the variance formula for 

each distribution and the calculation based on the first two moments from the equation 

involving the related integrals for the noiseless cases. The second observation is the 

increase in variance for the noise included cases compared to the noiseless cases except 

for the CS based inferred Rayleigh distribution. Another observation is the mismatch 

in the noisy case between the independence based calculated variance, equal to the 

noiseless variance plus one (due to unit variance noise) and the variance calculated by 

the moment based variance expression. This mismatch is a direct consequence of the 

concept of independence assumed for the former computation contrary to the latter 

whereas a correlation assumption is included in the moment integral method. 

Additionally, the significantly narrow CS based inferred distributions for the 

Nakagami-m fading cases are verified by the relatively small variance values.  

4.2.1 Rayleigh Fading Distribution 

In the noiseless case, the variances based on the moment integrals and the independence 

based are in perfect match. The proximity of the exact and CS-based inferred 

distribution is also verified by the small deviation of variance values. The slightly lower 

variance of the Taylor approximation is also verified by Fig.2. 

For Rayleigh noisy case, the mismatch of exact moment integral-based capacity 

compared to the independence based calculated value is evident and previously 

justified. The variance based on CS-inferred distribution is lower and the Taylor 

approximation based more closely matches the exact variance as observed from Fig.3. 

It must be noted that the smaller variance for the CS- inferred distribution is not related 

to the larger peak value of the distribution but rather on the spread of the curve with 

respect to its peak value, as observed from the curve. 

4.2.2 Rician Fading Distribution 

In the noiseless case the moment integral and independence based formula result in the 

same value. The CS-inferred distribution has an observable lower variance while the 

closer Taylor approximating curve variance approaches the exact value. 

For the noisy case, the mismatch of the two exact variance calculated values is also 

verified as in the Rayleigh fading case. The CS- inferred distribution is also above the 



exact distribution curve with significantly lower variance and the Taylor approximation 

closely matches the exact distribution. 

4.2.3 Nakagami-m Fading Distribution 

In the noiseless case the moment integral based and independence based calculations 

indicate a perfect match as in the previous cases. The essential observation for this case 

is the very narrow distribution curve for the CS-inferred distribution and the 

observation of the curve being over the exact distribution, which was observed only in 

the noisy cases for the Rayleigh and Rician fading cases. The significantly small value 

of the CS-inferred case confirms the narrow shape of the curve, while the Taylor 

approximation curve produces a more accurate variance with respect to the exact 

variance value. 

In the noisy case, the mismatch between the moment integral based method and the 

independence based method in terms of variance calculation is also observed. The CS-

inferred distribution is very narrow similar to the above Nakagami-m noiseless case 

indicative of the small variance value, while the Taylor approximation curve provides 

a closer value to the exact. 

4.3 Required Number of bits based on Shannon Entropy and Relative Entropy 

In this section the average required number of bits to describe the channel is derived 

for all fading distribution cases considered above. This number of bits is equal to the 

Shannon entropy with respect to the exact fading distribution expression plus the 

relative entropy where the exact distribution expression is used as the reference function 

and as two separate cases above the approximating distribution is equal to the CS 

inferred distribution and in the second case the Taylor approximated distribution 

respectively. The required number of bits for all fading cases are given in Table 2: 

Table 2 Required Number of bits for Fading Channels 

Fading 

Distributions/ 

Entropies 

Shannon Entropy 

exact  

Relative Entropy 

exact vs. CS 

based inferred/ 

exact vs. Taylor 

approximation 

Average number 

of bits required 

Rayleigh 

Noiseless Fading 

23.5 3.6/-1.7 28/24 

Rayleigh Noisy 

Fading 

17.6 -16.4/ 5.4 18/24 

Rician Noiseless 

Fading  

24.4 82.8/17.8 108/43 

Rician Noisy 

Fading 

22.6 -29.3/11.4 23/35 

Nakagami-m 

Noiseless Fading  

17.8 -70/ -3.2 18/18 

Nakagami-m 

noisy Fading 

26 -53/0.86 26/27 

 



Before proceeding to the explanation of the above results regarding the total number of 

required bits for describing the random fading channels under investigation, some 

crucial notes related to the justification of the results in this section are necessary. 

Although the Shannon entropy is formulated with a sum including the logarithm of 

values smaller than unity, the minus sign is necessary in order for the Shannon entropy 

to be a positive quantity. This entropy quantifies the number of bits required due to the 

uncertainty of the respective random variable. 

On the other hand, the relative entropy comprises of a sum including the logarithm of 

the ratio of the exact distribution values to the approximating distribution values, thus, 

quantifying the distribution mismatch occurring due to this approximation. This 

mismatch is thus translated to the penalty of additional bits required to describe the 

channel. 

Regarding the results of the relative entropy values for the fading distributions 

considered, some cases derived negative values of the relative entropy. Initially, this is 

completely in contrary to the definition of the relative entropy. However, the results 

produced can be justified. The relative entropy involves approximation of a distribution 

by another such that the quantity inside the logarithm is greater than unity. Hence, the 

relative entropy is based on the property of approximating a given distribution by one 

that has smaller uncertainty, hence, the additional bits required to describe the exact 

distribution. 

Given the fading distributions in the cases of negative relative entropy, the 

approximating fading distribution is above the exact distribution hence the ratio inside 

the logarithm is smaller than unity, and the negative valued relative entropy is justified. 

In terms of interpreting the result of the required bits to describe the channel, these 

negative values are regarded as zero additional bits required. Hence, the channel is fully 

described by the derived positive Shannon entropy. The issue of the actual effect of 

negative relative entropy as a means of reducing the overall required bits for channel 

coding is left as future research. 

A remark concerning the Taylor approximation curve is the following: although the 

exact fading is always positive valued the Taylor approximation curve, quadratic as 

already stated, approaches the value at most at the expansion point and then deviates as 

the neighborhood region expands. Thus, after crossing the horizontal axis, it takes 

negative values. Hence in order to regard this polynomial curve as a distribution we 

impose a constraint that the curve considered is in the positive valued interval. 

4.3.1 Rayleigh Fading Distribution 

In the noiseless case, the required number of bits are 24 due to Shannon entropy and, 

for the CS-inferred case, 4 additional bits a value verified by the close match of the two 

distribution curves. The negative valued relative entropy for the Taylor approximation 

case is the combined effect of the proximity of the two curves and the Taylor 

approximation curve being slightly above the exact curve thus being the factor that 

contributes to the negative overall value. As a result, the required bits for the CS- 

inferred case is equal to 28 bits. For the Taylor approximation curve, 24 bits (Shannon 

entropy) are required. 



In the noisy case, the Shannon entropy contributes to 18 bits. For the CS-inferred case, 

the distribution curve is above the exact curve producing negative relative entropy as 

justified above, whereas for the Taylor approximation case, 6 additional bits are 

required. Thus, for the CS-inferred case 18 bits are required and for the Taylor 

approximation 24 bits are required. 

4.3.2 Rician Fading Distribution 

In the noiseless case, the Shannon entropy dictates the need for 25 bits. For the CS-

inferred case, 83 bits are needed indicative of the significant mismatch between the two 

curves and for the Taylor approximation 18 bits additionally are required. Hence for 

the CS case overall 108 bits are required and for the Taylor approximation case a total 

of 43 bits are required for channel description. 

In the noisy case, 23 bits are required due to Shannon entropy. For the CS inferred case, 

the distribution curve being above the exact distribution results in negative relative 

entropy. For the Taylor approximation, 12 additional bits are required. Hence, for the 

CS case 23 bits are sufficient and for the latter case, 35 bits are required. 

4.3.3 Nakagami-m Fading Distribution 

In the noiseless case, 18 bits are required by the Shannon entropy. For the CS-inferred 

case and Taylor approximation cases, both derive negative values for relative entropy. 

The former is due to the narrow distribution above the exact curve and the latter due to 

the part of the respective Taylor approximation curve slightly above the exact curve. 

Hence, for both cases, 18 bits are required.  

Finally, in the noisy Nakagami-m case, the Shannon entropy derives an amount of 26 

bits required, whereas for the CS-inferred case, the negative valued relative entropy is 

justified similarly to the Nakagami-m noiseless case. For the Taylor approximation, 1 

additional bit is required. Hence, for the CS-inferred case and Taylor approximation 

case 26 bit and 27 bits are required, respectively. 

4.4 Wireless fading performance analysis for Fading Distributions 

The performance of the fading channels considered with the exact, CS-inferred and 

Taylor approximation distributions assumed is quantified below by the Symbol Error 

Probability for each fading case. 

4.4.1 Rayleigh Fading noiseless-noisy cases17 

Firstly, for the noiseless case, the error curves of exact and CS-inferred cases, are 

similar. This constitutes the first essential conclusion being that with the CS 

compressibility principle, taking only the largest in magnitude channel gains into 

account, does not sacrifice performance. For the Taylor approximation case higher error 

probability is observed, compatible to the exact distribution approximation by the 

Taylor polynomial curve. 

For the noisy case, the CS-inferred curve is observed slightly with a smaller error 

probability. This is a combined effect of no performance degradation and the issue of 

how representative the error curve is for a certain number of samples, or, in other words 

how many samples are required to reach an accurate performance result. The Taylor 



approximation error curve is also indicative of a significantly smaller penalty compared 

to the noiseless case. This can be directly related to the slightly closer mean capacity 

value for the noisy case, compared to the noiseless capacity case. This smaller penalty 

can be directly linked to the closer match of the average capacity for the Rayleigh fading 

with additive noise included compared to the noiseless Rayleigh fading. Symbol error 

probability curves for Rayleigh fading are plotted in Figure 14: 

 

Figure 14 Symbol Error Probability for Rayleigh fading noiseless –noisy cases. 

4.4.2 Rician Fading noiseless-noisy cases18 

In the noiseless case, the result of no performance degradation for the exact and CS-

inferred case is observed as in the Rayleigh distribution. The Taylor approximation case 

results in this case as a performance penalty. 

In the noisy case, the CS-inferred error curve is observably below the exact curve and 

can be justified by the need for more samples to approach the exact curve as well as no 

performance loss. The Taylor approximation error curve for the noisy case is almost 

identical with the exact distribution error curve verifying the close approximation in 

this case. Symbol error probability curves for Rician fading case are given in Figure 15: 

 

Figure 15 Symbol Error Probability for Rician fading noiseless noisy cases. 

4.4.3 Nakagami-m Fading noiseless-noisy cases19 



In the noiseless cases, the CS-inferred error curve depicts a performance degradation 

which is anticipated by considering the respective distribution curve derived in the 

previous section being above the exact. The Taylor approximation curve indicates a 

small performance penalty compared to the exact distribution error curve. Symbol error 

probability curves are given in Figure 16: 

 

Figure16 Symbol Error Probability for Nakagami fading noiseless noisy cases. 

The same observation holds for the CS-inferred error curve in the noisy case, i.e. a 

performance degradation compared to the exact. Finally, the Taylor approximation 

error curve is almost identical to the error curve of the exact distribution. 

As general remarks for system performance based on symbol error probability, the 

Nakagami-m is shown to relate to an error probability lower than Rayleigh fading and 

higher compared to Rician fading. Thus, it is proven to be a compromise between severe 

scattering assumption and Non-Line-of-Sight conditions for Rayleigh fading and the 

assumption of a dominant Line-of-Sight existence between transmitter and receiver in 

the Rician fading cases. Mathematically, this is justified by the fact that Nakagami-m 

distribution can efficiently model the Rayleigh and Rician fading distributions by 

proper parameter selection. The performance degradation due to additive noise 

included is verified for all fading cases. 

5. MATHEMATICAL INTERPRETATIONS 

Regarding the convexity assumption which is the prerequisite for applying the 

approximations considered several remarks are important. 

The Rayleigh distribution is formulated by an exponential decaying factor, a Gaussian 

bell curve and a linear term by multiplication. The result is the known non-symmetric 

convex curve of the Rayleigh distribution. For the Rician distribution the formula is 

based on the components of the Rayleigh distribution multiplied by a modified zero 

order Bessel function term, the latter being monotonically increasing similar, in 

concept, to the linear term. Thus the result is concluded that the exponential decaying 

factor and the latter terms determine the non-symmetric shape of the Rician fading 

distribution. The above observations also hold for the Nakagami-m case. 

The above verify that the distribution curves are convex, hence the peak value is the 

unique extremum as for increasing values the distributions decay to zero. This property 



is the assumption of convexity that verifies the feasibility of the CS-based 

compressibility approximation method. Moreover, the Taylor approximation 

polynomial is assumed to be second degree thus the minimum degree for convexity and 

capturing of the curvature of the fading distributions. For the CS method terms, the 

above cancels any possibility of additional local extrema justifying the latter method 

for approximation. 

Generalizing the use of Taylor approximation for fading channels, the fading 

distribution shape for all fading cases are contemplated along with the nth degree 

polynomial for approximation. Thinking of distributions as the underlying 

mathematical function, the remark of the zero of this function at the value of zero of 

the horizontal axis is noted along with a smooth decay of the right side to zero as the x-

axis increases in value. Hence, the main advantage of Taylor expansion being the 

straightforward analytic calculation of the variance integrals, the entropy calculations 

and probability calculations with the respective integrals is traded for a truncated region 

of the approximated distribution defined by the extent of the neighborhood in which 

the Taylor polynomial converges. This is optimized by increasing the degree of the 

Taylor polynomial.  

Hence, for practical cases, the truncation of the distribution neglecting the decaying 

distribution tail can be achieved by the corresponding Taylor polynomial, the only 

tradeoff being the increase in complexity as the Taylor polynomial degree increases.  

In terms of most accurate approximation, Taylor polynomial is more accurate being a 

property of increased convergence inside a defined interval while CS inferred case 

results in a distribution of the same kind but with different parameters. Further defining 

the above mentioned complexity tradeoff, CS inferred related case trades no 

performance degradation with closer approximation by Taylor expansion. 

6. APPLICATIONS TO 5G COMMUNICATIONS 

The graphs of the fading distributions i.e. exact distribution, CS inferred distribution 

and Taylor approximated distribution along with the rest of the results including 

variance estimation, entropy based required number of bits and Symbol Error 

Probability are sufficient to completely describe the fading channel. 

The capacity results are enough to provide an upper bound on the achievable rate 

through the channel as fundamentally stated by Shannon. The Symbol Error probability 

results account for estimating the fraction of transmitted bits anticipated to be 

erroneously received by the wireless receiver. Proceeding further, the variance of each 

distribution indicating the spread of the values under the curve with respect to the peak, 

is also a measure of uncertainty. Along with the latter, the required number of bits 

indicates the uncertainty of the channel distribution as well, offering insight into the 

approximation properties of the distributions that enter the equation as approximating 

ones. 

A crucial remark extending the beneficial approximation of CS based distribution is 

that besides no performance degradation, hence, no error probability increase is that 

due to the negative relative entropy no additional bits are required apart from those 



dictated by the Shannon entropy. Hence, no performance degradation comes with no 

complexity increase in the more general context of variable length channel coding. 

There are numerous benefits from applying the CS and Taylor approximation in 

wireless communication design aspects particularly in the up-to-date fifth generation 

(5G) communications systems. 

The most important benefit of Taylor expansion is the transformation of complex 

expressions and integrals from a non-closed form where analytic solution is not 

available and numerical methods are the only methods applicable, to a polynomial 

expression enabling differentiability and integration, the former being generally more 

straightforward compared to the latter. 

Examples of the feasibility of Taylor expansion are the derivations of error probability 

for various channels and modulation schemes, interference management in 5G cellular 

networks, channel estimation/equalization methods as well as resources allocation in 

terms of time, frequency, code or power. 

In clustered MIMO channels where clusters of multipaths are characterized by a 

common delay, channel estimation expressions may be modeled by a Taylor expansion 

of arbitrary degree with expansion point equal to the cluster delay value. Another case 

of Taylor expansion applicability is communication hardware design, namely power 

amplifier characteristic the latter being nonlinear in the case of excessive reception 

power. Both the second or higher Taylor polynomial degree can be used to model 

nonlinearity. The linear term can also be of interest in case the power amplifier moves 

away from saturation. Consequently, the Taylor expansion point can also follow certain 

threshold value crossings in specific cases or even zero crossings if a sufficiently high 

Taylor polynomial order is used that has the property of its roots as a polynomial being 

the zeros of the nonlinear curve. Moreover, in waveform signaling, in cases other than 

the Dirac impulse function in the case of static channels that involve the channel gain 

for each transmission interval, Taylor expansion may be used to expand the finite 

duration waveform in the expression for the received symbol. 

Regarding CS, though significantly extended in wireless communications literature in 

the areas of channel estimation, spectrum sharing in cognitive radio as well as 

distributed system performance, there are numerous areas where CS may prove to be 

beneficial due to the aforementioned computational and implementation complexity 

alleviation. The verified conclusion reached in this paper is the decreased complexity 

along with no performance degradation. 

In overall, this paper providing insight by approximating fading distributions and with 

the aforementioned application to 5G communication does not proceed to channel 

estimation and assesses performance based on CS and Taylor expansion. Thus, it is 

closer to the concept of estimation rather than signal reconstruction requiring additional 

analysis with increased complexity. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, wireless fading channel performance is evaluated based on CS 

approximation and Taylor expansion for the Rayleigh, Rician and Nakagami-m 



distributions, respectively. The three respective distribution curves i.e. exact, CS 

inferred and Taylor approximation are derived for each fading channel considering both 

noiseless and additive noise included cases. The variances for each fading channel are 

derived based on the aforementioned approximations. Required number of bits for the 

fading channels based on Shannon entropy and relative entropy calculations are derived 

while symbol error probabilities are derived evaluating fading channel performance. 

Technical and mathematical interpretations are provided and potential applicability 

cases in 5G communication systems are pointed out. 

As future research, the fully formulated CS optimization problem for the 

communication system performance while applying optimal algorithms from CS 

literature in order to optimize performance with negligible complexity increase is an 

interesting extension. Apart from the convexity prerequisite for applying CS linear 

programming for each case as is the case of this paper, an interesting extension 

encompassing are nonconvex problems with CS enabling their treatment as convex 

with acceptable optimization results. 

Taylor approximation may also be used by relying on sufficiently high order of 

differentiabilty given specific formulas that correspond to performance metrics. The 

convenient properties of integration and differentiability as well as the Taylor 

approximation of complex functions in terms of simpler ones from which they may be 

derived render this issue a significant challenge for polynomial representation of 

wireless communication metrics. 
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