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Abstract- In this paper, the performance of Wireless Sensor Networks (WSNs) 

operating for environmental monitoring is investigated. The performance metrics 

considered are normalized reconstruction error and energy estimation error. The 

temporal, spatial and spatiotemporal correlations are separately considered for the 

above metrics. The independent case and correlated cases for dense measurement cases 

along with the Compressed Sensing (CS) compressibility rule by selecting a subset of 

measurements for metric evaluation are thoroughly examined with extensive 

simulations and technical interpretations. Finally, applications of the proposed scheme 

are formulated in terms of topology and routing in fifth generation sensor networks and 

Internet of Things (IoT) deployment scenarios.  
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1. Introduction 

WSNs [1] are the nowadays efficient solution for environmental monitoring quantities 

such as temperature, humidity, light and target tracking to representatively mention a 

few. WSNs consist of densely deployed sensors over the geographic area of interest 

and their task is to periodically monitor physical quantities or detect military targets in 

an area where they have been autonomously deployed. 

Relative to the performance of WSNs, the main bottleneck that characterizes these 

networks is the limited energy for accomplishing the sensing, computation and 

communication tasks. This limitation stems from either the size and cost of the sensors 

introducing the limited stored energy or the infeasibility of recharging in inaccessible 

or hostile environments where the sensors have been deployed. In addition, the main 

challenges regarding design, deployment and efficient operation of WSNs are the 

ability to autonomously adapt to changes in topology, node failure or node battery 

depletion and reconfigure to continue operating even without the existence of a sink 

node or coordinator. Hence, the decentralized property remains a critical issue despite 

the advances in designing and deploying WSNs, as opposed to the centralized scenario 

where the computational issue is alleviated by the manner which assigns computational 

tasks to the sink or base station where the energy limitation does not hold as opposed 

to sensors. Moreover, the concept of mobility relative to nodes or multiple sinks in a 

network can extend the lifetime and compensate for holes in the network if properly 

designed taking synchronization into account. Finally, the heterogeneity of the network 

together with asymmetry which deals with unevenly dividing computation and 

communication of data through the network is another major challenge in state-of-the-

art WSNs. 

The concept of temporal, spatial and spatiotemporal correlation, as a means to optimize 

performance in terms of data gathering and processing, equivalent to redundant data is 



already a mature scientific area that promises to further boost network performance and 

reduce complexity of data reconstruction methods. 

CS [2], [3], [4] is one of the most recent active scientific areas with two-fold 

optimization benefits: the alleviation of computation complexity and implementation 

complexity. It relies on dimensionality reduction of measurements enabling optimal 

data recovery/decoding by a small amount of linear projections. Noisy cases are also 

effectively treated and CS already exhibits effective algorithms regarding signal 

processing as well as optimization of wireless communications performance [5] with 

two related aspects: sparsity and compressibility. The former retains only nonzero 

measurements under the crucial assumption of nonzero measurements being a small 

fraction of initial dense measurements. The latter is a more quantitative aspect that 

retains the largest in magnitude measurements given a case specific threshold. Over the 

scientific progress made in the CS field, benefits introduced from signal processing 

emigrated to wireless communications performance. Integrated with temporal and 

spatial correlation as well as the spatiotemporal consideration CS provides more 

efficient data decoding and reconstruction as well as low complexity processing and 

useful information extraction. 

2. Related work and contribution 

WSNs have gathered significant research attention ever since their adoption and 

widespread deployment in a large scale manner. Relative to overall network design, an 

excellent survey [6] covering application specific requirements concerning WSN 

design and practical deployment including classification and analysis of WSN design 

issues and infrastructure. Another survey offering a holistic view of the main bottleneck 

of energy conservation in WSNs [7], includes a detailed taxonomy of energy saving 

methodologies such as data-driven approaches, duty-cycling, MAC protocols and 

mobility based viewpoints. The properties of temporal and spatial correlation have been 

extensively investigated verifying the benefits introduced by their consideration in 

WSN performance. Network self-management architecture is studied in [8] for power 

preservation by a temporal correlation aware sleep scheduling scheme jointly with 

quality of sensor observations. Spatial correlation addressed in a detailed work [9] 

integrates the relation of redundant data and spatial correlation together with an energy-

aware consideration for packet delivery rate, active sensors and distortion. Another 

work [10] addresses the dense deployment case related to spatial correlation and 

redundancy in the same manner utilizing aggregation techniques to prolong lifetime 

and reduce communication overhead. Spatiotemporal correlation addressed in [11] 

describes performance optimization in terms of spatiotemporal coverage simplifying 

the relative NP-hard problem formulated. Moreover, a remarkable work [12] presents 

results of reduced reconstruction error along with robust prediction employing deep 

learning for predicting spatiotemporal signal in terms of sensor deployment 

optimization. Reduction of sampling and transmission rate relying on spatiotemporal 

correlation to significantly reduce energy consumption is investigated in [13]. 

CS has already been applied in WSNs [14]. Integrated with the spatiotemporal-based 

properties that realizes the optimal and low complexity of computations and 

implementation, it has been applied to numerous cases verifying its effectiveness as a 



reduced data reconstruction complexity methodology. Regarding CS-based temporal 

correlation, the paper [15] is representative exploiting CS sparsity with the latter 

correlation proposing algorithms that contribute to reducing energy consumption. CS 

is combined with spatial correlation in [16], the main contribution being joint sparsity 

model and energy efficient decoding and improved reconstruction error by applying 

spatial correlation aware algorithm. Moreover, the authors in [17] exploit CS sparsity 

of the covariance matrix aiming at providing the fusion center with compressed 

observations including noise variance uncertainty.  

The combined effect of spatiotemporal correlation with CS is the main aspect for WSNs 

optimized performance, which is reflected by the fact that most of the publications 

exploit this joint spatiotemporal correlation. The authors in [18] propose a new scheme 

based on Kronecker CS and exploiting spatiotemporal correlation achieving improved 

results concerning the energy-performance tradeoff and reconstruction accuracy. 

Kronecker CS is also applied in [19] with the covariogram-based algorithm to exploit 

spatiotemporal correlation with the ability to adapt to signal correlation instead of a 

priori known value. Finally, [20] proposes a copula function scheme with CS to indicate 

superior performance against popular approaches such as classical or distributed CS 

schemes.  

To the best of the authors’ knowledge, this is the first work to consider temporal and 

spatial correlation property to optimize performance separately and jointly 

spatiotemporal correlation proposing a probabilistic scheme. The proposed scheme 

involves a vector x with mean values generated by multiple realizations of average 

values of sensor readings following a Gaussian distribution of zero mean and variance 

equal to the inverse of the number of readings forming the sum from which the average 

values are computed and consequently the realization elements of the vector. This 

vector is transformed by a matrix whose elements are produced in the same above way: 

sum of Gaussian zero mean same variance elements and realizations of dimension equal 

to matrix dimensionality. Finally, vector Y is also produced in the same way with same 

variance of the elements comprising the sum equal to the above and mean value 

depending on variance and the second moment either unit for temporal correlation case 

and inverse of number of realizations for the spatial correlation case. For the 

spatiotemporal case both assumptions are fairly considered for the distribution mean 

value calculation. Based on the mismatch between vector Y and the product of matrix 

Φ and vector x, the reconstruction error of the respective mean values Y and those of 

product Φ and vector x is estimated in the dense independent case, dense correlated 

case, and CS based case by considering the largest values based on compressibility error 

threshold. The error formulation is based on subtracting the values of the vector 

resulting from multiplication of matrix Φ and vector x from the values of the vector Y. 

The error considered is derived by division of the above difference from the vector Y 

values. It must be clearly noted that compressibility rule is the applicable CS related 

assumption, as opposed to sparsity. The reason is that channel gains do not practically 

take zero values. Instead, keeping the largest in magnitude cases is realistic in fading 

channel values and provides meaningful results. Considering the energy of each of the 

elements of the matrices the same dense independent, dense correlated and CS case 

based on compressibility rule, the mean values of energy estimation are considered for 



the above matrices, with the difference that the results now stem from sum of energies 

of the elements. The energy error is computed for each case. The results are interpreted 

in detail and applications to 5G WSNs and IoT network of the proposed scheme are 

provided. 

3. System model and mathematical preliminaries 

3.1 System model 

This paper proposes a WSN model where the nodes are deployed in areas of equal 

distance defining the neighboring set of nodes and of areas of successively increasing 

distance thus enabling the determination of the area within which spatial correlation 

model can be applied. Instead of a square area or an area with the sink at the center of 

concentric circles, the tree based network is the most suitable model, as a compromise 

between centralized and in-network cases. It also enables the definition of a node 

neighborhood in a network where there is a bidirectional information exchange and the 

deployed nodes can be modeled by a set of vertices V representing the nodes and edges 

E, i.e. a graph G(V,E). A connected tree network is formed i.e. data flows are feasible 

between any pair of nodes. Moreover, the communication range is larger than 

maximum node distance. However, node interference stemming from the model 

considered is out of paper scope. As a complementary assumption, the network may be 

divided into clusters with each cluster consisting of cluster heads based on remaining 

battery energy or distance from the sink and nodes forwarding data to each respective 

cluster. Moreover, sampling rate is not quantified but considered large enough to 

achieve the temporal correlation as an assumption for the simulations conducted. Due 

to spatial correlation also assumed the neighboring nodes are considered to be d-hops 

away from the leaf nodes where d is successively increased as an integer as we move 

from the leaf nodes towards the sink. However, the consideration of the actual measured 

distance between nodes of a set or between nodes/clusters and sink is not quantified but 

assumed to be varying within a small range for a neighboring set of nodes and 

successively increasing as the transition from leaf nodes to sink takes place. 

3.2 Mathematical preliminaries 

The main mathematical tool involved in the investigation of this paper is the Gaussian 

distribution which is the most fundamental distribution in statistics of wireless 

communications. It is characterized by symmetry and, consequently, as non-skewed 

requires only the mean and variance parameters to be fully described.  

The first tool utilized concerning the Gaussian distribution is the notion of 

independence between the random variables of a sum with the latter sum approaching 

a Gaussian distribution with a mean equal to the sum of the means, a generic property 

of a random variable sum, and the variance equal to the sum of variances of the 

variables comprising of the sum stemming from the notion of independence which 

cancels the covariance terms and leads to the above result. Proceeding to the correlated 

variables, the resulting sum of variables with equal pairwise correlation has the same 

mean equal to the sum of the means and a variance equal to the following formula: 

                                           11*)var( 2  NS                                            (1)  



where σ2 is the variance of each of the variables and ρ is the equal pairwise correlation. 

It is easily verified that in the independent scenario the second term in parenthesis is 

zero and the former result is verified. Additionally, the independent additive noise 

contaminating the sensor readings in both estimation and energy error derivations is 

also assumed Gaussian. 

The next mathematical formulation is the statement of the estimation error of the means 

of the average values of the measured readings from each of the sensors in the 

neighborhood considered along with the estimation error of the mean value of the 

average values of the energy of the readings from each sensor. The problem is stated as 

follows: 

                                                          Y=Φ*x+e                                                  (2) 

where x is the vector of the mean values each resulting from the average values of the 

readings from the subset of sensors considered and Gaussian distribution of the sensor 

readings. The matrix Φ is the transformation matrix each element of which also 

represents mean values of average values of Gaussian distributed random numbers with 

same parameters. The vector Y is also Gaussian distributed with random values 

produced in the same manner but with a nonzero mean as opposed to vectors x and Φ. 

The remaining vector e is the mismatch between the measurement vector Y and 

transformed vector Φ*x. The error is formed by considering the above mismatch 

divided by the respective values of vector Y, as stated in contribution part. In terms of 

error quantities, the aforementioned one constitutes the model mismatch already 

derived and the second consists of the additive Gaussian noise contaminating the sensor 

readings. 

The nonzero means of the temporal and spatial separate cases are derived via the 

equation relating the first order moment i.e. mean, second order moment and variance 

of the assumed distribution. The mean is thus evaluated from the following equation: 

                                                   22  xmean                                            (3)  

where the second order moment quantifies the power and σ2 equals the variance. Given 

the latter two quantities inside the root the mean is accordingly calculated.  

Finally, the case of error in energy estimation employs the (non-central) chi-square 

distribution with k degrees of freedom and s as the non-centrality parameter. However, 

analysis also resorts to a tight approximation of the latter chi-square distribution via 

Gaussian distribution as in [21]. The main reason for applying such a Gaussian 

approximation is that in such statistics the number of largest in magnitude elements 

preserved in the CS compressibility cases is quantified by a known formula, tackling 

the quantification for the non-central chi-square distribution case. 

4. Algorithm formulations 

This section derives two algorithms the first regarding reconstruction error estimation 

and the second energy error estimation for temporal, spatial and spatiotemporal cases 

including both noiseless and noisy cases in each separate case. 



Algorithm 1 Reconstruction error estimation 

1. Input: Temporal correlation casetemp, spatial correlation casespat, 

spatiotemporal correlation casespattemp. Number of readings in each sensor 

(temporal/spatial cases), number of sensing periods and power consumption for 

temporal case/number of sensors and power consumption for spatial case/equal 

number of sensing periods and sensors for spatiotemporal case. Additive 

Gaussian noise distribution as N(0,1). 

For casetemp, noiseless case 

2. Calculate mean and variance of each sensor reading. 

For the independence case  

3. Calculate the encoded measurement vector Y, the transformation matrix Φ and 

vector x. 

4. Estimate reconstruction error of means of average values of sensor readings 

(vector x), transformation matrix Φ and vector Y. Evaluate according to error 

magnitude and sign. 

For correlation case  

5. Modify variance of sum according to correlation value and repeat step 3 and 4. 

For Compressed Sensing case  

6. Determine correlation and sparsity ratio values, and repeat steps 3 and 4 for low 

and high sparsity ratio values. 

For casetemp, noisy case 

7. Increase sensor reading variance by one and repeat steps 3-6. 

For casespat, noiseless case 

8. Modify mean value of distribution of Y and repeat steps 3-6. 

For casespat, noisy case  

9. Increase sensor reading variance by one and repeat steps 3-6. 

For casespattemp, noiseless case 

10. Modify mean value of distribution of Y and repeat steps 3-6. 

For casespattemp, noisy case 

11. Increase sensor reading variance by one and repeat steps 3-6. 

end 

 

As indicated by the above algorithm all three correlation cases are included with the 

separate assumptions of noiseless and additive Gaussian noise in each case. 

 

Algorithm 2 Energy error estimation 

1. Input: Temporal correlation casetemp, spatial correlation casespat, 

spatiotemporal correlation casespattemp. Number of readings in each sensor 

(temporal/spatial/spatiotemporal cases), number of sensing periods and 

power consumption for temporal case/number of sensors and power 



consumption for spatial case/equal number of sensing periods and sensors 

for spatiotemporal case. Additive Gaussian noise distribution as N(0,1). 

Gaussian distribution approximation of non-central chi-square distribution. 

For casetemp, noiseless case 

2. Calculate mean and variance of each sensor reading. 

3. Calculate degrees of freedom and non-centrality parameter of the (non-

central) chi-square distribution modeling the sum of energies of the random 

variables. 

4. Based on Gaussian approximation, calculate the encoded vector Y, 

transformation matrix Φ and vector x of mean values of average values of 

energies. 

5. Estimate energy error and evaluate according to error magnitude and sign. 

For correlation case  

6. Modify non-centrality parameter according to correlation value and repeat 

step 3-5. 

For Compressed Sensing case 

7. Determine correlation and sparsity ratio values, modify non-centrality 

parameter and repeat steps 3-5 for low and high sparsity ratio values. 

For casetemp, noisy case 

8. Increase sensor reading variance by one, modify non-centrality parameter 

and repeat steps 2-7. 

For casespat, noiseless case 

9. Modify non-centrality parameter and repeat steps 2-7. 

For casespat, noisy case  

10. Increase sensor reading variance by one, modify non-centrality parameter 

and repeat steps 2-7. 

For casespattemp, noiseless case 

11. Modify non-centrality parameter and repeat steps 2-7. 

For casespattemp, noisy case 

12. Increase sensor reading variance by one, modify non-centrality parameter 

and repeat steps 2-7. 

end 

 

5. Simulation results 

The simulations of this section were conducted using MATLAB software. They are 

divided in two subsections: the first presenting results of the reconstruction error of 

means of average values of vector Y relative to the product of measurement matrix Φ 

and vector x, i.e. the transformed, via matrix Φ, vector x and the second, energy 

estimation error of the means of average values of energy of the random variables.  

5.1 Reconstruction error 



Regarding vector Y, the mean value of each random variable of the sum that derives 

the average values is calculated based on Eq. (3) with unit power assumption as the 

value of the second order moment and a variance equal to 1/40 indicating 40 random 

variables in the sums of the vectors of eq.2. Finally, for each set of average values, a 

total of 30 realizations were generated representing 30 means of average values of 40 

equivalent random variables comprising the sum. For the 3030 vector Φ each variable 

in the sum was Gaussian distributed with zero mean and the above mentioned variance. 

The same Gaussian statistics also hold for vector x. For the CS case, the simulations 

were conducted introducing sparsity ratio from 0.1 to 0.9 with an increment of 0.1 along 

with considering correlation from 0.1 to 0.9 with the same increment of 0.1. The 

quantification of CS number of elements preserved is based on Gaussian statistics and 

is a function of the varying sparsity ratio considered. For all simulations conducted, the 

smallest integer greater than the decimal value resulting from the formula is considered 

for each case. Pairs were then made and the pair with the smallest estimation error was 

chosen for simulating the reconstruction error. A key final assumption regarding 

correlation is that all elements are equally pairwise correlated in temporal and spatial 

correlation cases. In the spatiotemporal case, the correlation value is equal between 

elements in the two groups as well as inside each temporal and spatial group. 

5.1.1 Temporal correlation noiseless case 

Based on the above valued parameters, the figure below depicts the reconstruction 

errors of the independence case by the blue curve, correlation case by the red curve and 

CS based cases with green curve representing the low sparsity ratio and magenta curve 

representing the high sparsity ratio. CS based cases retain only a subset of the 40 

average values in each realization, as explained above. The value considered from each 

curve is the value at fifteenth realization which is indicative due to curve symmetry 

with respect to this realization. 

 

Fig.1 Reconstruction Error for temporal noiseless correlation case 



As is apparent from the figure, the independence case performs the worst. The slightly 

lower error indicated by the correlation case dictates that in this case correlation 

introduces negligible benefit considered in case high data precision where mean value 

estimation error is measured up to fourth decimal digit. The first indication of error 

optimality for the CS case is displayed in the figure with the green curve representing 

the case of sparsity ratio equal to 0.1 and correlation equal to 0.1 and the magenta curve 

with sparsity ratio equal to 0.9 and correlation equal to 0.8. Thus, the crucial 

observation is the lower estimation error of the CS case with the lowest sparsity ratio 

i.e. the minimum fraction of mean values preserved and the low correlation complying 

with the requirement of incoherence of the values considered. Another interesting 

observation is the lower error assuming the largest sparsity ratio equal to 0.9 and 

correlation equal to 0.8. Hence, in the case where a small fraction of the elements is 

discarded the high value of correlation results in a further error improvement. Towards 

a clarified comment for this observation with a high correlation value but always in the 

CS regime, the effect of correlation is an even lower error compared to the error of the 

CS low sparsity ratio case.  

5.1.2 Temporal correlation noisy case 

This case includes additive Gaussian noise modeled as zero mean unit variance. The 

important observation in this step is that the variance of sensor readings of x or elements 

of matrices Φ and Y increase from a small decimal value to an increased value by one. 

This is due to N(0,1) noise consideration and the independence assumption resulting to 

a variance of sum of independent variables equal to sum of variances of each of the 

variables in the sum. The effect of such an assumption is that the variance of variables 

representing the sum of readings or measurements are characterized by an order of 

magnitude larger variance and, as a consequence, the variance of the sums as well as 

average values and means is magnified, leading to a Gaussian distribution with a much 

wider bell curve. The relative figure for the temporal correlation noisy case is given 

below: 

 

Fig.2 Reconstruction error for temporal noisy correlation case 



The green curve assumes sparsity ratio equal to 0.1 and correlation equal to 0.3. CS 

based high sparsity ratio (magenta curve) assume sparsity ratio 0.9 and correlation equal 

to 0.8. Apart from the independence case, the other cases depict a lower error, 

significantly lower in the CS cases. This however, is contrary to the effect of increased 

error when noise contaminates the samples. For the above observation there is a 

straightforward explanation. The Gaussian curves of mean values of average values of 

sensor readings of x, elements of transformation matrix Φ and encoded measurements 

of Y are much wider in the noisy case. This is the reason why the Gaussian bell curves 

overlap. For matrix Y the curve is placed with respect to a positive nonzero mean while 

the curves of Φ and x are zero mean Gaussian distributed. In this case, they produce 

random variables in a wider value range and also overlap with each other. Indicatively, 

the error shifts towards lower values as a result of the random elements obtaining more 

distant values from the mean of the distribution with higher probability. In some cases, 

simulations indicated negative error values which verify the latter justification based 

on Gaussian bell curves overlap. The technical interpretation of the above is that the 

independent additive noise along with a larger uncertainty reflected by the significantly 

wide curves and the resulting overlap. By adjusting the correlation to a more general 

scenario where for each problem correlation value range is specified, the balance of 

achieving lower error can be obtained as opposed to the ideal case of independence. 

Returning to the simulation results, the CS based cases follow the same trend as in the 

noiseless case but with lower error magnitude. 

5.1.3 Spatial correlation noiseless case 

The main difference between the spatial case and the temporal case is the smaller 

nonzero mean of the Gaussian distribution modeling the encoded measurement vector 

Y. That is instead of unit power assumption in the temporal correlation case, the unit 

power is evenly spread to the 30 nodes defining the neighborhood of the network 

deployed. Thus, the second order moment in mean calculation formula is equal to 1/30. 

This assumption is essentially based on the concept of spreading particularly in the 

power metric, which spreads the energy budget to all nodes in a selected subset, hence 

a uniform allocation of available power. The variance of each variable of the sums 

remains the same as in previous cases. The figure for this case is given below: 



 

Fig.3 Reconstruction error for spatial noiseless correlation case 

Relative to the temporal correlation noiseless case, the spatial case results in slightly 

lower errors for all cases. The CS optimality trend indicating lower errors also holds. 

The error for the green curve is based on 0.1 sparsity ratio and 0.3 correlation, while 

the magenta curves was based on 0.9 sparsity ratio and 0.8 correlation. The observations 

for the temporal also hold for this spatial noiseless case. 

5.1.4 Spatial correlation noisy case  

Including the spatial nonzero mean of vector Y and the variance of each of the variables 

in the sum increased by one and magnified in the random sum variables the figure for 

this case is given below: 

 

Fig.4 Reconstruction error for spatial noisy correlation case 



The simulation results indicate smaller errors compared to the noiseless case and 

reduced error compared to the temporal correlation noisy case. Apart from the 

independence and correlated cases, the CS based cases indicate even lower errors, the 

green curve with parameters sparsity ratio 0.1 and correlation 0.3 and the magenta curve 

with high sparsity ratio 0.9 and correlation equal to 0.9 as well. Another observation is 

the increased fraction of errors with a negative sign. This is a direct result of the 

overlapping of the distribution curves which is now to a greater extent due to smaller 

nonzero mean of vector Y, i.e. smaller distance from zero mean distributions to the 

smaller nonzero mean. Regarding the errors from each curve, smaller errors are 

observed and as a distinction to other cases the magenta curve representing the high 

sparsity ratio CS case depicts an error which is practically zero i.e. the mismatch 

between encode measurement vector Y and product of matrices Φ and x is zero. 

5.1.5 Spatiotemporal correlation noiseless case 

The spatiotemporal is a combined case considering both the effects of temporal and 

spatial correlation. This is conducted by the consideration of 20 temporal correlation 

variables i.e. sampling periods and 20 spatial correlation variables i.e. number of 

neighboring nodes. The variances remain the same as are independent, correlation and 

CS based low and high sparsity ratio cases. The temporal and spatial variables are 

assumed to be correlated in each group but also correlated with the same value among 

each other for both groups. This is the reason why the variance of the sum of Gaussian 

distributed variables remains the same. The figure for the spatiotemporal noiseless case 

is thus given below: 

 

Fig.5 Reconstruction error for spatiotemporal noiseless correlation case 

The simulation results for this case indicate some interesting findings. First of all, the 

independence case exhibits the same error value. On the other hand, the correlation case 

depicted by red curve indicates a more pronounced effect of smaller error by 

introducing correlation value of 0.9 as opposed to the previous case where small error 

reduction was observed. Concerning CS low sparsity ratio case, the sparsity ratio was 



taken equal to 0.2 and correlation value equal to 0.4. The value was lower than the 

temporal noiseless case and higher than the spatial noiseless case. In other words, it 

appears as produced by the joint contribution of temporal and spatial cases. A slightly 

greater sparsity ratio was assumed as well as slightly greater correlation. For the high 

sparsity ratio equal to 0.9 and correlation set to 0.8 the error was observed to be still 

lower than the low sparsity ratio as well as the previous noiseless cases. 

5.1.6 Spatiotemporal correlation noisy case 

For this case the assumptions of the previous noiseless case hold together with the 

increase of variance of the variables comprising the sum by one due to additive 

Gaussian N(0,1) consideration. The figure with the simulation results is provided 

below: 

  

 

Fig.6 Reconstruction error for spatiotemporal noisy correlation case 

The results of this section are those that display the most pronounced effect of applying 

CS principle with discarding large fraction of mean values. First of all, this is the case 

where the worst performing independence case exhibits a small reduction. The 

correlation case presents a slightly lower error. It is the CS cases, low and high sparsity 

ratios that indicate the lowest errors in each cases. For the green curve representing low 

sparsity ratio and for sparsity ratio set to 0.2 and correlation to 0.5 the error was found 

to be the lowest in all cases particularly in the noisy cases where the comparison is most 

meaningful according to aforementioned observations. Another crucial result is the 

negative signed error of the high sparsity ratio with sparsity ratio and correlation values 

both equal to 0.9. Considering the absolute value, the conclusion is the same being the 

lowest error together with the spatial noisy case. However, the negative sign indicates 

that the encoding vector Y underestimates the values produced by the product of the 

matrices Φ and x. Moreover, the results comply with the observation that the distance 

of the means of vector Y and the product of matrix Φ and vector x is between the 



respective values of the temporal and spatial cases, larger than the spatial case and 

smaller than the temporal case. 

5.2 Energy estimation error 

This section is devoted to the energy estimation error given the energy of each variable 

comprising the sum from which the average values and thus the means of the previous 

section were generated. Thus, the non-central chi-square distribution is used to model 

the sum of energies of the variables with specified degrees of freedom and non-

centrality parameter as the distribution parameters.  

Relative to the equivalent CS cases where only a fraction of the sums of energies of the 

respective variables are preserved the Gaussian modeled measurements are precisely 

modeled and there exists a standard formula for the number of larger measurements 

detained. However, the sums of energies of the respective chi-square distribution is not 

effectively quantified in the literature. In order to tackle this limitation, we employ an 

approximation of a non-central chi-square distribution with an accurate Gaussian 

distribution approximation as formulated in [21] in order to apply the aforementioned 

formula. All temporal, spatial and spatiotemporal cases both noiseless and noisy, are 

considered in this section as well. 

5.2.1 Temporal noiseless energy estimation error case 

This subsection presents simulation results regarding temporal correlation of the 

variables of which the means of average values of sum of energies are modeled through 

Eq. (2). Hence, this case vector e represents the energy estimation mismatch. As in the 

previous section, the independence case, correlation case and CS based low and high 

sparsity ratio cases are also included in simulations conducted. The related figure for 

this case is given below: 

 

Fig.7 Energy estimation error for temporal noiseless correlation case 



It can be deduced from the figure that independence case performs better than the 

correlation case as apparent from the blue and red curves respectively. The same 

observation is present in the CS based cases. Considering the absolute value, low 

sparsity ratio 0.4 and correlation equal to 0.7 achieves a smaller error than CS case with 

sparsity ratio equal to 0.9 and correlation equal to 0.2. Also interesting is the 

observation that the high sparsity ratio requires more energy samples to be preserved 

due to higher sparsity ratio and higher correlation value. On the contrary, the higher 

sparsity ratio equal to 0.9 is paired with correlation value equal to 0.2. However, the 

negative sign of the errors in the CS based cases is equal important to the magnitude of 

these errors. It indicates that the vector Y is smaller in value to the elements of the 

product of matrix Φ and vector x. This result indicates that the representation by Y is 

lossy, thus the energy represented by Y is a portion of the energy of the transformed, 

via matrix Φ, vector x. The above is interpreted by the overlapping of the related 

Gaussian bell-shaped curves. 

5.2.2 Temporal noisy energy estimation error case 

In this subsection, the variance is modified as in all above noisy cases, which in this 

subsection modifies the non-centrality parameter of the related non-central chi-square 

distribution. The figure for this temporal noisy case is given below: 

 

Fig.8 Energy estimation error for temporal noisy correlation case 

The increase in variance in this noisy case as in the above results in a decrease of the 

non-centrality parameter but to an increase of the variance of the approximating 

Gaussian distribution and as a consequence, increased overlapping. This justifies the 

negative sign of the energy estimation errors in all the cases considered in this 

subsection. Contrary to the previous cases and due to the negative signed results 

correlation value with value of 0.9 performs slightly better than the independence case. 

More importantly, an observation holding also for the temporal noiseless case is that 

the decrease in correlation value leads to smaller error as shown from the cyan colored 

curve for correlation value. Thus, for decreasing correlation value from 0.1 to zero leads 



to a successively decreasing error improvement. As a result, with the independence case 

depicted by the blue curve, assuming a nonzero value of correlation always leads to 

improved performance. Finally, the CS high sparsity ratio with sparsity ratio equal to 

0.4 presents a smaller error than the high sparsity ratio with a value of 0.9. A remark 

concerning these cases is stated: for both cases the correlation was assumed to be 0.1. 

This stems from the fact that in all cases investigated for the pair of sparsity ratio with 

the lowest error, increasing error was assumed in absolute value with a negative sign as 

the correlation increased. With the largest error equal to one in the zero correlation case 

the smallest error was observed for the minimum correlation equal to 0.1. As the slope 

of the curve was observed steeper for larger errors, the value of correlation for minimum 

error shifted towards the zero value with decreasing distance with respect to the slope 

becoming steeper. A concluding remark is that the measurement vector Y is a lossy 

procedure as evident from the negative sign of all the errors. 

5.2.3 Spatial noiseless energy estimation error case 

In this case the mean of the variables comprising the sum is modified in the manner of 

spreading power among 30 neighboring nodes as in the spatial correlation cases already 

analyzed. The related figure is given below: 

 

Fig.9 Energy estimation error for spatial noiseless correlation case 

The main observation for this case is the negative values of all errors that result from 

the overlapping of the approximating Gaussian distributions. The independence case 

and correlation case with value equal to 0.9 achieve errors with negligible difference. 

As in the previous subsection, correlation value 0.1 results in smaller error. The CS case 

with sparsity ratio 0.4 and correlation as low as 0.1 satisfying incoherence requirement 

performs significantly better than CS with sparsity ratio as high as 0.9. The small 

correlation value i.e. cyan curve achieves a lower error than the CS low sparsity ratio 

displayed by green curve. In summary, the main observation of this subsection is the 

large negative value of all errors, hence, representation of the transformed, via matrix 

Φ, vector x by the vector Y results in significant energy loss and thus is not efficient. 



5.2.4 Spatial noisy energy estimation error case 

As already stated, variance of the variables comprising the sum is increased by one due 

to unit variance additive Gaussian noise. The related figure for this case is given below: 

 

Fig.10 Energy estimation error for spatial noisy correlation case 

The results from this subsection indicate same energy estimation error for independence 

and correlation case with value equal to 0.9. As in previous subsection, correlation with 

value of 0.1 exhibits smaller error. The CS case with sparsity ratio 0.4 and correlation 

value equal to 0.1 performs significantly worse than the other cases. Finally, the CS 

case with high sparsity ratio equal to 0.9 was found to exhibit a much larger error and 

was not displayed in the figure due to large magnitude of the related error. As a 

concluding remark, the errors indicate that the representation of transformed, via matrix 

Φ, vector x product by vector Y is highly inefficient for the spatial noisy case incurring 

energy loss from the encoding procedure. 

5.2.5 Spatiotemporal noiseless energy estimation error case 

In this subsection, the number of sampling periods and number of neighboring nodes 

are both equal to 20, as already stated in the previous spatiotemporal cases. The figure 

for the spatiotemporal noiseless energy error estimation is given below: 



 

Fig.11 Energy estimation error for spatiotemporal noiseless correlation case 

The figure from this section displays the CS based cases achieving the smallest error 

negative signed indicating a negligible energy loss by the encoding performed. The 

worst performing case is the correlation case with the value 0.1 (cyan curve). The 

independence case follows in terms of error magnitude and the correlation case with a 

value of 0.9 follows. The important observation is that the results of this subsection 

represent slightly larger errors compared to the temporal noiseless case and much 

smaller errors than the spatial noiseless case. Hence, the spatiotemporal results appear 

to stem from a «weighted» contribution of the separate temporal and spatial noiseless, 

with the temporal contributing the most as in slightly smaller error than the 

spatiotemporal noiseless case investigated in this subsection. 

5.2.6 Spatiotemporal noisy energy estimation error case 

This last subsection of the energy estimation error case involves the increase of 

variables’ variance by one due to unit variance additive Gaussian noise. The figure 

depicting the results of this subsection is the following: 



 

Fig.12 Energy estimation error for spatiotemporal noisy correlation case 

Both of main observations in the noisy cases hold for this spatiotemporal noisy case as 

well. First, it is the significant loss in energy as a result of energy error between vector 

Y and transformed, via matrix Φ, vector x leading to the conclusion that the result of 

such representation is highly inefficient in terms of energy preservation. The second 

comes from comparing the previous noisy cases showing the same trend of weighted 

contribution, mainly from the temporal noisy case and less from the spatial noisy 

correlation case. Independence case performs almost as well as correlation case with 

value of 0.9. Correlation with low value of 0.1 presents a smaller in absolute value 

error. CS case with sparsity ratio equal to 0.4 follows in terms of energy estimation 

error achieved. Finally, CS case with sparsity ratio of 0.9 leads to high representation 

inefficiency. 

5.3 Overall results interpretations 

The independence case, being an impractical model, performs worse in all cases of 

means reconstruction error, hence, introducing a maximum possible correlation 

according to the specific application yields optimal reconstruction error. Regarding the 

CS cases, the case of low ratio achieves correlation with a small correlation value which 

fits into the incoherence principle of CS theory, based on which the reconstruction 

procedure is optimally conducted. Moreover, the assumption of high sparsity ratio i.e. 

equivalent in less variables/samples discarded approaching the dense scenario, results 

in small errors as well when assuming a high correlation value. This conveys that large 

correlation is indeed optimal producing smaller errors as correlation value increases. 

Summarizing, the reconstruction error evaluations are not bounded for all cases 

investigated. This is evident from the value range of errors for the respective cases. 

Regarding the noise assumed to be Gaussian, N(0,1), the key assumption leading to a 

different result than the effect of noise leading to higher uncertainty and thus higher 

reconstruction error is that of independence. The quantification of the results are 

however, dependent to the assumptions related to the simulations conducted mainly, 

the distance of the nonzero mean of vector Y from zero value stemming from the unit 



power of the temporal cases and the even spreading of this power to the defined set of 

the 30 nodes in the neighboring nodes of a node in the network for spatial correlation. 

The increase in variance of each variable in the sum is magnified in the generated sum 

of such variables. Consequently, the curves overlap and the range of values that appear 

as random numbers generated for a specified probability increases. This is the reason 

for lower values of errors as well as negative errors. The negative sign in the mean 

reconstruction error is present in the noisy cases and has the meaning of 

underestimating the value of the transformed via matrix Φ, vector x. 

Regarding energy estimation error, the crucial observation is that the correlation in the 

dense measurement case results in increased error compared to the independence case 

in the temporal noiseless correlation case, contrary to the former reconstruction error 

case. In the cases with negative signed errors, particularly noisy cases, the results stem 

from the aforementioned effect of Gaussian bell curves overlapping. In other words, 

the larger values of the product of matrix Φ and vector x subtracted from smaller values 

of vector Y, are the reason for the latter observation. This is due to increased probability 

of values of each distribution that are such that the negative signed errors result. This 

result can be mitigated in a practical scenario where noise correlation must be included 

as a prerequisite. A concluding remark regarding CS cases is that in energy estimation 

error cases a shift towards larger sparsity ratios has been observed for achieving 

minimum errors in the figures. The correlation value of 0.1 is assumed as a minimum 

correlation for simulations conducted in the cases where the minimum errors are 

observed between zero value and 0.1. Hence, the minimum correlation in a practical 

application can achieve an arbitrarily low energy estimation error. 

6. Effects in topology and routing of Wireless Sensor Network design 

Regarding network topology, the optimal definition of d-hop network topology is the 

set of concentric circles of increasing radius the value of which increases as the distance 

to cluster head and finally sink decreases. Thus considering the known topology of the 

nodes arranged in circles, at the center of which the sink is located, the optimal model 

would be a node the neighborhood of which is defined by a circle. This pattern should 

be the basis for constructing the wireless sensor network. Given that the flexibility of 

choosing a geometrical shape for the network comes along with a sub-optimal coverage 

of the respective area, the tree model should be chosen as a balance between area 

coverage and circular symmetry. The above is based on the geometrical property that 

covering the entire circular area with a given shape does not lead to an optimal 

coverage. Hence, the tree network assumed also has a direct impact to performance of 

proposed scheme. The aforementioned flexibility is further supported by the 

redundancy given the similar mean values generated by each sensor being a parent node 

of at least one leaf node. The results from the energy estimation error require the joint 

spatiotemporal consideration as the model for spatial correlation is significantly lossy 

as indicated from the simulations above. The redundancy of mean values as a data 

aggregation function would also contribute to the fault tolerance in the network 

topology, an extreme case of which could be compensated by selected subset of nodes 

mobility. The latter could also benefit from applying a randomized model as 

deterministic ones include cases where they could fail to cover network holes. On the 

contrary, randomization scheme could provide the optimal route and set of locations 



needed for the mobile node to attend to ensure network coverage and connectivity. 

Finally, the flexibility provided by the emerging redundancy could also aid the 

feasibility of dynamic change of network topology either deemed necessary by node 

failure or energy depletion or by enabling autonomous network operation promoting 

the property of decentralization i.e. operation without the need or with limited need of 

sinks or infrastructure. Considering that this paper introduces a probabilistic assessment 

of mean value reconstruction error and energy estimation error the above randomized 

scheme could be integrated in terms of correlation and CS compressibility rule with the 

scheme of minimizing energy consumption, delay and bandwidth constrained 

resources. 

The routing of the model proposed by the analysis of this paper is the critical aspect 

that verifies the temporal/spatial/spatiotemporal correlation based redundancy as the 

similarity of the mean values formulated in the respective vectors. Initiating from a 

localized computation scheme in the d-hop neighborhood and shifting the mean 

calculations towards the sink in order to reach representative, on the basis of not 

receiving abnormal readings as samples from the nodes, values of the means generated 

is the first stage. Due to redundancy the merit of values calculated initially localized, 

expands to the entire network. Hence, nodes in each neighborhood gradually gain 

knowledge of these representative values and the required computations for updating 

the mean values generated tend to continuously decrease This reduces the necessity for 

shifting heavy computational load to the sink. Hence, the proposed network operation 

supports a fully decentralized scheme where rare values updating is locally performed 

without the need for more computation efficient coordinator sinks. In summary, the fact 

that redundancy is a consequence of the fact that sensor readings are not rapidly altered 

with respect to past values and also neighboring nodes, the decreasing necessity for 

heavy computations from the sink results in this decentralized property mentioned that 

is therefore achievable. The above also have an impact of reducing energy consumption 

despite the lossy characteristic of the proposed scheme which suggests an inherent loss 

that can be considered as granted despite the energy efficiency of the scheme. 

7. Application to 5G Wireless Sensor Networks 

The WSNs and the design and characteristics of 5G system technology [22] share some 

common features and challenges. There is a vast range of design and performance 

issues that are investigated in detail and attempts to optimize them considering 

constraints that further define and formulate the application specific problem are made. 

The main bottleneck in 5G networks is energy efficiency as a prerequisite for network 

lifetime longevity and effective operation. Energy harvesting techniques introduced in 

5G networks are not proven sufficient to address the energy depletion issue of sensor 

nodes. Thus, alternative techniques must be applied such as duty cycling where 

sophisticated schemes for scheduling sleep intervals of sensors that do not sense or 

transmit and assumed idle are employed. Techniques for coordinating active and 

inactive sensors continue to receive intense scientific attention. 

Scalability versus effective area coverage is a major issue. The impact of this paper 

analysis highlights the correlated data that provide flexibility and tolerance to node 

failures. Hence, effective scalability of the network is a portion of the actual one. 



Another issue regards the bidirectional information exchange assumption that is crucial 

for realizing the benefits of correlation and representative mean values, as already stated 

due to the fact that the initial heavy computation load requires communication with 

sink, which gradually becomes unnecessary and decentralized network operation 

further establishes, as stated above. 

Interference mitigation is another crucial issue common to WSNs as in 5G systems. 

Together with a set of directional antennas that comply with the direction of information 

exchange through the network, i.e. with an optimal sensor selection scheme, 

interference can be mitigated not by decreasing transmission power but by alternative 

techniques such as coding which further benefits from correlation. Distributed 

transform Coding can be applied in a post correlation learning stage. Correlation control 

is also essential in order to compensate for the reconstruction error of mean values with 

a significant value or for the energy estimation error with a small value. The above 

balance can be found according to the application considered. Network capacity 

expansion is also a major issue in 5G sensor networks. The redundancy of data must be 

drastically reduced towards achieving diversity of the data in the network in order to 

increase capacity in a case of heterogeneous network or by the former mention diversity 

in a portioned into segments network. Privacy and security is also a bottleneck that must 

be dealt with in order to ensure exchanged data integrity. The probabilistic scheme of 

this paper enables the selection of nearby sensors that are less prone to overhearing in 

order to establish a safe route from the leaf nodes to the sink. Relative to 5G WSNs 

infrastructure handoff management can be applied in an area not covered or in a case 

of an autonomous network reorganization to cover network holes. The concept that 

handoff is required comes along with exchanging information in a dynamic topology 

or a case of energy depletion or node failure. Finally, QoS consideration as a constraint 

for optimization of network performance remains an insufficiently addressed issue for 

numerous practical applications. The proposed scheme can be considered as a means 

of localizing the QoS requirement and gradually covering the entire network. To 

conclude, bandwidth allocation and latency bounds on optimized performance pose an 

application dependent issue as well. Latency in environmental monitoring is clearly not 

an issue contrary to cases such as disaster event detection, healthcare smart networks 

or military target tracking. Hence, the proposed scheme is not highly dependent on 

synchronization and delay mitigation even in the heterogeneous network case. 

The final remarks concern the 5G Internet-of-Things (IoT) networks [23], [24], which 

is an additional step in terms of increased smart nodes scalability. Energy efficiency is 

directly applied as a prerequisite in IoT networks as well. Thus, research for addressing 

these issue also impacts the latter networks. Moreover, the issue of heavy traffic load 

also emerges as a result of increased smart node density in the coverage area. The main 

assumption when facing the IoT infrastructure and implementation is the high 

heterogeneity, location awareness, effective routing schemes and high data processing 

complexity. The proposed probabilistic scheme can be applied always considering the 

different types of data collected in each densely deployed area. The last aspect that is 

considered is the cost of deploying such networks, the drastic reduction of which can 

only be realized by the joint contribution of many technologies such as node design, 

antenna design as well as low power and consequently cost of sensing nodes. 



8. Conclusions and future work 

In this paper, a probabilistic scheme based on Gaussian distribution is proposed based 

on the calculation of reconstruction error of mean values of average values of Gaussian 

elements as well as energy estimation error considering the sum of energies of the 

respective elements. The dense independent, dense correlated and CS based cases are 

included, considering both low and high sparsity ratios for performance evaluation. The 

results are technically justified and application to 5G WSNs and IoT scenario are 

derived. 

As future research directions, the l0 CS based problem formulation and convex 

relaxation for solvability of the initial problem via l1 norm or a greedy algorithm as an 

alternative can be considered and compared to the proposed probabilistic scheme in 

terms of error magnitude and optimized performance. The related metrics can also be 

jointly considered. The extension to additive noise and fading for addressing the 

communication of nodes in the network and the effect of spatiotemporal correlation is 

a feasible direction to be investigated. Relative to WSNs design, dynamic topology with 

CS problem constraints along with efficient routing are possible research directions. 

Finally, cross-layer optimization is a promising aspect under the CS compressibility 

rule and combined consideration of system parameters to be jointly optimized.  
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