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Since the start of the covid-19 health crisis, there have been many studies on the application of deep learning models in order 

to detect the virus on chest X-ray images. Training large neural networks on big data sets is a computationally intensive 

task, consuming a lot of power and needing a lot of time. Thus, usually only researchers in large institutions or companies 

have the necessary resources to bring the task to fruition. Other researchers employ transfer learning, a technique that 

is based on using pre-trained deep neural networks that have been trained on a similar dataset and retrain only their last 

neuron layers. However, using deep neural networks with transfer learning is not always the best option; in some 

cases, training a shallow neural network from scratch achieves better results. In this paper we compare training from scratch, 

shallow neural networks to transfer learning from deep neural models. Our experiments have been conducted on a publicly 

available dataset containing chest X-ray images concerning covid-19 patients, as well as non-covid-19 ones. Surprisingly 

enough, training from scratch shallow neural networks produced significantly better results in terms of both 

specificity and sensitivity. The results of the models’ evaluation showed that the three shallow neural networks achieved 

specificity rates higher than 98%, while having a sensitivity rate of 98%, exceeding the best performing pre-trained model, 

the DenseNet121, which achieved a specificity rate of 91.3%, while having a sensitivity rate of 98%. 
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1 INTRODUCTION 

Diagnosing covid-19 from a chest X-ray or a computed tomography (CT) is considered a difficult task for 

radiologists since the abnormalities these images contain, may look very similar for many other lung problems. 

It is also quite possible for patients with covid-19 to have normal chest X-rays or chest CTs, eliminating 

therefore, any chance of correctly diagnosing the virus. For these reasons, considering as well, that the virus is 



 

 

highly contagious, most experts and medical societies advise against the use of an imaging test alone to 

diagnose or rule out covid-19. 

On the other hand, convolutional neural networks (CNNs) are especially good at dealing with visual data, 

being the dominant approach currently in the scientific field of computer vision, which aims to extract information 

from images and videos. Up to this point, there have been some attempts to use CNNs on the problem of 

predicting covid-19 from chest X-ray images, by applying transfer learning on pre-trained models of this type [1, 

13, 14]. This technique is generally considered to be quite effective, as it is possible to leverage pre-trained 

models of many layers and complicated architectures. In this paper, the architectures used for the pre-trained 

models are: VGG16 [5], ResNet50 [6], ResNet101 [6], ResNet152 [6] and DenseNet121 [7], with the number of 

layers ranging from 16 to 152 layers. For the shallow CNNs three architectures are used: CNN5, CNN6 and 

CNN7, composed by 5, up to 7 layers. 

Considering the importance of data reliability and validity in medical image analysis, locating a trustworthy 

and valid dataset was prioritized, in order to correctly identify the best solution for the particular problem. The 

publicly available Covid – X-ray – 5k dataset (5000 X-rays) was chosen, which was created by examining 

already labeled chest X-rays from relevant databases, with the help of a board-certified radiologist, as part of a 

published research paper [1] that uses transfer learning. Using techniques such as data augmentation [10], we 

were able to effectively expand the dataset’s size while in order to optimize the architecture for the various 

neural networks that were created, k-fold cross-validation was used. Furthermore, we experimented with many 

different metrics such as precision – recall curves, ROC curves, average precision score [18], specificity and 

sensitivity rates, in order to determine the validity of each metric in this highly imbalanced dataset. Additionally, 

we calculated confidence intervals for each metric, by applying normal approximation of the binomial 

distribution, with the aim of deriving a more reliable estimation of the true values. 

The pre-trained models have been trained on the well-known image database ImageNet [9] which contains 

random objects like balloons or chairs, thus having zero similarity with the radiography images we are trying to 

analyze. As a result, our main objective is to examine and compare both the performance of transfer learning 

on various pre-trained models compared to that of shallow CNNs with a small number of layers, and also, to 

examine the capabilities these neural models have on the difficult task of chest X-ray image classification. 

The remainder of the paper is organized as follows. Section 2 contains a review of the background literature. 

Section 3 provides a summary on the techniques used as part of the data preprocessing that occurred, as well 

as a full description of the two proposed frameworks. Section 4 presents the experimental results, the analysis 

of each framework’s performance, as well as comparisons with other works. Finally, Section 5 concluded the 

paper and poses future directions. 

2 RELATED WORKS 

Even before the covid-19 health crisis, deep learning techniques where widely used on chest X-ray image 

classification. For example, there have been many transfer learning applications on pneumonia detection in 

chest X-ray images. As shown in [11], various pre-trained models such as AlexNet, DenseNet121, ResNet18, 

InceptionV3 and GoogleNet, which were trained and tested on over 5232 images, were able to achieve high 

levels of performance, with ResNet18 exceeding the other models, with a test accuracy of 94,23%. Moreover, 

a shallow CNN of 6 layers proved to be quite effective on the same task [12]. Trained on a dataset of 5,856 

chest X-ray images the model was able to achieve a validation accuracy of approximately 94%.  



 

 

In the case of predicting covid-19 on chest X-ray images, there have been numerous attempts to apply 

transfer learning, aiming to optimize and fine-tune various pre-trained models. As shown in [13], where five pre-

trained CNN (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were trained using 5-

fold cross validation on three different binary classifications with four classes (covid-19, healthy, viral pneumonia 

and bacterial pneumonia), ResNet50 achieved the highest overall classification performance of 98.43%, while 

in [14] transfer learning is applied on four pre-trained models (VGG-16, VGG-19, MobileNet and 

InceptionResNetV2) using a small dataset of 545 chest X-rays (181 covid-19 samples) with MobileNet achieving 

a testing accuracy of 96.8%. The published paper [1] from which the dataset we used was extracted from, 

applied transfer learning on four pre-trained models (ResNet18, ResNet50, SqueezeNet, DenseNet121). 

SqueezeNet achieved the best performance, maintaining a specificity rate of 92.9%, while having a sensitivity 

rate of 98%.  

Although in [15] a shallow CNN of 4 layers, trained on an imbalanced dataset of 5856 chest X-rays (1583 

covid-19 samples), managed to achieve an accuracy of 99,69%, highlighting the capabilities of these simples 

architectures, there are no studies that examine extensively the performance of both techniques on the same 

dataset, using multiple architectures of pre-trained and shallow neural networks on the task of predicting covid-

19 on chest X-ray images. Most performance comparisons on transfer learning, focus on the technique of using 

the pre-trained models as feature extractors [22] against fully training these models. As shown in [16] on the 

task of facial expression recognition, applying transfer learning on VGG16 provided higher general classification 

accuracy than the training from scratch method while in [17], similar results were demonstrated, when 

comparing the two techniques on the task of predicting breast cancer on histology images. 

According to the aforementioned related works and to the best of our knowledge, the present research work 

is the first attempt of comparison between transfer learning and shallow neural networks in the field of covid-19 

prediction from chest X-rays. 

3 DATASET & METHODOLOGY 

The dataset is composed from two other datasets (Covid-chestxray-Dataset [2] & Chex-Pert [3]). In total, there 

are 184 covid-19 samples (84 for training and 100 for testing) while for the Negative class, there are 5000 

samples (2000 for training and 3000 for testing). 

3.1 K-Fold Cross Validation 

Using k-Fold cross validation on the training set, we were able to create multiple combinations of validation and 

training sets, which were later used for training the models multiple times, while selecting for each architecture, 

the model with the highest performance. Since the dataset is highly imbalanced, with the Positive class being 

composed of just 100 samples, using the average testing accuracy as a metric to judge the models’ performance 

would be invalid. As a result, average precision score [18] is preferred since it combines precision and recall, 

two metrics that take into consideration the models’ performance with respect to the true and false positives, 

emphasizing additionally in the performance of the Positive class. 

In the case of the pre-trained models, we applied 4-fold cross validation, that is, in each iteration 75% of the 

original training set was used for training, while the validation set used the remaining 25% of the original training 

set. Regarding the simple CNNs, 10-fold cross validation was used, that is, 90% of the original training set was 

used on the new ones. Creating slightly bigger training datasets is needed in the case of these network 



 

 

structures since they are trained from scratch, which makes them susceptible to overfitting when trained on a 

very small amount of data. 

3.2 Data Augmentation 

The main idea behind this technique, which is widely used in many previous similar studies [1, 14, 17],  is to 

apply a small transformation on an image, which for example can be either a shift to the right or to the left, or a 

zoom, and then feed the image to the neural network. The number of images stays the same, but in each 

training epoch different transformations of the original dataset are used, making the model more robust and 

accurate as it is trained on different variations of the same image, whereas it also prevents overfitting [10]. It is 

important to note, that these transformations are applied exclusively to the training dataset in order to avoid 

manipulating the test and validation data beforehand. Another very important fact is that in the case of medical 

imaging, augmentation may affect the resulting classification [20]. For that reason, significant transformations 

such as flipping the image horizontally or vertically were avoided, minimizing as much as possible the effect of 

the transformations which were applied. 

An additional problem concerns the wide variation in the resolution of images in the dataset, which contains 

some low – resolution images (below 400x400) and some high – resolution ones (more than 1900x1400). With 

the aim of solving this problem, three more useful operations are applied on every dataset (train, validation and 

test): 

1. Resizing the images in order for all of them to have the same size (224x224). This size was selected since 

the pre-trained models, were trained on images of that size. 

2. Convert the single-channel X-ray images (grayscale) to a three-channel format by repeating the values in 

the image across all channels. When training simple Convolutional Networks a single channel can be used, 

but when pre-trained models are used for transfer learning, three channel inputs (RGB) are required. 

3. Rescaling (Normalizing) the images. Rescaling the scales array of the original image pixel values to be 

between [0, 1] achieves a balanced contribution to the overall loss and greatly improves the convergence 

of the optimization algorithm [19]. 

3.3 Transfer Learning 

Transfer learning is a machine learning method where a model which was built for a specific task is adapted 

into solving another task. The most popular version of transfer learning makes use of the pre-trained models as 

feature extractors [16, 17, 22]. Only the fully connected layers, which create the final predictions using the 

features that were extracted from the previous layers, are adapted on the new data. These layers are completely 

removed from each pre-trained model and replaced from new fully connected layers that correspond to the 

specific problem (binary classification in our case). This technique is proposed when working with a small 

amount of data and for that reason it is applied on this project as well. Since this is the only part of the network 

that gets trained, four different architectures were used for each pre-trained model and optimized using 4-fold 

cross-validation, choosing in each case the best performing fully connected layers combination for each model. 

Figure 1 shows these four architectures with increasing complexity (parameter-wise), from left to right. 



 

 

 

Figure 1: Architectures of the fully connected layers 

3.4 Shallow Convolutional Neural Networks 

The architecture used on these structures is based on the simplicity of the VGG16 architecture, since both 

architectures use convolutional layers with 3x3 filters and stride set to 1, as well as, max pooling layers with 2x2 

filters and stride set to 2. In order to optimize the performance  of these networks we employed 10-fold cross-

validation and, we experimented with three different architectures for the convolutional and the pooling layers 

(number of layers and number of filter in each layer). The exact architectures used in each shallow CNN are 

displayed in Figure 2. 

 

 

Figure 2: Architectures of the shallow convolutional neural networks 

 



 

 

4 EXPERIMENTAL RESULTS 

4.1 Threshold Selection and Confidence Intervals 

After selecting the architecture with the best average performance for each pre-trained model and shallow 

network, using average precision score and k-fold cross-validation, it was crucial to select a specific threshold 

for the predictions each model outputs through the sigmoid neuron in the last layer. As mentioned earlier, it is 

important to take into consideration the high importance of the predictions about the positive class. For that 

reason, we selected for each model the threshold that produces a sensitivity rate of 97% and compared their 

performance on the corresponding specificity rate.  

The testing dataset contains a very limited number of samples, especially for the positive class and as a 

result, the values for the sensitivity and specificity rates may be unreliable. In order to address this issue, as 

also conducted in [1], we estimated the 95% confidence intervals for each metric by applying normal 

approximation of the binomial distribution [21]. 

Table 1 contains the confidence intervals for the sensitivity and specificity metrics and for each of the 8 

models. The width of the intervals for the sensitivity rates is quite large since there is a limited number of positive 

samples. On the other hand, for the specificity rates the intervals are quite small since for the negative class, 

the testing dataset contains 3000 samples. It is also clear, that the shallow neural networks are able to achieve 

a considerably greater performance than the pre-trained models since while keeping the sensitivity rate of 97%, 

the best performing pre-trained model DenseNet121 achieves a specificity rate of 95% whereas the best 

performing shallow network CNN6 achieves a specificity rate of 99.84%.  

The published paper [1] from which the dataset was extracted from, also used transfer learning on pre-

trained models. The threshold value for each model was selected targeting to achieve 98% sensitivity rate. 

Table 2 provides a comparison of the performance of our shallow neural networks against the paper’s pre-

trained models’ performance, highlighting that in this case as well, the proposed framework is overperforming. 

Table 1: Confidence Intervals 

Model sensitivity specificity 

VGG16 97.00 ± 3.34% 86.07 ± 1.23% 

ResNet50 97.00 ± 3.34% 68.07 ± 1.66% 

ResNet101 97.00 ± 3.34% 71.05 ± 1.62% 

ResNet152 97.00 ± 3.34% 72.70 ± 1.59% 

DenseNet121 97.00 ± 3.34% 95.00 ± 0.77% 

CNN5 97.00 ± 3.34% 99.44 ± 0.26% 

CNN6 97.00 ± 3.34% 99.84 ± 0.14% 

CNN7 97.00 ± 3.34% 99.70 ± 0.19% 

 

4.2 Precision – Recall and ROC Curves 

In order to examine the general performance of each model, we need to go through the comparison for all 

possible threshold values. precision recall and ROC curves illustrate the diagnostic ability of the classifiers, as 

we can see in Figure 3, which also displays the Area Under the Curve (AUC) metric. All models have a similar 

performance according to the ROC AUC values, even though it is clear from the values reported in Table 1, 

that this is not the case. On the contrary, the precision recall AUC values display an accurate overall 



 

 

performance for the models accordingly to our previous results, emphasizing the fact that these plots are 

appropriate for problems with extremely imbalanced datasets and a high priority on the predictions about the 

positive class [8]. 

Table 2: Comparison with Related Work 

Model sensitivity specificity 

ResNet18 98.00 ± 2.7% 90.7 ± 1.1% 

ResNet50 98.00 ± 2.7% 89.6 ± 1.1% 

SqueezeNet 98.00 ± 2.7% 92.9 ± 0.9% 

DenseNet121 98.00 ± 2.7% 75.1 ± 1.5% 

CNN5 98.00 ± 2.7% 98.9 ± 0.3% 

CNN6 98.00 ± 2.7% 98.3 ± 0.4% 

CNN7 98.00 ± 2.7% 98.3 ± 0.4% 

 

 

Figure 3: ROC curves (left) and precision – recall curves (right) 

5 CONCLUSIONS 

This paper examines the capabilities of neural networks on the task of predicting covid-19 on chest X-rays and 

reports a performance comparison of transfer learning on deep CNNs against training from scratch shallow 

CNNs. According to the results of the models’ evaluation, it is clear that even though both pre-trained models 

and shallow neural networks are able to produce a promising performance in terms of sensitivity and specificity 

rates, the latter framework managed to beat the transfer learning technique used on 8 different architectures of 

pre-trained models. As mentioned earlier, it is quite possible that the dissimilarity between the ImageNet images 

and the radiography images is hindering the performance of pre-trained models on the covid-19 binary 

classification task. We also confirmed that precision recall curves is the appropriate metric [8] in order to 

evaluate the general performance of models trained on imbalanced datasets, while also, solving a problem with 

a high priority on the predictions of the positive class. Moreover, we were able to essentially upgrade the publicly 

available dataset, creating two separate versions composed of 4 and 10 folds of training and validation sets.  

 



 

 

Even though the results are quite promising, the use of insufficient number of covid-19 chest X-ray images is a 

limitation in our study and as such, further experiments using ideally a larger dataset are needed in order to 

correctly estimate the actual performance of neural networks on this problem. It is also worth mentioning that 

small and less diverse datasets could possibly create biased models that rely heavily on the source dataset 

instead of the relevant medical information [23]. Creating a large dataset of (covid positive) chest X-ray images 

from various sources will be a very important future work in order to further investigate if convolutional neural 

networks can aid in the diagnosis of covid-19. Additionally, there is a large collection of pre-trained models that 

are not yet used for this task, which can possibly achieve better performance if used in future projects. Finally, 

the augmented dataset allows for further experimentation with the fully connected layers of the pre-trained 

models, as well as, with shallow neural networks of different amount of layer, different amount of filters and filter 

sizes in each layer or even different optimizers, activation and loss functions. 
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