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Abstract: This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things
(IoT)-based big data management and analysis in cloud environments. Challenges arising from the fields of machine
learning in cloud infrastructures, artificial intelligence techniques for big data analytics in cloud environments, and
federated learning cloud systems are elucidated. Additionally, reinforcement learning, which is a novel technique
that allows large cloud-based data centers, to allocate more energy-efficient resources is examined. Moreover, we
propose an architecture that attempts to combine the features offered by several cloud providers to achieve an
energy-efficient industrial IoT-based big data management framework (EEIBDM) established outside of every user
in the cloud. IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a
digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-
peratures. Furthermore, we propose an algorithm for determining the energy consumption of the infrastructure by
evaluating the EEIBDM framework. Finally, future directions for the expansion of this research are discussed.
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1 Introduction

This study surveys and integrates emerging and novel technologies aimed at providing a more energy-efficient
environment for managing and analyzing industrial Internet of Things (IoT)-based big data in a cloud en-
vironment. Specifically, by developing an intelligent virtual system framework based on the concepts of
reinforcement and federated learning, we can achieve better and faster management and analysis of big data
(BD) in the cloud environment with low power consumption. The proposed system is simulated as a virtual
representation scenario along with the industrial IoT-based big data generated using CloudSim software.
BD is a complex concept involving many factors, such as volume, velocity, variety, veracity, and value. Each

value corresponds to one of the five Vs of big data[1,2]. Furthermore, BD often requires predictive analytics or
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certain advanced approaches to extract value from data[3].
Cloud computing (CC) offers an environment for accessing information and data from any place at any time,

with no limitations on the hardware requirements of the user. Therefore, cloud providers must have large and
efficient data centers to manage the high demand for resources from users. Thus, there is a need for more
energy-efficient data centers that simultaneously offer high computing power. Furthermore, CC employs three
specific data models for its functions: SaaS, PaaS, and IaaS. These models offer opportunities to both cloud
providers and users[4–6].
The management of industrial IoT-based big data is an emerging field of study with numerous challenges,

and research on achieving more efficient and productive management of the data is being actively conducted[7–9].
The IoT data used in this study is a virtual representation of machines and room temperatures. BD analytics is
based on techniques that investigate the field of industrial IoT-based BD management to produce more useful
information from the data[10]. Large databases that store multiple types of data need to be analyzed to obtain
information aimed at making everyday life easier. These large database centers are usually located alongside
cloud data centers, and thus, more energy is consumed. In addition, to achieve easier data management and a
more energy-efficient environment, novel learning techniques such as reinforcement and federated learning
can be applied.
Federated learning (FL) is an innovative technique that provides new avenues for the operation and man-

agement of data in collaborative environments. The FL scenario algorithms consider communication with
edge devices taking place over the networks, which in most cases are unreliable, as well as the limitations on
upload speeds[11,12]. Consequently, FL can significantly reduce security and privacy risks by restricting the
attack to only the device, thereby safeguarding the device’s cloud[13,14]. Furthermore, in industrial IoT-based
BD, which is the primary technology apart from the CC on which this study focuses, the number of training
examples is typically too large to be stored on one computer, and therefore, we need to divide the computation
among many computers. Moreover, an effective method to run and manage systems based on the idea of FL
and machine learning systems in general is to use a virtual representation of a system to obtain a useful
solution[15]. Such virtual systems are based on the idea of digital twin scenarios through which we can operate a
cloud system as a virtual representation for managing and analyzing industrial IoT-based BD produced
through industrial procedures. In this study, to achieve the digital twin scenario, we used the CloudSim
software.
In conclusion, the key contributions of this study can be summarized as follows:
1. Open challenges and issues in the field of energy-efficient industrial IoT-based big data management and

analysis in cloud environments are surveyed.
2. An architecture that attempts to combine the features offered by several cloud providers to achieve an

energy-efficient industrial IoT-based big data management framework (EEIBDM) established outside of every
user in the cloud is proposed.
3. Perspectives on the problem of resource allocation in interactions with the cloud environment to achieve

an optimal decision are formulated.
4. An algorithm that determines the energy consumption of the CPU through the evaluation of the EEIBDM

framework is proposed.
The remainder of this paper is organized as follows. Section 2 details the relevant research in the field of

energy-efficient BD management in cloud environments, the artificial intelligence scenarios of cloud infra-
structures, and the artificial intelligence techniques of BD analytics in cloud environments. Section 3 provides
details of the proposed approach and architecture of the proposed system. Section 4 discusses the evaluation of
the proposed system and presents the proposed algorithm, modified CloudSim architecture, experimental
results, and topology of our scenario. Finally, Section 5 concludes the study and outlines future directions.
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2 Review of related work

In this study, several previous studies were reviewed and analyzed in terms of related topics. The following
subsections illustrate the work that has contributed significantly to our study.

2.1 Efficient big data management in the cloud

In recent years, several works have been published in the field of efficient BD Management in cloud en-
vironments. Thus, for the purpose of our research, we have studied and analyzed previous research that was
done in the field of efficient BD management in cloud environment[16–18]. The following paragraphs present
previous research related to our study.
Aujla and Kumar presented MEnSuS, which is an efficient system for the sustainability of cloud data centers

in an edge-cloud environment, using SDN for energy management[16]. The proposed scheme is a workload-
based approach to workload classification. Al-Dulaimy et al. investigated how to achieve new strategies for
energy-efficient cloud data centers by creating new designs and implementing virtual machine (VM) man-
agement and proposed a novel model for solving VM placement problems[17]. Khan et al. proposed a wide
range of heuristic and meta-heuristic VMC algorithms because it is an NP-hard problem that aims to achieve
near-optimality[18].

2.2 AI cloud scenarios

Furthermore, regarding the novel scenarios of artificial intelligence cloud systems and the use of data ana-
lytics, several remarkable works are related[19–21]. The following paragraphs present research papers related to
this study.
Weber et al. presented an approach to rollback cloud management, considering the particular needs of users

of CC resources wishing to manage the resources[19]. Their proposed approach wrapped the cloud management
API and used A.I. planning techniques to find a proper undo sequence. Brown and Kauchak discussed and
shared novel educational approximations that teach or leverage artificial intelligence and its many subsections,
covering computer vision, robotics, natural language processing, machine learning, and others in all layers of
education[20]. Rad et al. presented the Cloud-eLab platform, which is an open and interactive cloud-based
learning platform for AI. Thinking, intends to infuse two aspects: i) deep and broad learning, and ii) cognitive
and adaptation learning notions for education[21].

2.3 AI big data analytics in the cloud

Moreover, several remarkable works are associated specifically with artificial intelligence systems of big data
analytics in cloud environments[22–26]. The following paragraphs are related to our research.
Wu et al. reviewed the historical perspectives of the term “big data”. Through their review and the correlated

analytics, they conclude that BD does not consist of only 3Vs, but it could be divided into 32 Vs[22]. Speci-
fically, Wu et al. concluded that nine Vs cover the cardinal motivation inside the BD term, which is to merge
business intelligence (BI) count on various hypotheses or statistical models so that BD Analytics (BDA) can
assist decision-makers in making useful predictions for fatal decisions or researching results. Ahmed et al. in-
vestigated recent advances in BDA for IoT systems, such as the key requirements for managing BD and for
activating analytics in an IoTenvironment[23]. Lee et al.[24] considered the 5C architecture proposed by a previous
work of Lee et al.[27] and proposed an insight into the ongoing AI technologies and the ecosystem needed to
harness the power of AI in industrial applications. Wan et al. presented a vertically integrated four-level CaSF
(cloud-assisted smart factory) architecture[25]. With this proposal, Wan et al. aimed to highlight the role and
contingency of CC and AI in ameliorating the smart factories’ performances, such as system efficiency,
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flexibility, and intelligence, and they completely explained and summarized the AI application in a cloud-
assisted smart factory (CaSF). Khan et al. explored the current research, challenges, open problems, and future
research directions for several problems that need to be confronted and risks that need to be moderated before
practical applications of this synergistic model can be popularly used[26].

2.4 Comparative analysis

Regarding the research conducted in previous works, we analyze our findings in Table 1. Specifically, Table 1
illustrates the basic model features of previous works in the related field, in comparison with our proposal. In
particular, most of the studies do not contribute to technologies such as FL and reinforcement learning. In
addition, most of them are not associated with IoT applications or the data they produce. Another conclusion
that we can observe is that most of the related studies implement platforms. Few of them try to find solutions
for the open issues and needs of cloud users, and more energy-efficient systems for the operations. On the
other hand, most related works have contributed to the broader sense of artificial intelligence regarding novel
techniques, applications, interfaces, and platforms. Consequently, regarding the findings listed in Table 1, we
can consider that our proposed scenario tries to collaborate with novel scenarios such as federated and
reinforcement learning systems, and we embed techniques that implement a more energy-efficient system that
aims to offer more useful and efficient management of industrial IoT big data, combining CC, BD, and IoT in a
novel framework. Table 2 illustrates the definitions of the abbreviations in Table 1.

3 Approach of proposed system

The evaluation of our proposed work is presented in this section.

3.1 Energy efficiency in data center

It is a fact that the large, industrial data center infrastructure assumes a huge energy consumption cost for the
resources of the infrastructure, which leads to a considerable increase in environmental costs. This is a major

Table 1 Comparison of challenges, issues, and proposals of existing studies

Work NC BPT EES AIT AIA AII AIC RM VC RC IS IA BA BM FM RM P A F

Aujla & Kumar[16] M L H L L L L M – ● L M L H – – ● – –
Al-Dulaimy et al.[17] L L H L M L M H ● ● M L L H – – ● ● –
Khan et al. [18] M H M L L L H H ● – M L M M – ● – – ●

Weber et al. [19] L H L M H L H L ● ● M L L H ● – ● – –
Brown & Kauchak [20] M M L H H H H M – ● M M H H ● – ● – ●

Rad et al. [21] M M L H H M H M ● – H L L L ● – ● – –
Wu et al. [22] L H L H H H M L – ● L L H H – ● – – ●

Ahmed et al. [23] L M L M M L L M – ● M H H H – – ● – –
Lee et al. [24] M M M H H M H M ● – M L L H – ● ● ● –
Wan et al. [25] M M H M H M H H ● – H L M M – – – ● –
Khan et al. [26] L M M H H L M M ● – M L M M – – – ● –
Proposed Model M H H H M M H H – ● H M M H ● ● – ● ●

Table 2 Parameter definitions

NC: Needs of Cloud Computer users RR: Resources management FM: Federated methods

BPT: Big Data processing techniques VC: Virtual Cloud RM: Reinforcement methods
EES: Energy-efficient scenario RC: Real Cloud P: Propose platform
AIT: AI techniques IS: Integration Scenarios A: Propose architecture
AIA: AI applications IA: IoT applications F: Propose a framework
AII: AI interfaces BA: Big Data analytics H: High L: Low
AIC: AI Cloud-based platform BM: Big Data management M: Medium
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issue regarding the carbon footprint and the energy cost of cloud systems. To reduce energy consumption,
intelligent mechanisms must be built with the ability to be managed across different heterogeneous machines.
In our previous study on literature review, to achieve energy efficiency, we had to integrate mechanisms of

reinforcement learning and federated learning to achieve a cloud system capable of decreasing the con-
sumption of infrastructures not in use.
The most widely accepted unit of measurement for energy efficiency in a data center is power usage

effectiveness (PUE). The PUE has already been defined and introduced by Armbrust et al.[28] as a green grid
component, as well as the ratio of the total power used in a data center installation to the power supplied to the
IT equipment. Specifically, the PUE can be expressed using the following equation.

(1)

Here, the value of TFP represents the total facility power, which denotes the data centers’ entire power
delivered. In contrast, ITEP represents the IT equipment power, which illustrates the energy facilities con-
sumed by the equipment used to manage, transfer, process, operate, store, and route data. Because the
experiment was previously analyzed by Koutitas and Demestichas[29], the result of Equation 1 mostly em-
phasizes the energy consumption of the cloud data center’s IT equipment, which accounts for 30% of the entire
data center. Thus, the PUE of Equation 1 can be formulated as follows.

(2)

Here, to produce the value of PUE, we calculate the sum of the value of NITpc, which represents the NonIT
equipment power consumption (30% of the total), and the summary of CPUpc, which represents CPU power
consumption (40% of the total), and NonCPUpc, which represents NonCPU power consumption (10% of the
total), divided by the sum of CPUpc and NonCPUpc. The energy consumption of the CPU can be obtained from
our proposed method presented in Algorithm 1 and represents the use of the resource allocation scenario
provided by our energy-efficient industrial IoT-based big data management (EEIBDM) framework. Finally,
the overall-high value of CPU power consumption in the data center produces a high expenditure on the
cooling system; however, it is not necessary in our scenario.

3.2 Reinforcement learning contribution to energy-efficient resource allocation

Reinforcement learning (RL) can be defined as “a learning process through interactions with a dynamic
environment, which produces the optimal control policy for a given set of situations without requiring
knowledge of the environment”[30,31]. Several functions endlessly extract the reward through the learning
process of the system. Furthermore, the RL count has two necessary functions:1) trial-and-error retrieval, and
2) delayed reward.
Thus, the formulation of the problem of energy-efficient resource allocation in a cloud environment, which

aims to be addressed by RL, can be introduced as an optimization problem concerning the already well-known
Markov Decision Processes. Our research goal lies in the formulation of the angles of the resource allocation
issue while interacting with the cloud environment to attain an optimal decision.

3.3 Federated cloud system modeling

We attempted to model a cloud coordinator entity as a requirement for federating multiple clouds. The cloud
coordinator (ClCo) is responsible for managing and monitoring the inner state of a cloud datacenter entity,
except for communication with end-users and other datacenters. The information received from the ClCo as a
part of the monitoring process, which is ongoing during the pilot period, is used to make decisions related to
inter-cloud provision. ClCo functionality might be defined as similar to the functionality offered by large
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businesses. As a result, when an engineer of a cloud system demands federation of services from several cloud
providers, the development of a ClCo will be required. Thus, aspects associated with communication and
negotiations with former entities are isolated from the core of the data center to enable an entity to manage the
federation scenario of cloud data centers. Consequently, the CloudSim operation provides every cloud de-
veloper with the ability to speed up the use of application services by performing tests through an entity such
as ClCo.

4 Evaluation of proposed approach

Regarding the study, aiming to succeed in creating a novel efficient system for industrial IoT-based BD
management and analysis in a cloud environment, we used RL and FL techniques to formulate and design the
architecture of the proposed system.
Industrial IoT-based data management and analysis in cloud infrastructure has become popular in recent

years because of the help of software ‘infrastructure, which efficiently supports the operation of datacenters
and cloud datacenters. Owing to the maximum need for hardware infrastructure and the need to continuously
update the data centers, providers intend to host all their infrastructure in data centers that can support as many
customers as they can, thus adopting virtualization. Virtualization is a new technique in which users are given
virtual platforms, rather than physical ones, aiming to unravel many operational and maintenance issues in a
data center. Virtualization can be characterized as an effective way to offer management solutions for dynamic
resources in a cloud environment.
Virtual machines (VMs) can be used through virtualization. A VM is an identical, isolated execution

environment on a single computer, which emulates the host computer. As a result, this gives the user the
illusion of having a physical machine. These VMs can be used in emulator simulations. An emulator is used to
simulate a hardware platform, generally to allow running multiple operating systems simultaneously and to
support foreign code on a given platform. The emulator used in our research was CloudSim, which operates on
Eclipse.
The proposed architecture scenario attempts to combine the features offered by several cloud providers to

achieve a sustainable and energy-efficient industrial IoT-based big data management framework (EEIBDM)
established outside of every user in the cloud. The proposed system architecture relies on the IaaS and PaaS
models of the cloud provided by the cooperative cloud providers to meet metrics such as CPU resources,
memory amount, storage availability, and system performance in terms of execution time. Inferring from
Figure 1, each different type of user could use the cloud infrastructures of the various cooperative cloud
providers through the EEIBDM, which offers three major advantages:1) energy-efficient resource allocation,
2) data center manager/analyzer, and 3) cloud infrastructure resource monitor. Each type of user can access the
system framework via PC, laptops, mobile devices, etc., and has the same type of access regarding the
permissions granted to access the cloud infrastructure. The proposed system acts as an intermediary to provide
better management and secure access to each user when trying to use the cloud.

4.1 Reinforcement based cloud evaluation resource allocation

Based on the study, we know that a service level agreement (SLA) administrator investigates the CPU usage
associated with all servers running in the abbot data center for the distribution of VM cloud environments to
ensure the SLA metric distribution condition. The calculation can be expressed as follows.

(3)

Here, ECn represents the overall energy consumption of a specific host that functions in the overall cal-
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culation time. Moreover, CPU utilization is denoted by u(t), the period of the overall calculation time for each
host is denoted by n, and its range is defined by the total number of hosts contributing to the datacenter, starting
from 1 to k.

(4)

Resulting in Equation 3, the calculation of the total quantity of energy consumption of the data center
representing the energy consumption of all the con-
tributed hosts in the data center, which can be better
expressed using Equation 4.
As is evident from Table 3, the hardware setup of

each cloud datacenter is structured.

4.2 Evaluation of resource allocation in EEIBDM

Algorithm 1 was introduced as a novel resource-allocation algorithm. This algorithm was embedded and tested
using the CloudSim toolkit software. All aspects of the proposed framework are included as part of an
extensive heuristic in the CloudSim toolkit. As already mentioned in Section 3, CloudSim, as virtualization
software, could consist of a scalable simulation framework that allows innovative support for modeling,
simulation, and experimentation of virtualized data centers in cloud environments, as well as cloud man-
agement services for all components such as VMs, memory, storage, and bandwidth, under various cap-
abilities, configurations, and domains. Finally, CloudSim can support characteristics that model and simulate
environments based on large-scale clouds, resource allocation policies of energy-efficient scenarios, service
brokers, virtualization techniques, federated cloud systems of CPs, and established network connections.
The computational complexity of the proposed algorithm relies on the multiple scenarios that we ran on

CloudSim. Each scenario differs in time duration and the amount of data used. As observed from the ex-
perimental results in the next section, our proposal was tested for five days and for multiple types of VMs used
and produced data.
Considering the characteristics provided by our proposed method, CloudSim can exploit novel construct

heuristics to assess the performance obstacles associated with service delivery and provisioning policies in

Figure 1 System architecture.

Table 3 CloudSim system configuration-reinforcement cloud-
based evaluation

Data Center (Host) Virtual Machine

12GB RAM memory 512MB RAM memory
2TB storage memory 20GB storage memory
2×CPU with 1000 MPIS capacity 1×CPU with 1000 MPIS capacity
Time-shared VM scheduler Time-shared Cloudlet scheduler
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resource management techniques. Therefore, the existing architecture of CloudSim software supports cloud
infrastructure service management, but unfortunately does not consider the energy consumption of a data
center or the PUE value.
Figure 2 illustrates the existing architecture of the CloudSim software integrated with our proposed

EEIBDM state to achieve an energy-efficient resource allocation service through the existing architecture. As
shown in Figure 2, it is placed in the middle of the core of the CloudSim setup component.

4.3 Virtual environment task

To produce a more efficient system, we modeled and embedded a federated cloud network in CloudSim. Thus,
we modeled and ran a system of three CP federations and a connection to a user broker. Each CP institutes a
sensor that is responsible for dynamically detecting the availability of information related to the data hosts.
Subsequently, the measurements of this sensor were delivered to the ClCo, where the produced information
was utilized in undertaking load-migration decisions. As a result, this system performs transmigration of the
available VMs through the cooperative CPs, taking into account the possibility that the initial CP cannot
provide the requested number of available VM slots. The topology of this scenario is shown in Figure 3, which
demonstrates the cloud provider federation. As shown in Figure 3, a user broker can access the cloud space
through a network (e.g., wireless 4G/5G network). The cloud coordinator that coordinates the access of each
user and the permission of each user attempts to find a suitable cooperative CP to serve the user in a better and
more reliable way.
The model components of the proposed CloudSim simulation for the aforementioned scenario are listed in

Table 4. The performance results of the federated cloud simulation in CloudSim for our proposed cloud
scenario are listed in Table 5.
Assuming the operation of ClCo and the previously proposed methods, the cloud computing architecture of

the system can be represented as shown in Figure 4. Figure 4 shows the EEIBDM system, including techniques

Algorithm 1 EEIBDM’s framework resource allocation scenario

The inputs of the method are:
√ mber of the different hosts operates in the data center initialized: NoHost
√ The number of the various VMs operates in the data center initialized: NoVM
√ The CPU’s workload value counts on the different users of the system per second: cpuw
√ The discount factor of the system: dfs
√ The particular upper limit of the learning process: U

The method exports as output:
√ optimized distribution of the used VMs: overall allocation

Proposed Method:
initialize Host(NoHost) // create Hosts operating in data center with specific features
initialize VM(NoVM) // create VMs operating in data center with specific features
initialize CPUW(cpuw) // initialize CPU’s workload and data center components
create Environment() // set up state set S, action set A and initialize K values and F values
for VM ϵ NoVM // each VM contained in Number of VMs

for Host ϵ NoHost // each Host contained in Number of Hosts
Sb = {edc, h, vm} // convey values of energy of data center, host and Vm of the specific state Sb
for i, i=0,1,2,3,…,U

Ai = A ϵ
with Ai count Ai+1
recompense Fi+1

// update the existing value
Si = Si+1 // distribute the next host

end
end
return h
distribute(Host, VM) // allocate new host and VM

end
return overall allocation
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that rely on the data center, ClCo, and sensor components. Through the embedded sensors, the ClCo can
monitor the performance of each active VM during this time. Thus, the virtual machine manager (VMM)
obtains real-time data and then uses these data to perform a particular resize of the VMs needed. Finally, the
ClCo allocates the VMs by applying VM migration and changes the power state of each node, following the
rules of resource utilization. Each autonomous system consisted of a sensor, VMM, and other components,
which could automatically serve the user’s demand at the time the ClCo chooses it. The energy required is

Figure 2 CloudSim architecture emerges with EEIBDM.

Figure 3 Federated cloud data center topology.
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divided into several VMs; thus, the required energy
is less than the original energy.

5 Experimental results of reinforcement
cloud evaluation

The experimental results of the reinforcement cloud
simulation in CloudSim are presented and analyzed
in this section.
Figure 5 shows the effects of the energy con-

sumption (EC) of the operation on the need for VMs
for each day. More specifically, it shows how the energy of the data center is consumed by serving the requests
from VMs in the 5-day schedule, for five states of the number of VMs used. As shown in Figure 5, as the
number of VMs increased, the energy consumption in the data center increased. Additionally, as an overall
statistic, we can state that for 50VMs, the EC is below 12kW/h, for 100VMs, it is below 15kW/h, for 150VMs,
it is under 20kW/h, for 200VMs, it is under 25kW/h, and for 250VMs, it is less than 29kW/h. Moreover, we
can conclude that during the past days, EC has decreased.
Figure 6 shows that the value of PUE is decreasing in value as the need to use more VMs grows. Thus, the

major goal of achieving energy-efficient usage when more VMs are required, is reached. According to Figure
6, when there is a need for 50 VMs the PUE is under 1.95 for all five days. Additionally, for 100VMs the PUE
is below 1.89, for 150VMs, it is below 1.80, for 200VMs, it is under 1.70, and for 250VMs it is no more than
1.65. According to the literature, the range of an energy-efficient value of PUE is between 1 and 2. Conse-
quently, the proposed algorithm and method achieve the energy efficiency level of a data center regarding the
results demonstrated in Figure 6.
Figure 7 shows the percentage of SLA violations performed during five days of operation of the re-

inforcement cloud system in CloudSim. It was demonstrated that the higher the number of VMs, the more the
percentage of SLA violations increased, so they were analogous values. An increase of approximately 5% in
SLA violation resulted in 50VM allocations, while an increase of 10% in SLA violation resulted in 100VM

Table 4 CloudSim configuration–federated cloud set-up

Data Center (Host) Virtual Machine (x50)

100 computing hosts 1×VM = 1×Cloudlet
12GB RAM memory 512MB RAM memory
2TB storage memory 20GB storage memory
2×CPU with 1000 MPIS capacity 1×CPU

Table 5 Performance results of federated cloud obtained using
cloudsim

Performance metrics Federation results Non-Federation results

Average turnaround
time (sec) 4241.45 8782.9

Makespan (sec) 7653.62 14609.41

Figure 4 Energy-conscious management architecture.
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allocations, 16% for 150VM allocations, 20% for
200VM allocations, and 27% for 250VM allocations.

6 Conclusion

This study surveyed multiple open challenges and
problems in the field of sustainable industrial IoT-
based big data management and analysis in cloud
environments, particularly, the aspects and chal-
lenges arising from the fields of machine learning
scenarios of cloud infrastructures, artificial in-
telligence techniques of industrial IoT-based BD
analytics in cloud environments, and federated
learning cloud systems. Considering that reinforce-
ment learning is a novel technique that allows large
data centers such as cloud data centers to influence a
more energy-efficient resource allocation, we pro-
pose an architecture that attempts to combine the
features offered by several cloud providers to emerge
and achieve an energy-efficient industrial IoT-based
big data management framework (EEIBDM) estab-
lished outside of every user in the cloud environ-
ment. As a result, the major goal of this study is the
formulation of various aspects of the resource allo-
cation issue, considered from the reinforcement
learning scenario, while interacting with the cloud
environment to achieve an optimal decision. To
achieve this, we propose an algorithm for delivering
the energy consumption of the CPU through the
evaluation of the EEIBDM framework.
As a case study for the future, we plan to in-

corporate security and privacy aspects into our pro-
posed system framework to achieve an energy-
efficient and secure cloud-based management and
analysis environment based on industrial IoT, with
the help of innovative techniques of reinforcement
and federated learning. Thus, this proposed frame-
work could be used in places such as hospitals,
schools, and repositories of legal cases to have a
more secure environment, in addition to the most
energy-efficient environment. These are future di-
rections that extend our proposal and plan to be investigated in future research.

Declaration of competing interest
We declare that we have no conflict of interest.

Figure 5 Energy consumption during five days of operation of
the reinforcement cloud system in CloudSim.

Figure 6 Power usage effectiveness during five days of operation
of the reinforcement cloud system in CloudSim.

Figure 7 Percentage of SLA violation during five days of op-
eration of the reinforcement cloud system in CloudSim.
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