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1. Introduction 
 
The ABC analysis is perhaps the most widely used method in inventory management 

aiming to classify items into three ordered classes: class A contains a relatively small 

number (5-10%) of the most important items, class B includes a larger number (20-

30%) of items with moderate importance while the remaining (50-70%) items with 

relatively little importance belong to class C.1  Initially, the ABC analysis was based 

on a single classification criterion, namely the annual dollar usage, but soon it was 

recognized that a number of other criteria, such as inventory cost, lead time, and 

several others listed in Hu et al. (2018) Appendix B, may also be useful for obtaining 

a satisfactory classification of inventory items.  Flores and Whybark (1986, 1987) are 

the first to consider the ABC analysis as a multi-criteria problem, where a score 

summarizing achievements across the considered criteria is used first to rank all items 

and then to classify them into three classes.  Since then, several alternative approaches 

(accompanied with a large number of empirical studies)2 have been used to deal with 

the multi-criteria ABC inventory classification problem, which according to Douissa 

and Jabeur (2020) can be grouped into four categories: (i) those using mathematical 

programming; (ii) those relying on artificial intelligence and meta-heuristics; (iii) 

those employing multi-criteria decision making techniques; and (iv) those based on 

hybrid methods.      

 Our work in this paper is linked with the literature in the first category, where 

alternative linear programming models are used to estimate items’ score by means of 

a weighted average of the considered criteria measures.  This may be accomplished 

by using either the conventional (Ramanathan, 2006) or the normalized (Ng, 2007) 

Benefit-of-the-Doubt (BoD) model.3  In the normalized BoD model, the measures of 



 2 

all criteria (which may not be in a common scale) are normalized in such a way that 

their values range between zero and one and their aggregation weights are forced to 

add up to one while neither of these is necessary in the conventional BoD model.  In 

practical terms, the main advantage of the normalized BoD model is that is less 

computationally demanding as it contains a smaller number of constraints than the 

conventional BoD model.  In addition, if the classification criteria can be ranked in a 

descending order of importance then as Ng (2007) showed one can obtain the scores 

of the inventory items (which have values between zero and one) without a linear 

optimizer but rather based on the maximum partial average.  Besides that, we can 

impute the weights of every classification criteria associated with an item’s score.  In 

contrast, Hadi-Vencheh (2010, p. 962) claimed that “the Ng-model leads to a situation 

where the score of each item is independent of the weights obtained from the model.  

That is, the weights do not have any role for determining total score of each item.”   

The first objective of this paper is to examine this issue.  For this purpose, in 

the second section of the paper we show how to derive explicitly the weights assigned 

to various classification criteria and we verify that they are directly related to an 

item’s score.  These weights may be seen as quasi flexible in the sense that, even 

though they differ across classification criteria and items, there is only a limited 

number of weights profiles, the maximum number of which is equal to the number of 

classification criteria considered in the analysis.  One such a weights profile, that 

results in the maximum score of unity for an inventory item performing well in terms 

of only one criterion, which happens to be the most valuable one, assigns a weight of 

one to that criterion and zero to all others.  More generally, for some items, a number 

of criteria is making no contribution to the resulting score and this number may range 

from 1 to J-1, where J is the number of the considered classification criteria.        

  On these grounds, Hadi-Vencheh (2010) refinement of the Ng (2007) model 

could be proved useful as it overcomes the aforementioned shortcomings.  Using non-

linear programming, Hadi-Vencheh (2010) proposed a model that delivers a set of 

weights that differ across classification criteria but are common across inventory 

items.4  This common-weights scheme avoids the problem of obtaining a deceiving 

score of one for an item that performs well in terms of only one criterion.  In addition, 

as a common-weights scheme can, according to Kao and Hung (2005a) and Wang, 

Luo and Liu (2011), be used both to compare and to rank inventory items as all of 

them are evaluated on the same basis.  Another advantage of the common-weights 
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scheme is that it can be applied to assess performance for inventory items not being in 

the sample (Kao and Hung, 2007).  

 The second objective of this paper is to provide an alternative for obtaining a 

common-weights scheme, inspired by Kao and Hung (2003) compromise solution and 

based on a linear regression model.  As we explain in the third section of the paper, 

the proposed alternative proceeds in two steps: in the first step, we use the maximum 

partial average to obtain the scores of inventory items based on the Ng (2007) model 

and then in the second stage, we use the inequality constrained least squared (ICLS) 

model (see Judge and Takayama, 1966; Liew, 1976; Judge et al., 1985), to regress the 

scores of inventory items from the first stage on all partial averages under the 

restrictions that the estimated parameters are non-negative and sum up to one.  These 

estimated parameters are then used to obtain a new score.  As with Hadi-Vencheh 

(2010) approach, we are able to obtain scores of inventory items based on a set of 

common weights.   

 The main advantages of the proposed approach compared to that of Hadi-

Vencheh (2010) are: first, we can examine the statistical significance of the assumed 

descending ordering restrictions and infer on whether they are supported by the data 

at hand.  In the case that they are statistically rejected, alternative descending ordering 

restrictions may be introduced and tested.  Second, we are able to provide not only 

point estimates of item’s scores but also their lower and upper bounds that can be 

used to construct confidence intervals.  Thus, we can judge in statistical grounds the 

classification status of inventory items by examining whether the lower and the upper 

bounds of scores result in the same class categorization.  Both statistical significance 

and confidence intervals are inherent features of econometric but not of linear or non-

linear programming models.  Their aim in the multiple criteria ABC classification 

analysis is to provide useful insights, based on statistical grounds, about the assumed 

descending ordering scheme, the estimated aggregation weights and the classification 

status of the inventory items.   

 
2. Derivation of the Criteria Weights 
 
Consider the following multiple criteria ABC inventory classification model used by 

Ng (2007): 
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                                                𝑆 = max 𝑤 𝑦  

                                                              𝑠𝑡 𝑤 = 1                                                             (1) 

                                                                      𝑤 ≥ 0                            𝑗 = 1, … , 𝐽 

𝑤 − 𝑤 ≥ 0              𝑗 = 1, … , 𝐽 − 1  
 
where S refers to the score of the inventory items, y to the normalized measure of the 

jth classification criteria defined as 𝑦 = 𝐼 − min 𝐼 /(max 𝐼 − min 𝐼 ),  w to 

classification criteria weights, and k=1,…,K is used to index inventory items and  

j=1,…,J classification criteria.  This is essentially the normalized BoD model 

augmented with the last inequality constraint that ranks the classification criteria in a 

descending order of importance.  Its solution results in a set of inventory-specific 

classification criteria weights that lie within the bounds imposed by the three 

constraints in (1) and maximize the score of the evaluated item.   

Ng (2007) showed however that there is no need to solve (1) as the scores of 

the inventory items can obtained by using the maximum of partial averages, namely 

𝑆 = max ∑ 𝑦 , 𝑗 = 1, . . , 𝐽  .  To do this, one has to rewrite (1) as: 

 

𝑆 = max 𝑢 𝑥  

                                                              𝑠𝑡 𝑗𝑢 = 1                                                             (2) 

                                                                      𝑢 ≥ 0                            𝑗 = 1, … , 𝐽 
 

when 𝑢 = 𝑤 − 𝑤 , 𝑢 = 𝑤  and the 𝑥 ’s are the partial sum of the 𝑦 ’s, namely 

𝑥 = 𝑦 , 𝑥 = ∑ 𝑦 , …, and 𝑥 = ∑ 𝑦 .  From (2) one can derive both the 

score of the inventory item and the weights of the classification criteria associated 

with this score as follows: if 𝑆 = max ∑ 𝑦 , 𝑗 = 1, . . , 𝐽 = 𝑦  then 𝑢 = 1 

and 𝑢 = 0, which in turn implies that 𝑤 = 1 and 𝑤 = 0 and thus, the resulting 

weights profile is: {1,0, … ,0}.  If 𝑆 = max ∑ 𝑦 , 𝑗 = 1, . . , 𝐽 = (𝑦 + 𝑦 ) 

then 𝑢 = 1/2 and 𝑢 = 𝑢 = 0, which in turn implies that 𝑤 = 𝑤 = 1/2 and 
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𝑤 = 0  and thus, the resulting weights profile is: , , 0, … . ,0 .  If instead 

𝑆 = max ∑ 𝑦 , 𝑗 = 1, . . , 𝐽 = (𝑦 + 𝑦 + 𝑦 )  then 𝑢 = 1/3  and 

𝑢 = 𝑢 = 𝑢 = 0, which in turn implies that 𝑤 = 𝑤 = 𝑤 = 1/2 and 𝑤 =

0 and thus, the resulting weights profile is: , , , 0, … . ,0 , and so on up to the case 

where 𝑆 = max ∑ 𝑦 , 𝑗 = 1, . . , 𝐽 = ∑ 𝑦 .  Then, 𝑢 = 1/𝐽  and 

𝑢 = 0 , which in turn implies that 𝑤 = ⋯ = 𝑤 = 1/𝐽  and thus, the resulting 

weight profile corresponds to equal weights, namely , … , . 

 From the above we can derive a number of useful practical rules: first, the 

number of possible weights profiles the Ng (2007) model is equal to the number of 

classification criteria.  Second, if all classification criteria contribute to the score of an 

inventory item then we end up with an equal-weights scheme with the weights being 

equal to 1/J.  Third, if only some of the classification criteria contribute to the score of 

an item, all classification criteria contributing to the score of an item receive the same 

weight and the remaining receive no weight.  The magnitude of the weights depends 

on which partial average defines the maximum.  Fourth, if the normalized measure of 

the most valuable criteria (i.e., the one that is ranked higher than the others) is larger 

than those of the other criteria, then the score of this inventory item is equal to the 

normalized measure of the most valuable criteria, which receives a weight that is 

equal to one and consequently, no weight is assigned to the remaining criteria.  This 

practical rule does not hold however for the lower ranked criteria.  Fifth, an inventory 

item reaches the maximum score of unity only in the case that has the maximum 

possible normalized value for the most valuable criteria. 

 Based on the above, one can derive the weights profile associated with items’ 

scores using the partial averages reported by Ng (2007, p. 351) in his Table 2.  There 

are eight inventory items, namely #1, #3, #4, #5, #6, #7, #8 and #11, with a weights 

profile of (1, 0, 0), five inventory items, namely #2, #10, #25, #27, and #30, with a 

weights profile of (1/2, 1/2, 0), and the remaining 34 items have a weights profile of 

(1/3, 1/3, 1/3).  Thus, the classification of more than two thirds (72%) of the 

considered inventory items is based on an equal-weights scheme.  A closer look of Ng 

(2007) results, in his Tables 2 and 3, reveals that half of the inventory items in class 

A, namely #1, #3, #4, #5, and #6, base their scores in only one well-performing 
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criterion, which is also considered to the be the most valuable.  In contrast, the vast 

majority of items in classes B and C base their scores in the equal-weights scheme.  

These findings cast some doubts about the classification ranking of items obtained by 

using the quasi-variable weights scheme of (2).  They also point towards the need for 

a common-weights scheme that resolves these shortcomings.        

 
3. A Regression-based common weights model 
 
In an attempt to this direction we propose a regression-based common-weights model 

as an alternative to the non-linear programming model of Hadi-Vencheh (2010).  The 

proposed model proceeds in two steps: in the first, we estimate the inventory items 

scores using Ng (2007) procedure of partial averages and then in the second step, we 

use a regression model of the form    

 

𝑆 = 𝑢 𝑥 + 𝜀                                                    (3) 

 
to obtain a set of common weights under the restrictions that ∑ 𝑗𝑢 = 1 and 𝑢 ≥ 0 

by assuming that 𝜀 ~𝑁(0, 𝜎 ).5  Note that (3) is a linear regression model without an 

intercept term, where the classification criteria weight differences, i.e., the 𝑢 ’s, are 

common across items parameters to be estimated.  As a result, (3) may be seen as the 

least squared difference (also referred to as dissatisfaction by Kao and Hung (2005b)) 

between the variable- and the common-weights score of an inventory item under the 

assumed descending ordering scheme.  

The above regression model with one equality and three inequality constraints 

in our case can be estimated by ICLS (Liew, 1976).  However, the estimation burden 

may be reduced to a great extent by using the equality constraint to eliminate one of 

the 𝑢 ’s and then estimating the resulting model with ICLS.6  Solving ∑ 𝑗𝑢 = 1 

for let say 𝑢 = 1 − ∑ 𝑗𝑢  and by substituting it into (3) results in: 

 

𝑆 = 𝑢 𝑥 + 𝜀                                                    (4) 

 
where 𝑆 = 𝑆 − 𝑥  and 𝑥 = 𝑥 − 𝑗𝑥  for 𝑗 = 2, 3.  Then, (4) is estimated by ICLS 

under the two inequality constraints 𝑢 ≥ 0 for 𝑗 = 2, 3.  
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The ICLS estimator is obtained as follows (see Judge et al. 1985, pp.62-64): if 

all the inequality constraints are redundant then the ICLS estimator coincides with the 

ordinary least squared (OLS) estimator.  On the other hand, if all of the inequality 

constraints are binding then the ICLS estimator coincides with the restricted OLS 

estimator.  If however only some of the inequality constraints are binding then the 

ICLS estimator is given by the restricted OLS estimator imposing those constraints 

that are binding.  This means that, for J independent constraints, the ICLS estimator is 

determined by a choice rule that selects among (at most) the 2  different restricted 

and unrestricted estimators.  In (4) we have J=2 and thus there are at most four 

possible solutions, of which only three are feasible: (a) neither inequality constraint is 

binding and thus, we use the unrestricted OLS estimator; (b) only the first inequality 

constraint is binding and thus, we use the restricted OLS estimator with the first 

constraint imposed; and (c) only the second inequality constraint is binding and thus, 

we use the restricted OLS estimator with the second constraint imposed.  The fourth 

possible solution, in which both inequality constraints are binding, is not feasible 

because, in the absence of an intercept term, no independent variable (i.e., regressor) 

is left in (4).  If the estimated parameters of more than one of the above regressions 

satisfy the inequality constraints then we select the one yielding the lowest weighted 

sum of squared residuals (Wolak, 1989).             

Based on the statistical significance of the estimated parameters in (3) we can 

test whether the importance of the corresponding classification criteria is different 

than zero and thus justify in statistical grounds their inclusion in the analysis.  In 

addition, using the standard deviation of the estimated parameters in (3) we can 

construct confidence intervals for the common-weights scores of the inventory items 

𝑆 = ∑ 𝑤 𝑦  that provide useful information about the robustness of the resulting 

ABC classification.  On the other hand, we can also test whether the data at hand 

support the parametric restrictions, i.e., ∑ 𝑤 = 1  and 𝑤 ≥ 𝑤  for j=1,..,J-1, 

imposed in (2) and are thus consistent with the proposed model specification.  

              
4. Empirical Results 
  
To illustrate our approach we are considering the same multi-criteria inventory 

classification problem as Ng (2007) and Hadi-Vencheh (2010), based on data given 

by Flores, Olson and Doral (1992).  The data refers to an inventory with 47 items and 
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following Ng (2007) three classification criteria, namely annual dollar usage, average 

unit cost, and lead time, are used, all of which are positively related to the score of the 

inventory items.  Their values are presented in the first four columns of Table 1.  In 

addition, for comparison purposes, we maintain the same distribution of class A, B 

and C items as in Ng (2007) and Hadi-Vencheh (2010), namely 10 items in class A, 

14 in class B and 23 in class C. 

 The estimated parameters required to compute the values of item scores based 

on our regression-based common weights model are reported in Table 2, where in its 

first two columns we present the unrestricted OLS estimates of (3), in the next two the 

unrestricted OLS estimates of (4), and in the last two the ICLS estimates of (4).  The 

unrestricted OLS estimation of (3) results in a negative but statistically insignificant 

estimated value of 𝑢  that violates one of the inequality restrictions and in a value of  

∑ 𝑗𝑢  that is greater than one.  Consequently, the resulting criteria weights, 

reported at the bottom of Table 2, violate the restriction that 𝑤 ≥ 𝑤  and also they 

do not sum up to one.  On the other hand, the unrestricted OLS estimation of (4) 

results in a negative and statistically significant estimated value of 𝑢  that violates 

one of the inequality restrictions and results into a negative value for 𝑤 .  

Nevertheless, the estimated value of 𝑢  is positive and thus, it is in accordance with 

the second inequality constraint.   

Based on these, we impose the restriction that 𝑢 = 0 and we re-estimate (4) 

to obtain the ICLS estimates.  In this case, the estimated value of 𝑢  is positive and 

statistically significant, the resulting value of 𝑢  is also positive, and ∑ 𝑗𝑢 = 1 

(see Table 2).7   To derive the corresponding criteria weights and their statistical 

significance notice, on the one hand, that 𝑢 = 𝑤 − 𝑤  and 𝑢 = 𝑤  imply in our 

case that 𝑤 = 𝑢 , 𝑤 = 𝑢  and 𝑤 = 𝑢 + 𝑢  since 𝑢 = 0 .  On the other hand, 

∑ 𝑗𝑢 = 1 which implies that 𝑢 = 1 − 3𝑢  and thus, 𝑤 = 1 − 2𝑢 .  Then, the 

resulting common-weights profile is give as (0.529, 0.239, 0.239) and it is consistent 

with both the assumed descending ordering scheme of 𝑤 ≥ 𝑤 ≥ 𝑤  and the adding-

up restriction ∑ 𝑤 = 1 .  Moreover, from the above it is clear that the statistical 

significance of the resulting criteria weights hints on the statistical significance of 𝑢 , 

which as we can see from Table 2 it is statistically significant.  In addition, following 

Kode and Palm (1986), we test statistically the hypotheses that 𝑢 ≥ 0  and that 
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𝑢 = 0 and 𝑢 ≥ 0.8  At the 5% level of significance, we cannot reject the first of 

these hypotheses but we reject the second one.  This means that the descending 

ordering scheme of 𝑤 ≥ 𝑤 ≥ 𝑤  used in previous as well as the present studies is 

not actually supported by Flores, Olson and Doral (1992) data.9                    

 The resulting common-weights profile (0.529, 0.239, 0.239) is then used to 

compute the values of the item’s scores and their classification status, reported in the 

last two columns of Table 1.  In Table 3 we provide confidence intervals of these 

scores using the lower and the upper bounds of the aforementioned classification 

weights, which are obtained by adding and subtracting the standard deviation of 𝑢  to 

its ICLS-based estimated value and by using the relations 𝑤 = 1 − 2𝑢  and 𝑤 =

𝑤 = 𝑢 .  The resulting bounds are [0.478, 0.566] for 𝑤  and [0.217, 0.261] for 𝑤  

and 𝑤 .  From the results reported in Table 3 and portrayed in Figure 1 we can see 

that there is only little variation around the estimated items’ scores and more 

importantly, there are no changes in the classification status of items, except for items 

#22 and #34.  Consequently, our classification results can be considered as being 

rather robust.           

Compared to previous studies, we see that despite the substantial differences 

in item scores there are only few differences in the classification status of items.  In 

particular, the differences between Ng (2007) and our results concern the 

classification of items #6 and #8 in class A or in class B and the classification of items 

#15 and #33 in class B or in class C while the differences between Hadi-Vecheh 

(2010) and our results concern the classification of items #8 and #14 in class A or in 

class B and the classification of items #15 and #33 in class B or in class C.10  All in 

all, the differences are related to five items; namely items #6, #8, #14, #15 and #33.  

Item #6 appears as an A-class item according to Ng (2007) but as a B-class item 

according to the other two studies; item #8 appears as an A-class item according to 

our results but as a B-class item according to the other two studies; item # 14 appears 

as an A-class item according to Hadi-Vecheh (2010) but as a B-class item according 

to the other two studies; item #15 appears as a B-class item according to our results 

but as a C-class item according to the other two studies; and item #33 appears as a C-

class item according to our results but as a B-class item according to the other two 

studies.  
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 We may also examine how the classification status of these five items changes 

according to the assigned weight criteria.  Notice that in Ng (2007) the weight profile 

assigned to items #6 and #8 is (1, 0, 0) while to items #14, #15 and #33 is (1/3, 1/3, 

1/3).  Thus, with the common-weights profile, item #6 turns into class B while by 

weighing only the most valuable criterion it may turn into class A.  On the other hand, 

with the common-weights profile, item #8 may turn into either class A or class B 

(depending on whether its score is obtained respectively by regression analysis or 

quadratic programming) while it turns into class B by weighting only the most 

valuable criterion.  Similarly, with the equal-weights profile, item #15 turns into class 

C while with the common-weights profile it may turn into either class B or class C 

(depending on whether its score is obtained respectively by regression analysis or 

quadratic programming).  Lastly, with the equal-weights profile, item #33 turns into 

class B while with the common-weights profile it may turn into either class B or class 

C (depending on whether its score is obtained respectively by quadratic programming 

or regression analysis).  

 
5. Concluding Remarks  
 
 In this paper, we propose a regression-based approach for obtaining a set of weights 

for multi-criteria ABC inventory analysis, which differ across classification criteria 

but are common across inventory items and follow a predetermined descending 

ordering scheme regarding the relative importance of classification criteria.  The 

proposed alternative is based on the ICLS model where the scores obtained by means 

of the Ng (2007) model (i.e., based on the maximum partial average of criteria values) 

are regressed on all partial averages of criteria measures under the restrictions that the 

estimated parameters are non-negative and sum up to one.  These estimated 

parameters are then used to obtain a new score, which is essentially a common-

weights metric allowing for complete comparison and ranking.  The main advantage 

of the proposed approach compared to Hadi-Vencheh (2010) non-linear programming 

one is that we can provide statistical inference with respect to both the significance of 

each classification criteria and the estimated items’ scores.  Nevertheless, the 

accuracy of the estimated aggregation weights depends on, as it is the case in all 

econometric models, the underlying assumptions, namely that of uncorrelated and 

orthogonal to the error term regressors, and the degrees of freedom, i.e., the difference 

between the number of observations and the number of explanatory variables.  In our 
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case, the accuracy of the estimated aggregation weights may be questioned when the 

difference between the number of evaluated inventory items and the number of the 

considered criteria is less than twenty; i.e., the degrees of freedom are less than 

twenty--a well-known econometric criterion. 

Our empirical results confirm the importance of the three classification criteria 

considered under the assumed descending ordering scheme, namely that annual dollar 

usage is at least as important as average unit cost, which is turn is at least as important 

as lead time.  In addition, the confidence interval for the estimated scores is quite 

tided providing evidence about the robustness of the implied classification status of 

the inventory items.  On the other hand, despite the substantial differences in items 

scores compared to previous studies, we find few differences in the classification 

status of items, which are related to only five out of the forty-seven evaluated items. 

The applicability of the proposed regression-based approach is not limited to 

the ABC inventory classification analysis but it can be extended into a number of 

other multiple criteria problems such as supplier selection examined for example by 

Ng (2008), assessment of faculty members’ research productivity considered for 

example in Karagiannis and Paschalidou (2017), and countries’ overall ranking in 

Olympic games as long as a descending order of importance can be assigned to the 

evaluation criteria.  For example, journal publication are usually considered more 

important than chapters in books, which in turn are considered more important than 

conference proceedings and in a similar fashion, gold metals are more prestige than 

silver metals which in turn are more prestige than brose metals.                 
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Table 1: Data and Empirical Results 

 

Item Annual 
dollar 
usage 

Average 
unit cost 

Lead 
time 

Ng (2007) 
results 

Hadi-Vencheh 
(2010) results 

Proposed 
model results 

1 5840.64      49.92 2 1.00 A 1.0379 A 0.6141 A 
2 5670    210 5 0.99 A 1.5457 A 0.9050 A 
3 5037.12      23.76 4 0.86 A 0.9558 A 0.5911 A 
4 4769.56      27.73 1 0.82 A 0.8273 A 0.4522 A 
5 3478.8      57.98 3 0.59 A 0.7225 A 0.4513 A 
6 2936.67      31.24 3 0.50 A 0.5964 B 0.3715 B 
7 2820      28.2 3 0.48 B 0.5720 B 0.3574 B 
8 2640      55 4 0.45 B 0.6901 B 0.4124 A 
9 2423.52      73.44 6 0.53 A 0.9064 A 0.4941 A 

10 2407.5    160.5 4 0.58 A 0.9666 A 0.5146 A 
11 1075.2        5.12 2 0.18 C 0.2164 C 0.1341 C 
12 1043.5      20.87 5 0.31 B 0.5369 B 0.2691 B 
13 1038      86.5 7 0.52 A 0.9064 A 0.4248 A 
14   883.2    110.4 5 0.44 B 0.7678 A 0.3591 B 
15   854.4      71.2 3 0.27 C 0.4561 C 0.2312 B 
16   810      45 3 0.22 C 0.3752 C 0.1966 C 
17   703.68      14.66 4 0.22 C 0.3868 C 0.1915 C 
18   594      49.5 6 0.38 B 0.6639 B 0.3020 B 
19   570      47.5 5 0.32 B 0.5600 B 0.2577 B 
20   467.6      58.45 4 0.28 C 0.4849 C 0.2214 C 
21   463.6      24.4 4 0.22 C 0.3868 C 0.1813 C 
22   455      65 4 0.29 C 0.4965 C 0.2279 C 
23   432.5      86.5 4 0.32 B 0.5600 B 0.2510 B 
24   398.4      33.2 3 0.18 C 0.3059 C 0.1459 C 
25   370.5      37.05 1 0.11 C 0.1555 C 0.0682 C 
26   338.4      33.84 3 0.18 C 0.3002 C 0.1413 C 
27   336.12      84.03 1 0.22 C 0.3111 C 0.1199 C 
28   313.6      78.4 6 0.41 B 0.7159 B 0.3105 B 
29   268.68     134.34 7 0.56 A 0.9641 A 0.4116 A 
30   224      56 1 0.14 C 0.1979 C 0.0772 C 
31   216      72 5 0.34 B 0.5946 B 0.2545 B 
32   212.08      53.02 2 0.14 C 0.2482 C 0.1125 C 
33   197.92      49.48 5 0.3 B 0.5311 B 0.2266 C 
34   190.89        7.07 7 0.35 B 0.6004 B 0.2561 B 
35   181.8      60.6 3 0.21 C 0.3637 C 0.1584 C 
36   163.28      40.82 3 0.18 C 0.3002 C 0.1337 C 
37   150      30 5 0.27 C 0.4716 C 0.1995 C 
38   134.8      67.4 3 0.22 C 0.3752 C 0.1621 C 
39   119.2      59.6 5 0.32 B 0.5542 B 0.2313 B 
40   103.36      51.68 6 0.36 B 0.6177 B 0.2605 B 
41     79.2      19.8 2 0.08 C 0.1443 C 0.0618 C 
42     75.4      37.7 2 0.11 C 0.1962 C 0.0823 C 
43     59.78      29.89 5 0.26 C 0.4618 C 0.1913 C 
44     48.3      48.3 3 0.18 C 0.3117 C 0.1321 C 
45     34.4      34.4 7 0.38 B 0.6581 B 0.2740 B 
46     28.8      28.8 3 0.15 C 0.2598 C 0.1076 C 
47     25.38        8.46 5 0.23 C 0.3983 C 0.1632 C 
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Table 2: Regression Results 
 

 Value t-statistics value t-statistic value t-statistic 

𝑢  0.576 5.83 0.696    0.282  

𝑢  -0.131 -1.47 -0.417 -4.48   0  

𝑢  0.323 12.87 0.379 10.38   0.239 10.62 

adj. R2 0.981 0.791 0.710 

RSS 0.146 0.412 0.596 

𝑤  0.768  0.658  0.522  

𝑤  0.192  -0.037  0.239  

𝑤  0.323  0.379  0.239  

𝑤  1.283  1.000  1.000  
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Table 3: Lower and Upper Bounds of Items’ Scores 
 
Item Lower 

bound 
  Upper 

bound 
  

1 0.5616 A 0.6666 A 
2 0.8256 A 0.9844 A 
3 0.5402 A 0.6420 A 
4 0.4139 A 0.4906 A 
5 0.4122 A 0.4905 A 
6 0.3393 B 0.4036 B 
7 0.3265 B 0.3884 B 
8 0.3762 A 0.4485 A 
9 0.4503 A 0.5379 A 

10 0.4689 A 0.5603 A 
11 0.1225 C 0.1457 C 
12 0.2450 B 0.2932 B 
13 0.3864 A 0.4632 A 
14 0.3267 B 0.3916 B 
15 0.2105 B 0.2519 B 
16 0.1791 C 0.2142 C 
17 0.1744 C 0.2087 C 
18 0.2746 B 0.3294 B 
19 0.2343 B 0.2810 B 
20 0.2013 C 0.2415 C 
21 0.1649 C 0.1977 C 
22 0.2072 C 0.2486 B 
23 0.2282 B 0.2738 B 
24 0.1327 C 0.1591 C 
25 0.0622 C 0.0743 C 
26 0.1285 C 0.1541 C 
27 0.1091 C 0.1308 C 
28 0.2821 B 0.3389 B 
29 0.3739 A 0.4493 A 
30 0.0702 C 0.0841 C 
31 0.2312 B 0.2778 B 
32 0.1022 C 0.1227 C 
33 0.2058 C 0.2473 C 
34 0.2327 B 0.2796 C 
35 0.1440 C 0.1729 C 
36 0.1215 C 0.1459 C 
37 0.1813 C 0.2178 C 
38 0.1473 C 0.1770 C 
39 0.2101 B 0.2525 B 
40 0.2366 B 0.2844 B 
41 0.0561 C 0.0674 C 
42 0.0748 C 0.0899 C 
43 0.1737 C 0.2089 C 
44 0.1200 C 0.1442 C 
45 0.2488 B 0.2992 B 
46 0.0977 C 0.1175 C 
47 0.1482 C 0.1783 C 
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Figure 1: Mean and Bounds of the Estimated Items’ Scores 
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Footnotes   
                                                        
1  Multi-criteria classification is part of spare parts management along with demand 

forecasting, inventory optimization and supply chain system simulation (see Hu et al., 

2018). 
2  Douissa and Jabeur (2020) in the most recent review of the subject surveyed 83 

studies.    

3 Cherchye et al. (2007) provided an introduction to the BoD model.  See Kao et al. 

(2008), Karagiannis and Paschalidou (2017) and Karagiannis (2020) for the relation 

of the conventional with the normalized BoD model.   
4 There is an extensive discussion in the literature about the different problems of the 

estimated weights in the BoD model that is summarized in Greco et al. (2019).  

Therein, the interest reader can also find the alternative approaches that have been 

used to derive common weights (p. 74), which are directly applicable to Ramanathan 

(2006) but not to Ng (2007) model.  The relevant literature for the normalized BoD 

model used by Ng (2007) is, to the best of our knowledge, limited to Hadi-Vencheh 

(2010) and the present study.   

5  Due to the equivalence of (1) and (2), the regression model could alternatively be 

stated in terms of classification weights, i.e., 𝑤 ’s, rather than the 𝑢 ’s.  However, as 

one can verify, the computation burden would be much greater in this case as the 

inequality restrictions 𝑤 ≥ 𝑤  for j=1,…,J-1 are more complicated to deal with 

econometrically than the inequality restrictions 𝑢 ≥ 0.   
6 As it will be evident below, we have at most sixteen regressions to run with (3) but 

only four with (4).      
7 Notice that the estimated value of 𝑢  in both the OLS and the ICLS estimation of (4) 

is obtained by using the equality restriction ∑ 𝑗𝑢 = 1. 

8   See also Vancey, Judge and Bock (1981) and Wolak (1989) for testing inequality 

and equality and inequality restrictions. 

9 In principle, all other possible descending ordering schemes, namely 𝑤 ≥ 𝑤 ≥ 𝑤 , 

𝑤 ≥ 𝑤 ≥ 𝑤 , 𝑤 ≥ 𝑤 ≥ 𝑤 , 𝑤 ≥ 𝑤 ≥ 𝑤  and 𝑤 ≥ 𝑤 ≥ 𝑤 , can be tested in a 

similar fashion.  However, as this is not our primarily task in this paper, we leave it 

for future work.  Here we focus only on comparing the regression-based results with 

those of previous studies for a given descending ordering scheme, namely that 

𝑤 ≥ 𝑤 ≥ 𝑤 .  
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10  Consequently, the differences between Ng (2007) and Hadi-Vecheh (2010) only 

concern the classification of items #8 and #14 in class A or in class B. 


