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1. Introduction 
 
In performance evaluation literature, the performance of individual decision-making 

units (DMUs) may be evaluated under three appraisal schemes: self-appraisal, peer-

appraisal or preference-appraisal.  Self-appraisal refers to the case that each evaluated 

DMU is allowed to choose its own “value system”, by means of the weights attached 

to each performance indicator, in order to show in the best possible light relative to 

other DMUs included in the assessment.1  Each evaluated DMU can exaggerate its 

own advantages and at the same time downplay its own weakness to obtain the 

maximal possible evaluation score.  Data Envelopment Analysis (DEA), introduced 

by Charnes, Cooper and Rhodes (1978), is the main operation research tool for 

conducting self-appraisal performance evaluation.  On the other hand, peer-appraisal 

gives the right to every DMU to have a “say” about the evaluation of the other DMUs. 

In particular, each DMU takes into account the “value system” of all evaluated units 

(included itself) in assessing its own performance.  Since each “value system” results 

in a different evaluation score, performance is gauged by the average of the efficiency 

scores obtained by using all DMUs’ self-appraisal weights (see Sexton, Silkman and 

Hogan, 1986; Doyle and Green, 1994), which is called average cross efficiency.  

Lastly, in the case of preference-appraisal, a priori information provided by experts, 

stakeholders, or policy makers is incorporated into the evaluation process by means of 

a predetermined “value system”.  Their preferences about the importance of the 

considered performance indicators are reflected in a set of restrictions that reduce the 

weight flexibility of self-appraisal DEA (Dyson et al., 2001; Angulo-Meza and Lins, 

2002).  These restrictions may either take the form of numerical limits on the weights 

of the considered performance indicators or provide a ranking of their relative 

importance, with the latter having the advantage of being simple and intuitive (Joro 

and Viitala, 2004).  
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 Sometimes, however, experts, stakeholders, or policy makers cannot reach a 

consensus about the relative importance of the considered performance indicators.  

This turns into an issue as long as it affects the estimated scores and/or the final 

ranking of DMUs.  Then, the choice of a particular ordering scheme becomes difficult 

and debatable especially if there is no a priori reason to weight the opinion of an 

expert, stakeholder or policy maker more than another’s.  In such cases, one may 

either use all acceptable ordering schemes to examine the extent of changes (if any) in 

the final ranking of the evaluated DMUs or alternatively, may try to obtain an overall 

performance measure summarizing achievements across different ordering schemes.  

A similar situation may arise in a different occasion: e.g., when an analyst conducts a 

sensitivity analysis on the resulting efficiency scores by examining the entire set of 

possible ordering schemes regarding the importance of the considered performance 

indicators.  Then, it may also be useful to end up with a single metric that reflects 

performance under all different norms or “value systems”. 

 The problem of deriving such an overall or synthetic performance measure has 

been handled so far by information theory methods.  In particular, Fu, Wang and Lai 

(2015) and Zheng et al. (2017) used Shannon entropy to aggregate a DMU’s 

evaluation scores obtained under alternative ordering schemes regarding the 

importance of the considered performance indicators while for the same purpose Fu et 

al. (2016) and Cao et al. (2016) employed a distance–based method and Wu et al. 

(2018) the weighted least-square dissimilarity method of Wang and Wang (2013). 2   

Both of these are purely data-driven methods trying to exploit the information of the 

data itself.  For example, the entropy method rates higher for overall performance the 

preference-appraisal evaluation scores with the relatively larger variation across 

DMUs and consequently, assigns to them a higher aggregation weight.  If an ordering 

scheme results in evaluation scores that have almost no variation across DMUs then 

its aggregation weight tends to zero.  On the other hand, the distance-based method 

rates higher for overall performance the preference-appraisal evaluation scores with 

the smaller deviations from the mean and as a result, it assigns to them a higher 

aggregation weight.  

 The objective of this paper is to propose an alternative overall or synthetic 

performance measure rooted to performance evaluation rather than to information 

theory.  In particular, the proposed measure is inspired by the notion of average cross 

efficiency.  The difference is however that in preference-appraisal case, we consider 
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all possible ordering schemes as reflecting the different “value systems” while the 

entire set of DMUs determines the different “value systems” in peer-appraisal, where 

the notion of average cross efficiency was firstly used.  In our case, each possible 

ordering scheme, expressing the opinion of an expert, stakeholder or policy maker, 

provides weights for the relative importance of the considered performance indicators 

by means of the estimated DEA multipliers.   We then evaluate all DMUs using each 

time a different “value system” reflecting a particular ordering scheme.  Since in most 

of the cases there is no a priori reason to weigh the opinion of an expert, stakeholder 

or policy maker more than another’s we take the average of the resulting evaluation 

scores, as we do when computing the average cross efficiency in peer-appraisal.  It 

also turns out that the proposed overall or synthetic measure can be computed by 

using the average (across ordering schemes) of the estimated multipliers for each 

considered performance indicator.  The merits of the proposed measure are that it is 

easy to use and implement (even easier compared to those based on information 

theory) and intuitively appealing as it is based on weights that reflect the average 

relative importance of each considered performance indicator across all possible 

ordering schemes.  These make the proposed measure very practical and attractive. 

  We also provide an empirical application of the propose measure along with 

comparative results from three information theory based methods (i.e., the Shannon 

entropy, the distance-based, the weighted least-square dissimilarity and the 

maximizing deviations) when applied to ABC inventory classification problem.  The 

ABC analysis aims in classifying a DMU’s inventory items into three categories: A-

class (very important), B-class (moderate important) and C-class (relatively 

unimportant).  Our objective in this exercise is to examine the sensitivity of inventory 

items’ classification status across the resulting overall measures, paying particular 

attention on how the list of class-A items changes across different overall measures.  

This way we can examine robustness in the classification of inventory items across 

both different descending ordering schemes and aggregation methods. 

 The rest of this paper proceeds as follows: in the next section we provide a 

brief review of the ABC inventory classification literature related to construction of 

composite indicators and DEA.  The proposed method is presented in the third section 

and in the fourth section we discuss the empirical results.  In the fifth section, we 

provide a comparison of the proposed method with other three information theory 

based methods.  Concluding remarks follow in the last section.     
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2. Literature Review 
 
ABC is a well-known and practical inventory control method aiming to classify the 

stock of an organization’s inventory items into three groups (i.e., A-class, B-class and 

C-class).  The traditional ABC analysis is based on a single criterion such as annual 

dollar usage and Class A contains few items but constitutes the largest amount of 

annual dollar usage while class C contains a large amount of items with however a 

small amount of annual usage value.  It has long been recognized however that using 

a single criterion may not necessarily provide a satisfactory classification of inventory 

items.  For this reason, Flores, Olson and Dorai (1992) attempted to extent the ABC 

analysis into a multi-criteria decision-making tool where other criteria, such as 

inventory cost, lead time, etc., are also included in the analysis.  For this purpose, 

Flores, Olson and Dorai (1992) and Partovi and Burtn (1993) applied an analytic 

hierarchy process-based approach that combines several criteria into a priority score 

for each inventory item.  For more recent attempts in this literature stream see Lolli, 

Ishizaka and Gamberini (2014).  

 On the other hand, Ramanathan (2006) and Ng (2007) were the first to relate 

the multiple criteria ABC inventory classification problem to efficiency analysis by 

treating classification criteria as outputs or performance indicators.  This turns the 

multiple criteria ABC inventory classification problem into a problem of constructing 

composite indicators.  For this purpose, Ramanathan (2006) used what is now known 

as the Benefit-of-the-Doubt (BoD) model (Cherchye et al., 2007)), namely an input-

oriented DEA model with a single unitary input, while Ng (2007) relied essentially on 

Kao and Hung’s (2003) (K&H hereafter) model.  Even though both models assume 

that a helmsman attempts to aggregate a number of indicators to its best interest by 

assigning its own weights to each one of them, they have two main differences: first, 

in the K&H model the values of the performance indicators are normalized at the 

outset in the range of [0,1] while in the BoD model this is not necessary, and second, 

in the K&H model the resulting weights sum up to one while in the BoD model this is 

not necessarily true.3  Nevertheless, the two models are related to each other (see Kao 

et al., 2008) with the BoD model implying the K&H model but not the other way 

around, in the sense that once we solve the BoD model we can immediately obtain the 

solution of the K&H model while the opposite it is not always possible (Karagiannis 

and Paschalidou, 2017).  However, the K&H model is computationally less 
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demanding that the BoD model as it contains less constraints.  In fact, the number of 

constraints in the K&H model is one plus the number of the considered performance 

indicators while in the BoD model is equal to the number of DMUs plus the number 

of the considered performance indicators. 

 Ng (2007) provided a refinement of the K&H model in the case of a particular 

form of weight restrictions, namely when the relative importance of the considered 

performance indicators can be ranked in a descending order.  In such a case, where 

experts, stakeholders or policy makers can come ex ante with a descending ordering 

of the importance of the considered performance indicators, the resulting K&H model 

becomes even less computationally demanding.  Ng (2007, 2008) showed that in this 

case there is no need to solve the model with an optimizer because the value of the 

composite performance indicator can be computed by simply using the maximum of 

indicators’ partial averages.  More importantly, the descending ordering of indicator’s 

importance, as any other weight restriction form, tends to limit the problem that the 

conventional BoD and the K&H models are not compensatory in the sense that bad 

scores of the considered performance indicators may be completely ignored (Lolli, 

Ishizaka and Gamberini, 2014).  For alternative attempts to deal with this problem in 

the case of the ABC inventory classification problem see Hadi-Vencheh (2010), who 

modified the normalization constraint of the K&H model, and Zhou and Fan (2007) 

and Chen (2011), who combined scores of the BoD and the anti-BoD model (namely, 

a BoD model searching for the least favorable weights of the considered performance 

indicators—see e.g. Zhou and Fan (2007)). 

 However, there may be a problem with Ng (2007) refinement of the K&H 

model when experts, stakeholders, or policy makers cannot reach a consensus about 

the relative importance of the considered performance indicators because the derived 

optimal scores and rankings from the different descending ordering schemes are not 

the same.  But as Fu et al. (2016, p. 970) put it “each of the … rankings and 

viewpoints has some valuable advantages that we could not ignore.  While it is 

impossible to ignore any ranking completely, the best way to make decision is to 

accept all possible rankings first, and then aggregate the results of the different 

rankings and viewpoints”.  In most of the cases, combining the scores of different 

descending ordering schemes results in a more realistic classification of the inventory 

items than relying solely on the scores of any particular descending ordering scheme.4  

To provide an overall or synthetic score for every inventory item, Fu et al. (2016) 
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relied on a distance-based method and Wu et al. (2018) on the weighted least-square 

dissimilarity approach to obtain a set of common (across items) weights for 

aggregating the evaluation scores under the different descending ordering schemes 

while Zheng et al. (2017) used Shannon entropy for the same purpose.5  However, the 

aggregation methods may not necessarily base on information theory and thus, be 

purely data-driven.  As a matter of fact, in the next section, we provide an alternative 

overall or synthetic score rooted to performance evaluation literature.  

        
3. Proposed Method 
 
Consider the following model for constructing composite performance indicators used 

by Ng (2007, 2008): 

 

                                                𝑆 = max 𝑤 𝑦  

                                                             𝑠𝑡  𝑤 = 1                                                             (1) 

                                                                    𝑤 ≥ 0                            𝑗 = 1, … , 𝐽 

 𝑤 − 𝑤 ≥ 0              𝑗 = 1, … , 𝐽 − 1  

 
where S refers to the estimated value of the composite performance indicator, y to the 

normalized value of performance indicators, w to their (DMU-specific) weights to be 

estimated, k=1,…,K is used to index DMUs and  j=1,…,J to index indicators, and 

𝑦 = 𝐼 − min 𝐼 /(max 𝐼 − min 𝐼 ).6  This is essentially the model used by 

Kao and Hung (2003) augmented with the last inequality constraint that ranks the 

relative importance of the considered indicators in a descending order.  This weak 

partial ordering of weights has the advantage of being simple and intuitive as it does 

not require information on how much more important one indicators is over another 

one but one has only to specify their relative importance (Joro and Viitala, 2004).  By 

solving (1) we get a set of DMU-specific weights that lie within the bounds imposed 

by the three constraints and maximize the value of its composite performance 

indicator.   

Ng (2007) showed however that there is no need to solve (1) as the values of 

the composite performance indicator can be computed by using the maximum of 
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partial averages, namely 𝑆 = max ∑ 𝑦 , 𝑗 − 1, . . , 𝐽  .  To verify this notice 

first that (1) can be written equivalently as: 

 

𝑆 = max 𝑢 𝑥  

                                                              𝑠𝑡 𝑗𝑢 = 1                                                             (2) 

                                                                     𝑢 ≥ 0                            𝑗 = 1, … , 𝐽 

 
when 𝑢 = 𝑤 − 𝑤 , 𝑢 = 𝑤  and the 𝑥 ’s are the partial sum of the 𝑦 ’s, namely 

𝑥 = 𝑦 , 𝑥 = ∑ 𝑦 , …, 𝑥 = ∑ 𝑦 .  From (2) one can derive both the value of 

the composite performance indicator as well as the weights assigned to each indicator 

as follows: if 𝑆 = max ∑ 𝑦 , 𝑗 − 1, . . , 𝐽 = 𝑦  then 𝑢 = 1 and 𝑢 = 0, 

which in turn implies that 𝑤 = 1  and 𝑤 = 0  and thus, the resulting weights 

profile is {1,0, … ,0}.  If, on the other hand, 𝑆 = max ∑ 𝑦 , 𝑗 − 1, . . , 𝐽 =

(𝑦 + 𝑦 )  then 𝑢 = 1/2  and 𝑢 = 𝑢 = 0 , which in turn implies that 𝑤 =

𝑤 = 1/2 and 𝑤 = 0 and thus, the resulting weights profile is , , 0, … . ,0 .  If 

instead 𝑆 = max ∑ 𝑦 , 𝑗 − 1, . . , 𝐽 = (𝑦 + 𝑦 + 𝑦 ) then 𝑢 = 1/3 and 

𝑢 = 𝑢 = 𝑢 = 0, which in turn implies that 𝑤 = 𝑤 = 𝑤 = 1/3 and 𝑤 =

0 and thus, the resulting weights profile is , , , 0, … . ,0 , and so on up to the case 

that 𝑆 = max ∑ 𝑦 , 𝑗 − 1, . . , 𝐽 = ∑ 𝑦 .  Then, 𝑢 = 1/𝐽  and 

𝑢 = 0 , which in turn implies that 𝑤 = ⋯ = 𝑤 = 1/𝐽  and thus, the resulting 

weight profile corresponds to equal weights, namely , … , . 

 If there is no consensus about the relative importance of the considered 

indicators we can obtain alternative estimates of the composite performance indicator 

based on the different descending ordering schemes.  The number of possible 

descending ordering schemes depends on the number of the considered performance 

indicators.  One can verify that the number of possible descending ordering schemes 

is equal to J!.  That is, in the case of two performance indicators we have two possible 
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descending ordering schemes, i.e., either the weight of the first indicators is greater or 

equal to the second one or that of the second indicators is greater or equal to the first 

one.  In the case of three performance indicators we have six possible descending 

ordering schemes, in the case of four we have twenty four, and so on.  In each of these 

cases we can obtain the weights of models (1) and (2) as explained above.  For the 

cases of two and three performance indicators, we give the relevant weights as well as 

the partial averages for computing the relevant composite performance indicators in 

Tables 1 and 2, respectively. 

 Let then 𝑆  be the score of the kth DMU’s composite performance indicator 

under the Rth descending ordering scheme (R=1,…,J!) that is equal to 𝑆 =

∑ 𝑤 𝑦 , where 𝑤  are computed as described above and vary across the 

alternative descending ordering schemes.  The performance of each DMU may be 

assessed as many times as the number of possible ordering schemes in a fashion 

similar to peer-appraisal evaluation where each DMU is evaluated by means of cross 

efficiencies using the input and output weights of all other DMUs, which in this case 

provide the different “value systems”.  For our purposes however each possible 

descending ordering scheme (and not the constituent DMUs) is considered as a 

different “value systems” on which performance evaluation is based on.  In most of 

the cases, DMUs tend to perform better under some (but not all) ordering schemes as 

they do better in terms of some performance indicators and thus, are able to achieve a 

higher score whenever the relative importance of these indicators is valued relatively 

more.7  Then, using the relevant scores we can find under which ordering scheme 

each DMU achieves its best and worst performance or alternatively, which ordering 

scheme favours the performance of each DMU.   

It may however be more appropriate or fair to consider an overall measure for 

each DMU summarizing its achievements across all possible ordering schemes.  The 

measure proposed here is inspired by the notion of average cross efficiency that 

provides a synthetic view for peer-appraisal evaluation by taking the arithmetic 

average of each DMU’s cross efficiencies.  In an analogous manner and as long as 

there is no a priori reason to weigh a particular descending ordering scheme more 

than another, we take the average of the resulting 𝑆  scores to obtain a simple metric 

providing a synthetic view of preference-appraisal evaluation.  In the resulting metric, 

which is referred to as the partial average cross-weight score, each ordering scheme 
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accounts equally for the overall performance of a DMU.  One can verify that, for each 

DMU, the average (across ordering schemes) of the 𝑆  scores may also be obtained 

by using the average (across ordering schemes) of the estimated weights in the 

computation of the partial average cross-weight score 𝑆 .  That is,   

 

𝑆 =
1

𝐽!
𝑆

!

=
1

𝐽!
𝑤 𝑦 =

!
∑ 𝑤

!

𝐽!
𝑦 = 𝑤 𝑦            (3) 

 
These weights reflect the average perspective of DMUs about the relative importance 

of each performance indicator across all possible descending ordering schemes and 

thus, the proposed preference-appraisal scheme may be seen as a cross-weight 

evaluation process in the sense used by Wang and Chin (2010), where the J! set of 

weights are not directly used for computing 𝑆 ’s but are used to generate an average 

set of weights for each DMU.  

  
4. Empirical results for the ABC inventory classification problem 
 

In this section we apply the proposed method to the ABC inventory classification 

problem in order to obtain an overall classification of items by combining their scores 

from all possible descending ordering schemes.  For these purposes we use Flores, 

Olson and Doral (1992) data set for 47 items and following Ng (2007), we base our 

analysis into three classification criteria, namely annual dollar usage, average unit 

cost, and lead time (in weeks), with the relevant data given in Table 3.8  All criteria 

are positively related to the priority score of each item and its classification status.  

That is, the higher the demand (as measured by its annual dollar use), the value (as 

measured by its average unit cost) or the lead time for an item is, the higher the 

required service level will be and thus, it should be classified into a higher class.  For 

the latter criterion, notice that a stock-out of an item with high lead time will be 

refilled after a longer time period than an item having a lower lead time and thus its 

importance as a stock item is greater (Lolli, Ishizaka and Gamberini, 2014).  In the 

case of three classification criteria considered here, there are six possible descending 

ordering schemes under which to evaluate the 47 items.  Lastly, following previous 

literature, e.g., Ramanathan (2006), Ng (2007), Zhou and Fan (2007), Hadi-Vencheh 
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(2010), and Chen (2011), we classify the first 10 ranked items into class A, the next 

14 items into class B and the last 23 items into class C.       

The scores of items and their classification under the six descending ordering 

schemes are given in Table 4.  Several interesting results emerge from these figures: 

first, when the third criterion (i.e., lead time) is considered as the most valuable (see 

the last two columns in Table 4) the estimated scores have a higher mean but also a 

larger dispersion, as measured by standard deviation.  On the other hand, the lowest 

standard deviation is obtained when the second criterion (i.e., average unit cost) is 

considered as the most valuable (see the two middle columns in Table 4).  Second, the 

classification status of 21 items (44.7%) remains unchanged across all descending 

ordering schemes.  These include four items (#2, #9, #13 and #29) in class A, three 

items (#19, #31 and #39) in class B and fourteen items (#11, #16, #24, #25, #26, #30, 

#32, #35, #36, #38, #41, #42, #44 and #46) in class C.  That is, 40% of A-class items, 

29% of B-class items and 61% of C-class items do not change classification status 

under the six ordering schemes.  On the other hand, the classification of only three 

items (#1, #5 and #6) alternate across all classes across the six descending ordering 

schemes while that of the remaining items between two classes.  Third, only one item 

came up with the maximum score of one in all ordering schemes except the two 

considering the third criterion as the most valuable.  This is item #1 when the first 

criterion (i.e., annual dollar usage) is considered as the most valuable (see the first 

two columns in Table 4) and item #2 when the second criterion (i.e., average unit 

cost) is considered as the most valuable (see the two middle columns in Table 4).  In 

contrast, when the third criterion (i.e., lead time) is considered as the most valuable 

we found four items with the maximum score of one, namely items #13, #29, #34 and 

#45.9  On the other hand, at the bottom of items’ ranking, we found items #25 and #11 

having the lowest score under respectively three and two ordering schemes.     

The resulting weight profiles for the six descending ordering schemes are 

summarized in Table 5.  According to our results, when either the first (i.e., annual 

dollar usage) or the second (i.e., average unit cost) criterion is considered as the most 

valuable the resulting weight profiles contain two or three of the considered criteria 

while when the third criterion (i.e., lead time) is considered as the most valuable the 

resulting weight profiles contain only one criterion.  In particular, 72% (34 out of 47) 

of the items have a weight profile involving all criteria, i.e., (1/3, 1/3, 1/3), when 

𝑤 ≥ 𝑤 ≥ 𝑤  while 51% (24 out of 47) of items have a weight profile involving two 
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criteria, i.e., (1/2, 0, 1/2) and 32% (15 out of 47) of items have a weight profile 

involving all criteria considered, i.e., (1/3, 1/3, 1/3), when 𝑤 ≥ 𝑤 ≥ 𝑤 .  On the 

other hand, almost 62% (29 out of 47) of the items have a weight profile involving all 

criteria considered, i.e., (1/3, 1/3, 1/3), when 𝑤 ≥ 𝑤 ≥ 𝑤  while 70% (33 out of 47) 

of items have a weight profile involving two criteria, i.e., (0, 1/2, 1/2), when 𝑤 ≥

𝑤 ≥ 𝑤 .  In contrast, 74% (35 out of 47) and 81% (38 out of 47) of items have a 

weight profile involving only one criterion, i.e., (0, 0, 1), when respectively  𝑤 ≥

𝑤 ≥ 𝑤  and 𝑤 ≥ 𝑤 ≥ 𝑤 .  

The results in Table 5 also show that a single weights profile, common to the 

vast majority of items, came up in four descending ordering schemes.  In particular, 

for the 𝑤 ≥ 𝑤 ≥ 𝑤  scheme this profile regarding the 72% of items is (1/3, 1/3, 

1/3), for the 𝑤 ≥ 𝑤 ≥ 𝑤1  scheme the profile regarding the 70% of items is (0, 1/2, 

1/2), and for the 𝑤 ≥ 𝑤 ≥ 𝑤  and the 𝑤 ≥ 𝑤 ≥ 𝑤  schemes the profile regarding 

respectively the 74% and the 81% of the items is (0, 0, 1).  On the other hand, in the 

other two descending ordering schemes, two weights profiles are shared by the vast 

majority of items.  For the 𝑤 ≥ 𝑤 ≥ 𝑤  scheme, these profiles are (1/2, 0, 1/2) and 

(1/3, 1/3, 1/3) regarding respectively the 51% and the 32% of items while for the 

𝑤 ≥ 𝑤 ≥ 𝑤  scheme the corresponding profiles are (0, 1, 0) and (1/3, 1/3, 1/3) 

regarding respectively the 32% and the 62% of the items.  

In Figure 6 we report the A-class items according to the six ordering schemes.  

We see that there is consensus only on four items, namely #2, #9, #13 and #29.  This 

accounts for 40% of the A-class items.  Apart from this, it seems that the first three 

descending ordering schemes, namely 𝑤 ≥ 𝑤 ≥ 𝑤 , 𝑤 ≥ 𝑤 ≥ 𝑤  and 𝑤 ≥

𝑤 ≥ 𝑤 , tend to favor items #1, #2, #3, #4, and #5 to be classified as A-class items 

while the last three ordering schemes, namely 𝑤 ≥ 𝑤 ≥ 𝑤 , 𝑤 ≥ 𝑤 ≥ 𝑤  and 

𝑤 ≥ 𝑤 ≥ 𝑤 , tend to favor items #18, #28, #34, #40 and #45.  Thus, it turns to a 

difficult task to obtain the list of A-class items by simply looking separately at the 

results from the different descending ordering schemes.  One can confirm that this is 

also the case for the other two classes.  Instead, the use of an overall measure that 

takes into account the results of all six descending ordering schemes may resolve this 

issue when there is no consensus on about the relative importance of the considered 

classification criteria.                            
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 The results of such an overall measure based on partial average cross-weight 

scores are given in Table 7.  In this Table we report for each item the average criteria 

weights and the resulting score and classification status.  From there we can see that 

for almost half of the items (23 out of 47) the average criteria weights are (0.193, 

0.193, 0.610).  These refer to five items in class A, nine items in class B and nine 

items in class C.  To these, we have to add nine other items with average criteria 

weights of (0.110, 0.310, 0.527), from which one item is in class A, two are in class 

B, and six are in class C.  Taking together, for the 68% of items, the third criterion 

(i.e., lead time) is considered as the most valuable and the second (i.e. average unit 

cost) as being either equally or more important than the first one (i.e., annual dollar 

usage).  In other words, for the vast majority of items, the 𝑤 ≥ 𝑤 ≥ 𝑤  scheme is 

applied which is completely different than the ordering scheme used by Ng (2007), 

namely 𝑤 ≥ 𝑤 ≥ 𝑤 .  Nevertheless, the classification of items reported in the last 

column of Table 7 is only by 19% (9 out of 47) different than that in the third column 

of Table 4, which correspond to Ng (2007) results, and their differences in terms of 

A-class items is just on three items (#4, #5 and #6 versus #28, #34 and #45) as can be 

seen from Table 6.     

       
5. Comparison with other methods 
 
In this section we compare the results of the partial average cross-weight method 

presented in the previous section with those of three information theory based 

methods used previously for the same purpose, i.e., Shannon entropy (Zheng et al., 

2017), the distance-based method (Fu et al., 2016), and the weighted least-square 

dissimilarity approach (Wu et al., 2018).  In addition, we include in the comparison 

the results of another information theory based method, namely the maximizing 

deviation method, used previously by Chen (2011) for aggregating the most and the 

least favorable items’ scores but which can as well be employed for our purpose.  

Before that however we show how overall scores obtained from these information 

theory based methods may be related to a kind of average weights as in the case of the 

partial average cross-weight method.   

 Notice first that all the aforementioned information theory based methods 

result in a set of common (across items) but unequal (across ordering schemes) 

aggregation weights.  Let these aggregation weights be 𝛼  with R=1,..,J!, where h is 
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used to index aggregation weights’ computation methods, i.e., h={Shannon entropy, 

distance-based, maximizing deviations}.  Then one can verify that 

 

𝑆 = 𝛼 𝑆

!

= 𝛼 𝑤 𝑦

!

= 𝛼 𝑤

!

𝑦 = 𝑤 𝑦            (4) 

  
where 𝑤  are the sum of the products of the aggregation and the criteria weights for 

each ordering scheme.  They differ across the computation methods as each one 

results in different aggregation weights that are endogenously determined by a 

different procedure. 

 In the Shannon entropy method, this procedure involves three steps: first, set 

𝑆̅ = 𝑆 / ∑ 𝑆  for k=1,…,K and compute the value of entropy as 𝑒 =

−𝑒 ∑ 𝑆̅ 𝑙𝑛𝑆̅  for R=1,…,J! where the entropy constant is  𝑒 = 1/𝑙𝑛𝐾.  Second, 

set 𝑏 = 1 − 𝑒  for R=1,…,J! and third, compute the degree of importance of each 

descending ordering scheme as 𝛼 = 𝑏 / ∑ 𝑏
!  for R=1,..J! which implies that the 

smaller is the value of the entropy then the larger is the degree of importance and, vice 

versa.  As the value of the entropy is inversely related to the variation of items’ 

scores, a descending ordering scheme with a larger variation in items’ scores receives 

a larger aggregation weight, and vice versa.  According to our empirical results 

reported in Table 8, the largest aggregation weight is assigned to the 𝑤 ≥ 𝑤 ≥ 𝑤  

ordering scheme and the smallest to the 𝑤 ≥ 𝑤 ≥ 𝑤 .  Notice also that the 

aggregation weights related to the two ordering schemes in which the third criterion 

(i.e., lead time) is considered to be the most valuable are the same.   

 The results for the overall measure obtained by the Shannon entropy method 

are given in Table 9 where we also report the average criteria weights and the 

resulting classification status of items.10  From there we can see that for almost half of 

the items (23 out of 47) the average criteria weights are (0.218, 0.177, 0.601).11  

These refer to five items in class A, nine items in class B and nine items in class C.  

Thus, for almost half of the items, the third criterion (i.e., lead time) is considered as 

the most valuable and the second (i.e., average unit cost) as being less important than 

first one (i.e., annual dollar usage).  These results differ with respect to the second and 

the third most valuable criterion compared to those obtained by the partial average 

cross-weight method, where for the great majority of items the second criterion (i.e., 
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average unit cost) is either equally or more important than first one (i.e., annual dollar 

usage).  On the other hand, the mean and the standard deviation of items’ overall 

scores obtained by the two methods are very similar.  The same is essential true for 

the resulting classification: the only difference between the partial average cross-

weigh and the Shannon entropy aggregation methods is on whether item #6 or #23 is 

a B- or a C-class item.  Otherwise, they provide exactly the same classification 

despite their differences in the average weights profiles. 

In the distance-based method, the objective is to find a set of common (across 

items) aggregation weights 𝛼  that minimizes the weighted square of the difference 

𝑑 = 𝑆 − 𝑆  over all descending ordering schemes (Fu et al., 2016; Cao et al., 

2016).  The solution of this multi-objective programming problem results in 𝛼 =

1/ ∑ 𝑑 ∑ ∑ 𝑑
!  for R=1,…,J!. In the distance-based 

method, as opposed to the Shannon entropy method, a descending ordering scheme 

with larger deviations from the mean receives a smaller aggregation weight, and vice 

versa.  According to Fu et al. (2016) empirical results, reproduced in Table 8, the 

largest aggregation weight is assigned to the 𝑤 ≥ 𝑤 ≥ 𝑤  ordering scheme and the 

smallest to the 𝑤 ≥ 𝑤 ≥ 𝑤 .  Notice that the distance-based method assigns the 

largest aggregation weight to the descending ordering scheme that the Shannon 

entropy method assigns the smallest aggregation weight.        

The results for the overall measure obtained by the distance-based method are 

given in Table 10 where we also report the average criteria weights and the resulting 

classification status of items.12  From there we can see that for almost half of the items 

(23 out of 47) the average criteria weights are (0.173, 0.288, 0.534).  Thus, for almost 

half of the items, the third criterion (i.e., lead time) is considered as the most valuable 

and the second (i.e., average unit cost) as being more important than the first one (i.e., 

annual dollar usage).  These results differ with respect to the second and the third 

most valuable criterion compared to those obtained by the Shannon entropy method 

but they are similar to those obtained by the partial average cross-weight method.  On 

the other hand, the mean and the standard deviation of items’ overall scores are only 

slightly different from those obtained by both the Shannon entropy and the distance-

based methods.  Regarding item’s classification status, the only difference between 

the distance-based and the partial average cross-weigh aggregation methods is on 

whether item #14 or #34 is an A- or B-class item.  Otherwise, they provide exactly the 
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same classification despite their differences in the average weights profiles.  There are 

however differences between the Shannon entropy and the distance-based methods as 

to whether items #6 and #23 belongs to class B or C and items #14 and #34 belongs to 

class A or B. 

In the weighted least-square dissimilarity method, the objective is to find a set 

of common (across items) aggregation weights 𝛼  that minimizes the weighted least-

square of the total dissimilarity measure 𝑔 = 𝐾 − ∑ 𝑊  over all descending 

ordering schemes, where 𝑊 = ∑ 𝑆 𝑆 / ∑ 𝑆 ∑ 𝑆
/

 and R 

and R’ are two different descending ordering schemes (Wang and Wang, 2013; Wu et 

al., 2018).  The solution of this quadratic programming problem results in 𝛼 =

(1/𝑔 )/ ∑ (1/𝑔 ) for R=1,…,J!.  A descending ordering scheme with large total 

dissimilarity will be given a small aggregation weight, and vice versa.  According to 

Wu et al. (2018) empirical results, reproduced in Table 8, the largest aggregation 

weight is assigned to the 𝑤 ≥ 𝑤 ≥ 𝑤  ordering scheme and the smallest to the 

𝑤 ≥ 𝑤 ≥ 𝑤 .  Notice that the weighted least-square dissimilarity and the distance-

based method assign the largest aggregation weight to the same descending ordering 

scheme, namely, 𝑤 ≥ 𝑤 ≥ 𝑤 .        

The results for the overall measure obtained by the weighted least-square 

dissimilarity method are given in Table 11 where we also report the average criteria 

weights and the resulting classification status of items.13  From there we can see that 

for almost half of the items (23 out of 47) the average criteria weights are (0.182, 

0.238, 0.577).  Thus, for almost half of the items, the third criterion (i.e., lead time) is 

considered as the most valuable and the second (i.e., average unit cost) as being more 

important than the first one (i.e., annual dollar usage).  These results are similar to 

those obtained by the partial average cross-weight and the distance-based methods but 

differ from those obtained by the Shannon entropy method.  The weighted least-

square dissimilarity method results in the third largest mean overall score after the 

partial average cross-weight and the Shannon entropy methods.  On the other hand, 

the weighted least-square dissimilarity and the partial average cross-weight methods 

result in the same classification status while the only difference between the weighted 

least-square dissimilarity and the Shannon entropy aggregation methods is on whether 

item #6 or #23 is a B- or a C-class item and between the weighted least-square 
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dissimilarity and distance-based methods on whether item #14 or #34 is an A- or B-

class item.        

In the maximizing deviations method, the objective is to find a set of common 

(across items) aggregation weights 𝛼  that maximize ℎ = ∑ ∑ 𝑆 − 𝑆  over 

all descending ordering schemes (Chen, 2011).  The solution of this problem results in 

𝛼 = ℎ / ∑ ℎ
! .  In the maximizing deviations method, a descending ordering 

scheme in which the items have smaller deviations in performance receives a smaller 

aggregation weight, and vice versa.   According to our empirical results reported in 

Table 8, the largest aggregation weight is assigned to the 𝑤 ≥ 𝑤 ≥ 𝑤  ordering 

scheme and the smallest to the 𝑤 ≥ 𝑤 ≥ 𝑤 .  Notice that both the distance-based 

and the maximizing deviations methods assign the smallest aggregation weight to the 

same descending ordering scheme.  

 The results for the overall measure obtained by the maximizing deviations 

method are given in Table 12 where we also report the average criteria weights and 

the resulting classification status of items.  From there we can see that for almost half 

of the items (23 out of 47) the average criteria weights are (0.195, 0.178, 0.623).  

Thus, for almost half of the items, the third criterion (i.e., lead time) is considered as 

the most valuable and the first (i.e., annual dollar usage) as being more important than 

the second one (i.e., average unit cost).  These results differ with respect to the second 

and the third most valuable criteria compared to those obtained by the partial average 

cross-weight, the distance-based and the weighted least-square dissimilarity methods 

but they are similar to those obtained by Shannon entropy.  On the other hand, the 

maximizing deviations method results in the lowest mean overall score compared to 

the other three methods.  Regarding the classification status of items, the differences 

between the maximizing deviations and the partial average cross-weigh and the 

weighted least-square dissimilarity aggregation methods is on whether items #6 and 

#7 belong to class C or B and items #23 and #43 to class. B or C.  There are however 

differences between the maximizing deviations and the distance-based methods as to 

whether items #6 and #7 belong to class B or C, items #23 and #43 to class C or B, 

and items #14 and #34 to class A or B.  In contrast, the only difference between the 

maximizing deviations and the Shannon entropy methods is on whether item #7 or 

#43 is an A- or B-class item. 
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We may now summarize the differences and the similarities among the four 

alternative methods: first, aggregation weights differ across methods.  The Shannon 

entropy method puts more weight on the scores from a descending ordering scheme 

placing more importance on the first criterion (i.e., annual dollar usage), the distance–

based and the weighted least-square dissimilarity method on those from a descending 

ordering scheme placing more importance on the second criterion (i.e., average unit 

cost), the maximizing deviations method on those from an descending ordering 

scheme that place more importance on the third criterion (i.e., lead time) while the 

partial average cross-weight method weights them equally.  Second, in all methods, 

more importance is on average placed on the third criterion (i.e., lead time) while the 

second (i.e., average unit cost) criterion is on average valued more than the first (i.e., 

annual dollar usage) in the partial average cross-weight, the distance-based and the 

weighted least-square dissimilarity methods while the opposite is true in the Shannon 

entropy and the maximizing deviations methods.  Third, despite these differences, the 

mean and the standard deviation of the overall scores are similar across methods.  

Fourth, all methods result in similar classifications with only minor differences: in 

particular, there are differences in the classification of only two items between the 

partial average cross-weight and the Shannon entropy methods as well as between the 

partial average cross-weight and the distance-based methods and between the 

Shannon entropy and the maximizing deviations methods while there are no 

differences between the partial average cross-weight and the weighted least-square 

dissimilarity methods.  Fifth, there is consensus on the A-class items in all but the 

distance-based method, which classifies item #14 instead of item #34 in class A.     

 
6. Concluding Remarks 
 
In this paper we propose an alternative overall measure, inspired by the notion of 

average cross efficiency, that summarizes achievements across different descending 

ordering schemes regarding the relative importance of the considered indicators in the 

Ng (2007) model.  The proposed measure is equal to the arithmetic average of the 

maximum partial averages across all possible descending ordering schemes.  One can 

verify that it may also be obtained by using the average (across descending ordering 

schemes) of the estimated multipliers and for this reason it is referred to as partial 

average cross-weight measure.  Compared to other information theory based measures 
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used previously in the literature for the same purpose, it is computationally less 

demanding and has a more intuitively appealing interpretation.  

We apply the proposed measure to the ABC inventory classification problem 

and compare our results with those obtained by four information theory based 

methods, namely, the Shannon entropy, the distance-based, weighted least-square 

dissimilarity and the maximizing deviations methods.  The empirical results indicate 

that besides differences in aggregation and criteria weights among the alternative 

methods, there is a general consensus in the final classification of items as well as on 

the items that belong to class A, with only minor differences that are relatively more 

pronounced among the information theory based methods.  On these grounds, it 

seems that in the particular study case the partial average cross-weight method has an 

advantage over the aforementioned information theory based methods due to its 

computation simplicity but it remains to be proved whether the same would be true in 

other applications of the Ng (2007) model, such as supplier selection, evaluation of 

faculty members’ publication record, performance in Olympic games, and other cases 

where there is no consensus about the descending ordering scheme regarding the 

importance of the considered performance indicators.     
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Table 1: Weights and composite indicator’s value in the Ng model with two indicators 
 

 𝑢  𝑢  𝑤  𝑤  𝑆  

𝑤 ≥ 𝑤  1 0 1 0 𝑦  

 0 ½ 1/2 ½ (𝑦 + 𝑦 )/2 

𝑤 ≥ 𝑤  0 1 0 1 𝑦  

 ½ 0 1/2 ½ (𝑦 + 𝑦 )/2 
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Table 2: Weights and composite indicator’s value in the Ng model with three indicators 

 
 𝑢  𝑢  𝑢  𝑤  𝑤  𝑤  𝑆  

𝑤 ≥ 𝑤 ≥ 𝑤  1 0 0 1 0 0 𝑦  

 0 ½ 0 ½ 1/2 0 (𝑦 + 𝑦 )/2 

 0 0 1/3 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 

𝑤 ≥ 𝑤 ≥ 𝑤  1 0 0 1 0 0 𝑦  

 0 0 ½ ½ 0 ½ (𝑦 + 𝑦 )/2 

 0 1/3 0 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 

𝑤 ≥ 𝑤 ≥ 𝑤  0 1 0 0 1 0 𝑦  

 ½ 0 0 ½ 1/2 0 (𝑦 + 𝑦 )/2 

 0 0 1/3 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 

𝑤 ≥ 𝑤 ≥ 𝑤  0 1 0 0 1 0 𝑦  

 0 0 ½ 0 1/2 ½ (𝑦 + 𝑦 )/2 

 1/3 0 0 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 

𝑤 ≥ 𝑤 ≥ 𝑤  0 0 1 0 0 1 𝑦  

 ½ 0 0 ½ 0 ½ (𝑦 + 𝑦 )/2 

 0 1/3 0 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 

𝑤 ≥ 𝑤 ≥ 𝑤  0 0 1 0 0 1 𝑦  

 0 ½ 0 0 1/2 ½ (𝑦 + 𝑦 )/3 

 1/3 0 0 1/3 1/3 1/3 (𝑦 + 𝑦 + 𝑦 )/3 
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Table 3: Measures of inventory items 
 

Item Annual 
dollar 
usage 

Average 
unit cost 

Lead 
time 

1 5840.64      49.92 2 
2 5670    210 5 
3 5037.12      23.76 4 
4 4769.56      27.73 1 
5 3478.8      57.98 3 
6 2936.67      31.24 3 
7 2820      28.2 3 
8 2640      55 4 
9 2423.52      73.44 6 

10 2407.5    160.5 4 
11 1075.2        5.12 2 
12 1043.5      20.87 5 
13 1038      86.5 7 
14   883.2    110.4 5 
15   854.4      71.2 3 
16   810      45 3 
17   703.68      14.66 4 
18   594      49.5 6 
19   570      47.5 5 
20   467.6      58.45 4 
21   463.6      24.4 4 
22   455      65 4 
23   432.5      86.5 4 
24   398.4      33.2 3 
25   370.5      37.05 1 
26   338.4      33.84 3 
27   336.12      84.03 1 
28   313.6      78.4 6 
29   268.68     134.34 7 
30   224      56 1 
31   216      72 5 
32   212.08      53.02 2 
33   197.92      49.48 5 
34   190.89        7.07 7 
35   181.8      60.6 3 
36   163.28      40.82 3 
37   150      30 5 
38   134.8      67.4 3 
39   119.2      59.6 5 
40   103.36      51.68 6 
41     79.2      19.8 2 
42     75.4      37.7 2 
43     59.78      29.89 5 
44     48.3      48.3 3 
45     34.4      34.4 7 
46     28.8      28.8 3 
47     25.38        8.46 5 

Source: Flores, Olson and Doral (1992)  
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Table 4: Items’ score and classification status under different descending ordering 
schemes  

 
 𝑤 ≥ 𝑤 ≥ 𝑤  𝑤 ≥ 𝑤 ≥ 𝑤  𝑤 ≥ 𝑤 ≥ 𝑤  𝑤 ≥ 𝑤 ≥ 𝑤  𝑤 ≥ 𝑤 ≥ 𝑤  𝑤 ≥ 𝑤 ≥ 𝑤  

1 1.000 A 1.000 A 0.609 A 0.462 B 0.583 B 0.462 C 
2 0.985 A 0.971 A 1.000 A 1.000 A 0.879 A 0.879 A 
3 0.862 A 0.862 A 0.484 A 0.484 B 0.681 A 0.500 B 
4 0.816 A 0.816 A 0.463 A 0.309 C 0.408 C 0.309 C 
5 0.594 A 0.594 A 0.426 A 0.395 B 0.464 C 0.395 C 
6 0.501 A 0.501 B 0.320 B 0.320 C 0.417 C 0.333 C 
7 0.481 B 0.481 B 0.309 B 0.309 C 0.407 C 0.333 C 
8 0.450 B 0.475 B 0.398 B 0.398 C 0.500 B 0.500 B 
9 0.526 A 0.623 A 0.526 A 0.583 A 0.833 A 0.833 A 

10 0.584 A 0.556 A 0.758 A 0.758 A 0.556 B 0.629 B 
11 0.181 C 0.181 C 0.116 C 0.116 C 0.174 C 0.167 C 
12 0.306 B 0.421 B 0.306 C 0.372 C 0.667 B 0.667 B 
13 0.524 A 0.587 A 0.524 A 0.699 A 1.000 A 1.000 A 
14 0.443 B 0.443 B 0.514 A 0.590 A 0.667 B 0.667 B 
15 0.266 C 0.266 C 0.323 B 0.328 C 0.333 C 0.333 C 
16 0.221 C 0.234 C 0.221 C 0.264 C 0.333 C 0.333 C 
17 0.221 C 0.308 C 0.221 C 0.273 C 0.500 B 0.500 B 
18 0.383 B 0.466 B 0.383 B 0.525 A 0.833 A 0.833 A 
19 0.322 B 0.380 B 0.322 B 0.437 B 0.667 B 0.667 B 
20 0.279 C 0.288 C 0.279 C 0.380 B 0.500 B 0.500 B 
21 0.223 C 0.288 C 0.223 C 0.297 C 0.500 B 0.500 B 
22 0.289 C 0.289 C 0.292 C 0.396 B 0.500 B 0.500 B 
23 0.322 B 0.322 C 0.397 B 0.449 B 0.500 B 0.500 B 
24 0.178 C 0.199 C 0.178 C 0.235 C 0.333 C 0.333 C 
25 0.108 C 0.072 C 0.156 C 0.156 C 0.072 C 0.078 C 
26 0.176 C 0.194 C 0.176 C 0.237 C 0.333 C 0.333 C 
27 0.219 C 0.146 C 0.385 B 0.385 B 0.146 C 0.193 C 
28 0.414 B 0.441 B 0.414 B 0.596 A 0.833 A 0.833 A 
29 0.558 A 0.558 A 0.631 A 0.815 A 1.000 A 1.000 A 
30 0.141 C 0.094 C 0.248 C 0.248 C 0.094 C 0.124 C 
31 0.342 B 0.350 B 0.342 B 0.497 B 0.667 B 0.667 B 
32 0.144 C 0.144 C 0.234 C 0.234 C 0.167 C 0.200 C 
33 0.304 B 0.348 B 0.304 C 0.442 B 0.667 B 0.667 B 
34 0.346 B 0.514 A 0.346 B 0.505 B 1.000 A 1.000 A 
35 0.210 C 0.210 C 0.271 C 0.302 C 0.333 C 0.333 C 
36 0.177 C 0.179 C 0.177 C 0.254 C 0.333 C 0.333 C 
37 0.270 C 0.344 B 0.270 C 0.394 B 0.667 B 0.667 B 
38 0.219 C 0.219 C 0.304 C 0.319 C 0.333 C 0.333 C 
39 0.316 B 0.341 B 0.316 B 0.466 B 0.667 B 0.667 B 
40 0.358 B 0.423 B 0.358 B 0.530 A 0.833 A 0.833 A 
41 0.083 C 0.088 C 0.083 C 0.119 C 0.167 C 0.167 C 
42 0.111 C 0.111 C 0.159 C 0.163 C 0.167 C 0.167 C 
43 0.264 C 0.336 C 0.264 C 0.394 B 0.667 B 0.667 B 
44 0.183 C 0.183 C 0.211 C 0.272 C 0.333 C 0.333 C 
45 0.381 B 0.501 B 0.381 B 0.571 A 1.000 A 1.000 A 
46 0.150 C 0.167 C 0.150 C 0.224 C 0.333 C 0.333 C 
47 0.228 C 0.333 C 0.228 C 0.341 C 0.667 B 0.667 B 

avrg 0.354  0.380  0.340  0.401  0.526  0.516  
stdev 0.219  0.222  0.171  0.181  0.257  0.257  
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Table 5: Items’ weight profiles under different descending ordering schemes 
 
 Weight profiles including 

 one criterion two criteria three criteria 

𝑤 ≥ 𝑤 ≥ 𝑤  8 5 34 

𝑤 ≥ 𝑤 ≥ 𝑤  8 24 15 

𝑤 ≥ 𝑤 ≥ 𝑤  15 3 29 

𝑤 ≥ 𝑤 ≥ 𝑤  6 33 8 

𝑤 ≥ 𝑤 ≥ 𝑤  35 7 5 

𝑤 ≥ 𝑤 ≥ 𝑤  38 5 4 
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Table 6: A-class items under different descending ordering schemes and overall 
measures 

 
Item Descending ordering scheme Overall measure 

 (1) (2) (3) (4) (5) (6) (A) (B) (C) (D) (E) 

1                            
2                                  
3                              
4                  
5                  
6              
9                                  

10                              
13                                  
14                  
18                  
28                            
29                                  
34                          
40                  
45                            

Note: (1) refers to 𝑤 ≥ 𝑤 ≥ 𝑤 , (2) to 𝑤 ≥ 𝑤 ≥ 𝑤 , (3) to 𝑤 ≥ 𝑤 ≥ 𝑤 , (4) to 
𝑤 ≥ 𝑤 ≥ 𝑤 , (5) to 𝑤 ≥ 𝑤 ≥ 𝑤 , (6) to 𝑤 ≥ 𝑤 ≥ 𝑤 , (A) to partial average 
cross-weight, (B) to Shannon entropy, (C) to distance-based (D) to weighted least-
square dissimilarity and (E) to maximizing deviations. 
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Table 7: Partial average cross-weight scores and classification status of items 
 

Item Average criteria weights Item Score Classification  
 𝑤  𝑤  𝑤   Status 
1 0.610 0.193 0.193 0.686 A 
2 0.360 0.527 0.110 0.952 A 
3 0.527 0.110 0.360 0.646 A 
4 0.610 0.193 0.193 0.520 B 
5 0.610 0.193 0.193 0.478 B 
6 0.527 0.110 0.360 0.399 C 
7 0.527 0.110 0.360 0.387 C 
8 0.360 0.110 0.527 0.453 B 
9 0.193 0.193 0.610 0.654 A 

10 0.193 0.610 0.193 0.640 A 
11 0.527 0.110 0.360 0.155 C 
12 0.193 0.193 0.610 0.456 B 
13 0.193 0.193 0.610 0.722 A 
14 0.110 0.360 0.527 0.554 B 
15 0.110 0.360 0.527 0.308 C 
16 0.193 0.193 0.610 0.268 C 
17 0.193 0.193 0.610 0.337 C 
18 0.193 0.193 0.610 0.570 B 
19 0.193 0.193 0.610 0.466 B 
20 0.193 0.193 0.610 0.371 C 
21 0.193 0.193 0.610 0.339 C 
22 0.110 0.360 0.527 0.378 C 
23 0.110 0.360 0.527 0.415 B 
24 0.193 0.193 0.610 0.243 C 
25 0.193 0.610 0.193 0.107 C 
26 0.193 0.193 0.610 0.241 C 
27 0.193 0.610 0.193 0.246 C 
28 0.193 0.193 0.610 0.588 A 
29 0.110 0.360 0.527 0.760 A 
30 0.193 0.610 0.193 0.158 C 
31 0.193 0.193 0.610 0.477 B 
32 0.110 0.527 0.360 0.187 C 
33 0.193 0.193 0.610 0.455 B 
34 0.193 0.193 0.610 0.618 A 
35 0.110 0.360 0.527 0.277 C 
36 0.193 0.193 0.610 0.242 C 
37 0.193 0.193 0.610 0.435 B 
38 0.110 0.360 0.527 0.288 C 
39 0.193 0.193 0.610 0.462 B 
40 0.193 0.193 0.610 0.556 B 
41 0.165 0.248 0.582 0.118 C 
42 0.110 0.360 0.527 0.146 C 
43 0.193 0.193 0.610 0.432 B 
44 0.110 0.360 0.527 0.252 C 
45 0.193 0.193 0.610 0.639 A 
46 0.193 0.193 0.610 0.226 C 
47 0.193 0.193 0.610 0.411 C 

Average    0.420  
Stdev    0.190  
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Table 8: Aggregation weights 
 
 
 Partial-

average 
cross-weight 

method 

Shannon 
entropy 

Distance-
based 

method 

Maximizing 
deviations 

method 

Weighted 
least-square 
dissimilarity 

method 
𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.210 0.111 0.175 0.102 

𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.203 0.176 0.185 0.161 

𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.142 0.148 0.136 0.206 

𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.121 0.406 0.151 0.273 

𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.161 0.082 0.225 0.148 

𝑤 ≥ 𝑤 ≥ 𝑤  0.167 0.162 0.076 0.127 0.110 
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Table 9: Shannon entropy scores and classification status of items 
 

Item Average criteria weights Item Score  Classification 
 𝑤  𝑤  𝑤   Status 
1 0.658 0.164 0.174 0.725 A 
2 0.415 0.475 0.107 0.952 A 
3 0.580 0.087 0.329 0.675 A 
4 0.658 0.164 0.174 0.556 B 
5 0.658 0.164 0.174 0.493 B 
6 0.580 0.087 0.329 0.413 B 
7 0.580 0.087 0.329 0.400 C 
8 0.398 0.087 0.511 0.457 B 
9 0.218 0.177 0.601 0.652 A 

10 0.225 0.569 0.201 0.627 A 
11 0.580 0.087 0.329 0.160 C 
12 0.218 0.177 0.601 0.454 B 
13 0.218 0.177 0.601 0.712 A 
14 0.136 0.339 0.520 0.543 B 
15 0.136 0.339 0.520 0.303 C 
16 0.218 0.177 0.601 0.265 C 
17 0.218 0.177 0.601 0.335 C 
18 0.218 0.177 0.601 0.562 B 
19 0.218 0.177 0.601 0.459 B 
20 0.218 0.177 0.601 0.364 C 
21 0.218 0.177 0.601 0.335 C 
22 0.136 0.339 0.520 0.371 C 
23 0.136 0.339 0.520 0.406 C 
24 0.218 0.177 0.601 0.239 C 
25 0.225 0.569 0.201 0.102 C 
26 0.218 0.177 0.601 0.238 C 
27 0.225 0.569 0.201 0.232 C 
28 0.218 0.177 0.601 0.577 A 
29 0.136 0.339 0.520 0.742 A 
30 0.225 0.569 0.201 0.150 C 
31 0.218 0.177 0.601 0.467 B 
32 0.136 0.480 0.378 0.180 C 
33 0.218 0.177 0.601 0.447 B 
34 0.218 0.177 0.601 0.611 A 
35 0.136 0.339 0.520 0.270 C 
36 0.218 0.177 0.601 0.237 C 
37 0.218 0.177 0.601 0.428 B 
38 0.136 0.339 0.520 0.280 C 
39 0.218 0.177 0.601 0.453 B 
40 0.218 0.177 0.601 0.546 B 
41 0.183 0.244 0.567 0.115 C 
42 0.136 0.339 0.520 0.142 C 
43 0.218 0.177 0.601 0.425 B 
44 0.136 0.339 0.520 0.246 C 
45 0.218 0.177 0.601 0.629 A 
46 0.218 0.177 0.601 0.222 C 
47 0.218 0.177 0.601 0.405 C 

Average    0.417  
Stdev    0.192  
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Table 10: Distance-based method scores and classifications status of items 
 

Item Average criteria weights Item Score Classification 
 𝑤  𝑤  𝑤   Status 
1 0.561 0.233 0.200 0.648 A 
2 0.284 0.662 0.052 0.973 A 
3 0.511 0.183 0.300 0.609 A 
4 0.561 0.233 0.200 0.485 B 
5 0.561 0.233 0.200 0.462 B 
6 0.511 0.183 0.300 0.381 C 
7 0.511 0.183 0.300 0.368 C 
8 0.382 0.183 0.429 0.433 B 
9 0.173 0.288 0.534 0.614 A 

10 0.141 0.733 0.123 0.676 A 
11 0.511 0.183 0.300 0.143 C 
12 0.173 0.288 0.534 0.410 B 
13 0.173 0.288 0.534 0.681 A 
14 0.095 0.446 0.456 0.548 A 
15 0.095 0.446 0.456 0.310 C 
16 0.173 0.288 0.534 0.258 C 
17 0.173 0.288 0.534 0.301 C 
18 0.173 0.288 0.534 0.526 B 
19 0.173 0.288 0.534 0.433 B 
20 0.173 0.288 0.534 0.356 C 
21 0.173 0.288 0.534 0.308 C 
22 0.095 0.446 0.456 0.366 C 
23 0.095 0.446 0.456 0.412 B 
24 0.173 0.288 0.534 0.229 C 
25 0.141 0.733 0.123 0.123 C 
26 0.173 0.288 0.534 0.228 C 
27 0.141 0.733 0.123 0.290 C 
28 0.173 0.288 0.534 0.558 A 
29 0.095 0.446 0.456 0.742 A 
30 0.141 0.733 0.123 0.187 C 
31 0.173 0.288 0.534 0.457 B 
32 0.095 0.687 0.215 0.200 C 
33 0.173 0.288 0.534 0.425 B 
34 0.173 0.288 0.534 0.543 B 
35 0.095 0.446 0.456 0.276 C 
36 0.173 0.288 0.534 0.233 C 
37 0.173 0.288 0.534 0.396 B 
38 0.095 0.446 0.456 0.290 C 
39 0.173 0.288 0.534 0.437 B 
40 0.173 0.288 0.534 0.514 B 
41 0.144 0.347 0.505 0.112 C 
42 0.095 0.446 0.456 0.148 C 
43 0.173 0.288 0.534 0.393 B 
44 0.095 0.446 0.456 0.247 C 
45 0.173 0.288 0.534 0.577 A 
46 0.173 0.288 0.534 0.212 C 
47 0.173 0.288 0.534 0.362 C 

Average    0.402  
Stdev    0.181  
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Table 11: Weighted least-square dissimilarity method scores and classifications status 
of items 
 

Item Average criteria weights Item Score Classification 
 𝑤  𝑤  𝑤   Status 
1 0.566 0.229 0.200 0.622 A 
2 0.297 0.615 0.085 0.878 A 
3 0.495 0.158 0.342 0.599 A 
4 0.566 0.229 0.200 0.476 B 
5 0.566 0.229 0.200 0.442 B 
6 0.495 0.158 0.342 0.387 C 
7 0.495 0.158 0.342 0.374 C 
8 0.341 0.158 0.497 0.445 B 
9 0.182 0.238 0.577 0.612 A 

10 0.153 0.687 0.157 0.616 A 
11 0.495 0.158 0.342 0.168 C 
12 0.182 0.238 0.577 0.429 B 
13 0.182 0.238 0.577 0.662 A 
14 0.087 0.429 0.481 0.540 B 
15 0.087 0.429 0.481 0.333 C 
16 0.182 0.238 0.577 0.294 C 
17 0.182 0.238 0.577 0.333 C 
18 0.182 0.238 0.577 0.527 B 
19 0.182 0.238 0.577 0.445 B 
20 0.182 0.238 0.577 0.377 C 
21 0.182 0.238 0.577 0.337 C 
22 0.087 0.429 0.481 0.376 C 
23 0.087 0.429 0.481 0.421 B 
24 0.182 0.238 0.577 0.268 C 
25 0.153 0.687 0.157 0.129 C 
26 0.182 0.238 0.577 0.266 C 
27 0.153 0.687 0.157 0.273 C 
28 0.182 0.238 0.577 0.551 A 
29 0.087 0.429 0.481 0.705 A 
30 0.153 0.687 0.157 0.184 C 
31 0.182 0.238 0.577 0.463 B 
32 0.087 0.621 0.290 0.214 C 
33 0.182 0.238 0.577 0.436 B 
34 0.182 0.238 0.577 0.542 A 
35 0.087 0.429 0.481 0.301 C 
36 0.182 0.238 0.577 0.269 C 
37 0.182 0.238 0.577 0.412 B 
38 0.087 0.429 0.481 0.314 C 
39 0.182 0.238 0.577 0.445 B 
40 0.182 0.238 0.577 0.514 B 
41 0.155 0.291 0.549 0.161 C 
42 0.087 0.429 0.481 0.189 C 
43 0.182 0.238 0.577 0.409 B 
44 0.087 0.429 0.481 0.273 C 
45 0.182 0.238 0.577 0.569 A 
46 0.182 0.238 0.577 0.251 C 
47 0.182 0.238 0.577 0.383 C 

Average    0.409  
Stdev    0.159  
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Table 12: Maximizing deviations method scores and classification status of items 
 

Item Average criteria weights Item Score  Classification 
 𝑤  𝑤  𝑤   Status 
1 0.632 0.160 0.204 0.702 A 
2 0.389 0.491 0.116 0.948 A 
3 0.567 0.095 0.334 0.664 A 
4 0.632 0.160 0.204 0.534 B 
5 0.632 0.160 0.204 0.486 B 
6 0.567 0.095 0.334 0.407 B 
7 0.567 0.095 0.334 0.392 B 
8 0.362 0.095 0.539 0.444 B 
9 0.195 0.178 0.623 0.621 A 

10 0.223 0.573 0.199 0.618 A 
11 0.567 0.095 0.334 0.152 C 
12 0.195 0.178 0.623 0.418 B 
13 0.195 0.178 0.623 0.669 A 
14 0.119 0.330 0.546 0.525 B 
15 0.119 0.330 0.546 0.298 C 
16 0.195 0.178 0.623 0.255 C 
17 0.195 0.178 0.623 0.308 C 
18 0.195 0.178 0.623 0.520 B 
19 0.195 0.178 0.623 0.427 B 
20 0.195 0.178 0.623 0.345 C 
21 0.195 0.178 0.623 0.308 C 
22 0.119 0.330 0.546 0.353 C 
23 0.119 0.330 0.546 0.391 C 
24 0.195 0.178 0.623 0.225 C 
25 0.223 0.573 0.199 0.102 C 
26 0.195 0.178 0.623 0.224 C 
27 0.223 0.573 0.199 0.227 C 
28 0.195 0.178 0.623 0.540 A 
29 0.119 0.330 0.546 0.705 A 
30 0.223 0.573 0.199 0.147 C 
31 0.195 0.178 0.623 0.439 B 
32 0.119 0.469 0.407 0.175 C 
33 0.195 0.178 0.623 0.414 B 
34 0.195 0.178 0.623 0.548 A 
35 0.119 0.330 0.546 0.260 C 
36 0.195 0.178 0.623 0.224 C 
37 0.195 0.178 0.623 0.391 B 
38 0.119 0.330 0.546 0.271 C 
39 0.195 0.178 0.623 0.422 B 
40 0.195 0.178 0.623 0.503 B 
41 0.164 0.239 0.591 0.108 C 
42 0.119 0.330 0.546 0.138 C 
43 0.195 0.178 0.623 0.388 C 
44 0.119 0.330 0.546 0.234 C 
45 0.195 0.178 0.623 0.571 A 
46 0.195 0.178 0.623 0.205 C 
47 0.195 0.178 0.623 0.363 C 

Average    0.396  
Stdev    0.184  
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Footnotes 

                                                        
1  In some cases, performance indicators take the form of inputs and outputs as in 

productive efficiency analysis while in other cases they reflect different aspects of 

performance as in the construction of composite indicators.  
2 The distance-based method has been employed previously by Wu, Sun and Liang 

(2012) for aggregating cross efficiencies.  It may be considered as a modification of 

Wang and Wang (2013) weighted least-square deviation approach.  
3  According to Kao et al. (2008), when the values of the performance indicators are 

normalized in the range of [0,1] then it is necessary to have the sum of the resulting 

BoD weights to be greater than or equal to one.    
4  If evaluation scores and ranks vary considerably across possible ordering schemes 

then an overall measure may not be so useful but it is still preferable than relying on 

the results of a particular ordering scheme.   

5  Somewhat different approaches are used by Ladhari, Babai and Lajili (2016), i.e. a 

constructive order classification algorithm, and Li et al. (2018), i.e., stochastic multi-

criteria acceptability analysis, based on most and least favorable evaluation under 

each descending order scheme. 
6   This normalization presumes that all indicators are “good” in the sense that higher 

values mean better performance.  If some indicators are “bad” in the sense that lower 

values mean better performance, one should then used the following normalization: 

𝑦 = max 𝐼 − 𝐼 / max 𝐼 − min 𝐼 . 

7  If however a DMU performs well on all indicators then the weighting scheme does 

not really matter. 
8  Ramanathan (2006) initially considered four classification criteria but Ng (2007) 

disregarded the criterion of critical factor (1, 0.5 and 0.01 for very-, moderate- and 

non-critical) because as a categorical variable is not suitable for linear optimization 

models. 

9  Notice that each of the aforementioned efficient items gets the score of one under 

two ordering schemes.   
10 We have only small differences in the estimated overall measure but no differences 

in the classification status compared to Zheng et al. (2017).   
11   Each method identifies nine different average criteria weights profiles; see Tables 

7, 9, 10 and 11.  Four of them are assigned to a single item, namely items #2, #8, #32 
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and #41, one to three items, namely items #1, #4 and #5, two to four items each, 

namely items #3, #6, #7 and #11 and items #10, #25, #27 and #30, and one to almost 

half of the items (23 out of 47), namely items #9, #12, #13, #16, #17, #18, #19, #20, 

#21, #22, #24, #26, #28, #31, #33, #34, #36, #37, #39, #40, #43, #45, #46 and #47.  

The values of average criteria weights in these profiles differ across methods but the 

items in each profile remain the same in all methods.  For example, the 23 items with 

average criteria weights of (0.218, 0.177, 0.601) in the Shannon entropy method are 

the same 23 items with average criteria weights of (0.193, 0.193, 0.610) in the partial 

average cross-weight method and the 23 items with average criteria weights of (0.173, 

0.288, 0.534) in the distance-based method and the 23 items with average criteria 

weights of (0.195, 0.178, 0.623) in the maximizing deviations method.  

12  In the last two columns we reproduce the results of Fu et al. (2016).  

13  We have only small differences in the estimated overall measure but no differences 

in the classification status compared to Wu et al. (2018).   


