
Noname manuscript No.
(will be inserted by the editor)

A triangulation and fill-reducing initialization
procedure for the simplex algorithm

Nikolaos Ploskas · Nikolaos V.
Sahinidis · Nikolaos Samaras

Received: date / Accepted: date

Abstract The computation of an initial basis is of great importance for sim-
plex algorithms since it determines to a large extent the number of iterations
and the computational effort needed to solve linear programs. We propose
three algorithms that aim to construct an initial basis that is sparse and will
reduce the fill-in and computational effort during LU factorization and up-
dates that are utilized in modern simplex implementations. The algorithms
rely on triangulation and fill-reducing ordering techniques that are invoked
prior to LU factorization. We compare the performance of the CPLEX 12.6.1
primal and dual simplex algorithms using the proposed starting bases against
CPLEX using its default crash procedure over a set of 95 large benchmarks
(NETLIB, Kennington, Mészáros, Mittelmann). The best proposed algorithm
utilizes METIS [30], produces remarkably sparse starting bases, and results in
5% reduction of the geometric mean of the execution time of CPLEX’s pri-
mal simplex algorithm. Although the proposed algorithm improves CPLEX’s
primal simplex algorithm across all problem types studied in this paper, it
performs better on hard problems, i.e., the instances for which the CPLEX
default requires over 1, 000 seconds. For these problems, the proposed algo-
rithm results in 37% reduction of the geometric mean of the execution time of
CPLEX’s primal simplex algorithm. The proposed algorithm also reduces the

N. Ploskas
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
USA
E-mail: nploskas@andrew.cmu.edu

N. V. Sahinidis
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
USA
Tel.: +1 (412) 268-3338, Fax: +1 (412) 268-7139
E-mail: sahinidis@cmu.edu. Address all correspondence to this author.

N. Samaras
Department of Applied Informatics, University of Macedonia, Thessaloniki 54636, Greece
E-mail: samaras@uom.gr

2 Nikolaos Ploskas et al.

execution time of CPLEX’s dual simplex on hard instances by 10%. For the in-
stances that are most difficult for CPLEX, and for which CPLEX experiences
numerical difficulties as it approaches the optimal solution, the best proposed
algorithm speeds up CPLEX by more than 10 times. Finally, the proposed
algorithms lead to a natural way to parallelize CPLEX’s dual simplex code
with speedups of 1.2 and 1.3 on two and four cores, respectively.

Keywords Linear programming · Revised simplex algorithm · Initial basis ·
Crash procedure

1 Introduction

Since the introduction of the simplex algorithm in 1947 [9,10], Linear Pro-
gramming (LP) has been widely used in many application areas in science and
engineering and led to the genesis of the mathematical programming commu-
nity [31]. Since that time, a variety of algorithmic and computational tech-
niques have been developed to improve the computational performance of the
simplex algorithm:

– presolve methods that reduce the problem size [47,36,24] (for a review,
see [3]).

– scaling techniques that improve the numerical behavior of the simplex al-
gorithm and reduce the number of iterations required to solve LPs [8,45,
17] (for a review, see [43]).

– pivoting rules that reduce the number of simplex iterations required to
solve LPs [26,19,44] (for a review, see [42]).

– basis factorization and update methods that improve the numerical behav-
ior of the simplex algorithm and reduce its execution times [33,20,22] (for
reviews, see [15,16]).

The simplex algorithm starts with a feasible basis and uses pivot operations
in order to preserve feasibility of the basis and guarantee monotonicity of the
objective value. In some very simple cases, a basic feasible solution may be
available.

The quality of the initial basis greatly affects the execution time, the num-
ber of iterations, and the required storage of the algorithm’s data structures [5,
23,34,35,40]. The aim of the crash procedures is to find an initial basis that: (i)
is close to optimal, (ii) is sparse, (iii) will reduce the subsequent fill-ins of the
LU factorization, (iv) will reduce the execution time per iteration, and (v) will
reduce the number of iterations. Crash procedures may sometimes increase the
number of iterations but they may also achieve a decrease in the time per iter-
ation and the overall execution time. Most crash procedures use triangulation
and sparsification concepts. Considering that the initial basis will be factorized
using LU decomposition, most crash procedures form a nearly-triangular and
sparse basis that is likely to limit the number of subsequent fill-ins.

Considerable attention has been given to the initialization of the simplex
algorithm since its conception. Most linear programming textbooks [7,4,34]

Initialization of the simplex algorithm 3

present only simple initialization procedures, such as the all-artificial and the
slack-artificial basis. Twelve different initialization techniques have been de-
veloped for general LPs; six additional techniques have been developed for LPs
with special structure. Most notably, advanced crash procedures for initializ-
ing the simplex algorithm have been proposed in [6,37,23,5,35]. Initialization
procedures that can be applied in special cases or in modified simplex-type al-
gorithms have been presented in [25,32,28,38,1,39]. All these crash procedures
will be reviewed in detail in Section 2.

This paper proposes new methods for initializing the simplex algorithm.
The overall goal of these methods is to exploit the concepts of triangulation
and sparsification in order to create a nearly-triangular and sparse basis that
will limit the number of fill-ins of the LU factors of the bases generated by
the simplex algorithm. The triangulation step is achieved via permutation of
column singletons of the LP problem matrix to identify a maximal submatrix
that includes columns of the identity matrix. The sparsification step relies on
fill-reducing strategies that have been devised to minimize the maximum po-
tential fill-in in LU factorization procedures. These fill-reducing strategies have
been designed for factorizing symmetric matrices in the context of LU factor-
ization. However, for crash procedures based on these strategies, the impact
on the performance of modern simplex codes is unknown. Given the obvious
relative advantages and disadvantages of starting points that are sparse but
far from optimal versus starting points that are less sparse but nearly-optimal,
we propose to investigate the impact of these strategies computationally. We
thus apply them to the nonsingleton columns of the constraint matrix for the
purpose of supplementing column singletons with additional columns that are
likely to lead to minimal fill-in in the subsequent LU factorization and update
procedures during simplex iterations. In general, finding a permutation ma-
trix that minimizes fill-in is NP-complete [46]. For this reason, heuristics are
used to find good orderings. In this paper, we experiment with three differ-
ent fill-reducing ordering methods: (i) COLAMD [13], (ii) AMD [2], and (iii)
METIS [30]. Even though these techniques have not been considered in the
numerical linear algebra of the simplex algorithm, we will demonstrate that
they can provide starting bases that, in comparison to existing implementa-
tions, are sparser and reduce the fill-in and computational effort during LU
factorization and updates for many LPs.

The remainder of this paper is organized as follows. In Section 2, we re-
view procedures for finding an initial basis. Section 3 presents the proposed
methods. Section 4 presents results from an extensive computational study
that compares the performance of the proposed methods against the default
CPLEX crash procedure. Conclusions are provided in Section 5.

2 Review of crash procedures

The aim of a crash procedure is to find an initial basic solution. The starting
basis may be feasible or infeasible. In case the basis is feasible (lB ≤ xB ≤ uB ,

4 Nikolaos Ploskas et al.

where B is the set of the basic variables, l and u are the lower and upper
bounds of the variables) simplex algorithms can use it as a starting solution
and proceed to find a solution of the problem. On the other hand, if the initial
basis is not feasible, different methods can be used to find a basic feasible
solution. Three methods are primarily used: (i) the two-phase method, (ii) the
big-M method, and (iii) the single artificial variable method. Modern imple-
mentations of the simplex algorithm use the two-phase method.

Let’s assume that the LP is in the so called computational form:

min cTx

s.t. Ax = b

l ≤ x ≤ u

where c, l, x, u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and T denotes transposition. Assume
that A has full row rank and contains (implicitly) an identity matrix.

The two-phase method adds an artificial variable to each constraint and
solves an auxiliary LP in Phase I:

min eT y

s.t. Ax+ Imy = b

x, y ≥ 0

where e ∈ Rm is a vector of ones and Im is an identity matrix of size m×m.
The auxiliary LP is solved using the simplex algorithm. If y 6= 0 at optimality,
then the original LP is infeasible. If y = 0, then there are two possibilities:

– y = 0 and no auxiliary variable is in the basis: in this case, we have iden-
tified a basic feasible solution x = [xB , xN]

T
, where B is the set of the

basic variables and N is the set of the nonbasic variables. The nonzero
elements in x form xB ; the remaining form xN . We can solve the original
LP starting with this basic feasible solution after eliminating the artificial
variables and the corresponding columns from the problem.

– y = 0 and at least one auxiliary variable is still in the basis: in this case, we
have identified a degenerate solution to the auxiliary problem. We remove
the artificial variables from the basis. If the lth variable is an artificial
variable, examine the lth element of the columns A−1

B A.j , j = 1, · · · , n. If
the lth element of the jth column is nonzero, then apply a change of basis
with the lth entry serving as the pivot element. The lth basic variable exits
the basis and variable xj enters the basis.

If the initial basis is not feasible, LP solvers search for a feasible point
during Phase I. Hence, a crash procedure that produces feasible starting bases
avoids Phase I and may lead to fewer simplex iterations. Nonetheless, the
problem of finding a feasible point has the same complexity bound as the
linear programming problem [41].

The simplest initial basis is the all-artificial basis or all-logical basis, pre-
sented in most linear programming textbooks [7,4,34]. Artificial variables are

Initialization of the simplex algorithm 5

added to all constraints and the initial basis consists of the artificial vari-
ables. The all-artificial basis is extremely simple and has three distinct advan-
tages [34]: (i) its creation is instantaneous, (ii) the LU decomposition of the
starting basis (I) is available, and (iii) the first iterations are very fast as the
operations utilize a very sparse LU factorization. Another simple initial ba-
sis is the slack-artificial basis [5]. Initially, we add slack and surplus variables
to all inequality constraints. Then, we add artificial variables to equality con-
straints and inequality constraints of the type ≥. The initial basis is formed by
the slack variables added in inequality constraints of type ≤ and the artificial
variables. The slack-artificial basis is better than the all-artificial basis since
it adds fewer artificial variables and solves a smaller LP in Phase I. The tech-
niques discussed in this paragraph are known to lead to substantially larger
numbers of iterations than other initialization techniques.

A variant of the slack-artificial initial basis is the feasible slack basis [5]. In
this method, we add slack and surplus variables to all inequality constraints.
Then, we add artificial variables to all constraints and form an initial basis
consisting of only the artificial variables. Next, available slacks that are ini-
tially nonnegative replace the artificial variables in the basis. Bixby [5] also
proposed an approach to create a sparse and well-behaved basis with as few
artificial variables as possible. The generated basis includes all slack variables.
The remainder of the structural variables are assigned a preference order of
inclusion in the basis; this preference order aims to place the variables with the
most freedom at the start of the list using the objective function to break ties.
Then, a heuristic procedure selects the variables that will be included in the
basis aiming to form a nearly triangular basis. Bixby’s computational results
suggested that his basis can greatly reduce the number of iterations, especially
for easy problems, but it is generally less effective for harder problems.

Carstens [6] classifies crash procedures into two classes: GAIN switch on
and GAIN switch off. In the GAIN switch off case, the objective function
is ignored and the starting basis is chosen based on sparsity grounds alone.
Carstens assumes that a starting set of basic variables is given as input to
the crash procedure. It may consist entirely of artificial variables in case there
is no information about selecting basic variables. At each iteration of these
crash procedures, a pivot element aij is selected to replace column i of B with
column j of A. If column j has cj nonzeros and row i has ri nonzeros, Carstens
discusses three different ways to select a pivot element:

– order the nonbasic columns in order of increasing cj and choose the pivot
element aij to be a nonzero that minimizes ri.

– order the rows in order of increasing ri and choose the pivot element aij
to be a nonzero that minimizes cj for j nonbasic.

– consider the nonzeros in increasing order of the count (ri − 1) (cj − 1)
(Markowitz criterion for reinversion [33]).

In the GAIN switch on case, a basis change is made only if it leads to an
improvement in the objective function. Carstens recommends the use of the
GAIN switch off when the starting basis is totally or mostly artificial and the

6 Nikolaos Ploskas et al.

GAIN switch on when the starting basis includes few artificial variables. Reid
developed an algorithm, presented by Gould and Reid [23], that forms an up-
per triangular basis. In comparison to Carsten’s GAIN switch off algorithm, a
column that is chosen late in Reid’s algorithm is required to have a nonzero in
at least one row that has not yet been pivotal. Gould and Reid [23] proposed
a tearing crash procedure that aims to find an initial basis that is as feasible
as possible and can be calculated with a reasonable computational effort. The
approach relies on the P5 algorithm of Erisman et al. [18] and solves a series
of small LPs, the solution of which forms a basis for the initial LP. Maros and
Mitra [35] proposed four crash procedures: (i) CRASH(LTSF): a lower tri-
angular symbolic crash procedure designed for feasibility, (ii) CRASH(ADG):
an anti-degeneracy crash procedure that deals with LPs where a starting ba-
sis may lead to a primal degenerate solution, (iii) CRASH(ART): an artificial
removal technique used after CRASH(LTSF), and (iv) CRASH(SOR): an iter-
ative crash procedure based on Kaczmarz’s SOR algorithm [29]. MINOS [37]
contains a crash procedure where a pivot aij is selected if its row contains
zeros in all the columns that have so far been chosen as basic or if its column
contains zeros in all the rows that have been pivotal.

Al-Najjar and Malakooti [1] use a Phase I method that moves through
the interior of the feasible region to obtain an initial basic feasible solution.
Gülpinar et al. [25] proposed a method to construct an initial basis for LPs with
embedded pure network structures. Junior and Lins [28] estimate an optimal
(or near-optimal) basis by finding constraints which intersect the gradient
plane at minimal angles. Luh and Tsaih [32] developed a search direction
that combines the gradient direction and an internal pointing direction with
respect to the polyhedron forming the feasible region. Nabli [38] proposed a
method for constructing an initial feasible solution from an infeasible one. This
method operates without artificial variables and without any perturbation
in the objective function. Feasibility is obtained via a modification of the
structure of the simplex algorithm in the choice of the entering and leaving
variables. Nabli and Chahdoura [39] presented a crash procedure that does
not involve any artificial variables and can also detect redundant constraints
and infeasibility.

The majority of the state-of-the-art crash procedures focus on finding an
initial basis that is as close to optimality as possible without aiming to create
a sparse initial basis that will limit the number of fill-ins of the LU factors of
the bases generated by the simplex algorithm. In this paper, we investigate
whether it may be better–at least in certain cases–to rely on a crash procedure
that aims to choose an initial basis in a way that will be very sparse and nearly
triangular. Even though it is counter-intuitive that it would be advantageous
to use a crash procedure that ignores the objective function, a sparse and near
triangular initial basis is more likely to minimize the subsequent fill-ins during
the LU factorization of the simplex bases. All state-of-the-art LP solvers apply
such techniques to factorize bases in the course of the algorithm. Our proposal
is to utilize these techniques also for the construction of the initial basis and

Initialization of the simplex algorithm 7

investigate the computational impact of this approach on primal and dual
simplex algorithms.

3 The proposed algorithms

In this section, we present three algorithms to construct an initial basis for the
simplex algorithm. All proposed algorithms ignore the objective function and
the bounds of the variables and choose the initial basis in a way that it will
be very sparse and nearly triangular. The motivation of these algorithms is to
quickly find a starting basis that is likely to minimize subsequent fill-ins during
the LU factorization of the simplex bases. The first step in all algorithms is
to identify a maximal submatrix of A that is a diagonal. In particular, if a
column singleton aij exists, its column j is permuted to the left and its row i
is permuted to the top. Column j and row i are removed from A. Such singleton
columns must be present in the original constraint matrix A, not just in the
matrix remaining once pivoted rows and columns have been removed. The
process repeats until no more singletons exist, leading to[

A11 A12

0 A22

]
where A11 is a diagonal matrix whose diagonal entries are greater than the
smallest acceptable pivot value τ > 0. The computational effort of this pro-
cedure depends on the kinds of data structures used. In one implementation,
the time to find all singletons and permute them to the top left corner of
the constraint matrix is reported to be O(n + |A11| + |A12|) [13], where |A|
denotes the number of nonzeros of matrix A. If the sum of the number of ≤
type of constraints and the singleton columns in the original LP problem is
m, initialization stops here with a basis consisting of all slack variables and/or
variables with singleton columns.

Once singletons are removed, the remaining matrix A22 is ordered with a
fill-reducing ordering method. The goal of this procedure is to find a column
permutation of A22 so that subsequent factorization results in the least possible
fill-in in A22. The output of this procedure is a column permutation vector. We
use this column permutation vector to select the initial basis for the simplex
algorithm. The initial basis will be formed by the s singleton columns (0 ≤
s ≤ n, if s > m we select the first m singletons as the initial basis) and the
first m− s columns from the column permutation vector.

The column preordering is based solely on the nonzero pattern of A22.
Some methods order matrix A without forming ATA, while others form the
explicit pattern of ATA. The nonzero pattern of the symmetric n2×n2 matrix
AT

22A22 (where n2 is the number of columns of matrix A22, n2 ≤ n) can be
represented by a graph G0 =

(
V 0, E0

)
, where V 0 = {1, · · · , n2} are the nodes

and E0 are the edges of the graph. An edge (i, j) ∈ E0 if and only if aij 6= 0
and i 6= j. Since the matrix is symmetric, G0 is undirected. Figure 1 illustrates
an example matrix and its elimination graph G0.

8 Nikolaos Ploskas et al.

(a) Example matrix (b) Elimination graph

Fig. 1: Example matrix and its elimination graph

If A22 contains a dense (or nearly dense) row or column, the Markowitz
criterion will not chose this row or column until the final stages of the elim-
ination, thus limiting fill-in, which is consistent with our intent to produce a
sparse starting basis.

As already mentioned, because the problem of obtaining an ordering with
minimum fill-in is NP-complete, heuristics are applied for choosing the pivot
columns in LU factorization. In each factorization step, COLMMD [21] se-
lects as pivot the column that minimizes a loose upper bound on the external
row degree. AMD [2] is based on a bound on the external row degree that is
tighter than the COLMMD bound. The Markowitz rule [33] selects as pivot
the element aij that minimizes the product of the degrees of row i and col-
umn j. COLAMD [13] uses an initial COLMMD metric and an AMD metric
during the elimination phase. METIS [30] finds a fill-reducing ordering for a
symmetric sparse matrix via recursive nested dissection. Amestoy et al. [2]
performed a computational study in the context of minimum degree order-
ings for sparse Cholesky factorization and found that AMD is superior to the
COLMMD approximation. In addition, Davis et al. [13] compared the perfor-
mance of COLAMD, COLMMD, and AMD. Computational results showed
that, for square nonsymmetric matrices, COLAMD is much faster and pro-
vides better orderings than COLMMD. For rectangular matrices, COLAMD
is faster than COLMMD and AMD and finds orderings of comparable quality.
Hence, we selected COLAMD, AMD, and METIS to create variants of our
method. COLAMD orders matrix A without forming ATA, while AMD and
METIS need to form the explicit pattern of ATA. The asymptotic run times
of these ordering methods have no tight known bounds in terms of quantities
that can be readily calculated beforehand [11]. However, experimental results
presented in [12] showed that, in most cases, COLAMD and AMD take time
roughly proportional to the number of nonzeros in A and ATA, respectively.

All algorithms select the same singleton columns to include in the initial
basis. Their only difference is the ordering method. Therefore, the three vari-
ants of the proposed method are:

– Algorithm 1 applies COLAMD.

Initialization of the simplex algorithm 9

– Algorithm 2 applies AMD.
– Algorithm 3 applies METIS.

We also experimented with using the Markowitz [33] criterion to select
the basis but this approach leads to more simplex iterations. These results
are consistent with the results of Davis et al. [12], who also considered the
Markowitz criterion prior to the LU factorization in order to permute a matrix
and reduce the worst-case fill-in. They report that the Markowitz criterion
gave much worse orderings than COLAMD. In our case, these worse orderings
resulted in more simplex iterations.

The input to all three algorithms is the constraint matrix A and the output
is the basic list B. The basic steps of the aforementioned algorithms can be
described as follows:

Step 1. Set C = Ø, R = Ø and Q = Ø.
Step 2. Find the singletons in the constraint matrix A. A singleton is

a column j with a single nonzero aij whose magnitude is larger
than a given threshold τ . We set τ = 20 (m+ n) εmaxj ‖A∗j‖2,
where ε is the machine roundoff and maxj ‖A∗j‖2 is the largest
2-norm of any column of A. If a singleton aij exists and i /∈ R,
add column j to the set C and row i to the set R. If |C| = m, go
to Step 4; else, repeat this step until there are no more singletons.

Step 3. Apply COLAMD (for Algorithm 1), AMD (for Algorithm 2), or
METIS (for Algorithm 3) to submatrix A22 (A22 is a submatrix
of A by deleting rows in A that exist in set C and columns that
exist in set R). The resulting column permutation vector is stored
in set Q.

Step 4. The initial basic list is B formulated from the variables in set C
and the first m− |C| variables in set Q.

Note that we can create additional variants for each of the proposed meth-
ods if we permute the rows in R and columns in C of the constraint matrix
A to the top left corner. A preliminary computational study revealed that
these permutations result in more iterations and slower execution times of the
simplex algorithm. Hence, these variants will not be discussed further.

The proposed algorithms do not guarantee that the initial matrix will
be nonsingular since the ordering methods that are used (AMD, COLAMD,
METIS) do not choose the orderings in a way that the generated matrices
will be nonsingular. In fact, we were able to generate some trivial instances
for which the ordering methods generate an ordering that does make our algo-
rithm produce a singular initial matrix. However, the proposed method did not
generate a singular initial matrix for any of the benchmark problems we exper-
imented with (from NETLIB, Kennington, Mészáros, Mittelmann benchmark
libraries).

Figures 2 and 3 present the sparsity pattern of the constraint matrix A and
the initial basis using Algorithms 1 to 3 for problems pilot87 and qap15 from
NETLIB, respectively. All algorithms form nearly-triangular initial bases.

10 Nikolaos Ploskas et al.

(a) Constraint matrix A

0 500 1000 1500 2000
nz = 2752

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) Initial basis from Algo-
rithm 1

0 500 1000 1500 2000
nz = 2911

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(c) Initial basis from Algo-
rithm 2

0 500 1000 1500 2000
nz = 3298

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(d) Initial basis for Algo-
rithm 3

Fig. 2: Sparsity pattern of the constraint matrix A and the initial basis using
Algorithms 1 to 3 for problem pilot87 of the NETLIB set

(a) Constraint matrix A

0 2000 4000 6000 8000
nz = 24182

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(b) Initial basis from Algo-
rithm 1

0 2000 4000 6000 8000
nz = 18163

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(c) Initial basis from Algo-
rithm 2

0 2000 4000 6000 8000
nz = 23358

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(d) Initial basis for Algo-
rithm 3

Fig. 3: Sparsity pattern of the constraint matrix A and the initial basis using
Algorithms 1 to 3 for problem qap15 of the NETLIB set

4 Computational study

The aim of this computational study is to investigate the performance of the
simplex algorithm in conjunction with the proposed crash procedures. We give
the initial bases generated by all three algorithms as input to the CPLEX solver

Initialization of the simplex algorithm 11

and compare their performance against the CPLEX default crash procedure.
We do this using both the primal and the dual simplex algorithm.

All computations were performed on an Intel Xeon CPU E5-2660 v3 with
128 GB of main memory, a clock of 2.6 GHz, an L1 code cache of 32 KB
per core, an L1 data cache of 32 KB per core, an L2 cache of 256 KB per
core, and an L3 cache of 24 MB, running under Centos 7 64-bit. We con-
sidered a set of 150 medium-sized and large benchmark problems (NETLIB,
Kennington, Mészáros, Mittelmann) in preliminary runs. Then, we eliminated
the trivial problems, i.e., instances solved in less than one second with all the
algorithms considered in this paper when CPLEX presolve is disabled (“pre-
processing.presolve” option is set to 0). The final set of instances that we used
in this computational study includes 95 benchmark problems. On average, 6%
of the variables in the constraint matrix are singletons while 10% of the vari-
ables in the initial basis are singletons. Table S1 in the Online Supplement
presents the number of constraints, variables, and nonzeros for each of the
benchmark problems. We used CPLEX to presolve all instances and exported
the MPS files. We then generated the initial bases for each presolved prob-
lem using the three algorithms and stored them in BAS files (MPS basis files,
known as BAS files, that contain the information needed to define an initial
basis). We gave the generated BAS files as input to CPLEX and compared the
performance of the solver against that of the CPLEX default crash procedures.
We did this comparison for both the primal and the dual simplex algorithm.
We used default values for all algorithmic options of CPLEX. An execution
time limit of 15, 000 seconds was imposed on all runs.

In the tables and figures below, the following abbreviations are used: (i)
Time: CPU time to solve a problem with CPLEX, and (ii) Tit: total iterations.
The time to construct an initial basis with the proposed algorithms is negligible
in comparison to the total time needed to solve the instances. Algorithm 1
(based on COLAMD) is faster than Algorithms 2 (based on AMD) and 3
(based on METIS).

Table 1 presents the average value (shifted geometric mean over the entire
collection of test problems) of Time and Tit with four different initialization
algorithms followed by the application of the primal CPLEX routine to the
presolved problems. For the nonnegative numbers a1, · · · , ak ∈ R+ and a shift
s ∈ R+, the average is defined by

γs (a1, · · · , ak) =

(
k∏

i=1

(ai + s)

) 1
k

− s

We use a shift of 10 for the execution time and 1, 000 for the number of
iterations in order to decrease the influence of the easy instances in the mean
values.

Tables S2–S5 in the Online Supplement present the detailed results for
each problem and algorithm combination. As seen in Tables 1 and S2–S5,
Algorithm 3, based on METIS, performs better than all the other proposed
methods on average. All the proposed methods require less CPU time and

12 Nikolaos Ploskas et al.

fewer iterations than the default CPLEX crash procedure. Primal CPLEX
using Algorithm 3 results in 5% reduction of the geometric mean of the ex-
ecution time of CPLEX’s primal simplex algorithm. Moreover, the proposed
methods are significantly faster on instances for which the CPLEX default re-
quires over 1, 000 seconds (13 problems). For these problems, primal CPLEX
using Algorithm 3 is 37% faster than primal CPLEX using its default crash
procedure.

Figures 4 and 5 present performance profiles [14] based on the execution
time and the number of iterations, respectively, of the primal simplex algo-
rithm using the three proposed algorithms and the default crash procedure.
Performance profiles are displayed in logarithmic scale with base 2. Algorithm
3, based on METIS, performs better than the other proposed methods and
the default crash procedure. In particular, Algorithm 3 is better than the
other methods in the interval [1.1, 7]. Moreover, Algorithm 3 is faster than
the CPLEX default crash procedure on 64 out of 95 problems and appears
dominant in the performance profile. Algorithm 3 performs 4% fewer Phase
I iterations, 2% fewer Phase II iterations, and 6% fewer total iterations than
the CPLEX crash procedure. The proposed algorithm performs fewer Phase I
iterations on 51 instances, fewer Phase II iterations on 48 instances, and fewer
total iterations on 47 instances. Algorithm 3 finds a better starting solution
(closer either to feasibility or optimality) than the CPLEX crash procedure
on 61 problems. Additionally, Algorithm 3 finds the optimal solution on one
problem, a basic feasible solution on six problems and a nearly basic feasible
solution (the percentage of Phase I iterations to total iterations is less than
10%) on 18 problems, while the CPLEX crash procedure finds a basic feasible
solution on one problem and a nearly basic feasible solution on 27 problems.
In addition, Algorithm 3 constructs an initial basis that is, on average, four
times sparser than that of the CPLEX crash procedure.

Although the performance of Algorithm 3 is consistent on both easy and
hard instances, it results in significant reductions when solving hard instances.
The performance of CPLEX with its default crash procedure deteriorates for
large and hard problems. More specifically, there are some problems, e.g.,
neos2, ns1687037, nug08-3rd, and nug20, where CPLEX experiences numeri-
cal difficulties as it approaches the optimal solution. These difficulties caused
CPLEX to change the value of the Markowitz tolerance and resort to new
Phase I iterations in order to restore feasibility. CPLEX may start again from
an infeasible solution more than once during the solution of a problem, e.g.,
four and six times for the ns1687037 and nug20 instances, respectively. CPLEX
also experienced numerical issues when starting from a solution generated by
one of the proposed algorithms. In all such cases, however, CPLEX needed
only a few iterations to restore a feasible solution. Therefore, the proposed
methods seem to have the ability to avoid numerical issues encountered by the
starting points obtained through the current default initialization algorithms
in CPLEX.

Table 2 presents a summary of the results for the dual simplex algorithm.
Detailed results with all problem and algorithm combinations are provided in

Initialization of the simplex algorithm 13

Table 1: Shifted geometric times and iterations for the primal simplex algo-
rithm using shifted geometric mean

Algorithm Test set Time Tit

CPLEX using Algorithm 1

All problems 56 41,921

> 1,000 sec 3,334 308,677

CPLEX using Algorithm 2

All problems 58 41,639

> 1,000 sec 3,626 348,100

CPLEX using Algorithm 3

All problems 55 40,485

> 1,000 sec 2,885 300,005

CPLEX using default crash procedure

All problems 58 43,156

> 1,000 sec 4,606 348,349

95 problems in total and 13 hard problems (problems for which CPLEX using the default
crash procedure needs more than 1, 000 seconds to solve)

0 1 2 3 4 5 6 7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Algorithm 1
Algorithm 2
Algorithm 3
CPLEX crash procedure

Fig. 4: Performance profiles comparing the three algorithms and default crash
procedure based on the execution time for the primal simplex

Tables S6–S9 in the Online Supplement. In this case, CPLEX’s dual simplex
algorithm using the default crash procedure is 5% faster than CPLEX’s dual
simplex algorithm using Algorithm 3. However, Algorithm 3 is significantly
better on instances for which the CPLEX default requires over 1, 000 seconds
(8 problems). For these instances, dual CPLEX using Algorithm 3 is 10% faster
than dual CPLEX using its default crash procedure. In addition, Algorithm 3
is performing better than Algorithms 1 and 2.

Figures 6 and 7 present performance profiles based on the execution time
and the number of iterations, respectively, of the dual simplex algorithm using
the three proposed algorithms and the default crash procedure. CPLEX default

14 Nikolaos Ploskas et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Algorithm 1
Algorithm 2
Algorithm 3
CPLEX crash procedure

Fig. 5: Performance profiles comparing the three algorithms and default crash
procedure based on the number of iterations for the primal simplex algorithm

crash procedure has the highest probability of being the fastest solver for
values of τ in the interval [0.5, 7]. CPLEX using its default crash procedure
is 5% faster than CPLEX using Algorithm 3. The reduction to the execution
time that the proposed algorithms offer is more pronounced on hard instances.
CPLEX using Algorithm 3 performs 10% faster than CPLEX using its default
crash procedure.

Using dual simplex, the CPLEX crash procedure is faster than Algorithm 3
on 52 out of 95 instances. CPLEX crash procedure performs 52% more Phase
I iterations, 1% more Phase II iterations, and 11% more total iterations in
comparison to Algorithm 3. The CPLEX crash procedure also finds a feasible
solution on the majority of the instances. Algorithm 3 performs fewer Phase I
iterations on 28 instances, fewer Phase II iterations on 39 instances, and fewer
total iterations on 33 instances. Taking into account only the hard instances,
Algorithm 3 results in great reductions compared to the CPLEX dual simplex
algorithm. Similar to the primal simplex algorithm, the performance of the
CPLEX dual simplex algorithm with the CPLEX default crash procedure
deteriorates for large and hard problems. It is worth mentioning here that
CPLEX’s barrier solver can solve the instance nug20 in a few minutes.

Table 3 presents the average performance of the primal simplex algorithm
using Algorithm 3 compared to the performance of the dual simplex algorithm
using CPLEX’s default crash procedure in terms of execution time, number
of iterations, and density of the generated basis. CPLEX’s primal simplex
algorithm initialized with Algorithm 3 is 7% faster than the default CPLEX
algorithm. This is correlated with the observed 73% reduction in the density of
the generated initial bases. For the instances for which the dual simplex algo-

Initialization of the simplex algorithm 15

Table 2: Shifted geometric means of times and iterations for the dual simplex
algorithm

Algorithm Test set Time Tit

CPLEX using Algorithm 1
All problems 51 27,854
> 1,000 sec 8,674 333,956

CPLEX using Algorithm 2
All problems 50 26,901
> 1,000 sec 8,782 327,671

CPLEX using Algorithm 3
All problems 50 27,281
> 1,000 sec 7,074 306,132

CPLEX using default crash procedure
All problems 48 24,345
> 1,000 sec 7,844 291,366

95 problems in total and 8 hard problems (problems for which CPLEX using the default
crash procedure needs more than 1, 000 seconds to solve)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Algorithm 1
Algorithm 2
Algorithm 3
CPLEX crash procedure

Fig. 6: Performance profiles comparing the three algorithms and default crash
procedure based on the execution time for the dual simplex algorithm

rithm with CPLEX’s default crash procedure needs more than 1, 000 seconds
to solve, CPLEX’s primal simplex algorithm using Algorithm 3 is 25% faster
than the default CPLEX algorithm. Even though CPLEX with Algorithm
3 performs more iterations than the default CPLEX algorithm, Algorithm 3
spends significantly less time per iteration than CPLEX with the default crash
procedure, for both primal and dual simplex.

The above computational results suggest there are many problems for
which the proposed algorithms outperform the CPLEX default initialization
scheme, while the latter is still useful, especially for easier problems. This
observation suggests an opportunity to combine all these algorithms in a spec-
ulative parallelization approach on computing equipment with a small num-
ber of cores. CPLEX has no parallel simplex facility. Hence, we will compute

16 Nikolaos Ploskas et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Algorithm 1
Algorithm 2
Algorithm 3
CPLEX crash procedure

Fig. 7: Performance profiles comparing the three algorithms and default crash
procedure based on the number of iterations for the dual simplex algorithm

Table 3: Average performance of the best proposed method and the best
CPLEX crash procedure

Algorithm Test set Time Tit Density

Primal CPLEX
using Algorithm 3

All problems 838 148,835 0.11%
> 1,000 sec 7,378 597,926 0.01%

Dual CPLEX
using default crash procedure

All problems 903 90.884 0.50%
> 1,000 sec 9,825 442,275 0.01%

Speedup of the best proposed method

over the best CPLEX crash procedure
All problems 7% -39% 73%
> 1,000 sec 25% -26% 0%

95 problems in total and 8 hard problems (problems for which CPLEX with its default
crash procedure needs more than 1, 000 seconds to solve)

speedups due to the utilization of multiple cores to run different variants of
the proposed methods versus running the dual CPLEX algorithm on a single
core. Table 4 presents the shifted geometric means of the execution times when
using multiple cores, each core running CPLEX with a different variant of the
crash procedure in a task-dependent fashion. The default dual CPLEX using
the default CPLEX crash procedure (running on one core) needs 48 seconds
on average to solve the problems in our testset. Running the primal and dual
CPLEX using Algorithm 3 on two cores and taking the best performance of
each variant results in a mean speedup of 1.2 over CPLEX’s dual simplex al-
gorithm. The execution of the primal and dual CPLEX using the default crash
procedure and Algorithm 3 (running on four cores) results in a mean speedup
of 1.3 over CPLEX’s dual simplex algorithm. These speedups are comparable
to those of state-of-the-art parallel simplex solvers for a similar number of
cores [27].

Initialization of the simplex algorithm 17

Table 4: Shifted geometric means of wall-clock times from runs on multiple
cores

Algorithm Time

Dual CPLEX
using default crash procedure 48

Best of primal and dual CPLEX

using Algorithm 3 40
Best of primal and dual CPLEX

using default crash

procedure or Algorithm 3 37

5 Conclusions

We presented three algorithms that construct a nearly-triangular and sparse
initial basis for the simplex algorithm. The initial basis is artificial-free and
includes as many structural variables as possible. The aim of the proposed
methods is to reduce the subsequent fill-ins of the LU factorization, the number
of iterations, and the computational effort at each iteration. We experimented
with various ordering methods in order to create a sparse nearly-triangular
initial basis for the simplex algorithm. Using a collection of 95 benchmark LPs,
we found that the best way to speed up the primal and dual simplex algorithms
for CPLEX is to utilize Algorithm 3, which forms a starting basis using all
available column singletons plus the columns obtained from the application of
METIS to the remainder of the LP matrix.

Algorithm 3 results in 5% average reduction of the execution time of
CPLEX’s primal simplex algorithm. Although the proposed algorithm reduces
CPLEX’s execution time on the majority of instances, it is significantly faster
than the CPLEX default crash procedure on hard instances. Taking into ac-
count only the hard instances (instances that CPLEX needs more than 1, 000
seconds to solve), Algorithm 3 results in 37% average reduction of the ex-
ecution time of CPLEX’s primal simplex algorithm. CPLEX’s dual simplex
algorithm using its default crash procedure is 5% faster than CPLEX’s dual
simplex algorithm using Algorithm 3. CPLEX using Algorithm 3 is 10% faster
than CPLEX using its default crash procedure on instances for which CPLEX
needs more than 1, 000 seconds to solve.

Finally, the proposed algorithms lend themselves to speculative paralleliza-
tion of the simplex algorithm. With respect to the dual CPLEX with default
initialization, the proposed algorithms lead to speedups of 1.2 and 1.3 on two
and four cores, respectively.

References

1. Al-Najjar, C., Malakooti, B.: Hybrid-LP: Finding advanced starting points for simplex,
and pivoting LP methods. Computers & Operations Research 38, 427–434 (2011)

2. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algo-
rithm. SIAM Journal on Matrix Analysis and Applications 17, 886–905 (1996)

18 Nikolaos Ploskas et al.

3. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Mathematical Pro-
gramming 71, 221–245 (1995)

4. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific,
Boston, MA (1997)

5. Bixby, R.E.: Implementing the simplex method: The initial basis. ORSA Journal on
Computing 4, 267–284 (1992)

6. Carstens, D.M.: Crashing techniques. In W. Orchard-Hays (ed.), Advanced Linear-
Programming Computing Techniques, McGraw-Hill, New York, NY pp. 131–139 (1968)

7. Chvátal, V.: Linear Programming. W. H. Freeman, New York (1983)
8. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination.

Journal of the Institute of Mathematics and Its Applications 10, 118–124 (1972)
9. Dantzig, G.B.: Programming in a linear structure. Econometrica 17, 73–74 (1949)

10. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Prince-
ton, NJ (1963)

11. Davis, T.A.: Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing
sparse QR factorization. ACM Transactions on Mathematical Software 38, 8–29 (2011)

12. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum
degree ordering algorithm. ACM Transactions on Mathematical Software 30, 353–376
(2004)

13. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: Algorithm 836: COLAMD, a column
approximate minimum degree ordering algorithm. ACM Transactions on Mathematical
Software 30, 377–380 (2004)

14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91, 201–213 (2002)

15. Elble, J.M., Sahinidis, N.V.: A review of LU factorization in the simplex algorithm.
International Journal of Mathematics in Operational Research 4, 319–365 (2012)

16. Elble, J.M., Sahinidis, N.V.: A review of the LU update in the simplex algorithm.
International Journal of Mathematics in Operational Research 4, 366–399 (2012)

17. Elble, J.M., Sahinidis, N.V.: Scaling linear optimization problems prior to application of
the simplex method. Computational Optimization and Applications 52, 345–371 (2012)

18. Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, Jr., W.G.: A structurally stable modi-
fication of Hellerman-Rarick’s P 4 algorithm for reordering unsymmetric sparse matrices.
SIAM Journal on Numerical Analysis 22, 369–385 (1985)

19. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming.
Mathematical Programming 57, 341–374 (1992)

20. Forrest, J.J.H., Tomlin, J.A.: Updated triangular factors of the basis to maintain sparsity
in the product form simplex method. Mathematical Programming 2, 263–278 (1972)

21. Gilbert, J.R., Moler, C.B., Schreiber, R.: Sparse matrices in MATLAB: Design and
implementation. SIAM Journal on Matrix Analysis and Applications 13, 333–356 (1992)

22. Goldfarb, D.: On the Bartels-Golub decomposition for linear programming bases. Math-
ematical Programming 13, 272–279 (1977)

23. Gould, N.I.M., Reid, J.K.: New crash procedures for large systems of linear constraints.
Mathematical Programming 45, 475–501 (1989)

24. Gould, N.I.M., Toint, P.L.: Preprocessing for quadratic programming. Mathematical
Programming 100, 95–132 (2004)

25. Gülpinar, N., Mitra, G., Maros, I.: Creating advanced bases for large scale linear pro-
grams exploiting embedded network structure. Computational Optimization and Ap-
plications 21, 71–93 (2002)

26. Harris, P.M.J.: Pivot selection methods of the Devex LP code. Mathematical Program-
ming 5, 1–28 (1973)

27. Huangfu, Q., Hall, J.: Parallelizing the dual revised simplex method. Mathematical
Programming Computation 10, 119–142 (2018)

28. Junior, H.V., Lins, M.P.E.: An improved initial basis for the simplex algorithm. Com-
puters & Operations Research 32, 1983–1993 (2005)

29. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin In-
ternational de l’Academie Polonaise des Sciences et des Lettres 35, 355–357 (1937)

30. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)

Initialization of the simplex algorithm 19

31. Lenstra, J.K., Rinnoy Kan, A.H.G., Schrijver, A. (eds.): History of Mathematical Pro-
gramming. CWI North Holland, Amsterdam (1991)

32. Luh, H., Tsaih, R.: An efficient search direction for linear programming problems. Com-
puters & Operations Research 29, 195–203 (2002)

33. Markowitz, H.M.: The elimination form of the inverse and its application to linear
programming. Management Science 3, 255–269 (1957). (Originally at The RAND
Corporation, Research Memorandum RM-1452, 1955)

34. Maros, I.: Computational Techniques of the Simplex Method. Kluwer Academic Pub-
lishers, Boston, MA (2003)

35. Maros, I., Mitra, G.: Strategies for creating advanced bases for large-scale linear pro-
gramming problems. INFORMS Journal on Computing 10, 248–260 (1998)

36. Mészáros, C., Suhl, U.H.: Advanced preprocessing techniques for linear and quadratic
programming. OR Spectrum 25, 575–595 (2003)

37. Murtagh, B.A., Saunders, M.A.: MINOS 5.1 User’s Guide. Tech. rep., Department of
Operations Research, Stanford University, Stanford, CA (1987)

38. Nabli, H.: An overview on the simplex algorithm. Applied Mathematics and Computa-
tion 210, 479–489 (2009)

39. Nabli, H., Chahdoura, S.: Algebraic simplex initialization combined with the nonfeasible
basis methods. European Journal of Operational Research 245, 384—-391 (2015)

40. Pan, P.Q.: Linear programming computation. Springer-Verlag, Berlin (2014)
41. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-

plexity. Dover Publications (1998)
42. Ploskas, N., Samaras, N.: GPU accelerated pivoting rules for the simplex algorithm.

Journal of Systems and Software 96, 1–9 (2014)
43. Ploskas, N., Samaras, N.: A computational comparison of scaling techniques for linear

optimization problems on a graphical processing unit. International Journal of Com-
puter Mathematics 92, 319–336 (2015)

44. Terlaky, T., Zhang, S.: Pivot rules for linear programming: A survey on recent theoretical
developments. Annals of Operations Research 46, 203–233 (1993)

45. Tomlin, J.A.: An accuracy test for updating triangular factors. Mathematical Program-
ming Study 4, 142–145 (1975)

46. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods 2, 77–79 (1981)

47. Ye, Y.: Eliminating columns in the simplex method for linear-programming. Journal Of
Optimization Theory and Applications 63, 69–77 (1989)

20 Nikolaos Ploskas et al.

ONLINE SUPPLEMENT: Detailed computational results

In the tables below, the following abbreviations are used:
– Time: CPU time to solve a problem with CPLEX,
– PhIit: Phase I iterations,
– PhIIit: Phase II iterations,
– Tit: total iterations,
– Infeas: infeasibility or scaled infeasibility (if the problem has been scaled)

of the initial solution (if the starting basis is not feasible),
– Feas: absolute difference between the initial solution objective value and

the optimal (if the starting basis is feasible), and
– Den: density of the initial basis.

Table S1: Statistics of the benchmark problems

Problem Constraints Variables Nonzeros
aa01 823 8,904 72,965
aa03 825 8,627 70,806
aa3 825 8,627 70,806
aa5 801 8,308 65,953
aa6 646 7,292 51,728

brazil3 14,646 23,968 133,184
buildingenergy 277,594 154,978 788,969

car4 16,384 33,052 63,724
chromaticindex1024-7 67,583 73,728 270,324

co5 5,774 7,993 53,661
co9 10,789 14,851 101,578

cont1 160,792 40,398 399,990
cont11 160,792 80,396 399,990

cq5 5,048 7,530 47,353
cq9 9,278 13,778 88,897

cre-b 9,648 72,447 256,095
cre-d 8,926 69,980 242,646

d2q06c 2,171 5,167 32,417
dano3mip 3,202 13,873 79,655

dbic1 43,200 183,235 1,038,761
dbir2 18,906 27,355 1,139,637
dfl001 6,071 12,230 35,632
ds-big 1,042 174,997 4,623,442

e18 24,617 14,231 132,095
ex10 69,608 17,680 1,162,000

ex3sta1 17,443 8,156 59,419
fit2p 3,000 13,525 50,284

fome13 48,568 97,840 48,568
fxm3 16 41,340 64,162 370,839
fxm4 6 22,400 30,732 248,989

Initialization of the simplex algorithm 21

ge 10,099 11,098 39,554
gen1 1,537 2,560 63,085
gen2 1,121 3,264 81,855
gen4 1,537 4,297 107,102
gen 769 2,569 63,085
gosh 3,792 10,733 97,231

irish-electricity 104,259 61,728 523,257
ken-13 28,632 42,659 97,246
ken-18 105,127 154,699 358,171

L1 sixm250obs 986,069 428,032 4,280,320
Linf 520c 93,326 69,004 566,193

l30 2,701 15,380 51,169
lpl3 10,828 33,538 100,377

maros-r7 3,136 9,408 144,848
model10 4,400 15,447 149,000

nemspmm1 2,372 8,622 55,586
nemswrld 7,138 27,174 190,907

neos1 131,581 1,892 468,009
neos2 132,568 134,128 685,087
neos3 512,209 6,624 1,542,816
neos 479,119 36,786 1,047,675

neos-5052403-cygnet 38,268 32,868 4,898,304
nl 7,039 9,718 41,428

ns1644855 40,698 30,200 2,110,696
ns1687037 50,622 43,749 1,406,739
ns1688926 32,768 16,857 1,712,128

nsct2 23,003 14,981 675,156
nsir2 4,453 5,717 150,599

nug08-3rd 19,728 20,448 139,008
nug12 3,192 8,856 38,304
nug15 6,330 22,275 94,950
nug20 15,240 72,600 304,800
osa-30 4,350 100,024 600,138
osa-60 10,280 232,966 1,397,793
p010 10,090 19,000 117,910

pds-100 156,243 505,360 1,086,785
pds-20 33,874 105,728 230,200
pds-40 66,844 212,859 462,128

physiciansched3-3 266,227 79,555 1,062,479
pilot87 2,030 4,882 73,152
pilot 1,441 3,652 43,167

pltexpa3 16 28,350 74,172 150,801
qap12 3,192 8,856 38,304
qap15 6,330 22,275 94,950
rail02 95,791 270,869 756,228

rail4284 4,284 1,092,610 11,279,748

22 Nikolaos Ploskas et al.

rat7a 3,136 9,408 268,908
s100 14,733 364,417 1,777,917

s250r10 10,962 273,142 1,318,607
savsched1 295,989 328,575 1,770,507

sc205-2r-1600 35,213 35,214 96,030
scfxm1-2r-256 37,980 57,714 213,159

self 960 7,364 1,148,845
seymourl 4,944 1,372 33,549
sgpf5y6 246,077 308,634 828,070
shs1023 133,944 444,625 1,044,725
square41 40,160 62,234 13,566,426
stat96v1 5,995 197,472 5,995
stat96v4 3,173 62,212 490,472
stocfor3 16,675 15,695 64,875

stormG2 1000 528,185 1,259,121 3,341,696
stp3d 159,488 204,880 662,128

supportcase10 165,684 14,770 555,082
truss 1,000 8,806 27,836

watson 2 352013 671861 1841028

Table S2: Results using the primal CPLEX after initialization with Algorithm
1

Problem Time PhIit PhIIit Tit Infeas Feas Den
aa01 1.98 7,851 10,742 18,593 6.31E+02 - 0.8966%
aa03 2.31 11,101 11,622 22,723 5.18E+02 - 0.8165%
aa3 2.01 5,366 17,935 23,301 4.47E+02 - 0.8165%
aa5 1.91 5,835 18,320 24,155 6.93E+02 - 0.8255%
aa6 1.31 3,723 15,289 19,012 4.44E+02 - 1.0577%

brazil3 27.06 45,134 17,092 62,226 5.71E+03 - 0.0347%
buildingen 244.46 53,800 184,658 238,458 4.81E+05 - 0.0005%

car4 0.27 0 4,061 4,061 - 5.48E+03 0.1684%
chrom1024-7 9.38 65,293 83 65,376 2.30E+04 - 0.0015%

co5 1.33 2,247 6,261 8,508 9.74E+03 - 0.0325%
co9 5.36 4,313 15,912 20,225 2.11E+04 - 0.0198%

cont1 734.33 43,262 827 44,089 1.45E+03 - 0.0074%
cont11 4,324.36 100,730 33,163 133,893 6.01E+02 - 0.0037%

cq5 0.96 2,690 5,982 8,672 1.13E+04 - 0.0310%
cq9 3.65 4,793 16,923 21,716 2.26E+04 - 0.0203%

cre-b 1.06 2,020 22,493 24,513 1.54E+04 - 0.0248%
cre-d 0.71 1,872 16,318 18,190 1.64E+04 - 0.0339%

d2q06c 1.10 1,475 5,295 6,770 3.39E+04 - 0.1191%
dano3mip 6.11 10,776 25,042 35,818 2.81E+04 - 0.1187%

Initialization of the simplex algorithm 23

dbic1 16.20 35 105,174 105,209 1.12E+02 - 0.0030%
dbir2 0.47 614 2,805 3,419 2.09E+02 - 0.0138%
dfl001 6.10 10,028 18,311 28,339 6.64E+03 - 0.0703%
ds-big 405.15 0 802,134 802,134 - 4.52E+04 0.4628%

e18 4.87 3,029 26,497 29,526 2.46E+02 - 0.0043%
ex10 254.21 76,366 0 76,366 6.25E+02 - 0.0016%

ex3sta1 18.23 12,446 200 12,646 7.96E+03 - 0.0347%
fit2p 1.21 295 11,582 11,877 8.16E+02 - 0.0333%

fome13 168.10 80,963 151,675 232,638 5.28E+04 - 0.0088%
fxm3 16 1.63 5,287 20,707 25,994 1.42E+06 - 0.0169%
fxm4 6 0.81 6,068 14,337 20,405 6.84E+05 - 0.0178%

ge 0.91 3,280 5,268 8,548 6.42E+05 - 0.0294%
gen1 1.38 3,654 465 4,119 8.55E+03 - 0.3857%
gen2 14.59 15,335 0 15,335 1.46E+04 - 0.1795%
gen4 15.07 12,214 2,340 14,554 1.39E+04 - 0.1355%
gen 1.29 3,654 465 4,119 8.55E+03 - 0.3857%
gosh 0.09 2,790 0 2,790 8.18E+02 - 0.1063%

irish-e 190.52 43,804 224,840 268,644 2.53E+03 - 0.0259%
ken-13 1.28 5,408 23,775 29,183 1.89E+05 - 0.0210%
ken-18 9.25 14,673 93,603 108,276 1.38E+06 - 0.0058%

L1 sixm 15,000.00 184,025 93,772 277,797 2.23E+09 - 0.0014%
Linf 520c 4,513.74 293,020 23,612 316,632 2.00E+08 - 0.0054%

l30 14.59 2,237 24,254 26,491 1.00E+00 - 0.0660%
lpl3 0.22 41 7,421 7,462 1.97E+03 - 0.0380%

maros-r7 1.09 266 4,570 4,836 9.31E+06 - 0.0465%
model10 3.36 9,964 15,362 25,326 3.48E+03 - 0.1939%

nemspmm1 1.14 3,658 4,377 8,035 3.55E+04 - 0.1795%
nemswrld 11.48 18,046 27,031 45,077 3.39E+02 - 0.1039%

neos1 152.79 1 75,313 75,314 0.00E+00 - 0.0008%
neos2 677.34 1 174,401 174,402 0.00E+00 - 0.0008%
neos3 15,000.00 873 293,989 294,862 7.90E+08 - 0.0002%
neos 305.50 220,969 11,921 232,890 1.53E+07 - 0.0002%

neos5052403 155.73 14,326 211,506 225,832 1.90E+04 - 0.0026%
nl 2.65 7,509 10,426 17,935 2.34E+04 - 0.0248%

ns1644855 632.58 414,675 48,742 463,417 3.54E+07 - 0.0045%
ns1687037 4,501.54 101,222 74,409 175,631 2.62E+05 - 0.0024%
ns1688926 194.11 1,033 83,459 84,492 4.52E+13 - 0.0068%

nsct2 0.30 808 1,646 2,454 8.11E+02 - 0.0128%
nsir2 0.18 1,541 1,322 2,863 6.16E+02 - 0.0434%

nug08-3rd 11,527.34 18,178 376,758 394,936 1.30E+01 - 0.0180%
nug12 22.35 7,334 20,640 27,974 2.00E+00 - 0.1000%
nug15 233.53 13,453 67,231 80,684 1.00E+00 - 0.0516%
nug20 14,430.12 75,479 828,646 904,125 4.70E+01 - 0.0207%
osa-30 0.18 1,595 2,797 4,392 3.11E+03 - 0.0234%
osa-60 0.71 2,373 6,874 9,247 5.65E+03 - 0.0098%
p010 0.42 2,364 559 2,923 4.24E+04 - 0.0406%

24 Nikolaos Ploskas et al.

pds-100 300.26 30,196 818,528 848,724 6.90E+07 - 0.0025%
pds-20 3.72 0 85,208 85,208 - 5.49E+09 0.0198%
pds-40 31.14 0 389,835 389,835 - 1.05E+10 0.0082%

psched3-3 128.22 94,521 51,496 146,017 3.58E+04 - 0.0021%
pilot87 2.90 4,124 3,155 7,279 1.62E+04 - 0.3400%
pilot 1.28 3,758 1,661 5,419 2.43E+04 - 0.2500%

pltexpa3 16 0.04 0 879 879 - 1.42E+01 0.0097%
qap12 21.00 6,031 20,302 26,333 1.00E+00 - 0.1000%
qap15 247.25 15,623 69,270 84,893 1.00E+00 - 0.0519%
rail02 2,565.18 64,800 308,688 373,488 2.29E+02 - 0.0045%

rail4284 1,877.47 453,733 2,483,833 2,937,566 3.94E+03 - 0.0353%
rat7a 5.36 244 6,417 6,661 9.32E+06 - 0.0465%
s100 28.00 26,891 306,381 333,272 1.42E+02 - 0.0069%

s250r10 30.94 5,921 278,525 284,446 8.00E+00 - 0.0131%
savsched1 99.56 4,181 181,457 185,638 6.67E+04 - 0.0003%

sc205-2r-1600 0.02 130 14 144 5.40E+04 - 0.0184%
scfxm1-2r-256 4.71 11,799 11,650 23,449 4.82E+05 - 0.0079%

self 0.01 0 0 0 - 0.00E+00 0.1042%
seymourl 1.18 3,191 3,219 6,410 4.36E+03 - 0.0215%
sgpf5y6 0.05 1,284 550 1,834 4.76E+08 - 0.0084%
shs1023 125.40 12,799 398,787 411,586 2.84E+06 - 0.0018%
square41 987.59 102,368 40,634 143,002 4.62E+03 - 0.0570%
stat96v1 209.02 6,138 772,530 778,668 2.50E-01 - 0.0402%
stat96v4 124.36 153,521 164,498 318,019 7.41E+03 - 0.1700%
stocfor3 0.48 855 6,517 7,372 9.25E+02 - 0.0197%

storm 1000 352.76 67,425 202,387 269,812 7.78E+03 - 0.0812%
stp3d 2,048.75 336,865 265,550 602,415 2.19E+03 - 0.0016%

support10 711.88 32,623 140,098 172,721 1.69E+03 - 0.0010%
truss 0.67 3,776 14,453 18,229 1.96E+03 - 0.2100%

watson 2 60.97 29,842 145,116 174,958 6.30E+05 - 0.0037%
Average 882.47 37,262 122,051 159,313 - - 0.1011%

Table S3: Results using the primal CPLEX after initialization with Algorithm
2

Problem Time PhIit PhIIit Tit Infeas Feas Den
aa01 2.15 6,754 11,443 18,197 8.09E+02 - 0.9359%
aa03 2.30 10,329 11,328 21,657 7.33E+02 - 0.8804%
aa3 2.08 5,053 17,374 22,427 5.18E+02 - 0.8804%
aa5 1.77 5,372 13,118 18,490 4.85E+02 - 0.7945%
aa6 1.41 3,334 15,881 19,215 4.28E+02 - 0.8938%

brazil3 29.35 47,551 17,551 65,102 1.12E+04 - 0.0347%
buildingen 110.28 59,380 122,738 182,118 4.81E+05 0.0004%

Initialization of the simplex algorithm 25

car4 0.28 0 4,061 4,061 - 5.48E+03 0.1684%
chrom1024-7 17.81 83,236 366 83,602 2.30E+04 0.0015%

co5 1.31 2,025 6,598 8,623 9.74E+03 - 0.0299%
co9 5.55 4,116 15,069 19,185 2.10E+04 - 0.0163%

cont1 764.66 43,262 827 44,089 1.45E+03 0.0037%
cont11 4,283.30 100,730 33,163 133,893 6.01E+02 0.0074%

cq5 1.14 2,690 5,982 8,672 1.13E+04 - 0.0310%
cq9 3.77 5,174 15,647 20,821 2.25E+04 - 0.0170%

cre-b 1.05 2,159 20,926 23,085 1.54E+04 - 0.0217%
cre-d 0.82 1,933 17,074 19,007 1.64E+04 - 0.0288%

d2q06c 1.15 1,686 5,275 6,961 3.41E+04 - 0.0734%
dano3mip 8.13 18,434 22,138 40,572 3.60E+04 - 0.0857%

dbic1 18.01 12 106,852 106,864 1.16E+02 - 0.0030%
dbir2 0.56 614 2,805 3,419 2.09E+02 - 0.0138%
dfl001 7.19 8,564 17,099 25,663 1.62E+04 - 0.0693%
ds-big 401.65 0 802,134 802,134 - 4.52E+04 0.4628%

e18 2.28 2,493 14,268 16,761 2.46E+02 - 0.0043%
ex10 243.32 73,052 0 73,052 5.81E+02 - 0.0016%

ex3sta1 0.23 0 99 99 - 6.31E+01 0.0347%
fit2p 1.07 295 11,582 11,877 8.16E+02 - 0.0333%

fome13 165.92 80,458 153,055 233,513 4.84E+04 - 0.0092%
fxm3 16 2.19 7,427 19,874 27,301 1.40E+06 - 0.0065%
fxm4 6 0.73 3,871 14,565 18,436 5.64E+05 - 0.0072%

ge 1.09 3,280 5,268 8,548 6.42E+05 - 0.0278%
gen1 1.33 3,712 527 4,239 8.91E+03 - 0.3857%
gen2 14.53 14,385 0 14,385 1.47E+04 - 0.1795%
gen4 17.68 12,898 2,245 15,143 1.42E+04 - 0.1355%
gen 1.51 3,712 527 4,239 8.91E+03 - 0.3857%
gosh 0.10 3,267 0 3,267 8.34E+02 - 0.0626%

irish-e 187.05 43,804 224,840 268,644 2.53E+03 - 0.0259%
ken-13 1.21 5,282 24,014 29,296 1.88E+05 - 0.0210%
ken-18 9.32 15,287 93,094 108,381 1.59E+06 - 0.0058%

L1 sixm 15,000.00 184,025 94,953 278,978 2.23E+09 - 0.0014%
Linf 520c 2,833.06 252,615 84,048 336,663 8.25E+07 - 0.0050%

l30 61.91 28 59,338 59,366 1.00E+00 - 0.0656%
lpl3 0.24 39 7,892 7,931 1.93E+03 - 0.0380%

maros-r7 1.23 266 4,570 4,836 9.31E+06 - 0.0465%
model10 4.03 7,820 17,901 25,721 4.91E+03 - 0.1732%

nemspmm1 1.21 3,924 4,691 8,615 3.29E+04 - 0.0656%
nemswrld 13.22 19,471 27,406 46,877 1.03E+04 - 0.1044%

neos1 154.13 1 75,313 75,314 0.00E+00 - 0.0008%
neos2 681.65 1 174,401 174,402 0.00E+00 - 0.0008%
neos3 15,000.00 811 360,732 361,543 1.00E+07 - 0.0002%
neos 306.65 209,397 12,539 221,936 1.53E+07 - 0.0002%

neos5052403 158.75 14,326 211,506 225,832 1.90E+04 - 0.0026%
nl 2.92 7,526 10,924 18,450 2.35E+04 - 0.0202%

26 Nikolaos Ploskas et al.

ns1644855 613.78 397,962 47,517 445,479 3.52E+07 - 0.0034%
ns1687037 5,221.70 101,222 74,409 175,631 2.62E+05 - 0.0024%
ns1688926 316.04 2,784 106,590 109,374 1.19E+07 - 0.0061%

nsct2 0.27 808 1,646 2,454 8.11E+02 - 0.0128%
nsir2 0.19 1,541 1,322 2,863 6.16E+02 - 0.0434%

nug08-3rd 10,468.26 21,740 315,043 336,783 1.50E+01 - 0.0182%
nug12 23.87 7,117 18,924 26,041 2.00E+00 - 0.1000%
nug15 281.57 23,166 67,490 90,656 1.09E+02 - 0.0501%
nug20 14,696.64 94,515 617,895 712,410 1.02E+02 - 0.0206%
osa-30 0.25 1,623 3,010 4,633 3.11E+03 - 0.0234%
osa-60 0.56 2,373 6,874 9,247 5.65E+03 - 0.0098%
p010 0.25 1,745 388 2,133 4.33E+04 - 0.0413%

pds-100 219.10 8,528 806,668 815,196 3.68E+08 - 0.0025%
pds-20 4.12 0 84,513 84,513 - 5.49E+09 0.0198%
pds-40 26.83 0 357,361 357,361 - 1.05E+10 0.0082%

psched3-3 126.59 90,240 55,204 145,444 8.08E+03 - 0.0015%
pilot87 3.05 4,088 3,098 7,186 1.62E+04 - 0.1100%
pilot 1.27 4,024 1,963 5,987 2.49E+04 - 0.1400%

pltexpa3 16 0.05 0 965 965 - 1.42E+01 0.0078%
qap12 26.10 7,546 19,996 27,542 4.00E+00 - 0.1000%
qap15 237.82 14,187 68,664 82,851 1.00E+00 - 0.0515%
rail02 1,402.02 65,460 229,116 294,576 2.52E+02 - 0.0048%

rail4284 1,881.26 453,733 2,483,833 2,937,566 3.94E+03 - 0.0353%
rat7a 5.41 244 6,417 6,661 9.32E+06 - 0.0465%
s100 23.59 33,211 260,855 294,066 4.31E+02 - 0.0069%

s250r10 43.81 21,782 308,599 330,381 2.61E+02 - 0.0131%
savsched1 98.69 4,181 181,457 185,638 6.67E+04 - 0.0003%

sc205-2r-1600 0.02 286 4 290 5.40E+04 - 0.0203%
scfxm1-2r-256 2.93 7,036 12,803 19,839 4.92E+05 - 0.0061%

self 0.01 0 0 0 - 0.00E+00 0.1042%
seymourl 1.28 3,191 3,219 6,410 4.36E+03 - 0.0215%
sgpf5y6 0.05 1,544 597 2,141 7.60E+06 - 0.0062%
shs1023 103.56 16,640 367,199 383,839 2.90E+06 - 0.0018%
square41 14,662.25 0 1,258,880 1,258,880 - 8.32E+02 0.0570%
stat96v1 278.68 4,530 912,753 917,283 5.00E-01 - 0.0312%
stat96v4 122.23 151,808 166,071 317,879 7.97E+03 - 0.1700%
stocfor3 0.59 2,073 6,382 8,455 7.47E+02 - 0.0158%

storm 1000 423.45 73,317 190,133 263,450 1.13E+04 - 0.0817%
stp3d 2,306.65 304,397 314,352 618,749 1.19E+02 - 0.0020%

support10 712.53 32,623 140,098 172,721 1.69E+03 - 0.0010%
truss 0.52 3,732 8,398 12,130 2.07E+03 - 0.2200%

watson 2 67.62 30,116 140,708 170,824 3.97E+05 - 0.0037%
Average 999.37 35,589 133,127 168,716 - - 0.0940%

Initialization of the simplex algorithm 27

Table S4: Results using the primal CPLEX after initialization with Algorithm
3

Problem Time PhIit PhIIit Tit Infeas Feas Den
aa01 1.85 7,380 11,516 18,896 7.29E+02 - 0.8966%
aa03 2.34 10,580 10,751 21,331 5.78E+02 - 0.9340%
aa3 1.86 5,714 16,234 21,948 5.50E+02 - 0.9340%
aa5 1.72 5,377 16,659 22,036 5.35E+02 - 0.8938%
aa6 1.41 3,301 15,720 19,021 3.86E+02 - 1.0939%

brazil3 26.95 43,845 18,102 61,947 5.63E+03 - 0.0389%
buildingen 108.85 59,380 122,738 182,118 4.81E+05 - 0.0006%

car4 0.25 0 4,061 4,061 - 5.48E+03 0.1684%
chrom1024-7 19.20 86,780 304 87,084 2.30E+04 - 0.0015%

co5 1.62 1,825 7,346 9,171 9.74E+03 - 0.0334%
co9 6.30 4,173 17,026 21,199 2.11E+04 - 0.0248%

cont1 761.70 43,262 827 44,089 1.45E+03 - 0.0074%
cont11 4,276.39 100,730 33,163 133,893 6.01E+02 - 0.0074%

cq5 0.99 2,690 5,982 8,672 1.13E+04 - 0.0310%
cq9 3.47 4,412 14,927 19,339 2.14E+04 - 0.0204%

cre-b 1.06 2,284 20,501 22,785 1.54E+04 - 0.0277%
cre-d 0.83 1,932 16,652 18,584 1.64E+04 - 0.0399%

d2q06c 0.90 1,382 5,086 6,468 3.29E+04 - 0.0958%
dano3mip 6.97 7,055 28,098 35,153 4.22E+04 - 0.1274%

dbic1 18.80 12 106,852 106,864 1.16E+02 - 0.0030%
dbir2 0.54 614 2,805 3,419 2.09E+02 - 0.0138%
dfl001 5.96 10,999 18,532 29,531 5.31E+03 - 0.0684%
ds-big 405.85 0 802,134 802,134 - 4.52E+04 0.4628%

e18 3.79 2,474 19,378 21,852 2.46E+02 - 0.0044%
ex10 296.50 85,224 0 85,224 6.30E+02 - 0.0016%

ex3sta1 0.27 0 98 98 - 6.31E+01 0.0347%
fit2p 1.08 295 11,582 11,877 8.16E+02 - 0.0333%

fome13 165.87 80,004 156,286 236,290 7.80E+04 - 0.0095%
fxm3 16 1.56 7,585 19,017 26,602 1.50E+06 - 0.0065%
fxm4 6 1.23 9,742 13,217 22,959 4.29E+05 - 0.0153%

ge 1.11 3,280 5,268 8,548 6.42E+05 - 0.0315%
gen1 1.34 3,435 517 3,952 8.72E+03 - 0.3857%
gen2 13.39 12,672 0 12,672 1.50E+04 - 0.1795%
gen4 18.79 13,435 2,389 15,824 1.57E+04 - 0.1355%
gen 1.37 3,435 517 3,952 8.72E+03 - 0.3857%
gosh 0.10 3,056 0 3,056 8.38E+02 - 0.1186%

irish-e 181.39 43,804 224,840 268,644 2.53E+03 - 0.0259%
ken-13 1.31 5,391 23,669 29,060 1.88E+05 - 0.0210%
ken-18 10.44 14,910 93,075 107,985 1.53E+06 - 0.0058%

L1 sixm 15,000.00 184,025 87,587 271,612 2.23E+09 - 0.0014%
Linf 520c 2,229.51 237,970 31,442 269,412 1.12E+07 - 0.0055%

l30 28.49 2,248 42,526 44,774 1.00E+00 - 0.0671%

28 Nikolaos Ploskas et al.

lpl3 0.35 36 9,217 9,253 1.18E+03 - 0.0380%
maros-r7 1.25 266 4,570 4,836 9.31E+06 - 0.0465%
model10 4.31 7,820 17,901 25,721 4.91E+03 - 0.1660%

nemspmm1 1.11 3,658 4,377 8,035 3.55E+04 - 0.1112%
nemswrld 13.67 20,319 27,004 47,323 1.03E+04 - 0.1031%

neos1 154.49 1 75,313 75,314 0.00E+00 - 0.0008%
neos2 682.48 1 174,401 174,402 0.00E+00 - 0.0008%
neos3 15,000.00 811 352,164 352,975 1.00E+07 - 0.0002%
neos 332.20 224,467 12,495 236,962 1.53E+07 - 0.0002%

neos5052403 154.26 14,326 211,506 225,832 1.90E+04 - 0.0026%
nl 3.01 7,469 11,497 18,966 2.42E+04 - 0.0235%

ns1644855 606.63 397,962 47,517 445,479 3.52E+07 - 0.0034%
ns1687037 5,333.46 101,222 74,409 175,631 2.62E+05 - 0.0024%
ns1688926 540.24 2,115 157,799 159,914 6.90E+08 - 0.0054%

nsct2 0.30 808 1,646 2,454 8.11E+02 - 0.0128%
nsir2 0.17 1,541 1,322 2,863 6.16E+02 - 0.0434%

nug08-3rd 8,519.24 17,471 259,001 276,472 1.30E+01 - 0.0179%
nug12 22.87 6,683 20,536 27,219 2.00E+00 - 0.1100%
nug15 269.65 20,912 69,046 89,958 2.00E+00 - 0.0542%
nug20 15,000.00 72,188 484,904 557,092 1.56E+02 - 0.0215%
osa-30 0.24 1,623 3,010 4,633 3.11E+03 - 0.0234%
osa-60 0.63 2,373 6,874 9,247 5.65E+03 - 0.0098%
p010 0.25 1,800 367 2,167 4.30E+04 - 0.0410%

pds-100 300.82 10,394 845,130 855,524 8.34E+07 - 0.0025%
pds-20 6.46 0 112,355 112,355 - 5.49E+09 0.0201%
pds-40 31.52 0 384,040 384,040 - 1.05E+10 0.0082%

psched3-3 134.14 93,987 55,148 149,135 1.98E+04 - 0.0019%
pilot87 3.18 4,182 3,174 7,356 1.63E+04 - 0.4000%
pilot 1.07 3,334 1,741 5,075 2.45E+04 - 0.3500%

pltexpa3 16 0.05 0 936 936 - 1.42E+01 0.0085%
qap12 24.71 5,764 21,327 27,091 1.00E+00 - 0.1100%
qap15 235.67 13,554 67,206 80,760 1.00E+00 - 0.0578%
rail02 2,446.94 67,430 311,597 379,027 2.80E+02 - 0.0049%

rail4284 1,886.50 453,733 2,483,833 2,937,566 3.94E+03 - 0.0353%
rat7a 5.44 244 6,417 6,661 9.32E+06 - 0.0465%
s100 23.66 27,540 264,453 291,993 4.00E+00 - 0.0069%

s250r10 32.78 6,953 271,725 278,678 9.14E+01 - 0.0131%
savsched1 98.34 4,181 181,457 185,638 6.67E+04 - 0.0003%

sc205-2r-1600 0.02 321 13 334 5.40E+04 - 0.0446%
scfxm1-2r-256 3.70 9,185 14,067 23,252 1.91E+06 - 0.0071%

self 0.01 0 0 0 - 0.00E+00 0.1042%
seymourl 1.04 3,191 3,219 6,410 4.36E+03 - 0.0215%
sgpf5y6 0.05 1,544 597 2,141 7.60E+06 - 0.0062%
shs1023 180.98 16,471 334,488 350,959 2.80E+06 - 0.0018%
square41 829.32 102,911 200,542 303,453 7.24E+03 - 0.0570%
stat96v1 38.75 18 139,331 139,349 2.50E-01 - 0.0396%

Initialization of the simplex algorithm 29

stat96v4 113.82 151,808 166,071 317,879 7.97E+03 - 0.1700%
stocfor3 0.53 2,001 6,006 8,007 7.34E+02 - 0.0159%

storm 1000 396.24 70,418 192,933 263,351 6.74E+04 - 0.0827%
stp3d 1,798.47 367,963 221,056 589,019 2.00E+03 - 0.0017%

support10 711.50 32,623 140,098 172,721 1.69E+03 - 0.0010%
truss 0.66 3,699 11,973 15,672 8.43E+02 - 0.3000%

watson 2 75.75 30,010 138,061 168,071 3.13E+05 - 0.0038%
Average 838.28 36,906 111,929 148,835 - - 0.1069%

Table S5: Results using the primal CPLEX after initialization with CPLEX
default crash procedure

Problem Time PhIit PhIIit Tit Infeas Feas Den
aa01 2.07 7,768 11,191 18,959 4.02E+02 - 0.6495%
aa03 2.34 7,774 14,109 21,883 2.95E+02 - 0.6716%
aa3 1.93 6,061 15,252 21,313 2.79E+02 - 0.6654%
aa5 1.92 4,652 21,005 25,657 2.99E+02 - 0.6503%
aa6 1.41 3,475 15,873 19,348 2.56E+02 - 0.7456%

brazil3 25.26 42,285 15,805 58,090 1.78E+03 - 0.0308%
buildingen 2,238.68 28,010 382,787 410,797 4.81E+05 - 0.0005%

car4 0.27 342 3,037 3,379 9.49E+02 - 0.5283%
chrom1024-7 37.49 50,387 14,840 65,227 3.69E+04 - 0.0015%

co5 1.62 2,052 6,864 8,916 9.77E+03 - 0.0511%
co9 5.48 3,925 14,504 18,429 2.10E+04 - 0.0274%

cont1 1,647.41 60,714 915 61,629 7.95E+02 - 0.0057%
cont11 4,404.29 105,961 29,090 135,051 8.33E+02 - 0.0074%

cq5 1.06 2,554 7,146 9,700 1.08E+04 - 0.0658%
cq9 3.55 4,412 14,927 19,339 2.14E+04 - 0.0349%

cre-b 1.12 2,033 22,189 24,222 1.54E+04 - 0.0262%
cre-d 0.73 1,941 17,514 19,455 1.64E+04 - 0.0359%

d2q06c 1.21 1,998 4,420 6,418 6.08E+04 - 0.1792%
dano3mip 7.60 19,307 21,486 40,793 6.37E+04 - 0.0829%

dbic1 19.64 3,957 101,232 105,189 2.62E+02 - 0.0052%
dbir2 0.92 864 15,287 16,151 2.04E+02 - 0.1913%
dfl001 6.45 9,968 19,736 29,704 1.15E+04 - 0.0682%
ds-big 254.63 44,389 447,485 491,874 3.36E+02 - 1.0788%

e18 5.14 2,641 19,978 22,619 6.45E+03 - 0.0075%
ex10 110.77 51,910 0 51,910 4.27E+03 - 0.0016%

ex3sta1 22.85 14,879 215 15,094 7.96E+03 - 0.0282%
fit2p 1.45 188 13,619 13,807 1.37E+03 - 0.0333%

fome13 191.86 74,558 144,176 218,734 1.03E+05 - 0.0087%
fxm3 16 3.58 10,006 19,967 29,973 2.49E+06 - 0.0076%
fxm4 6 1.27 9,742 13,217 22,959 4.29E+05 - 0.0125%

30 Nikolaos Ploskas et al.

ge 1.13 3,280 5,268 8,548 6.42E+05 - 0.0287%
gen1 1.88 3,728 385 4,113 8.72E+03 - 9.3176%
gen2 12.54 11,794 0 11,794 9.19E+03 - 0.4211%
gen4 18.22 12,929 2,183 15,112 1.20E+05 - 0.5854%
gen 1.88 3,728 385 4,113 8.72E+03 - 9.3176%
gosh 0.13 3,110 0 3,110 8.26E+02 - 0.2478%

irish-e 187.06 35,885 212,233 248,118 2.38E+03 - 0.0367%
ken-13 1.23 3,479 22,963 26,442 1.70E+05 - 0.0213%
ken-18 11.42 11,305 91,007 102,312 7.84E+05 - 0.0059%

L1 sixm 9,728.08 96,907 77,128 174,035 2.96E+07 - 0.0014%
Linf 520c 15,000.00 645,647 0 645,647 1.05E+05 - 0.0039%

l30 12.61 857 17,189 18,046 1.00E+00 - 0.1839%
lpl3 0.16 39 4,548 4,587 1.90E+03 - 0.0377%

maros-r7 1.11 870 3,128 3,998 4.00E+06 - 0.2363%
model10 4.30 7,820 17,901 25,721 4.91E+03 - 0.1713%

nemspmm1 1.12 3,658 4,377 8,035 3.55E+04 - 0.3186%
nemswrld 12.59 18,046 27,023 45,069 3.39E+02 - 0.1041%

neos1 60.68 1 24,409 24,410 0.00E+00 - 0.0008%
neos2 321.05 1 93,276 93,277 0.00E+00 - 0.0008%
neos3 15,000.00 812 310,291 311,103 7.90E+08 - 0.0002%
neos 262.71 194,562 11,938 206,500 1.62E+07 - 0.0003%

neos5052403 193.49 14,803 228,960 243,763 1.90E+04 - 0.0035%
nl 2.77 9,067 10,851 19,918 2.42E+04 - 0.0284%

ns1644855 154.00 131,086 24,451 155,537 1.07E+07 - 0.1272%
ns1687037 4,876.91 88,140 78,247 166,387 2.77E+05 - 0.0066%
ns1688926 300.64 2,784 106,590 109,374 1.19E+07 - 0.2200%

nsct2 1.16 408 20,637 21,045 9.16E+02 - 0.1200%
nsir2 0.70 565 14,606 15,171 1.54E+03 - 0.5900%

nug08-3rd 15,000.00 15,709 311,041 326,750 1.30E+01 - 0.0169%
nug12 24.30 6,518 20,295 26,813 2.00E+00 - 0.1700%
nug15 253.69 13,357 65,577 78,934 1.00E+00 - 0.0807%
nug20 15,000.00 45,068 702,031 747,099 1.00E+00 - 0.0367%
osa-30 0.19 1,599 2,782 4,381 3.11E+03 - 0.0246%
osa-60 1.14 2,373 6,883 9,256 5.65E+03 - 0.0100%
p010 0.71 3,808 2,207 6,015 7.82E+04 - 0.0262%

pds-100 260.17 214 838,735 838,949 1.15E+04 - 0.0025%
pds-20 4.95 0 91,024 91,024 - 5.49E+09 0.0197%
pds-40 29.82 1 373,187 373,188 0.00E+00 - 0.0081%

psched3-3 127.80 72,603 72,254 144,857 9.41E+03 - 0.0016%
pilot87 3.23 4,023 2,887 6,910 1.81E+04 - 0.4400%
pilot 1.37 3,490 1,862 5,352 2.46E+04 - 0.4500%

pltexpa3 16 1.35 9,917 4,757 14,674 3.92E+05 - 0.0169%
qap12 24.90 8,718 19,471 28,189 1.30E+01 - 0.1800%
qap15 257.25 14,754 69,248 84,002 1.40E+01 - 0.0885%
rail02 2,734.70 36,297 344,931 381,228 2.76E+02 - 0.0044%

rail4284 1,674.74 381,936 2,549,213 2,931,149 4.16E+03 - 0.0245%

Initialization of the simplex algorithm 31

rat7a 4.26 2,481 1,619 4,100 9.38E+06 - 2.7300%
s100 28.12 19,636 272,206 291,842 5.06E+00 - 0.0069%

s250r10 29.52 382 224,237 224,619 9.61E+00 - 0.0131%
savsched1 104.06 3,868 193,572 197,440 4.70E+04 - 0.0003%

sc205-2r-1600 0.05 572 5 577 2.78E+05 - 0.0294%
scfxm1-2r-256 4.79 10,169 15,010 25,179 7.96E+05 - 0.0111%

self 0.20 509 0 509 4.17E-03 - 4.7077%
seymourl 1.16 2,948 3,203 6,151 4.39E+03 - 0.0542%
sgpf5y6 0.09 880 655 1,535 1.14E+09 - 0.0079%
shs1023 202.39 5,727 290,340 296,067 3.71E+04 - 0.0017%
square41 1,100.30 89,125 205,013 294,138 1.39E+03 - 0.0570%
stat96v1 146.12 2,428 577,866 580,294 2.50E-01 - 0.0907%
stat96v4 156.13 151,808 166,071 317,879 7.97E+03 - 0.1600%
stocfor3 0.78 3,317 7,060 10,377 2.47E+03 - 0.0413%

storm 1000 441.44 44,678 165,538 210,216 1.35E+07 - 0.1200%
stp3d 2,050.59 391,397 268,585 659,982 2.17E+02 - 0.0016%

support10 957.34 32,640 139,783 172,423 1.69E+03 - 0.0010%
truss 0.56 2,578 9,050 11,628 1.10E+03 - 0.2100%

watson 2 47.25 34,074 69,823 103,897 3.95E+06 - 0.0053%
Average 1,008.94 34,775 115,009 149,784 - - 0.3988%

Table S6: Results using the dual CPLEX after initialization with Algorithm 1

Problem Time PhIit PhIIit Tit Infeas Feas
aa01 0.83 925 3,728 4,653 - -5.53E+04
aa03 0.73 838 3,178 4,016 - -4.79E+04
aa3 0.66 1,305 2,193 3,498 - -4.79E+04
aa5 0.86 613 4,175 4,788 - -5.25E+04
aa6 0.43 597 1,723 2,320 - -2.69E+04

brazil3 17.27 956 29,873 30,829 2.82E+04 -
buildingen 14.39 48,011 109,802 157,813 1.50E+03 -

car4 0.15 341 1,005 1,346 3.50E+03 -
chrom1024-7 115.36 0 97,237 97,237 -3.00E+00 -

co5 0.77 361 5,467 5,828 4.65E+05 -
co9 3.41 708 13,494 14,202 6.18E+05 -

cont1 1,745.81 38 73,824 73,862 - -8.78E-03
cont11 15,000.00 6,599 208,640 215,239 - -6.10E+01

cq5 0.57 158 4,926 5,084 6.88E+03 -
cq9 1.97 277 13,968 14,245 1.82E+04 -

cre-b 0.68 0 9,210 9,210 - -2.27E+07
cre-d 0.32 0 6,889 6,889 - -2.41E+07

d2q06c 0.82 1,166 4,315 5,481 2.09E+04 -
dano3mip 16.83 69 48,620 48,689 - -5.76E+02

32 Nikolaos Ploskas et al.

dbic1 31.78 2,575 49,582 52,157 9.00E+08 -
dbir2 0.27 700 435 1,135 3.02E+09 -
dfl001 10.17 20,666 19,603 40,269 9.73E+10 -
ds-big 357.63 1,772 72,174 73,946 2.04E+08 -

e18 1.51 14 5,438 5,452 3.10E+01 -
ex10 4,355.58 0 545,762 545,762 - -7.00E+01

ex3sta1 10.06 887 8,558 9,445 1.00E+00 -
fit2p 1.02 1,765 4,725 6,490 2.39E+05 -

fome13 212.16 150,084 170,188 320,272 7.88E+11 -
fxm3 16 1.45 8,203 37,223 45,426 1.78E+03 -
fxm4 6 0.69 6,030 18,666 24,696 6.82E+02 -

ge 0.43 119 4,835 4,954 2.64E+02 -
gen1 0.33 562 752 1,314 5.96E+03 -
gen2 4.47 0 3,766 3,766 - 0.00E+00
gen4 3.57 1,811 2,151 3,962 1.57E+04 -
gen 0.34 562 752 1,314 5.96E+03 -
gosh 0.11 1,307 439 1,746 2.82E+02 -

irish-e 33.28 609 39,363 39,972 6.42E+05 -
ken-13 0.90 16,902 12,755 29,657 - 8.82E+09
ken-18 6.06 52,793 50,331 103,124 - 4.57E+10

L1 sixm 7,476.34 13,970 184,956 198,926 1.90E+03 -
Linf 520c 15,000.00 2,419 403,451 405,870 1.28E+00 -

l30 4.85 6,517 2,805 9,322 7.58E+02 -
lpl3 0.55 1,123 5,064 6,187 2.56E+11 -

maros-r7 0.51 0 2,708 2,708 - -1.00E+07
model10 6.88 593 24,190 24,783 4.09E+05 -

nemspmm1 1.26 449 6,242 6,691 4.70E+02 -
nemswrld 14.91 184 29,168 29,352 1.14E+03 -

neos1 130.23 257 28,078 28,335 4.10E+01 -
neos2 263.93 661 39,976 40,637 - -4.76E+04
neos3 15,000.00 0 177,214 177,214 - 0.00E+00
neos 194.59 26,156 78,980 105,136 - -2.25E+08

neos5052403 280.13 0 122,852 122,852 - -1.79E+02
nl 0.80 317 8,278 8,595 4.28E+04 -

ns1644855 145.28 0 57,103 57,103 - -1.98E+05
ns1687037 10,632.00 37,242 956,499 993,741 - 8.44E+02
ns1688926 8.39 1 4,115 4,116 0.00E+00 -

nsct2 0.13 1,072 937 2,009 3.76E+09 -
nsir2 0.04 389 620 1,009 1.78E+09 -

nug08-3rd 645.07 8,744 104,596 113,340 5.75E+03 -
nug12 31.78 11,031 61,843 72,874 - -5.23E+02
nug15 370.94 33,587 229,361 262,948 - -1.04E+03
nug20 15,000.00 385,232 1,187,806 1,573,038 2.47E+06 -
osa-30 2.61 0 4,691 4,691 - -1.96E+06
osa-60 10.37 0 8,953 8,953 - -3.65E+06
p010 0.25 37 9,366 9,403 5.40E+03 -

Initialization of the simplex algorithm 33

pds-100 27.04 29,914 154,569 184,483 1.11E+09 -
pds-20 2.61 11,006 22,267 33,273 - 5.49E+09
pds-40 8.18 29,389 47,798 77,187 1.93E+08 -

psched3-3 355.77 665 154,652 155,317 5.08E+05 -
pilot87 4.66 2,027 8,527 10,554 1.10E+00 -
pilot 0.70 708 2,510 3,218 2.73E+00 -

pltexpa3 16 0.30 2,230 14,179 16,409 1.00E+00 -
qap12 34.16 10,262 63,865 74,127 - -5.23E+02
qap15 459.30 38,638 245,547 284,185 - -1.04E+03
rail02 737.29 1,346 612,196 613,542 6.27E+03 -

rail4284 1,804.28 214 56,435 56,649 6.36E+04 -
rat7a 1.89 0 3,049 3,049 - -1.06E+07
s100 583.33 15,315 275,391 290,706 1.38E+03 -

s250r10 41.28 4,833 90,772 95,605 6.10E+03 -
savsched1 15,000.00 295,621 1,219,843 1,515,464 2.25E+06 -

sc205-2r-1600 0.04 4 590 594 - 0.00E+00
scfxm1-2r-256 1.56 11,037 18,803 29,840 2.85E+01 -

self 0.03 0 0 0 - 0.00E+00
seymourl 0.52 1 3,234 3,235 - -2.41E+02
sgpf5y6 0.08 343 5,760 6,103 - -5.68E+03
shs1023 105.19 35,463 246,899 282,362 1.30E+07 -
square41 497.79 2,391 62,902 65,293 5.97E+05 -
stat96v1 30.93 0 15,422 15,422 - -3.74E+00
stat96v4 52.52 39,279 33,186 72,465 1.00E+00 -
stocfor3 0.55 4,971 5,362 10,333 9.98E+04 -

storm 1000 83.90 183,681 668,546 852,227 6.39E+05 -
stp3d 195.52 377 134,901 135,278 1.73E+03 -

support10 175.87 0 89,581 89,581 - -3.38E+00
truss 2.27 383 16,997 17,380 - -4.59E+05

watson 2 19.83 176,559 4,482 181,041 5.75E+01 -
Average 1,130.56 18,494 102,188 120,683 - -

Table S7: Results using the dual CPLEX after initialization with Algorithm 2

Problem Time PhIit PhIIit Tit Infeas Feas
aa01 1.00 1,160 4,334 5,494 - -5.53E+04
aa03 0.67 1,156 2,728 3,884 - -4.79E+04
aa3 0.61 734 2,159 2,893 - -4.79E+04
aa5 0.81 1,373 3,852 5,225 - -5.25E+04
aa6 0.44 719 1,484 2,203 - -2.69E+04

brazil3 14.31 1,114 25,824 26,938 - 5.70E+01
buildingen 13.34 65,561 114,014 179,575 1.78E+03 -

car4 0.13 341 1,005 1,346 3.50E+03 -

34 Nikolaos Ploskas et al.

chrom1024-7 115.18 0 95,594 95,594 - -3.00E+00
co5 0.64 324 4,686 5,010 4.53E+05 -
co9 3.15 619 12,048 12,667 5.55E+05 -

cont1 1,726.44 38 73,824 73,862 - -8.80E-03
cont11 15,000.00 6,599 211,712 218,311 - -6.10E+01

cq5 0.57 158 4,926 5,084 6.88E+03 -
cq9 1.96 266 13,024 13,290 8.73E+03 -

cre-b 0.74 0 9,929 9,929 - -2.27E+07
cre-d 0.39 0 6,808 6,808 - -2.41E+07

d2q06c 0.70 976 3,999 4,975 1.65E+04 -
dano3mip 16.40 32 43,684 43,716 - -5.76E+02

dbic1 30.16 2,575 49,654 52,229 9.00E+08 -
dbir2 0.28 700 435 1,135 3.02E+09 -
dfl001 12.75 21,708 21,248 42,956 9.74E+10 -
ds-big 399.71 1,772 72,174 73,946 - -8.68E+01

e18 1.70 1 5,917 5,918 0.00E+00 -
ex10 4,813.17 1 546,468 546,469 - -1.00E+02

ex3sta1 0.69 93 331 424 3.86E+02 -
fit2p 1.01 1,765 4,725 6,490 2.39E+05 -

fome13 155.33 96,998 146,847 243,845 7.42E+11 -
fxm3 16 2.24 10,879 40,457 51,336 6.13E+01 -
fxm4 6 0.89 6,358 16,550 22,908 6.19E+01 -

ge 0.44 119 4,835 4,954 2.64E+02 -
gen1 0.28 405 685 1,090 5.65E+03 -
gen2 4.50 0 3,878 3,878 - 0.00E+00
gen4 3.90 1,781 1,689 3,470 1.53E+04 -
gen 0.30 405 685 1,090 5.65E+03 -
gosh 0.13 1,456 473 1,929 1.10E+02 -

irish-e 33.81 609 39,363 39,972 6.42E+05 -
ken-13 0.94 16,713 12,379 29,092 - 8.82E+09
ken-18 6.78 51,310 51,022 102,332 - 4.57E+10

L1 sixm 7,543.06 13,970 184,956 198,926 - -4.63E+03
Linf 520c 15,000.00 2,419 403,451 405,870 1.28E+00 -

l30 4.12 6,162 2,588 8,750 1.75E+03 -
lpl3 0.63 1,335 4,782 6,117 2.66E+11 -

maros-r7 0.56 0 2,708 2,708 - -1.00E+07
model10 11.48 75 26,144 26,219 2.05E+03 -

nemspmm1 1.18 1,771 6,728 8,499 3.27E+05 -
nemswrld 17.23 441 35,414 35,855 1.33E+04 -

neos1 131.60 257 28,078 28,335 - -4.67E+04
neos2 267.30 661 39,976 40,637 - -4.76E+04
neos3 15,000.00 0 182,449 182,449 - 0.00E+00
neos 236.96 26,789 82,434 109,223 - -2.25E+08

neos5052403 283.86 0 122,852 122,852 - -1.79E+02
nl 0.82 118 8,572 8,690 1.05E+04 -

ns1644855 143.47 0 54,268 54,268 - -1.98E+05

Initialization of the simplex algorithm 35

ns1687037 10,636.30 37,242 956,499 993,741 - 8.44E+02
ns1688926 12.83 0 5,375 5,375 - -3.91E+02

nsct2 0.13 1,072 937 2,009 3.76E+09 -
nsir2 0.06 389 620 1,009 1.78E+09 -

nug08-3rd 1,678.77 12,323 155,379 167,702 - -2.14E+02
nug12 39.25 9,028 69,365 78,393 - -5.23E+02
nug15 438.30 36,380 247,270 283,650 - -1.04E+03
nug20 15,000.00 416,051 876,378 1,292,429 2.24E+06 -
osa-30 2.69 0 4,692 4,692 - -1.96E+06
osa-60 11.53 0 8,953 8,953 - -3.65E+06
p010 0.31 19 10,026 10,045 4.31E+03 -

pds-100 23.16 24,339 131,502 155,841 - -1.09E+10
pds-20 2.21 12,376 21,397 33,773 - 5.49E+09
pds-40 7.78 25,394 49,052 74,446 - 1.05E+10

psched3-3 126.13 619 66,177 66,796 4.04E+05 -
pilot87 5.10 2,563 8,541 11,104 1.09E+00 -
pilot 0.72 720 3,074 3,794 2.73E+00 -

pltexpa3 16 0.36 2,203 14,382 16,585 1.00E+00 -
qap12 32.35 10,528 57,367 67,895 - -5.23E+02
qap15 424.75 35,134 235,138 270,272 - -1.04E+03
rail02 412.39 912 327,693 328,605 - 2.06E+02

rail4284 1,786.85 214 56,435 56,649 - -1.03E+03
rat7a 1.92 0 3,049 3,049 - -1.06E+07
s100 565.23 14,355 252,034 266,389 1.56E+03 -

s250r10 55.30 14,711 93,927 108,638 2.63E+04 -
savsched1 15,000.00 295,621 1,328,291 1,623,912 - 0.00E+00

sc205-2r-1600 0.10 875 1,148 2,023 - 0.00E+00
scfxm1-2r-256 2.18 11,066 20,126 31,192 3.31E+01 -

self 0.02 0 0 0 - 0.00E+00
seymourl 0.65 1 3,234 3,235 - -2.41E+02
sgpf5y6 0.09 111 6,776 6,887 - -5.68E+03
shs1023 87.28 24,623 244,651 269,274 5.80E+06 -
square41 179.24 4 24,047 24,051 - -8.84E+00
stat96v1 67.19 11,966 16,090 28,056 2.80E+04 -
stat96v4 57.69 18,589 44,725 63,314 1.00E+00 -
stocfor3 0.45 4,809 4,683 9,492 8.28E+04 -

storm 1000 72.67 165,653 655,301 820,954 5.13E+05 -
stp3d 147.24 43 115,181 115,224 - -4.52E+02

support10 173.15 0 89,581 89,581 - -3.38E+00
truss 2.16 434 16,251 16,685 - -4.59E+05

watson 2 21.72 178,109 4,482 182,591 6.96E+01 -
Average 1,137.74 18,098 95,481 113,579 - -

36 Nikolaos Ploskas et al.

Table S8: Results using the dual CPLEX after initialization with Algorithm 3

Problem Time PhIit PhIIit Tit Infeas Feas
aa01 0.94 311 4,233 4,544 - -5.53E+04
aa03 0.50 659 2,406 3,065 - -4.79E+04
aa3 0.50 545 2,170 2,715 - -4.79E+04
aa5 0.69 725 3,803 4,528 - -5.25E+04
aa6 0.39 877 1,667 2,544 - -2.69E+04

brazil3 13.82 661 25,618 26,279 - 5.70E+01
buildingen 13.06 65,561 114,014 179,575 1.78E+03 -

car4 0.17 341 1,005 1,346 3.50E+03 -
chrom1024-7 118.70 0 96,266 96,266 - -3.00E+00

co5 0.68 376 4,787 5,163 2.28E+06 -
co9 3.27 773 12,135 12,908 9.94E+05 -

cont1 1,725.01 38 73,824 73,862 - -8.80E-03
cont11 15,000.00 6,599 210,352 216,951 - -6.10E+01

cq5 0.58 158 4,926 5,084 6.88E+03 -
cq9 1.88 147 14,428 14,575 7.13E+02 -

cre-b 0.74 37 10,193 10,230 5.79E+05 -
cre-d 0.44 49 6,983 7,032 9.06E+05 -

d2q06c 0.80 1,081 4,089 5,170 1.79E+04 -
dano3mip 15.86 19 45,992 46,011 - -5.76E+02

dbic1 29.97 2,575 49,654 52,229 9.00E+08 -
dbir2 0.27 700 435 1,135 3.02E+09 -
dfl001 11.99 23,032 18,988 42,020 8.93E+10 -
ds-big 400.15 1,772 72,174 73,946 - -8.68E+01

e18 1.81 3 5,872 5,875 1.40E+01 -
ex10 4,753.58 0 582,121 582,121 - -7.40E+01

ex3sta1 0.55 101 265 366 1.00E+00 -
fit2p 1.09 1,765 4,725 6,490 2.39E+05 -

fome13 192.50 128,216 163,886 292,102 7.61E+11 -
fxm3 16 2.22 11,001 41,680 52,681 5.98E+02 -
fxm4 6 1.89 6,643 22,789 29,432 8.58E+00 -

ge 0.53 119 4,835 4,954 2.64E+02 -
gen1 0.37 500 919 1,419 5.79E+03 -
gen2 4.80 0 3,705 3,705 - 0.00E+00
gen4 4.10 1,870 2,016 3,886 1.50E+04 -
gen 0.39 500 919 1,419 5.79E+03 -
gosh 0.09 1,318 385 1,703 4.30E+02 -

irish-e 34.23 609 39,363 39,972 6.42E+05 -
ken-13 0.85 15,703 12,323 28,026 - 8.82E+09
ken-18 6.12 52,022 49,372 101,394 - 4.57E+10

L1 sixm 6,809.64 13,970 184,956 198,926 - -4.63E+03
Linf 520c 3,040.32 2 266,742 266,744 1.00E+00 -

l30 4.75 6,431 2,737 9,168 5.60E+03 -
lpl3 0.50 1,246 4,700 5,946 3.32E+11 -

Initialization of the simplex algorithm 37

maros-r7 0.55 0 2,708 2,708 - -1.00E+07
model10 11.40 75 26,144 26,219 2.05E+03 -

nemspmm1 1.20 449 6,242 6,691 4.70E+02 -
nemswrld 13.65 354 26,923 27,277 1.09E+04 -

neos1 132.32 257 28,078 28,335 - -4.67E+04
neos2 258.27 661 39,976 40,637 - -4.76E+04
neos3 15,000.00 0 176,729 176,729 - 0.00E+00
neos 280.34 28,156 82,669 110,825 - -2.25E+08

neos5052403 280.77 0 122,852 122,852 - -1.79E+02
nl 0.98 135 8,839 8,974 1.71E+04 -

ns1644855 138.36 0 54,268 54,268 - -1.98E+05
ns1687037 10,466.08 37,242 956,499 993,741 - 8.44E+02
ns1688926 11.51 5,003 7,169 12,172 2.00E-06 -

nsct2 0.13 1,072 937 2,009 3.76E+09 -
nsir2 0.06 389 620 1,009 1.78E+09 -

nug08-3rd 467.42 5,149 81,334 86,483 - -2.14E+02
nug12 36.37 8,452 63,899 72,351 - -5.23E+02
nug15 383.78 29,909 227,430 257,339 - -1.04E+03
nug20 15,000.00 166,947 944,570 1,111,517 1.42E+06 -
osa-30 2.60 0 4,692 4,692 - -1.96E+06
osa-60 11.47 0 8,953 8,953 - -3.65E+06
p010 0.26 42 9,265 9,307 5.88E+03 -

pds-100 27.00 31,886 150,115 182,001 - -1.09E+10
pds-20 2.82 10,581 24,793 35,374 - 5.49E+09
pds-40 5.65 26,692 40,344 67,036 - 1.05E+10

psched3-3 304.81 646 141,716 142,362 4.36E+05 -
pilot87 5.72 1,958 9,546 11,504 1.10E+00 -
pilot 0.59 665 2,678 3,343 2.73E+00 -

pltexpa3 16 0.33 2,228 14,218 16,446 1.00E+00 -
qap12 35.34 9,708 56,082 65,790 - -5.23E+02
qap15 465.74 27,132 236,135 263,267 - -1.04E+03
rail02 724.88 892 666,540 667,432 - 2.06E+02

rail4284 1,779.70 214 56,435 56,649 - -1.03E+03
rat7a 1.88 0 3,049 3,049 - -1.06E+07
s100 534.42 32,125 240,055 272,180 1.47E+03 -

s250r10 110.61 60,081 66,812 126,893 6.78E+03 -
savsched1 15,000.00 295,621 1,349,777 1,645,398 - 0.00E+00

sc205-2r-1600 0.07 1,605 171 1,776 - 0.00E+00
scfxm1-2r-256 2.84 11,987 23,327 35,314 5.80E+02 -

self 0.02 0 0 0 - 0.00E+00
seymourl 0.65 1 3,234 3,235 - -2.41E+02
sgpf5y6 0.09 111 6,776 6,887 - -5.68E+03
shs1023 70.66 25,835 196,927 222,762 5.92E+06 -
square41 494.27 362 58,991 59,353 - -8.84E+00
stat96v1 31.18 0 15,180 15,180 - -3.74E+00
stat96v4 57.54 18,589 44,725 63,314 1.00E+00 -

38 Nikolaos Ploskas et al.

stocfor3 0.49 4,959 3,864 8,823 8.91E+04 -
storm 1000 73.69 195,886 648,149 844,035 4.49E+05 -

stp3d 181.54 24 132,354 132,378 - -4.52E+02
support10 172.55 0 89,581 89,581 - -3.38E+00

truss 2.94 231 20,184 20,415 - -4.59E+05
watson 2 13.82 175,662 4,332 179,994 5.04E+01 -
Average 997.90 16,516 98,540 115,056 - -

Table S9: Results using the dual CPLEX after initialization with CPLEX
default crash procedure

Problem Time PhIit PhIIit Tit Infeas Feas
aa01 0.74 0 3,668 3,668 - -5.51E+04
aa03 0.37 0 2,294 2,294 - -4.77E+04
aa3 0.36 0 2,004 2,004 - -4.77E+04
aa5 0.67 0 3,473 3,473 - -5.23E+04
aa6 0.23 0 1,540 1,540 - -2.69E+04

brazil3 14.94 0 26,917 26,917 - -2.00E+00
buildingen 13.20 28,934 113,277 142,211 1.78E+03 -

car4 0.18 0 1,137 1,137 - -3.55E+01
chrom1024-7 137.36 0 89,575 89,575 - -3.00E+00

co5 0.82 159 5,080 5,239 1.00E+04 -
co9 2.87 283 11,685 11,968 1.20E+04 -

cont1 536.14 2 22,640 22,642 0.00E+00 -
cont11 6,985.17 48,180 204,097 252,277 4.00E+04 -

cq5 0.64 83 5,038 5,121 4.67E+02 -
cq9 2.22 153 14,511 14,664 7.13E+02 -

cre-b 0.70 0 10,486 10,486 - -2.27E+07
cre-d 0.40 0 6,902 6,902 - -2.41E+07

d2q06c 0.83 419 4,782 5,201 7.64E+02 -
dano3mip 13.14 16 32,606 32,622 - -5.76E+02

dbic1 37.49 18 50,122 50,140 7.14E+08 -
dbir2 0.47 0 9,022 9,022 - -2.03E+06
dfl001 5.87 0 17,872 17,872 - -1.12E+07
ds-big 459.73 133 70,734 70,867 - -8.56E+01

e18 1.62 0 5,466 5,466 - -3.70E+02
ex10 4,637.19 0 534,091 534,091 - -9.90E+01

ex3sta1 8.48 968 7,549 8,517 1.00E+00 -
fit2p 1.17 0 5,353 5,353 - -6.85E+04

fome13 93.75 0 131,119 131,119 - -9.00E+07
fxm3 16 5.11 10,969 40,744 51,713 8.59E+00 -
fxm4 6 1.56 6,832 22,199 29,031 8.58E+00 -

ge 0.46 113 4,714 4,827 2.61E+02 -

Initialization of the simplex algorithm 39

gen1 0.07 0 248 248 - 0.00E+00
gen2 4.49 0 3,088 3,088 - -3.29E+00
gen4 0.41 0 560 560 - 0.00E+00
gen 0.07 0 248 248 - 0.00E+00
gosh 0.23 1,520 1,088 2,608 1.16E+02 -

irish-e 185.06 12 108,395 108,407 9.48E+02 -
ken-13 0.30 5 13,522 13,527 - 8.82E+09
ken-18 1.97 0 50,523 50,523 - -2.88E+13

L1 sixm 5,371.34 1,354 170,338 171,692 - -4.63E+03
Linf 520c 15,000.00 196 215,865 216,061 1.00E+00 -

l30 6.62 6,990 4,230 11,220 2.55E+02 -
lpl3 0.17 72 3,898 3,970 7.10E+04 -

maros-r7 0.79 0 2,746 2,746 - -6.94E+05
model10 12.14 1,501 25,372 26,873 2.05E+03 -

nemspmm1 1.29 512 5,831 6,343 4.70E+02 -
nemswrld 31.44 172 54,324 54,496 1.14E+03 -

neos1 128.61 254 18,768 19,022 - -4.67E+04
neos2 258.39 741 28,323 29,064 - -4.76E+04
neos3 15,000.00 0 173,985 173,985 - 0.00E+00
neos 248.26 27,284 79,193 106,477 - -2.25E+08

neos5052403 328.77 0 117,360 117,360 - -1.79E+02
nl 0.91 33 9,189 9,222 7.21E+02 -

ns1644855 77.09 10 28,682 28,692 3.67E+00 -
ns1687037 15,000.00 65,113 902,000 967,113 - 3.34E+00
ns1688926 10.52 0 5,348 5,348 - -3.91E+02

nsct2 0.39 0 6,743 6,743 - -4.83E+06
nsir2 0.12 0 2,754 2,754 - -3.43E+06

nug08-3rd 547.60 0 78,444 78,444 - -2.13E+02
nug12 45.80 0 92,294 92,294 - -5.21E+02
nug15 582.97 0 366,689 366,689 - -1.04E+03
nug20 15,000.00 258,760 913,794 1,172,554 - 2.18E+03
osa-30 2.62 0 4,690 4,690 - -1.96E+06
osa-60 12.23 0 9,589 9,589 - -3.65E+06
p010 0.23 0 13,671 13,671 - -1.02E+06

pds-100 24.97 6,430 102,010 108,440 - -1.09E+10
pds-20 2.10 460 17,091 17,551 - 5.49E+09
pds-40 6.61 1,281 44,535 45,816 - 1.05E+10

psched3-3 204.99 174 87,587 87,761 1.75E+04 -
pilot87 5.22 1,752 9,397 11,149 6.76E-01 -
pilot 1.00 771 3,203 3,974 2.71E+00 -

pltexpa3 16 0.49 1,062 19,294 20,356 - -5.49E+01
qap12 42.77 0 81,061 81,061 - -5.19E+02
qap15 621.47 0 362,522 362,522 - -1.04E+03
rail02 648.53 205 542,029 542,234 - -5.59E+03

rail4284 1,603.98 0 50,428 50,428 - -1.03E+03
rat7a 2.95 0 2,870 2,870 - -1.27E+06

40 Nikolaos Ploskas et al.

s100 545.92 299 197,393 197,692 - -1.26E+03
s250r10 40.71 45 79,080 79,125 - -4.19E+02

savsched1 476.86 0 129,056 129,056 - -1.69E+02
sc205-2r-1600 0.02 4 197 201 - 0.00E+00
scfxm1-2r-256 2.36 1,822 24,627 26,449 4.60E+00 -

self 0.03 0 0 0 - 0.00E+00
seymourl 0.65 0 3,354 3,354 - -2.40E+02
sgpf5y6 0.17 6,466 4,877 11,343 - -5.68E+03
shs1023 72.28 0 179,323 179,323 - -5.88E+03
square41 122.34 0 17,177 17,177 - -7.84E+00
stat96v1 26.22 0 13,217 13,217 - -3.74E+00
stat96v4 51.37 41,561 27,851 69,412 1.00E+00 -
stocfor3 0.61 4,456 3,618 8,074 7.52E+03 -

storm 1000 65.66 0 693,373 693,373 - -1.53E+07
stp3d 236.80 4 155,754 155,758 - -4.52E+02

support10 171.01 0 93,614 93,614 - -3.38E+00
truss 2.66 0 19,693 19,693 - -4.59E+05

watson 2 8.97 163,972 4,698 168,670 2.36E+00 -
Average 903.31 7,290 83,594 90,884 - -

