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Forecasting the Principal of Code Technical 
Debt in JavaScript Applications 

Ioannis Zozas, Stamatia Bibi, Apostolos Ampatzoglou 

Abstract— JavaScript (JS) is one of the most popular programming languages for developing client-side applications mainly 

due to allowing the adoption of different programming styles, not having strict syntax rules, and supporting a plethora of 

frameworks. The flexibility that the language provides may accelerate the development of application, but also pose threats to 

the quality of the final software product, e.g., introducing Technical Debt (TD). TD reflects the additional cost of software 

maintenance activities to implement new features, occurring due to poorly developed solutions. Being able to forecast the levels 

of TD in the future can be extremely valuable in managing TD, since it can contribute to informed decision making when 

designating future repayments and refactoring budget among a company’s projects. Despite the popularity of JS and the 

undoubtful benefits of accurate TD forecasting, in the literature, there is available only a limited number of tools and 

methodologies that are able to: (a) forecast TD during software evolution, (b) provide a ground-truth TD quantifications to train 

forecasting, since TD tools that are available are based on different rulesets and none is recognized as a state-of-the-art 

solution, (c) take into consideration the language-specific characteristics of JS.  As a main contribution for this study, we 

propose a methodology (along with a supporting tool) that supports the aforementioned goals based on the Backward Stepwise 

Regression and Auto-Regressive Integrated Moving Average (ARIMA). We evaluate the proposed approach through a case 

study on 19,636 releases of 105 open-source applications. The results point out that: (a) the proposed model can lead to an 

accurate prediction of TD, and (b) the Number of appearances of the “new” and “eval” keyword along with the number of 

“anonymous” and “arrow” functions are among the features of JavaScript language that are related to high levels of TD. 

Index Terms—Software Quality, JavaScript, Code Technical Debt, Source Code Quality  

——————————   ◆   —————————— 

1 INTRODUCTION

avaScript (JS) is constantly gaining ground in the soft-
ware industry as it is considered to be ideal for imple-

menting web and mobile applications [20][44]. The usage 
of JS has been boosted by the fact that it is: (a) a weakly-
typed language—no strict programming rules; (b) a mul-
ti-paradigm language—allowing object-oriented, func-
tional, and imperative programming; and (c) supported 
by a variety of open-source programming frameworks 
and libraries [18]. Currently, more than 400K JS reposito-
ries are hosted and maintained in GitHub, the majority of 
which is presenting a lifespan of more than five years, 
proving the need for performing maintenance. Neverthe-
less, the previously mentioned “selling points” of JS de-
spite accelerating the implementation pace, also pose 
threats to the quality of the final product that is often very 
unstructured and hard to understand. For example, a de-
veloper may choose to benefit from the “arrow” function 
that has a shorter syntax and thus speed up development, 
but may cause readability issues during maintenance. To 
resolve this problem, the developer may need to convert 
the “arrow” function into a typical function to change the 
scope of the function and improve its maintainability, also 
known as repaying “code technical debt”.   

Technical Debt (TD) is a metaphor [11] used to reflect the 
additional maintenance effort, caused by quality com-
promises. The amount of money “deposited” (saved) from 
compromising maintainability (using less development 
time) refers to the term TD Principal, whereas the addi-
tional effort that needs to be paid due to the lowered 
maintainability is termed TD Interest. We note that for the 
rest of this paper when referring to the value of TD, we: 
(a) refer to the value of TD Principal; and (b) to TD Prin-
cipal at the code level, since other types of TD (such as 
architecture, requirements, etc.) are not considered in this 
study. By studying the literature (see Section 2.3), we have 
identified the following limitations:  

(L1) Lack of methods and tools to forecast TD Principal 
throughout the evolution of a software system. Predict-
ing the value of TD Principal along evolution is a chal-
lenging task, since both the system and the associated TD 
Principal emerge in parallel [40]. Although, in the litera-
ture there are studies that focus on the quality assessment 
of JavaScript applications [16], [30], their maintainability 
[45], and their evolution [10], there is limited work on TD 
management [39]. Being able to forecast TD Principal 
along software evolution can help towards the effective 
prioritization of the project maintenance effort allocation: 
a quality manager can allocate more budget for TD man-
agement in projects that are more heavily affected by the 
negative consequences of TD. For instance, if a company 
maintains 3 different systems, out of which 2 have accu-
mulated high and similar amounts of TD Principal; being 
aware of the system, whose TD will grow more in the 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 

• Ioannis Zozas is with the Department of Electrical and Computer Enign-
eering, University of Western Macedonia, Kozani, Greece. E-mail: 
izozas@uowm.gr. 

• Stamatia Bibi is with the Department of Electrical and Computer Enigneer-
ing, University of Western Macedonia, Kozani, Greece. E-mail: sbi-
bi@uowm.gr. 

• Apostolos Ampatzoglou is with the Department of Applied Informatics, 
University of Macedonia, Thessaloniki, Greece. E-mail: 
a.ampatzoglou@uom.edu.gr. 

J 



2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160 

 

near future can guide resources allocation for quality im-
provement. We note that in corner cases that TD Principal 
and TD Interest are not correlated, as expected based on 
the metaphor and the literature [46], prioritization is ex-
pected to follow the ranking of TD Interest.  

(L2) Lack of a ground-truth TD Principal quantification 
in JS. Currently, there are several tools that are available 
for quantifying TD Principal (e.g., SonarQube, CAST, 
SQUoRE). However, none is recognized as a state-of-the-
art solution for quantifying TD. This shortcoming arises 
mostly from the different methodologies that are used to 
capture TD Principal: various metrics, rulesets, and score 
mechanisms to quantify it. The majority of studies fo-
cused on forecasting, use the TD quantification of a single 
tool rendering the credibility of the forecast into question 
[28], [39], [40]. In this direction, providing a TD bench-
mark that showcases TD Principal scores in which several 
tools agree, can increase the credibility of TD forecasts.  

(L3) Current methods do not take into consideration the 
specific characteristics of JS. Most of the TD tools found 
in the literature use a set of metrics, usually object-
oriented ones, that can be uniformly applied to different 
languages, without taking into consideration their specif-
ics. This might pose a major threat to the completeness of 
TD quantification, concerning JS applications, since it is 
recognized that TD quantification should depend on lan-
guage-specific models [38]. The consideration of a pletho-
ra of metrics (Process, Activity, and Product metrics), in-
cluding JS-specific ones in a TD model can increase the 
accuracy of the TD prediction models. 

Based on the above, the contribution of the paper is the 
provision of a novel 3-step methodology that aims at alle-
viating the aforementioned limitations, as explained be-
low. The scope and motivation of the proposed method-
ology is illustrated in Figure 1. 

 
Fig. 1. Scope and Motivation of this Study 

In particular, we combine two well-known ML techniques 
(namely: supervised Backwards Stepwise Regression, and 
Autoregressive Integrated Moving Average (ARIMA)) for 
forecasting TD Principal in three steps: 

[Step 1] Predict the value of TD Principal relying on several 
parameters and identify the most significant ones. The goal of 
this step is to identify the most important predictors that 
contribute to accumulating TD. For this purpose, data 
from different already implemented JS applications (re-
trieved by mining the GitHub repository) are analyzed to 
extract product and process metrics that are able to pre-
dict TD Principal, through the application of Backwards 
Stepwise Regression. Based on regression theory [13] a 

predictor is considered to be an independent variable (in 
our case product and process metrics) that provides in-
formation on an associated dependent variable (in our 
case TD Principal). To increase the credibility of TD Prin-
cipal quantification (L2), we rely on a benchmark devel-
oped by Amanatidis et al. [2], targetting the inter-
agreement of three well-established tools. The metrics 
that are recorded include, apart from typical metrics, JS-
specific ones [16][18][26][29][30] (L3).  

[Step 2] Forecast TD Principal predictors. The goal of this 
step is to build a model that forecasts the values of the TD 
predictors identified in step 1. For this purpose, the com-
plete history of the JS applications are analyzed. The for-
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malization employed in this step is the ARIMA Box-
Jenkins model for time-series analysis. In this step, we 
focus on forecasting the values of TD predictors instead of 
TD Principal itself (step 3). ARIMA is a univariate fore-
casting model, relying on historical values of a single var-
iable—the one that is being forecasted; therefore, it is ide-
al for predicting the future values of TD predictors (L1).   

[Step 3] Predict TD Principal. The goal of this step is to 
predict TD Principal in future time points. For this pur-
pose, the forecasted values of the TD predictors (as calcu-
lated by the ARIMA model in Step 2) serve as an input to 
the TD Principal estimation model (as calculated in Step 
1). The final output of the proposed methodology is the 
value of TD Principal in various future time points (L1), 
considering JS-specific characteristics (L3), and relying on 
the quantification of different TD tools for reliability (L2). 

To validate our approach, we performed an empirical 
study on 19,636 releases of 105 JS applications, hosted in 
GitHub. The rest of the paper is organized as follows: 
Section 2 presents related work and the necessary back-
ground information; whereas Section 3 presents in detail 
the proposed methodology. In Section 4, we present the 
validation case study design. In Section 5, we present the 
results, whereas, in Section 6, we discuss the results and 
provide implications to researchers and practitioners. 
Finally, in Section 7 we present threats to validity; where-
as in Section 8, we conclude the paper. 

2 RELATED WORK & BACKGROUND INFORMATION 

In Section 2.1, we present works that are directly compa-
rable to ours, i.e., studies that aim at the forecasting of 
TD—related to L1. In Section 2.2, we provide comprehen-
sive literature, based on [5], on the tools that can be used 
for quantifying TD. The information in this section ex-
plains in detail L2, i.e., the need for a TD measurement 
benchmark. Finally, Section 2.3 is related to works that 
focus on JavaScript; thus, providing information regard-
ing L3. 

2.1 Technical Debt Forecasting 

Forecasting [8] refers to the process that exploits data from 
previous events, along with recent trends, to estimate 
future events. On this basis, Mathioudaki et. al. [28] pro-
posed deep learning techniques for providing a more ac-
curate long-term TD prediction. The authors quantified 
TD based on the SonarQube platform and subsequently 
applied Random Forest, Multi-layer Perceptron, and 
ARIMA models for producing predictions. The methods 
were evaluated on five Java open-source projects. Accord-
ing to the results, Multi-layer Perceptron outperformed 
the rest of the methods presenting higher long-term accu-
racy, even for 150 steps ahead in the future, presenting a 
mean RMSE 2,361.09, mean MAPE 4.99% and mean MAE 
1,960.52). Tsoukalas et. al. [39], employed the ARIMA time 
series modeling for forecasting TD based on code viola-
tions (code smells, bugs and vulnerabilities). The ARIMA 
method was evaluated on a dataset of five open-source 
java projects, while TD was estimated based on the 
SQALE index of the SonarQube platform. The authors 

concluded that the ARIMA (0,1,1) model presented the 
best fit, outperforming the random walk model. The accu-
racy model fit statistic metrics (RMSE 0.02, MAPE 3.62%, 
and MAE 0.02) indicated that ARIMA overall presents a 
satisfactory prediction power for up to 2 steps ahead in 
the future.  

Tsoukalas et. al. [40] conducted an empirical study, to 
examine the applicability of machine learning algorithms 
such as Multivariate Linear Regression, Lasso Regression, 
Ridge Regression, Stochastic Gradient Descent, Support 
Vector Machines and Random Forests on TD forecasting. 
For this purpose, the authors analyzed weekly observa-
tions, for a 3-year period, of 225 open-source Java applica-
tions. The TD Principal was quantified based on So-
narQube while the metrics that participated in the study 
were the number of bugs, vulnerabilities, code smells, 
size, code coverage, complexity, coupling, and cohesion. 
The study concluded that machine learning algorithms 
perform better (RMSE 4,767.65, MAPE 8.66%, and MAE 
4,262.78) in longer forecasting horizons compared to line-
ar models such as ARIMA. Kumar et. al. [23] applied time 
series for forecasting the TD of SaaS-based applications. 
The authors quantified TD Principal through an equation 
that is based on metrics that measure the service utilities, 
the recompositing decisions, and the service level agree-
ment violations. The proposed methodology forecasts 
future TD by applying ARFIMA models. The latter was 
evaluated in one real-world case scenario, on the Sales 
CRM application and its’ services, presenting MAE and 
RMSE accuracy within 15% of the actual values. 

Limitations: Currently the majority of tools and method-
ologies that exist focus on quantifying TD in a current 
version of an application, without producing long-term 
forecasts [6], [12], [17]. Also, there are some studies that 
predict the existence of high-TD software artifacts [2], [41] 
but these studies do not produce a TD estimate related to 
the effort required to fix quality issues. Contribution: In 
this study, we focus on producing long-term forecasts of 
TD principal, itself. 
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2.2 Technical Debt Quantification Tools 

In the literature and the market, there are several tools for 
quantifying TD Principal [5]. These tools consider differ-
ent types of TD, such as architectural, design, documenta-
tion, testing, and code TD. In this section we focus on 
tools capturing TD introduced at the code level, driven by 
the scope of the proposed methodology. Therefore, tools 
like VisMiner, Anacondebt, CodeMRI, etc. are omitted. In 
Table 2 we present an overview of all tools identified by 
Avgeriou et al. [5], quantifying TD from source code. For 
each tool, we present the metric used to quantify TD Prin-
cial, the index of code TD Principal, and whether the tools 
are able to analyse JS applications, along with file-level 
calculations (which are more suitable for JS). 

TABLE 2: TOOL OVERVIEW 

Tool JS Principal 

Definition 

Code TD index File 

Level 

CAST1     Time to 

remove 

issues 

Violations *  

Rule criticality *  

Effort 

    

NDepend2 - Man-

time to 

fix issues 

Violations * Fix effort - 

SonarQube
3 

    Time to 

remove 

issues 

Cost to develop 1 LOCe 

* Number of lines of 

code. 

    

SQuORE4     Time to 

remove 

issues 

Issues * Fix time     

Code 

Inspector5 

- Effort to 

avoid 

TD 

Function of violations, 

duplications, readabil-

ity/maintainability is-

sues. 

- 

Symphony 

Insight6 

- Time to 

remove 

issues 

Issues * Fix time - 

Focusing on the tools that can be used to quantify the 
TD Principal of JavaScript applications, SonarQube [5] is 
the most widely used. SonarQube’s TD estimation algo-
rithm is based on the detected maintainability issues, cal-
culated with the help of the following metrics: code du-
plications, comment density, bad distribution of complex-
ity, bugs, vulnerabilities, coding rules violations, bad code 
design, and unit test bugs. TD is calculated either at class- 
or file-level and is defined as the remediation effort re-
quired to fix all maintainability issues, measured in 
minutes. At project-level TD Principal is computed as the 
sum of each remediation effort function for every class or 
file. Furthermore, the tool provides a SQALE rating index 
[24] that is the ratio between the TD of the application to 
the estimation of the cost to rewrite the application from 
the beginning. Similarly, to SonarQube, the SQuORE plat-

 

1 CAST (1998): https://www.castsoftware.com 
2 NDepend (2007): https://www.ndepend.com/ 

3 SonarQube (2007): https://www.sonarqube.org 

4 SQuORE (2010): https://www.vector.com 

5 Code Inspector (2019): https://www.codiga.io 

6 Symphony Insight (2019): https://insight.symfony.com/ 

form [6], adopts the ISO rule standards to quantify TD 
Principal. The platform quantifies the values of quality 
attributes such as Maintainability, Reliability, Efficiency, 
Portability, Security, Testability, and Changeability, based 
on a variety of quantifiable metrics. The definition of TD 
Principal is similar to SonarQube, in the sense that it uses 
remediation functions without providing an index. From 
a different perspective, the estimations provided by CAST 
[12] are based on performance, security, robustness, trans-
ferability, and changeability violations. TD Principal is 
defined as the cost to fix structural quality problems, i.e., 
violations, that may cause future major disruptions. In 
particular, each violation is assigned a weight that reflects 
its criticality. The tool provides a TD Principal index that 
is the product of the violation with the criticality, and the 
effort required to fix the violation. 

The aforementioned tools are commercial products 
that provide a free license for academic or research pur-
poses. One of the main shortcomings while performing 
qualitative empirical studies in the TD domain is the se-
lection of the tool that will be used for quantifying TD 
Principal since there is no state-of-the-art solution. This 
problem becomes even worse, by considering that TD 
quantification tools adopt different metrics and quality 
models to capture TD, a fact that in many cases leads to 
contradicting TD estimations among tools [2], [21]. To 
capture the diversity of TD quantification of different 
tools, Amanatidis et al. [2], developed a benchmark that 
compares the different TD Principal quantification of 
three tools (SonarQube, CAST and SQuORE) and calcu-
lates their level of agreement. A main output of this work 
is the construction of benchmark, i.e., a list of code arti-
facts (i.e., classes or files) which all tools identify as TD 
items. In the same direction, Tsoukalas et. al. [41] argue 
that the reliability of the findings derived by a single TD 
tool is limited. Therefore, the authors used the benchmark 
developed by Amanatidis et al. [2] to classify software 
code artifacts as being High-TD or not (using source code, 
repository activity, issue tracking, refactoring, duplication 
and commenting rate as predictors). 

Limitations: Different tools produce different types of 
estimates based on the different ruleset they adopt, a fact 
that can cause large deviations within the estimates pro-
duced by different tools for the same application. The 
majority of studies focused on TD Principal forecasting 
use the TD quantification of a single tool rendering the 
credibility of the forecast into question [23], [28], [39], [40]. 
Contribution: In this study we address this issue by 
adopting the TD benchmark [2] that identifies projects, 
for which there is an agreement for their value of TD 
Principal, based on the three tools (SonarQube, CAST and 
SQuORE). 

2.3 JavaScript Quality Assessment 

There are several studies found in literature for assessing 
the quality of Javascript applications. The majority of 
such studies adopt metrics that are language-agnostic; 
highlighting the need for language-specific metrics [42]. 
Gizas et. al. [18] used size metrics (LOC, Numb. Of state-
ments, comments, comments intensity), complexity met-
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rics (McCabe complexity, branches& depth), and main-
tainability metrics (Halstead metrics) to compare the 
quality of six popular JavaScript frameworks (ExtJS, Dojo, 
jQuery, MooTools, Prototype and YUI). Misra and Cafer 
[29] introduced a cognitive complexity index for assessing 
the quality of JS applications. The index utilizes metrics 
such as the lines of code, the number of arbitrarily name 
distinct variables, the number of meaningfully named 
variables, the number of operators, and the cognitive 
weights of basic control structures. The authors evaluated 
the proposed index on 30 JS scripts and concluded that it 
performs better than the typical complexity metrics when 
used separately, stressing out the need for more special-
ized JS metrics. Lin et. al. [26] presented a set of metric 
units and quantization rules for the React.js framework, 
based on the existing metrics proposed for assessing the 
code quality of traditional software applications. The de-
veloped domain-specific quality model includes three 
types of metrics: (a) JS metrics (code indentation, code 
annotation, correct variable naming, code replication); (b) 
React.js component metrics (lines of code, dependent 
graph leaf nodes, dependent graph depth, functions cy-
clomatic complexity, coupling); and (c) React.js state met-
rics (self-state, parent-transition state, state utilization, 
state transmissibility, state transition weight).  
Language-agnostic metrics have also been used to assess 
the maintainability [45] and the evolution of JS appli-
cations [10]. Zozas et. al. [45] investigated the mainte-
nance activities performed in 60 JS projects. Out of this 
research, two indices were proposed, the Maintenance 
Effort index and the Maintenance Changes index. The 
indices were evaluated based on correlation, consistency, 
predictability, discriminative power, and reliability evalu-
ation criteria. The metrics that participate in these indices 
are: Number of Bugs, Duplicate Lines of Code, Lines of 
Code, Number of attributes, Number of corrective activi-
ties, Complexity, Number of commits, and Number of 
files. Chatzimparmpas et. al. [10] focused on JS applica-
tion quality and evolution trends over time, by examining 
the relevant Laws of Lehman. Each law was investigated 
with respect to maintenance data coming from 20 popular 
open-source JS applications. The authors concluded that 
complexity remains stable over time.  
Despite the above efforts which consider traditional quali-
ty metrics for accessing quality, there are a few studies 
that consider the unique nature of JS language for as-
sessing the quality of the associated applications. Gallaba 
et. al. [16] pointed out that callbacks are a key feature of 
JS applications that uses them to handle and respond to 
events. The authors suggest that the increased number of 
callbacks decreases the understandability and the main-
tainability of the source code as they introduce a non-
linear control flow that is declared anonymously and exe-
cuted asynchronously. By performing an empirical study 
on 138 JS projects, the study concluded that 10% of func-
tions include callbacks, while 43% out of these are anon-
ymous, and over 50% of these are nested and asynchro-
nous. On the same track, Mirghasemi et. al. [30] explored 
anonymous function declaration in 10 large JS projects 
and concluded that only 7% of functions are named by 

developers, thus having an impact on maintenance and 
quality overall. To address this problem, the authors pro-
posed an automated approach, called Static Function Ob-
ject Consumption, that provides names to anonymous 
JavaScript functions based on local source code analysis. 
Similarly, Richards et. al. [32] focused on the eval key-
word, which is among the dynamic features of the lan-
guage, arguing that the extended use of this keyword 
may cause unpredictable behavior to JS applications.  The 
authors presented an approach to transform common 
uses of eval into other language constructs.   

Limitation: The majority of tools are focused on TD in-
troduced in OO applications (i.e., Java) [28][39][40], con-
sidering metrics that are focused on the OO nature. This 
issue poses a major threat when adopting these models to 
applications developed in JS since the unique aspects of 
the language are not taken into consideration. Contribu-
tion: In this study we introduce a TD forecast model with 
four types of metrics: (a) External Quality and Activity 
metrics [45]; (b) Source code size and complexity metrics 
[18][29]; (c) Maintainability metrics [10][18]; and (d) Lan-
guage-specific metrics as introduced by [16][30][32]. 

2.4 Background Information 

In this section, we present the necessary background on 
the data analysis methods employed in this study 
Regression Analysis (RA) aims at predicting the value of 
a dependent variable, based on the value of one or multi-
ple independent variables [13]. In this study we applied 
Backward elimination for two reasons: (a) this method 
does not present the suppressor effect, i.e., a predictor is 
significant when another predictor is held constant [7]; 
and (b) the method can handle many independent varia-
bles being able to eliminate predictor variables to just the 
most important ones. The Backward Stepwise Regression 
(BSR) is a stepwise regression approach, in which the 
model at the start, is saturated with the independent vari-
ables [43]. The end outcome of Backward Stepwise Re-
gression is a function, in which independent variables 
measured in metric contribute towards the prediction, 
with a specific weight Bi, as the summary of each metric. 

The Autoregressive Integrated Moving Average (ARIMA) 
time series forecasting model aims at forecasting the val-
ue of a particular variable based on past observations [36]. 
We chose to employ ARIMA as it does not require compu-
tational power nor extensive parameter tuning, relying 
solely on historical data [36]. An alternative to this would 
be the use of SARIMA, which considers seasonality in the 
dataset, which is not the case for software development 
data [39]. The produced models [8] are denoted as ARI-
MA (p, d, q). The adjusting parameters are p (the auto-
regressive AR part of the model as the maximum number 
of lags in it), d (the integrated I part of the model as the 
number of differencing observations), and q (the moving 
average MA assuming current error dependency on the 
error of lags allowing linear combination between succes-
sive lags). The main assumptions are normality, station-
arity, and invertibility [8]. The modeling strategy involves 
the steps: (a) Stationarity Identification [4]; (b) Estimation; 
(c) Testing; and (d) Application.  
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3 JSTD METHODOLOGY 

In this section, we present the proposed methodology for 
forecasting TD Principal in JS applications (namely JSTD), 
as outlined in Figure 2. In Phase 1, we predict the value of 
TD principal based on several parameters; in Phase 2, we 
forecast the value of each TD predictor in the future; and 

in Phase 3, we predict TD Principal in future time points, 
based on the forecasted values of TD predictors. To auto-
mate the application of the proposed methodology, we 
developed a tool that implements the aforementioned 
steps. The input of the tool is a GitHub repository, where-
as the output is guided by the methodology steps. 

 
Fig. 2. Proposed Approach 

3.1 Predict TD Principal 

In this step we identify the most important predictors that 
can be used to predict TD Principal. First, we focus on 
data collection (step 1.1): in this activity, we record a 
wide range of available metrics, so as to isolate the most 
significant predictors that affect TD. The list of metrics 
(candidate TD predictors) belongs to the four main cate-
gories defined in section 2.3: External quality and activity 
metrics (Operational metrics, End-User Activity metrics), 
Code size & complexity metrics (Source code size metrics, 
Source code complexity metrics), Maintainability Metrics 
(Code Smells, Vulnerabilities) and JS metrics. JSTD calcu-
lates source code and maintainability metrics by reusing 
third-party components (i.e., Snyk, Lizard, and ES-check). 
The external quality metrics are derived by JSTD by using 
the related GitHub APIs. TD Principal quantification is 
derived by using the benchmark provided by Amanatidis 
[2]. To identify a unified TD Principal value, we have syn-
thesized the values of the benchmark tools, as follows: 
• we have executed CAST, SonarQube, and Squore for 

each project 
• we retained files whose TD Principal values are simi-

lar (present less than 5% deviation between the max 
and min TD Principal values from the 3 tools) 

• we summed the TD Principal of these files to aggre-
gate to the project level, which is the unit of analysis 

Table 3 presents the metrics collected by JSTD that are 
used in the scope of this study. Due to size limitation, Ta-
ble 3 presents only a brief description of the metrics, 
whereas a full-fledged metric definition, along with rep-
resentative examples are given in Appendix B. 
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SLOC Physical source code lines 

LCOM Lines of comments. 

LOC Total lines of code = SLOC + LCOM. 

NOA The number of attributes. 

NOC The number of classes. 

NOM The number of methods. 

FILES The number of files. 

DIRS The number of directories. 

SIZE Release size in bytes. 

PARM Number of function parameters. 

DIT Depth of inheritance tree. 

MEM Memory heap. 

CC Cyclomatic complexity. 

CCDEN Cyclomatic complexity density. 

HEFF Halstead effort. 

HPV Halstead program volume. 

HPL Halstead program level difficulty. 

CLONE Duplicate (cloned) lines. 

COVRG Source code coverage percent. 

M
ai
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ta

i

n
ab

il
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y
 OBFS Number of obfuscation incidents. 

CSMELL Total count of code smell issues. 

VULN Total count of vulnerability issues. 
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Group Metric Name Calculation Method 
JS

 m
et

ri
cs

 

WITH WITH keyword statements. 

EVAL EVAL keyword statements. 

VECMA Version of ECMAScript applied. 

NEW NEW keyword statements. 

ANONYM Number of Anonymous functions. 

ARROW Number of Arrow functions. 

T
D

  

TD 

TD Principal calculated based  

on the benchmark of 

Amanatidis et al. [2] 

Upon the data collection, we proceed with Data prepara-
tion (step 1.2) This activity includes the calculation of 
derived variables (e.g., average size of functions in an 
application). Within the scope of this study, we also calcu-
lated the project-level TD introduced in the source code 
by summing the TD Principal of each file. The develop-
ment of the TD Prediction model (step 1.3) is the last ac-
tivity of this step. During the development of the model, 
we need to specify the parameters of the model (step 
1.3.1). Initially, we select the type of statistics that will be 
used to fit the model (i.e., f-measure, t-measure, existence 
or not of a constant value). To apply Backward Stepwise 
Regression, we selected T-measure as a statistical meas-
ure, along with the inclusion of a constant value in the 
equation. The JSTD tool applies BSR to the most recent 
releases of the 104 open-source JS projects. The next activ-
ity is to interpret the model (1.3.2) and confirm that the 
results are meaningful, i.e., that can be intuitively con-
firmed. For this reason, we use the values of regression 
coefficients to identify the impact of each independent 
variable on TD Principal. The outcome of this step is an 
equation that uses the values of several parameters to 
predict the value of TD Principal. 

3.2 Forecast Techical Debt Predictors 

In this step we forecast the values of the TD predictors 
identified in the regression model (Step 1). The selected 
forecasting modeling procedure is Box-Jenkins ARIMA. 
The Identification (step 2.1) activity aims to ensure that 
the ARIMA model assumptions are fully satisfied. The 
collected data are sampled to create time series and will 
be tested for stationarity. It is unknown which sampling 
period would work best, and as such, three different 
sampling periods are tested: for one day, one week, and 
one month. In our case, the time series were found to be 
non-stationary based on the KPSS test, and as such, dif-
ferencing data transformation was applied, as first-order 
differencing and one-month sampling was found to re-
move non-stationarity, the same finding is supported by 
Tsoukalas et al. [40]. Before the development of the fore-
casting models the dataset is split into a training and a 
testing set: The training set for each participating project 
includes 90% of the oldest observations; whereas the test-
ing set for each project includes the rest 10% of the obser-
vations (the most recent ones).  

The Estimation (step 2.2) activity, estimates candidate 
p (auto-regressive part) and q (moving average part) pa-
rameters of the models.  This activity derives a group of 
ARIMA (p, d, q) models – in our case (p, 1, d) – to be fur-
ther tested for best fit for each TD predictor identified in 

step 1.3.2. The third activity is Testing (step 2.3) and in-
volves testing the diagnostics of the ARIMA models, to 
identify whether they are satisfied. All models are tested 
for significance, stationarity and invertibility conditions, 
and residuals randomness, as described in Section 3.2. 
Finally, in the Application (2.4) activity of this step, a re-
gression analysis is performed between the predicted 
values of the model and the observed values of the most 
recent observations that belong to the testing data set. 
Thus, the predictive power of the derived model has been 
tested by evaluating RMSE, MAPE, and MAE metrics. 

3.3 Predict Code Techical Debt Principal 

During this step, we forecast the value of TD Principal 
using the models derived in the previous steps. The fore-
casted values of TD predictors serve as an input to the 
estimation model developed in step 1.3 to predict future 
TD Principal (step 3.2). During this activity, we derive an 
early estimation of debt, based on the forecasted values of 
TD predictors. 

4 CASE STUDY DESIGN 

In this section, we present the design of the case study 
performed to evaluate the proposed methodology, as pre-
sented in Section 3. The case study was designed, based 
on the guidelines of Runeson et al. [33].  

4.1 Research Questions 

The main goal of this study is to validate the JSTD meth-
odology. For each one of the steps of JSTD, a relevant re-
search question has been set: 
[RQ1] Which are the most significant predictors that influence 

the most the technical debt of JavaScript applications?  
This question aims to identify the most significant predic-
tors that influence the value of TD Principal for JS appli-
cations. Our target is to create a model that can be used 
for accurately estimating TD Principal by isolating the 
most significant TD predictors. This research question is 
related to the 1st step of the methodology. 

[RQ2] Is it possible to accurately forecast the TD predictors 
through time-series forecasting methods?  

This question aims to validate the accurate forecasting of 
the future values of TD predictors, by analyzing the evo-
lution of the project. This research question is related to 
the 2nd step of the methodology.  

[RQ3] Is it possible to accurately estimate TD Principal based 
on the forecasted values of the TD predictors? 

This question aims to evaluate the accuracy of estimating 
TD Principal in a particular future time point, based on 
the forecasted values of TD predictors. This research 
question is related to the 3rd step of the methodology. 

4.2 Case Selection  

Since the proposed methodology aims at predicting the 
future values of TD Principal, the evaluation focuses on 
evaluating the predictive power of the derived models. 
The proposed approach was evaluated on a dataset con-
taining 105 popular JavaScript applications hosted in 
GitHub. The dataset has been included in the Github re-
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pository of the JSTD tool7. For these applications, in total 
19,636 releases have been analyzed. Several descriptive 
statistics on the dataset are presented in Appendix A. The 
applications are selected, based on the following criteria: 
• The applications are among the most popular written 

in JS in GitHub (the 105 projects with the largest num-
ber of stars), so as to ensure that the applications are 
not trivial or toy-examples. 

• JS is the primary scripting language, more than 50%, 
so that the results are JS-specific–We note that to this 
percentage the GitHub platform considers HTML, CSS 
and variants as separate programing languages which 
are markup scripts. For example, Bootstrap is reported 
as 50% JS while the rest 50% is HTML and CSS scripts. 

• The evolution contains more than 10 releases, to en-
sure that of its fitness for time series analysis [8], [27].  

4.3 Analysis Process 

TD Prediction Based on Parameters (RQ1): To answer RQ1, 
we use a dataset that consists of the latest release of each 
of the 105 projects that participate in the analysis. Since 
the employed method does not rely on timeseries analy-
sis, we need to select a single version. Among the first and 
the latest version, we opt for the latest, since it is timelier 
relevant in terms of used technologies and the current 
status of the projects. The data from these 105 releases is 
randomly split into 90% of the projects, (94 projects) and 
the validation set that consists of the rest 10% of the pro-
jects, (11 projects). This process is repeated 10 times with 
10 random training and test sets. The regression model 
that presents the highest accuracy is selected as the most 
appropriate one. To calculate the accuracy of the achieved 
regression models, we use R2 and adjusted R2 to evaluate 
the derived estimations.  

Dependent Variable: Value of TD Principal 
Independent Variables: TD Predictors of Table III 
Method: Backward Regression Anlysis 
Evaluation Process: 90%-10% Splitting for Training 
and Tetsing – repeated 10 times 

Forecast TD Parameters (RQ2): In the case of RQ2 the evalu-
ation process is performed for each of the 105 projects 
participating in the analysis, separately. In particular the 
available releases of each project are split into the training 
set, that consists of the 90% of the oldest releases and the 
testing set that consists of the 10% of the most recent re-
leases. Then, the R2 metric was employed to calculate the 
accuracy of the ARIMA model, produced by the training 
set, when applied to the observations of the test set, as 
well as the Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), Mean Absolute Error (MAE), and 
Normalized Bayesian Information Criterion (Normal BIC) fit 
statistic measures. 

Dependent Variable: TD predictors in some time steps 
Independent Variables: TD predictors in previous steps 
Method: ARIMA 
Evaluation Process: 90%-10% splitting of versions. 10% 
of most recent versions are used for Tetsing 

 

7 https://github.com/zozas/jstd/blob/main/Manuscript%20dataset.zip   

Prediction of Future TD Principal (RQ3): With respect to RQ3 
the estimate is performed for each project separately by 
performing walk-forward validation [37]. The data set is 
split from a temporal viewpoint—see Figure 3. We adopt-
ed walk-forward validation [37] to evaluate the prediction 
accuracy as each model is updated when new observa-
tions are made available. The initial model is trained on 
an initial set of consecutive observations, and the accura-
cy is tested against future steps (the model prediction is 
evaluated against known value). The processes are re-
peated by moving the time window one-step forward 
(one month) to include the known value into the new 
training set. We applied 12 walk-forward validation pro-
cesses to predict the next 12 iterations respectively. Fur-
thermore, as a common practice in time series analysis 
[37], [39], we included a random walk model ARIMA 
(0,1,0) for the purpose of comparison with the trained 
model, as it. Furthermore, we included an ARIMA predic-
tion model based on the known TD Principal values to 
compare the predicting accuracy of the proposed model 
to compare whether the suggested multivariate analysis 
(BSR model) is more accurate compared to univariate 
analysis [39]. The metrics used to evaluate forecasts for all 
models are the RMSE, MAE, and MAPE.  

 
Fig. 3. Data Splitting Approach 

Dependent Variable: Value of TD Principal in future 
Independent Variables: Values of TD predictos in future 
Method: Backward Regression Anlysis 
Evaluation Process: Walk-forward validation 

5 RESULTS 

5.1 TD Predictors Identification (RQ1) 

To identify the significant TD predictors for JS applications 
we have applied Backward Stepwise Regression. In the 8th 
step of the process, the value of adjusted R2 is overall satis-
factory, explaining 74% of the variance of the dependent 
variable. Through this process we have identified 8 predic-
tors as the most prevalent ones, as presented in the folowing 
equation: 

𝑻𝑫 𝑷𝒓𝒊𝒏𝒄𝒊𝒑𝒂𝒍 𝑰𝒏𝒅𝒆𝒙 

= 1.060 − 0.063 × 𝑁𝑂𝐶 + 0.143 × 𝐶𝐿𝑂𝑁𝐸

− 0.023 × 𝐸𝑉𝐴𝐿 + 0.0738 × 𝑁𝐸𝑊

− 0.002 × 𝑁𝑂𝑀 + 0.123 × 𝑃𝐴𝑅𝑀

+ 0.13 × 𝐴𝑁𝑂𝑁𝑌𝑀 −  0.96 × 𝐴𝑅𝑅𝑂𝑊 

From the formula, we observe that the significant predictors 
of TD are solely source code metrics, while external quality 
and activity metrics do not participate in the equation. Out 

https://github.com/zozas/jstd/blob/main/Manuscript%20dataset.zip
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of the most significant TD predictors, four are general-
purpose structural metrics (NOC, CLONE, NOM, PARM), 
while the rest are JS-related (EVAL, NEW, NOM, ARROW). 
The predictors that have a positive impact on TD (minimiz-
ing it) are NOC, NOM, EVAL, and ARROW while the predic-
tors that increase TD are CLONE, NEW, PARM, and ANO-
NYM. Table 4 presents the accuracy statistics for the TD 
Principal index for both the training and the validation set. 
Concerning the training set, the simple correlation R is 0.861, 
whereas the R2 is 0.741 and the adjusted R2 value is 0.710. As 
for the test set, the simple correlation R is 0.855 and the R2, as 
well as the adjusted R2 values, are 0.722 and 0.711 respective-
ly. The regression model is statistically significant presenting 
a p-value < 0.05, performing with a high accuracy [14]. 

TABLE 4: MODEL ACCURACY 
 

R R2 Ad. R2 Std. Error 

Training set .861 .741 .710 0.74 

Test set  .855 .722 .711 0.82 

5.2 Forecast of TD Predictors (RQ2) 

The next step is to forecast the values of TD predictors with 
the use of the ARIMA models. For each one of the projects 
participating in this study, we have applied ARIMA to fore-
cast the values of the TD predictors (i.e., NOC, CLONE, 
EVAL, NEW, NOM, PARM, ANONYM, ARROW). We should 
mention that we have excluded the ARIMA (0,1,0) “Random 
walk” model to compare it with the selected model during 
the next research question. This approach is often followed 
by related literature [37]. For each predictor, based on our 
analysis, a number of competitive ARIMA models were 
identified. As a start, we have analyzed the goodness of fit 
and the residuals of these selected models, as well as the BIC 
metric to conclude to the models that present the best satis-
factory fit. Table 5, displays the mean statistics over the fore-
casting models for all 105 projects.  

TABLE 5: ARIMA MODELS ACCURACY 

Metric ARIMA  BIC Ljung-

Box 

RMSE MAPE MAE 

NOC 1,1,0 14.2 18 14 1211 71.773 91.07 

CLONE 0,1,1 12.7 12 12 590 55.168 75.39 

EVAL 1,1,1 16.4 284 9 3633 44.619 692.78 

NEW 1,1,1 9.2 159 14 100 89.727 17.95 

NOM 0,1,1 0.5 242 12 1 58.910 0.41 

PARM 0,1,1 32.1 32 14 947244 20.259 20838 

ANON 1,1,0 13.2 294 10 737 177.17 162.43 

ARROW 1,1,0 13.7 186 9 988 104.50 171.80 

The Ljung-Box Q test indicates that the residuals are inde-
pendent and all models are suitable and well-adjusted to the 
time series, though a high significance value over 0.05 for all 
models. The Q number of the test indicates the randomness 
of the residual errors, while the DF number (Degrees of 
Freedom) is the number of model parameters that are free to 
vary when estimating debt. The statistic test follows a chi-
square distribution with DF degrees of freedom. On these 
results, the data values are independent. The BIC number of 
the best fit models presents a lower score than the candi-
dates. All models have been evaluated apart from the BIC 

number, by comparing the Root Mean Squared Error 
(RMSE), the Mean Absolute Percentage Error (MAPE), and 
the Mean Absolute Error (MAE), resulting in that the pro-
posed models are good for all steps ahead. Furthermore, the 
coef-ficients present in all AR and MA parameters a p-value 
less than 0.05 indicating the significance of each weight as 
well as the predictive performance of the model. The domi-
nating ARIMA models are of type: 

ARIMA (0,1,1) a simple exponential smoothing with 
growth for three predictors (CLONE, NOM, PARM). 
ARIMA (1,1,1) additionally takes into consideration as an 
autoregressive term the value of 1 previous observation. 
Two predictors follow this model (EVAL, NEW). 
ARIMA (1,1,0) a first-order autoregressive model con-
cerning three predictors (NOC, ANONYM, ARROW). 
All models include a maximum of two moving average 
terms. The next step is to present the mathematical speci-
fication of the above models, as presented in Table 6, 
where Yt is the forecasting value, and εt is the white noise 
(forecasting errors), with zero means. 

TABLE 6: MATHEMATICAL ARIMA MODELS 

Metric Model Mathematical specification 

NOC 1,1,0 Yt = 0.041×Yt-1 – 0.057×Yt-1 + 0.021×et 

CLONE 0,1,1 Yt = – Yt-1 + 0.051×et – 0.052×et-1 

EVAL 1,1,1 Yt = 0.421×Yt-1 – 0.126×Yt-1 + 0.078×et – 0.045×et-1 

PARM 0,1,1 Yt = 2.726 – Yt-1 + 0.105×et – 0.860×et-1 

NEW 1,1,1 Yt = 0.282×Yt-1 – 0.157×Yt-1 + 0.030×et – 0.057×et-1 

NOM 0,1,1 Yt = – Yt-1 + 0.242×et + 0.174×et-1 

ANONYM 1,1,0 Yt = 1.206×Yt-1 – 0.976×Yt-1 – 0.711×et 

ARROW 1,1,0 Yt = 0.476×Yt-1 – 0.125×Yt-1 – 0.051×et 

Following the above, a residual analysis was performed 
to evaluate the model goodness of fit, as presented in Ta-
ble 7. Concerning the residuals over time, as mentioned in 
Table 5, they do not display any obvious seasonality. The 
Q-Q plots in Table 7 follow the linear trend of the samples 
taken from a standard normal distribution which is an 
indication that the residuals are normally distributed. 
Furthermore, the ACF and PACF plots show a low corre-
lation with lagged versions of the residuals. Based on the 
above, our model residuals are normally distributed and 
uncorrelated. 

TABLE 7:  RESIDUAL ANALYSIS 

 

NOC 1,1,0 
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CLONE 0,1,1 

 

EVAL 1,1,1 

  

PARM 0,1,1 

 

NOM 0,1,1 

 

NEW 1,1,1 

 

ANONYM 1,1,0 

 

ARROW 1,1,0 

5.3 Forecast of Technical Debt Principal (RQ3) 

Based on the forecasts of TD predictors performed in RQ2 
and the model presented in RQ1, in this step we proceed 
to forecasting the TD Principal value of the latest observa-
tions for each project. By moving from (t) to (t+1) lags it is 
possible to predict multile iterations ahead. We have per-
formed a walk-forward validation [37][39] with 12 itera-
tions-ahead. The results will be tested on observation data 
that have not been used during training, to ensure the 
ability of the model to generalize and penalize errors.  
Table 8 presents the estimation accuracy of the proposed 
methodology that is based on the combination of ARIMA 
and BSR and compares the accuracy of the method with 
the ARIMA model for forecasting directly TD Principal 
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and with the Random walk prediction. All three models 
are evaluated against the observed technical debt values. 
The comparison is presented for multiple time steps into 
the future [39]. In the case of the Random Walk, the ARI-
MA (0,1,0) model have been applied as a common method 
followed by related literature [37]. In the case of the ap-
plication of ARIMA for the direct forecasting of TD Prin-
cipal, a regression analysis on the past TD values has been 
applied to forecast future TD Principal values [39]. For 
iterations 1 to 12 we evaluated the models by comparing 
the RMSE, MAPE and MAE.  The results indicate that the 
proposed model is relative stable for all 12 steps ahead. In 
the case of RMSE, MAPE and MAE, our model presents 
lower errors than random walk. 

TABLE 8 
RANDOM WALK, REGRESSION AND ARIMA TD COMPARISON 
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1 5.96 5.97 8.51 5.93 5.02 5.60 16.2 5.53 4.54 4.99 4.73 4.92 4.18 

2 5.12 5.97 6.95 5.93 4.65 5.64 16.0 5.58 4.87 4.99 4.55 4.91 4.55 

3 5.18 6.01 6.69 5.97 4.72 5.68 16.7 5.61 4.80 5.01 4.44 4.92 4.65 

4 5.25 6.05 6.45 6.01 4.76 5.72 17.5 5.65 4.66 5.02 4.50 4.93 4.67 

5 5.33 6.09 6.14 6.05 4.32 5.77 18.3 5.70 4.93 5.04 4.73 4.94 4.92 

6 5.49 6.13 6.02 6.09 4.32 5.81 18.7 5.75 4.56 5.07 4.98 4.98 4.95 

7 5.64 6.16 5.73 6.12 4.36 5.88 19.0 5.82 4.79 5.11 4.80 5.02 4.98 

8 5.43 6.20 5.27 6.15 4.55 5.94 19.4 5.88 4.66 5.16 4.86 5.06 5.15 

9 5.77 6.24 5.26 6.20 5.13 6.02 19.9 5.96 5.19 5.19 4.54 5.09 5.35 

10 5.91 6.28 5.07 6.23 5.03 6.07 21.1 6.02 5.24 5.20 4.66 5.09 5.42 

11 6.06 6.30 4.78 6.26 4.62 6.14 22.1 6.09 5.42 5.21 4.49 5.09 5.61 

12 6.02 6.32 4.50 6.27 4.33 6.22 22.5 6.17 5.69 5.26 4.14 5.13 5.68 

 
Fig. 4. Proposed approach (Node.js) 

In Figure 4, we present the 12 forecasted steps based on 
the JavaScript project “Node.JS” (13th project as presented 
in Appendix). In all iterations, the proposed methodology 

outperforms the random walk and the regression model. 
The random walk model presents a fluctuation in step 5. 
Based on the results, the predictive power of all models 
decreases slowly in further future steps, while they tend 
in many cases in long-future prediction to present similar 
MAPE and APE error values. By average, for all projects, 
our model based on ARIMA outperforms both Random 
Walk as well as regression based on TD values.  

6. DISCUSSION 

In this study we proposed a methodology for identifying 
significant TD predictors; forecasting the values of these 
predictors in future observations and subsequently predict-
ing TD Principal based on these values. The results of the 
study will be therefore discussed with respect to: (a) the abil-
ity of the methodology to forecast TD in future version of the 
system—see Section 6.1; (b) the predictors that affect TD 
Principal of JS applications—see Section 6.2; and (c) the im-
plications to researchers and practitioners—see Section 6.3. 

6.1 JSTD Predictive Power & Interpretation 

Regarding the ability of JSTD to forecast the values of the 
TD predictors, our findings show that the ARIMA model 
is capable to forecast accurately future observations. This 
finding agrees with other studies that applied ARIMA for 
forecasting software quality attributes that are primitive 
(i.e., can be directly calculated from the source code) [19], 
[31]. It seems though that when using ARIMA to forecast 
TD that is a synthesized metric (i.e., its value depends on 
other metrics), the accuracy of the method deteriorates as 
we proceed in long-term predictions (increased future 
steps). This finding is in accordance with [28] and [41] 
who argue that machine learning techniques that are able 
to synthesize the values of independent variables to make 
predictions of TD Principal appear to be more sufficient 
and accurate in long-term forecasting compared to time-
series models that take into consideration just the previ-
ously observed values of TD Principal.  

6.2 TD Predictors’ Analysis 

Quantitative Findings & Theoretical Interpretation: The 
majority of traditional source code size metrics such as 
NOC, CLONE, NOM, PARM are found to be highly signif-
icant TD predictors. These results are aligned with related 
work that also appoints that software formulated in clas-
ses (NOC) [39] and methods (NOM) [40] presents less TD 
Principal while software with duplications and many pa-
rameters [40], [3] tend to be more complex and thus pre-
sent more TD. Unlike other studies that associate TD with 
object-oriented metrics [22], in this study we were not 
able to confirm or solidly reject this finding, since for the 
majority of the participating projects we were not able to 
calculate all OO metrics as defined by Chimader and Ke-
merer [9]. This is indicative of the special nature of the JS 
applications, where the object-oriented paradigm is very 
loosely defined compared to stricter OO languages, such 
as Java; thus, typical OO metrics have not emerged as 
important TD predictors for the case of JS projects. 
However, keeping in mind that OOP was first introduced 
with ECMA script in 2015, we can assume that strict OO 
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practices may have not yet spread to the community. 
Nevertheless, there are practices that are language-
specific and involve directly or indirectly OO practices 
such as the creation of anonymous objects and functions. 
The NEW keyword creates new empty JavaScript objects 
in the run-time, including a constructor prototype object. 
The language compiler calls the constructor and returns 
the new object. ANONYM functions on the other hand 
can be invoked immediately, used as an argument to oth-
er functions, or assigned to a variable. Both anonymous 
functions and objects (NEW and ANONYM) metrics are 
found to increase TD Principal, probably due to the fact 
that they are associated with the creation of objects in the 
run-time, a fact that increases system complexity and de-
teriorates code readability. On the other hand, several 
controversial characteristics of the language such as the 
ARROW functions and the EVAL strings seem to decrease 
TD. The ARROW functions are syntactically compact 
functions that are created dynamically to evaluate an ex-
pression and return the result, without allowing binding 
to “this”, “super” or “new” target keywords. In both cases, 
there is “hidden” source code that is incorporated indi-
rectly and has a one-time-run and non-repeatable effect 
on the overall program. Despite the general opinion that 
these two aspects of the language should be carefully 
adopted and only in suitable cases, it seems that JS pro-
grammers make rational use of them. 

Qualitative Interpretation based on Expert Opinion: One 
of the main limitations of the purely quantitative studies 
in software engineering is the usually narrow interpreta-
tion of the results, and the lack of the deep understanding 
of the findings. To proceed one step further than inter-
preting the quantitative findings from our point of view, 
we have seeked for the expert opinion of JS developers. 
To this end, we have organized a short survey with 15 
medium experience JS developers (5-10 years of pro-
gramming) and asked them to interpret our findings. As a 
first step, we asked them to confirm or oppose the identi-
fied relations between predictors and the level of TD in JS 
applications. The results are summarized in Figure 5. The 
results of the study suggest that the developers confirmed 
at a rate higher than 90% that NOC, PARAM, and CLONE 
metrics are related to TD. The most marginal evaluations 
(2 out of 3 developers are “seeing” the relation) were 
identified for NOM and NEW, closely followed by EVAL 
and ARROW. 

 
Fig. 5. Experts’ Opinion on TD Predictors 

Next, we asked them to present the reasons for which 
they believe a specific metric is an indicator of TD Princi-

pal. After analysing and synthesizing the opinions of the 
experts, the following interpretations have emerged as 
the most prominent ones: 
• Size Metrics: The developers highlighted that a larger 

system (in terms of NOC) is inevitable to accumulate 
more TD, due to the provided functionality (needed 
complexity). However, in terms of TD Principal density 
a system with more classes will probably yield less TD 
Principal. A similar argumentation has been provided 
for NOM: high levels of NOM and NOC is a sign of 
good fragmentation and single responsibility adoption. 
On the other hand, the number of PARAMS was well-
accepted as an indicator of method complexity and 
thereof a sign of high TD Principal accumulation. It is 
worth mentioning that there was no developer who 
opposed this relation. 

• CLONED lines of code: The develeopers suggested 
that code duplication is a smell itself, being responsible 
for potential repetition of bugs and future code in-
consestencies. Additionally, they highlighted that apart 
from making the codebase bigger, in case of a change you 
should find and change all the cloned blocks, harden-
ing the maintainance process.  

• EVAL function: The developers showcased two views 
with the use of EVAL. First, it hides complexity into the 
code. However, more importantly the developers 
characterized EVAL as a huge security threat since mali-
cious code can run inside the application without 
permission and third-party code can see the scope of 
the application, which can lead to possible attacks. In 
that sense, any use of EVAL will definitely need to be 
re-written in refactoring sessions. Nevertheless, at this 
point we need to note that security is a quality proper-
ty whose relevance to TD Principal is controversial, 
since it is a run-time quality attribute. 

• NEW keyword: The developers perceive NEW as pos-
sible source of TD, since it introduces additional cou-
pling and hurts modularity. One developer mentioned 
that: “…direct instantiations of objects make the client 
bound to a concrete class; thus, the system less modular. 
The use of factory patterns and dependency inversion are 
preferable…”. On the other side, some developers men-
tioned that using NEW is “a more OO way of calling 
functions”, so it makes sense to using it. This is a prob-
able reason for the marginal results of the qualitative 
evaluation. 

• ANONYM functions: The developers that agreed that 
anonymous functions are harmuful to system TD, 
supporting that each function must have a name, so as to 
be easily spotted in the code. If there are no names for 
functions one needs to rely on the willingness of the 
developer to add comments into the code (“The 
mainetenance becomes very difficult without method names, 
especially if there are no comments”). Additional concerns 
were raised in terms of hindering reuse for similar pur-
poses. On the other end, some developers mentioned 
that the use of anonymous functions reduce the size of the 
code and therefore can reduce TD Principal. However, 
usually this decrease is low in absolute values and TD 
issues are not identified in method signatures. 
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• ARROW functions: Although the rationale of arrow 
functions and anonymous funtions is similar, the de-
velopers validated the positive impact of arrow func-
tions in TD, highlighting mostly on hiding complexity 
and reducing code duplication. An important difference 
in the use of the two is the fact that arrow functions 
are usually smaller in size and simpler, compared to 
anonymous functions, which can be lengthier and usu-
ally nested as arguments in other functions, hurting the 
readability of the code. 

6.3 Implications to Researchers and Practitioners 

Under this scope, the overall findings of the current re-
search indicate that the proposed methodology for pre-
dicting TD Principal of JavaScript applications based on 
the combination of ARIMA and BSR model can offer use-
ful impli-cations to both researchers and practitioners.  
We encourage researchers to adopt JSTD and the pro-
posed methodology and enhance them by incorporating 
expert knowledge in the definition of the regression mod-
el used, in the parametrization of the ARIMA model, and 
in the inclusion / exclusion of the TD independent varia-
bles. Additionally, researchers are encouraged to evaluate 
the proposed methodology on closed source software. 
Additionally, given the importance of cross-project vali-
dation, we encourage a replication of the evaluation of 
RQ2-RQ3 on groups of projects that the training set (RQ1) 
is different from the testing set. Furthermore, based on 
other research efforts [41], we encourage researchers to 
enhance the current methodology on JS class-level basis 
considering that while JS is capable of object-oriented 
programming, few research efforts focus on this subject 
[18]. The latter would be interesting to observe differences 
concerning TD significant parameters. Another interest-
ing implication for researchers would be to explore if the 
groups of parameters studied in this work present some 
kind of uniform and joint effect on TD Principal, exploit-
ing fitting analysis methods (e.g., factor analysis). Finally, 
researchers are encouraged to experiment with different 
forecasting / prediction techniques in the first two steps of 
the approach and compare the plethora of the available 
statistical, ML, DL algorithms that exist in the litertaure. 
Regarding practitioners, we encourage them to adopt the 
proposed methodology and tool in order to be able to 
predict TD Principal in future observations. Also, it is 
important for the community to understand that TD is 
project-specific and language-specific. Therefore, the use 
of language specific-tools on software repositories that are 
project-specific or company-specific may boost the ability 
of a company to manage its own TD. 

7 THREATS TO VALIDIY 

In this section, we discuss the threats to validity that we 
have identified for this study. Regarding Conclusion Validi-
ty that refers to how reasonable are the findings of the 
analysis, we mention that regarding the statistical power 
of the results, we calculated a variety of regression and 
ARIMA models for all projects participating, in order to 
validate the proposed approach. The model comparisons 

based on statistical tests, as described in Sections 3.1 and 
3.2, showed a high level of accuracy in the proposed 
methodology. Regarding the error rate probability prob-
lem, we selected common, pre-defined validation proce-
dures (KPSS test, Ljung-Box test). Furthermore, re-
garding the heterogeneity of data, we used project-
specific datasets to ensure the relativity of the data in-
cluded in the analysis. The set of metrics that we have 
selected to use in our study for quantifying technical debt 
(see Table 3) belong to well-known metric suites. These 
include the most popular suites [15] Chidamber & Ke-
merer metrics [9] and the Li & Henry suite of metrics [25]. 
However, some metrics cannot be applied to JavaScript 
language programs due to the language nature (lack of 
class notation formalization or even class support to early 
versions [44]). In expansion to this, metrics-based specifi-
cally on the JavaScript programming language were in-
troduced, such as the number of obfuscation incidents 
[42], the version of ECMAScript applied [18], the number 
of anonymous and arrow type functions, and the usage of 
language-specific keywords (like “NEW”, “WITH” and 
“EVAL”) [20]. Finally, the estimated ground-truth TD 
principal value highly depends on the threashold (i.e., 
5%) that we have set to consider agreement among TD 
benchmarker tools. The use of a different threashold 
(stricter—e.g., 1% or more relaxed—e.g., 10%) might have 
yield to a different result. Nevertheless, to the best of our 
knowledge there is no other dataset to reuse having 
commonly agreed values of TD principal. 
Regarding Internal Validity an attempt to formalize a 
methodology over TD based on quality parameters over 
time is presented. The causal relationships identified in 
this study, as documented in Section 6.1, can be consid-
ered as indicators of possible cause-effect relationships 
among the participating parameters without excluding 
other relationships between variables that may affect the 
maintainability of applications that did not participate in 
this study. 
Concerning Reliability, we believe that the replication of 
our research is safe, and the overall reliability is ensured. 
The process that has been followed in this study has been 
thoroughly documented in Section 4, to be easily repro-
duced by any interested researcher. All metrics calculated, 
as well as the overall extraction of the defined data set 
was performed with the use of widely used research 
tools, as documented in Section 4.1, as well as the JSTD 
tool developed for our research and is based on the 
source code of these tools. In either case, future verifica-
tions of the accuracy of this tool would be valuable. Nev-
ertheless, we cannot guarantee the replicability of results 
if different study design decisions were made (e.g., using 
a 6-month or 24-month sliding window for RQ3). 
Concerning the External validity and in particular the gen-
eralizability supposition, changes in the findings might 
occur if the application data set for which the sample re-
leases were analyzed is altered in both projects and size. 
Future replications of this study, on data from other pro-
jects, would be valuable to verify these findings.  
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8 CONCLUSION 

Technical Debt has a large impact on software quality and 
maintenance cost over time. Forecasting this concept is 
considered to be critical for managing the software life-
cycle, and both are influenced by a variety of parameters. 
In this study, we presented and validated a methodology 
to model the predictors related to the technical debt of 
JavaScript applications by applying Backwards Stepwise 
Regression and Autoregressive Integrated Moving Aver-
age methods. We exploited the influence of these predic-
tors, the predictive power of the constructed model, and 
the ability to forecast both concepts over time.  

To investigate the validity of the proposed approach 
we performed a case study on 105 JavaScript applications 
analyzing in total 19,636 releases of JavaScript applica-
tions, testing the estimation accuracy of the derived mod-
els on all releases. Furthermore, we developed a tool to 
automate the whole process of data retrieval, storage, 
evaluation, and analysis. The results from the case study 
suggested that the proposed approach is capable of 
providing stable accurate forecasts with high accuracy. 
Furthermore, JavaScript-explicit features as the “new” and 
“eval” keywords, as well as the “anonymous” and “arrow” 
functions, are among the features of JavaScript language 
that affect TD.   

Overall, JSTD is a tool, that can be a useful for practi-
tioners when monitoring the TD Principal of JS applica-
tions. JSTD can help towards the creation of TD Principal 
prediction models, trained on a large number of project 
releases, by just accessing a GitHub repository. On the 
other hand, the results of the analysis show that the fore-
casts actually require information from just 1 or 2 previ-
ous releases and therefore the need of thousands of re-
leases is actually not a prerequisite. In this manuscript we 
experimented on a large number of releases in order to 
exemplify the proposed approach, but we believe, that 
the existence of a large number of historical releases is not 
necessary in order to produce accurate results. Based on 
these results, a methodology and tool have been provided 
for the benefit of both researchers and practitioners. Fu-
ture replications of the current study, as well as the com-
parison of the provided methodology would be valuable. 
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