
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160 1

Forecasting the Principal of Code Technical
Debt in JavaScript Applications

Ioannis Zozas, Stamatia Bibi, Apostolos Ampatzoglou

Abstract— JavaScript (JS) is one of the most popular programming languages for developing client-side applications mainly

due to allowing the adoption of different programming styles, not having strict syntax rules, and supporting a plethora of

frameworks. The flexibility that the language provides may accelerate the development of application, but also pose threats to

the quality of the final software product, e.g., introducing Technical Debt (TD). TD reflects the additional cost of software

maintenance activities to implement new features, occurring due to poorly developed solutions. Being able to forecast the levels

of TD in the future can be extremely valuable in managing TD, since it can contribute to informed decision making when

designating future repayments and refactoring budget among a company’s projects. Despite the popularity of JS and the

undoubtful benefits of accurate TD forecasting, in the literature, there is available only a limited number of tools and

methodologies that are able to: (a) forecast TD during software evolution, (b) provide a ground-truth TD quantifications to train

forecasting, since TD tools that are available are based on different rulesets and none is recognized as a state-of-the-art

solution, (c) take into consideration the language-specific characteristics of JS. As a main contribution for this study, we

propose a methodology (along with a supporting tool) that supports the aforementioned goals based on the Backward Stepwise

Regression and Auto-Regressive Integrated Moving Average (ARIMA). We evaluate the proposed approach through a case

study on 19,636 releases of 105 open-source applications. The results point out that: (a) the proposed model can lead to an

accurate prediction of TD, and (b) the Number of appearances of the “new” and “eval” keyword along with the number of

“anonymous” and “arrow” functions are among the features of JavaScript language that are related to high levels of TD.

Index Terms—Software Quality, JavaScript, Code Technical Debt, Source Code Quality

—————————— ◆ ——————————

1 INTRODUCTION

avaScript (JS) is constantly gaining ground in the soft-
ware industry as it is considered to be ideal for imple-

menting web and mobile applications [20][44]. The usage
of JS has been boosted by the fact that it is: (a) a weakly-
typed language—no strict programming rules; (b) a mul-
ti-paradigm language—allowing object-oriented, func-
tional, and imperative programming; and (c) supported
by a variety of open-source programming frameworks
and libraries [18]. Currently, more than 400K JS reposito-
ries are hosted and maintained in GitHub, the majority of
which is presenting a lifespan of more than five years,
proving the need for performing maintenance. Neverthe-
less, the previously mentioned “selling points” of JS de-
spite accelerating the implementation pace, also pose
threats to the quality of the final product that is often very
unstructured and hard to understand. For example, a de-
veloper may choose to benefit from the “arrow” function
that has a shorter syntax and thus speed up development,
but may cause readability issues during maintenance. To
resolve this problem, the developer may need to convert
the “arrow” function into a typical function to change the
scope of the function and improve its maintainability, also
known as repaying “code technical debt”.

Technical Debt (TD) is a metaphor [11] used to reflect the
additional maintenance effort, caused by quality com-
promises. The amount of money “deposited” (saved) from
compromising maintainability (using less development
time) refers to the term TD Principal, whereas the addi-
tional effort that needs to be paid due to the lowered
maintainability is termed TD Interest. We note that for the
rest of this paper when referring to the value of TD, we:
(a) refer to the value of TD Principal; and (b) to TD Prin-
cipal at the code level, since other types of TD (such as
architecture, requirements, etc.) are not considered in this
study. By studying the literature (see Section 2.3), we have
identified the following limitations:

(L1) Lack of methods and tools to forecast TD Principal
throughout the evolution of a software system. Predict-
ing the value of TD Principal along evolution is a chal-
lenging task, since both the system and the associated TD
Principal emerge in parallel [40]. Although, in the litera-
ture there are studies that focus on the quality assessment
of JavaScript applications [16], [30], their maintainability
[45], and their evolution [10], there is limited work on TD
management [39]. Being able to forecast TD Principal
along software evolution can help towards the effective
prioritization of the project maintenance effort allocation:
a quality manager can allocate more budget for TD man-
agement in projects that are more heavily affected by the
negative consequences of TD. For instance, if a company
maintains 3 different systems, out of which 2 have accu-
mulated high and similar amounts of TD Principal; being
aware of the system, whose TD will grow more in the

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• Ioannis Zozas is with the Department of Electrical and Computer Enign-
eering, University of Western Macedonia, Kozani, Greece. E-mail:
izozas@uowm.gr.

• Stamatia Bibi is with the Department of Electrical and Computer Enigneer-
ing, University of Western Macedonia, Kozani, Greece. E-mail: sbi-
bi@uowm.gr.

• Apostolos Ampatzoglou is with the Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece. E-mail:
a.ampatzoglou@uom.edu.gr.

J

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

near future can guide resources allocation for quality im-
provement. We note that in corner cases that TD Principal
and TD Interest are not correlated, as expected based on
the metaphor and the literature [46], prioritization is ex-
pected to follow the ranking of TD Interest.

(L2) Lack of a ground-truth TD Principal quantification
in JS. Currently, there are several tools that are available
for quantifying TD Principal (e.g., SonarQube, CAST,
SQUoRE). However, none is recognized as a state-of-the-
art solution for quantifying TD. This shortcoming arises
mostly from the different methodologies that are used to
capture TD Principal: various metrics, rulesets, and score
mechanisms to quantify it. The majority of studies fo-
cused on forecasting, use the TD quantification of a single
tool rendering the credibility of the forecast into question
[28], [39], [40]. In this direction, providing a TD bench-
mark that showcases TD Principal scores in which several
tools agree, can increase the credibility of TD forecasts.

(L3) Current methods do not take into consideration the
specific characteristics of JS. Most of the TD tools found
in the literature use a set of metrics, usually object-
oriented ones, that can be uniformly applied to different
languages, without taking into consideration their specif-
ics. This might pose a major threat to the completeness of
TD quantification, concerning JS applications, since it is
recognized that TD quantification should depend on lan-
guage-specific models [38]. The consideration of a pletho-
ra of metrics (Process, Activity, and Product metrics), in-
cluding JS-specific ones in a TD model can increase the
accuracy of the TD prediction models.

Based on the above, the contribution of the paper is the
provision of a novel 3-step methodology that aims at alle-
viating the aforementioned limitations, as explained be-
low. The scope and motivation of the proposed method-
ology is illustrated in Figure 1.

Fig. 1. Scope and Motivation of this Study

In particular, we combine two well-known ML techniques
(namely: supervised Backwards Stepwise Regression, and
Autoregressive Integrated Moving Average (ARIMA)) for
forecasting TD Principal in three steps:

[Step 1] Predict the value of TD Principal relying on several
parameters and identify the most significant ones. The goal of
this step is to identify the most important predictors that
contribute to accumulating TD. For this purpose, data
from different already implemented JS applications (re-
trieved by mining the GitHub repository) are analyzed to
extract product and process metrics that are able to pre-
dict TD Principal, through the application of Backwards
Stepwise Regression. Based on regression theory [13] a

predictor is considered to be an independent variable (in
our case product and process metrics) that provides in-
formation on an associated dependent variable (in our
case TD Principal). To increase the credibility of TD Prin-
cipal quantification (L2), we rely on a benchmark devel-
oped by Amanatidis et al. [2], targetting the inter-
agreement of three well-established tools. The metrics
that are recorded include, apart from typical metrics, JS-
specific ones [16][18][26][29][30] (L3).

[Step 2] Forecast TD Principal predictors. The goal of this
step is to build a model that forecasts the values of the TD
predictors identified in step 1. For this purpose, the com-
plete history of the JS applications are analyzed. The for-

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 3

malization employed in this step is the ARIMA Box-
Jenkins model for time-series analysis. In this step, we
focus on forecasting the values of TD predictors instead of
TD Principal itself (step 3). ARIMA is a univariate fore-
casting model, relying on historical values of a single var-
iable—the one that is being forecasted; therefore, it is ide-
al for predicting the future values of TD predictors (L1).

[Step 3] Predict TD Principal. The goal of this step is to
predict TD Principal in future time points. For this pur-
pose, the forecasted values of the TD predictors (as calcu-
lated by the ARIMA model in Step 2) serve as an input to
the TD Principal estimation model (as calculated in Step
1). The final output of the proposed methodology is the
value of TD Principal in various future time points (L1),
considering JS-specific characteristics (L3), and relying on
the quantification of different TD tools for reliability (L2).

To validate our approach, we performed an empirical
study on 19,636 releases of 105 JS applications, hosted in
GitHub. The rest of the paper is organized as follows:
Section 2 presents related work and the necessary back-
ground information; whereas Section 3 presents in detail
the proposed methodology. In Section 4, we present the
validation case study design. In Section 5, we present the
results, whereas, in Section 6, we discuss the results and
provide implications to researchers and practitioners.
Finally, in Section 7 we present threats to validity; where-
as in Section 8, we conclude the paper.

2 RELATED WORK & BACKGROUND INFORMATION

In Section 2.1, we present works that are directly compa-
rable to ours, i.e., studies that aim at the forecasting of
TD—related to L1. In Section 2.2, we provide comprehen-
sive literature, based on [5], on the tools that can be used
for quantifying TD. The information in this section ex-
plains in detail L2, i.e., the need for a TD measurement
benchmark. Finally, Section 2.3 is related to works that
focus on JavaScript; thus, providing information regard-
ing L3.

2.1 Technical Debt Forecasting

Forecasting [8] refers to the process that exploits data from
previous events, along with recent trends, to estimate
future events. On this basis, Mathioudaki et. al. [28] pro-
posed deep learning techniques for providing a more ac-
curate long-term TD prediction. The authors quantified
TD based on the SonarQube platform and subsequently
applied Random Forest, Multi-layer Perceptron, and
ARIMA models for producing predictions. The methods
were evaluated on five Java open-source projects. Accord-
ing to the results, Multi-layer Perceptron outperformed
the rest of the methods presenting higher long-term accu-
racy, even for 150 steps ahead in the future, presenting a
mean RMSE 2,361.09, mean MAPE 4.99% and mean MAE
1,960.52). Tsoukalas et. al. [39], employed the ARIMA time
series modeling for forecasting TD based on code viola-
tions (code smells, bugs and vulnerabilities). The ARIMA
method was evaluated on a dataset of five open-source
java projects, while TD was estimated based on the
SQALE index of the SonarQube platform. The authors

concluded that the ARIMA (0,1,1) model presented the
best fit, outperforming the random walk model. The accu-
racy model fit statistic metrics (RMSE 0.02, MAPE 3.62%,
and MAE 0.02) indicated that ARIMA overall presents a
satisfactory prediction power for up to 2 steps ahead in
the future.

Tsoukalas et. al. [40] conducted an empirical study, to
examine the applicability of machine learning algorithms
such as Multivariate Linear Regression, Lasso Regression,
Ridge Regression, Stochastic Gradient Descent, Support
Vector Machines and Random Forests on TD forecasting.
For this purpose, the authors analyzed weekly observa-
tions, for a 3-year period, of 225 open-source Java applica-
tions. The TD Principal was quantified based on So-
narQube while the metrics that participated in the study
were the number of bugs, vulnerabilities, code smells,
size, code coverage, complexity, coupling, and cohesion.
The study concluded that machine learning algorithms
perform better (RMSE 4,767.65, MAPE 8.66%, and MAE
4,262.78) in longer forecasting horizons compared to line-
ar models such as ARIMA. Kumar et. al. [23] applied time
series for forecasting the TD of SaaS-based applications.
The authors quantified TD Principal through an equation
that is based on metrics that measure the service utilities,
the recompositing decisions, and the service level agree-
ment violations. The proposed methodology forecasts
future TD by applying ARFIMA models. The latter was
evaluated in one real-world case scenario, on the Sales
CRM application and its’ services, presenting MAE and
RMSE accuracy within 15% of the actual values.

Limitations: Currently the majority of tools and method-
ologies that exist focus on quantifying TD in a current
version of an application, without producing long-term
forecasts [6], [12], [17]. Also, there are some studies that
predict the existence of high-TD software artifacts [2], [41]
but these studies do not produce a TD estimate related to
the effort required to fix quality issues. Contribution: In
this study, we focus on producing long-term forecasts of
TD principal, itself.

TABLE 1: METRIC EVIDENCE PER STUDY

S
tu

d
y

Metrics variability
TD Quantifi-

cation
Language Tool

[23]
Maintainability

Custom

formula
Generic

[28] Activity, TD SonarQube Java

[39] TD SonarQube Java

[40] Activity, Source code

size & Modularity,

Source code Complexity,

Maintainability, Other

SonarQube Java

T
h

is
 s

tu
d

y

External quality indica-

tors, Activity

Source code Size &

Modularity, Source code

Complexity, Maintaina-

bility, JS metrics, TD

TD

benchmark

[2]

JS X

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

2.2 Technical Debt Quantification Tools

In the literature and the market, there are several tools for
quantifying TD Principal [5]. These tools consider differ-
ent types of TD, such as architectural, design, documenta-
tion, testing, and code TD. In this section we focus on
tools capturing TD introduced at the code level, driven by
the scope of the proposed methodology. Therefore, tools
like VisMiner, Anacondebt, CodeMRI, etc. are omitted. In
Table 2 we present an overview of all tools identified by
Avgeriou et al. [5], quantifying TD from source code. For
each tool, we present the metric used to quantify TD Prin-
cial, the index of code TD Principal, and whether the tools
are able to analyse JS applications, along with file-level
calculations (which are more suitable for JS).

TABLE 2: TOOL OVERVIEW

Tool JS Principal

Definition

Code TD index File

Level

CAST1 Time to

remove

issues

Violations *

Rule criticality *

Effort

NDepend2 - Man-

time to

fix issues

Violations * Fix effort -

SonarQube
3

 Time to

remove

issues

Cost to develop 1 LOCe

* Number of lines of

code.

SQuORE4 Time to

remove

issues

Issues * Fix time

Code

Inspector5

- Effort to

avoid

TD

Function of violations,

duplications, readabil-

ity/maintainability is-

sues.

-

Symphony

Insight6

- Time to

remove

issues

Issues * Fix time -

Focusing on the tools that can be used to quantify the
TD Principal of JavaScript applications, SonarQube [5] is
the most widely used. SonarQube’s TD estimation algo-
rithm is based on the detected maintainability issues, cal-
culated with the help of the following metrics: code du-
plications, comment density, bad distribution of complex-
ity, bugs, vulnerabilities, coding rules violations, bad code
design, and unit test bugs. TD is calculated either at class-
or file-level and is defined as the remediation effort re-
quired to fix all maintainability issues, measured in
minutes. At project-level TD Principal is computed as the
sum of each remediation effort function for every class or
file. Furthermore, the tool provides a SQALE rating index
[24] that is the ratio between the TD of the application to
the estimation of the cost to rewrite the application from
the beginning. Similarly, to SonarQube, the SQuORE plat-

1 CAST (1998): https://www.castsoftware.com
2 NDepend (2007): https://www.ndepend.com/

3 SonarQube (2007): https://www.sonarqube.org

4 SQuORE (2010): https://www.vector.com

5 Code Inspector (2019): https://www.codiga.io

6 Symphony Insight (2019): https://insight.symfony.com/

form [6], adopts the ISO rule standards to quantify TD
Principal. The platform quantifies the values of quality
attributes such as Maintainability, Reliability, Efficiency,
Portability, Security, Testability, and Changeability, based
on a variety of quantifiable metrics. The definition of TD
Principal is similar to SonarQube, in the sense that it uses
remediation functions without providing an index. From
a different perspective, the estimations provided by CAST
[12] are based on performance, security, robustness, trans-
ferability, and changeability violations. TD Principal is
defined as the cost to fix structural quality problems, i.e.,
violations, that may cause future major disruptions. In
particular, each violation is assigned a weight that reflects
its criticality. The tool provides a TD Principal index that
is the product of the violation with the criticality, and the
effort required to fix the violation.

The aforementioned tools are commercial products
that provide a free license for academic or research pur-
poses. One of the main shortcomings while performing
qualitative empirical studies in the TD domain is the se-
lection of the tool that will be used for quantifying TD
Principal since there is no state-of-the-art solution. This
problem becomes even worse, by considering that TD
quantification tools adopt different metrics and quality
models to capture TD, a fact that in many cases leads to
contradicting TD estimations among tools [2], [21]. To
capture the diversity of TD quantification of different
tools, Amanatidis et al. [2], developed a benchmark that
compares the different TD Principal quantification of
three tools (SonarQube, CAST and SQuORE) and calcu-
lates their level of agreement. A main output of this work
is the construction of benchmark, i.e., a list of code arti-
facts (i.e., classes or files) which all tools identify as TD
items. In the same direction, Tsoukalas et. al. [41] argue
that the reliability of the findings derived by a single TD
tool is limited. Therefore, the authors used the benchmark
developed by Amanatidis et al. [2] to classify software
code artifacts as being High-TD or not (using source code,
repository activity, issue tracking, refactoring, duplication
and commenting rate as predictors).

Limitations: Different tools produce different types of
estimates based on the different ruleset they adopt, a fact
that can cause large deviations within the estimates pro-
duced by different tools for the same application. The
majority of studies focused on TD Principal forecasting
use the TD quantification of a single tool rendering the
credibility of the forecast into question [23], [28], [39], [40].
Contribution: In this study we address this issue by
adopting the TD benchmark [2] that identifies projects,
for which there is an agreement for their value of TD
Principal, based on the three tools (SonarQube, CAST and
SQuORE).

2.3 JavaScript Quality Assessment

There are several studies found in literature for assessing
the quality of Javascript applications. The majority of
such studies adopt metrics that are language-agnostic;
highlighting the need for language-specific metrics [42].
Gizas et. al. [18] used size metrics (LOC, Numb. Of state-
ments, comments, comments intensity), complexity met-

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 5

rics (McCabe complexity, branches& depth), and main-
tainability metrics (Halstead metrics) to compare the
quality of six popular JavaScript frameworks (ExtJS, Dojo,
jQuery, MooTools, Prototype and YUI). Misra and Cafer
[29] introduced a cognitive complexity index for assessing
the quality of JS applications. The index utilizes metrics
such as the lines of code, the number of arbitrarily name
distinct variables, the number of meaningfully named
variables, the number of operators, and the cognitive
weights of basic control structures. The authors evaluated
the proposed index on 30 JS scripts and concluded that it
performs better than the typical complexity metrics when
used separately, stressing out the need for more special-
ized JS metrics. Lin et. al. [26] presented a set of metric
units and quantization rules for the React.js framework,
based on the existing metrics proposed for assessing the
code quality of traditional software applications. The de-
veloped domain-specific quality model includes three
types of metrics: (a) JS metrics (code indentation, code
annotation, correct variable naming, code replication); (b)
React.js component metrics (lines of code, dependent
graph leaf nodes, dependent graph depth, functions cy-
clomatic complexity, coupling); and (c) React.js state met-
rics (self-state, parent-transition state, state utilization,
state transmissibility, state transition weight).
Language-agnostic metrics have also been used to assess
the maintainability [45] and the evolution of JS appli-
cations [10]. Zozas et. al. [45] investigated the mainte-
nance activities performed in 60 JS projects. Out of this
research, two indices were proposed, the Maintenance
Effort index and the Maintenance Changes index. The
indices were evaluated based on correlation, consistency,
predictability, discriminative power, and reliability evalu-
ation criteria. The metrics that participate in these indices
are: Number of Bugs, Duplicate Lines of Code, Lines of
Code, Number of attributes, Number of corrective activi-
ties, Complexity, Number of commits, and Number of
files. Chatzimparmpas et. al. [10] focused on JS applica-
tion quality and evolution trends over time, by examining
the relevant Laws of Lehman. Each law was investigated
with respect to maintenance data coming from 20 popular
open-source JS applications. The authors concluded that
complexity remains stable over time.
Despite the above efforts which consider traditional quali-
ty metrics for accessing quality, there are a few studies
that consider the unique nature of JS language for as-
sessing the quality of the associated applications. Gallaba
et. al. [16] pointed out that callbacks are a key feature of
JS applications that uses them to handle and respond to
events. The authors suggest that the increased number of
callbacks decreases the understandability and the main-
tainability of the source code as they introduce a non-
linear control flow that is declared anonymously and exe-
cuted asynchronously. By performing an empirical study
on 138 JS projects, the study concluded that 10% of func-
tions include callbacks, while 43% out of these are anon-
ymous, and over 50% of these are nested and asynchro-
nous. On the same track, Mirghasemi et. al. [30] explored
anonymous function declaration in 10 large JS projects
and concluded that only 7% of functions are named by

developers, thus having an impact on maintenance and
quality overall. To address this problem, the authors pro-
posed an automated approach, called Static Function Ob-
ject Consumption, that provides names to anonymous
JavaScript functions based on local source code analysis.
Similarly, Richards et. al. [32] focused on the eval key-
word, which is among the dynamic features of the lan-
guage, arguing that the extended use of this keyword
may cause unpredictable behavior to JS applications. The
authors presented an approach to transform common
uses of eval into other language constructs.

Limitation: The majority of tools are focused on TD in-
troduced in OO applications (i.e., Java) [28][39][40], con-
sidering metrics that are focused on the OO nature. This
issue poses a major threat when adopting these models to
applications developed in JS since the unique aspects of
the language are not taken into consideration. Contribu-
tion: In this study we introduce a TD forecast model with
four types of metrics: (a) External Quality and Activity
metrics [45]; (b) Source code size and complexity metrics
[18][29]; (c) Maintainability metrics [10][18]; and (d) Lan-
guage-specific metrics as introduced by [16][30][32].

2.4 Background Information

In this section, we present the necessary background on
the data analysis methods employed in this study
Regression Analysis (RA) aims at predicting the value of
a dependent variable, based on the value of one or multi-
ple independent variables [13]. In this study we applied
Backward elimination for two reasons: (a) this method
does not present the suppressor effect, i.e., a predictor is
significant when another predictor is held constant [7];
and (b) the method can handle many independent varia-
bles being able to eliminate predictor variables to just the
most important ones. The Backward Stepwise Regression
(BSR) is a stepwise regression approach, in which the
model at the start, is saturated with the independent vari-
ables [43]. The end outcome of Backward Stepwise Re-
gression is a function, in which independent variables
measured in metric contribute towards the prediction,
with a specific weight Bi, as the summary of each metric.

The Autoregressive Integrated Moving Average (ARIMA)
time series forecasting model aims at forecasting the val-
ue of a particular variable based on past observations [36].
We chose to employ ARIMA as it does not require compu-
tational power nor extensive parameter tuning, relying
solely on historical data [36]. An alternative to this would
be the use of SARIMA, which considers seasonality in the
dataset, which is not the case for software development
data [39]. The produced models [8] are denoted as ARI-
MA (p, d, q). The adjusting parameters are p (the auto-
regressive AR part of the model as the maximum number
of lags in it), d (the integrated I part of the model as the
number of differencing observations), and q (the moving
average MA assuming current error dependency on the
error of lags allowing linear combination between succes-
sive lags). The main assumptions are normality, station-
arity, and invertibility [8]. The modeling strategy involves
the steps: (a) Stationarity Identification [4]; (b) Estimation;
(c) Testing; and (d) Application.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

3 JSTD METHODOLOGY

In this section, we present the proposed methodology for
forecasting TD Principal in JS applications (namely JSTD),
as outlined in Figure 2. In Phase 1, we predict the value of
TD principal based on several parameters; in Phase 2, we
forecast the value of each TD predictor in the future; and

in Phase 3, we predict TD Principal in future time points,
based on the forecasted values of TD predictors. To auto-
mate the application of the proposed methodology, we
developed a tool that implements the aforementioned
steps. The input of the tool is a GitHub repository, where-
as the output is guided by the methodology steps.

Fig. 2. Proposed Approach

3.1 Predict TD Principal

In this step we identify the most important predictors that
can be used to predict TD Principal. First, we focus on
data collection (step 1.1): in this activity, we record a
wide range of available metrics, so as to isolate the most
significant predictors that affect TD. The list of metrics
(candidate TD predictors) belongs to the four main cate-
gories defined in section 2.3: External quality and activity
metrics (Operational metrics, End-User Activity metrics),
Code size & complexity metrics (Source code size metrics,
Source code complexity metrics), Maintainability Metrics
(Code Smells, Vulnerabilities) and JS metrics. JSTD calcu-
lates source code and maintainability metrics by reusing
third-party components (i.e., Snyk, Lizard, and ES-check).
The external quality metrics are derived by JSTD by using
the related GitHub APIs. TD Principal quantification is
derived by using the benchmark provided by Amanatidis
[2]. To identify a unified TD Principal value, we have syn-
thesized the values of the benchmark tools, as follows:
• we have executed CAST, SonarQube, and Squore for

each project
• we retained files whose TD Principal values are simi-

lar (present less than 5% deviation between the max
and min TD Principal values from the 3 tools)

• we summed the TD Principal of these files to aggre-
gate to the project level, which is the unit of analysis

Table 3 presents the metrics collected by JSTD that are
used in the scope of this study. Due to size limitation, Ta-
ble 3 presents only a brief description of the metrics,
whereas a full-fledged metric definition, along with rep-
resentative examples are given in Appendix B.

TABLE 3: PREDICTORS

Group Metric Name Calculation Method

E
xt

er
n

al
 I

n
d

ic
at

o
rs

POPL Popularity – Number of stars

AGE Reverse days to the latest release.

OPEN_ISSUES Open issues (bugs)

CLOSED_ISSUES Closed/resolved issues (bugs)

DEVLP Developers/contributors

PART Commits for every release.

DOC Comments per commit.

UPD Frequency of updates

S
o

u
rc

e
C

o
d

e
S

iz
e

&
 C

o
m

p
le

xi
ty

 M
et

ri
cs

SLOC Physical source code lines

LCOM Lines of comments.

LOC Total lines of code = SLOC + LCOM.

NOA The number of attributes.

NOC The number of classes.

NOM The number of methods.

FILES The number of files.

DIRS The number of directories.

SIZE Release size in bytes.

PARM Number of function parameters.

DIT Depth of inheritance tree.

MEM Memory heap.

CC Cyclomatic complexity.

CCDEN Cyclomatic complexity density.

HEFF Halstead effort.

HPV Halstead program volume.

HPL Halstead program level difficulty.

CLONE Duplicate (cloned) lines.

COVRG Source code coverage percent.

M
ai

n
ta

i

n
ab

il
it

y
 OBFS Number of obfuscation incidents.

CSMELL Total count of code smell issues.

VULN Total count of vulnerability issues.

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 7

Group Metric Name Calculation Method
JS

 m
et

ri
cs

WITH WITH keyword statements.

EVAL EVAL keyword statements.

VECMA Version of ECMAScript applied.

NEW NEW keyword statements.

ANONYM Number of Anonymous functions.

ARROW Number of Arrow functions.

T
D

TD

TD Principal calculated based

on the benchmark of

Amanatidis et al. [2]

Upon the data collection, we proceed with Data prepara-
tion (step 1.2) This activity includes the calculation of
derived variables (e.g., average size of functions in an
application). Within the scope of this study, we also calcu-
lated the project-level TD introduced in the source code
by summing the TD Principal of each file. The develop-
ment of the TD Prediction model (step 1.3) is the last ac-
tivity of this step. During the development of the model,
we need to specify the parameters of the model (step
1.3.1). Initially, we select the type of statistics that will be
used to fit the model (i.e., f-measure, t-measure, existence
or not of a constant value). To apply Backward Stepwise
Regression, we selected T-measure as a statistical meas-
ure, along with the inclusion of a constant value in the
equation. The JSTD tool applies BSR to the most recent
releases of the 104 open-source JS projects. The next activ-
ity is to interpret the model (1.3.2) and confirm that the
results are meaningful, i.e., that can be intuitively con-
firmed. For this reason, we use the values of regression
coefficients to identify the impact of each independent
variable on TD Principal. The outcome of this step is an
equation that uses the values of several parameters to
predict the value of TD Principal.

3.2 Forecast Techical Debt Predictors

In this step we forecast the values of the TD predictors
identified in the regression model (Step 1). The selected
forecasting modeling procedure is Box-Jenkins ARIMA.
The Identification (step 2.1) activity aims to ensure that
the ARIMA model assumptions are fully satisfied. The
collected data are sampled to create time series and will
be tested for stationarity. It is unknown which sampling
period would work best, and as such, three different
sampling periods are tested: for one day, one week, and
one month. In our case, the time series were found to be
non-stationary based on the KPSS test, and as such, dif-
ferencing data transformation was applied, as first-order
differencing and one-month sampling was found to re-
move non-stationarity, the same finding is supported by
Tsoukalas et al. [40]. Before the development of the fore-
casting models the dataset is split into a training and a
testing set: The training set for each participating project
includes 90% of the oldest observations; whereas the test-
ing set for each project includes the rest 10% of the obser-
vations (the most recent ones).

The Estimation (step 2.2) activity, estimates candidate
p (auto-regressive part) and q (moving average part) pa-
rameters of the models. This activity derives a group of
ARIMA (p, d, q) models – in our case (p, 1, d) – to be fur-
ther tested for best fit for each TD predictor identified in

step 1.3.2. The third activity is Testing (step 2.3) and in-
volves testing the diagnostics of the ARIMA models, to
identify whether they are satisfied. All models are tested
for significance, stationarity and invertibility conditions,
and residuals randomness, as described in Section 3.2.
Finally, in the Application (2.4) activity of this step, a re-
gression analysis is performed between the predicted
values of the model and the observed values of the most
recent observations that belong to the testing data set.
Thus, the predictive power of the derived model has been
tested by evaluating RMSE, MAPE, and MAE metrics.

3.3 Predict Code Techical Debt Principal

During this step, we forecast the value of TD Principal
using the models derived in the previous steps. The fore-
casted values of TD predictors serve as an input to the
estimation model developed in step 1.3 to predict future
TD Principal (step 3.2). During this activity, we derive an
early estimation of debt, based on the forecasted values of
TD predictors.

4 CASE STUDY DESIGN

In this section, we present the design of the case study
performed to evaluate the proposed methodology, as pre-
sented in Section 3. The case study was designed, based
on the guidelines of Runeson et al. [33].

4.1 Research Questions

The main goal of this study is to validate the JSTD meth-
odology. For each one of the steps of JSTD, a relevant re-
search question has been set:
[RQ1] Which are the most significant predictors that influence

the most the technical debt of JavaScript applications?
This question aims to identify the most significant predic-
tors that influence the value of TD Principal for JS appli-
cations. Our target is to create a model that can be used
for accurately estimating TD Principal by isolating the
most significant TD predictors. This research question is
related to the 1st step of the methodology.

[RQ2] Is it possible to accurately forecast the TD predictors
through time-series forecasting methods?

This question aims to validate the accurate forecasting of
the future values of TD predictors, by analyzing the evo-
lution of the project. This research question is related to
the 2nd step of the methodology.

[RQ3] Is it possible to accurately estimate TD Principal based
on the forecasted values of the TD predictors?

This question aims to evaluate the accuracy of estimating
TD Principal in a particular future time point, based on
the forecasted values of TD predictors. This research
question is related to the 3rd step of the methodology.

4.2 Case Selection

Since the proposed methodology aims at predicting the
future values of TD Principal, the evaluation focuses on
evaluating the predictive power of the derived models.
The proposed approach was evaluated on a dataset con-
taining 105 popular JavaScript applications hosted in
GitHub. The dataset has been included in the Github re-

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

pository of the JSTD tool7. For these applications, in total
19,636 releases have been analyzed. Several descriptive
statistics on the dataset are presented in Appendix A. The
applications are selected, based on the following criteria:
• The applications are among the most popular written

in JS in GitHub (the 105 projects with the largest num-
ber of stars), so as to ensure that the applications are
not trivial or toy-examples.

• JS is the primary scripting language, more than 50%,
so that the results are JS-specific–We note that to this
percentage the GitHub platform considers HTML, CSS
and variants as separate programing languages which
are markup scripts. For example, Bootstrap is reported
as 50% JS while the rest 50% is HTML and CSS scripts.

• The evolution contains more than 10 releases, to en-
sure that of its fitness for time series analysis [8], [27].

4.3 Analysis Process

TD Prediction Based on Parameters (RQ1): To answer RQ1,
we use a dataset that consists of the latest release of each
of the 105 projects that participate in the analysis. Since
the employed method does not rely on timeseries analy-
sis, we need to select a single version. Among the first and
the latest version, we opt for the latest, since it is timelier
relevant in terms of used technologies and the current
status of the projects. The data from these 105 releases is
randomly split into 90% of the projects, (94 projects) and
the validation set that consists of the rest 10% of the pro-
jects, (11 projects). This process is repeated 10 times with
10 random training and test sets. The regression model
that presents the highest accuracy is selected as the most
appropriate one. To calculate the accuracy of the achieved
regression models, we use R2 and adjusted R2 to evaluate
the derived estimations.

Dependent Variable: Value of TD Principal
Independent Variables: TD Predictors of Table III
Method: Backward Regression Anlysis
Evaluation Process: 90%-10% Splitting for Training
and Tetsing – repeated 10 times

Forecast TD Parameters (RQ2): In the case of RQ2 the evalu-
ation process is performed for each of the 105 projects
participating in the analysis, separately. In particular the
available releases of each project are split into the training
set, that consists of the 90% of the oldest releases and the
testing set that consists of the 10% of the most recent re-
leases. Then, the R2 metric was employed to calculate the
accuracy of the ARIMA model, produced by the training
set, when applied to the observations of the test set, as
well as the Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and
Normalized Bayesian Information Criterion (Normal BIC) fit
statistic measures.

Dependent Variable: TD predictors in some time steps
Independent Variables: TD predictors in previous steps
Method: ARIMA
Evaluation Process: 90%-10% splitting of versions. 10%
of most recent versions are used for Tetsing

7 https://github.com/zozas/jstd/blob/main/Manuscript%20dataset.zip

Prediction of Future TD Principal (RQ3): With respect to RQ3
the estimate is performed for each project separately by
performing walk-forward validation [37]. The data set is
split from a temporal viewpoint—see Figure 3. We adopt-
ed walk-forward validation [37] to evaluate the prediction
accuracy as each model is updated when new observa-
tions are made available. The initial model is trained on
an initial set of consecutive observations, and the accura-
cy is tested against future steps (the model prediction is
evaluated against known value). The processes are re-
peated by moving the time window one-step forward
(one month) to include the known value into the new
training set. We applied 12 walk-forward validation pro-
cesses to predict the next 12 iterations respectively. Fur-
thermore, as a common practice in time series analysis
[37], [39], we included a random walk model ARIMA
(0,1,0) for the purpose of comparison with the trained
model, as it. Furthermore, we included an ARIMA predic-
tion model based on the known TD Principal values to
compare the predicting accuracy of the proposed model
to compare whether the suggested multivariate analysis
(BSR model) is more accurate compared to univariate
analysis [39]. The metrics used to evaluate forecasts for all
models are the RMSE, MAE, and MAPE.

Fig. 3. Data Splitting Approach

Dependent Variable: Value of TD Principal in future
Independent Variables: Values of TD predictos in future
Method: Backward Regression Anlysis
Evaluation Process: Walk-forward validation

5 RESULTS

5.1 TD Predictors Identification (RQ1)

To identify the significant TD predictors for JS applications
we have applied Backward Stepwise Regression. In the 8th
step of the process, the value of adjusted R2 is overall satis-
factory, explaining 74% of the variance of the dependent
variable. Through this process we have identified 8 predic-
tors as the most prevalent ones, as presented in the folowing
equation:

𝑻𝑫 𝑷𝒓𝒊𝒏𝒄𝒊𝒑𝒂𝒍 𝑰𝒏𝒅𝒆𝒙

= 1.060 − 0.063 × 𝑁𝑂𝐶 + 0.143 × 𝐶𝐿𝑂𝑁𝐸

− 0.023 × 𝐸𝑉𝐴𝐿 + 0.0738 × 𝑁𝐸𝑊

− 0.002 × 𝑁𝑂𝑀 + 0.123 × 𝑃𝐴𝑅𝑀

+ 0.13 × 𝐴𝑁𝑂𝑁𝑌𝑀 − 0.96 × 𝐴𝑅𝑅𝑂𝑊

From the formula, we observe that the significant predictors
of TD are solely source code metrics, while external quality
and activity metrics do not participate in the equation. Out

https://github.com/zozas/jstd/blob/main/Manuscript%20dataset.zip

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 9

of the most significant TD predictors, four are general-
purpose structural metrics (NOC, CLONE, NOM, PARM),
while the rest are JS-related (EVAL, NEW, NOM, ARROW).
The predictors that have a positive impact on TD (minimiz-
ing it) are NOC, NOM, EVAL, and ARROW while the predic-
tors that increase TD are CLONE, NEW, PARM, and ANO-
NYM. Table 4 presents the accuracy statistics for the TD
Principal index for both the training and the validation set.
Concerning the training set, the simple correlation R is 0.861,
whereas the R2 is 0.741 and the adjusted R2 value is 0.710. As
for the test set, the simple correlation R is 0.855 and the R2, as
well as the adjusted R2 values, are 0.722 and 0.711 respective-
ly. The regression model is statistically significant presenting
a p-value < 0.05, performing with a high accuracy [14].

TABLE 4: MODEL ACCURACY

R R2 Ad. R2 Std. Error

Training set .861 .741 .710 0.74

Test set .855 .722 .711 0.82

5.2 Forecast of TD Predictors (RQ2)

The next step is to forecast the values of TD predictors with
the use of the ARIMA models. For each one of the projects
participating in this study, we have applied ARIMA to fore-
cast the values of the TD predictors (i.e., NOC, CLONE,
EVAL, NEW, NOM, PARM, ANONYM, ARROW). We should
mention that we have excluded the ARIMA (0,1,0) “Random
walk” model to compare it with the selected model during
the next research question. This approach is often followed
by related literature [37]. For each predictor, based on our
analysis, a number of competitive ARIMA models were
identified. As a start, we have analyzed the goodness of fit
and the residuals of these selected models, as well as the BIC
metric to conclude to the models that present the best satis-
factory fit. Table 5, displays the mean statistics over the fore-
casting models for all 105 projects.

TABLE 5: ARIMA MODELS ACCURACY

Metric ARIMA BIC Ljung-

Box

RMSE MAPE MAE

NOC 1,1,0 14.2 18 14 1211 71.773 91.07

CLONE 0,1,1 12.7 12 12 590 55.168 75.39

EVAL 1,1,1 16.4 284 9 3633 44.619 692.78

NEW 1,1,1 9.2 159 14 100 89.727 17.95

NOM 0,1,1 0.5 242 12 1 58.910 0.41

PARM 0,1,1 32.1 32 14 947244 20.259 20838

ANON 1,1,0 13.2 294 10 737 177.17 162.43

ARROW 1,1,0 13.7 186 9 988 104.50 171.80

The Ljung-Box Q test indicates that the residuals are inde-
pendent and all models are suitable and well-adjusted to the
time series, though a high significance value over 0.05 for all
models. The Q number of the test indicates the randomness
of the residual errors, while the DF number (Degrees of
Freedom) is the number of model parameters that are free to
vary when estimating debt. The statistic test follows a chi-
square distribution with DF degrees of freedom. On these
results, the data values are independent. The BIC number of
the best fit models presents a lower score than the candi-
dates. All models have been evaluated apart from the BIC

number, by comparing the Root Mean Squared Error
(RMSE), the Mean Absolute Percentage Error (MAPE), and
the Mean Absolute Error (MAE), resulting in that the pro-
posed models are good for all steps ahead. Furthermore, the
coef-ficients present in all AR and MA parameters a p-value
less than 0.05 indicating the significance of each weight as
well as the predictive performance of the model. The domi-
nating ARIMA models are of type:

ARIMA (0,1,1) a simple exponential smoothing with
growth for three predictors (CLONE, NOM, PARM).
ARIMA (1,1,1) additionally takes into consideration as an
autoregressive term the value of 1 previous observation.
Two predictors follow this model (EVAL, NEW).
ARIMA (1,1,0) a first-order autoregressive model con-
cerning three predictors (NOC, ANONYM, ARROW).
All models include a maximum of two moving average
terms. The next step is to present the mathematical speci-
fication of the above models, as presented in Table 6,
where Yt is the forecasting value, and εt is the white noise
(forecasting errors), with zero means.

TABLE 6: MATHEMATICAL ARIMA MODELS

Metric Model Mathematical specification

NOC 1,1,0 Yt = 0.041×Yt-1 – 0.057×Yt-1 + 0.021×et

CLONE 0,1,1 Yt = – Yt-1 + 0.051×et – 0.052×et-1

EVAL 1,1,1 Yt = 0.421×Yt-1 – 0.126×Yt-1 + 0.078×et – 0.045×et-1

PARM 0,1,1 Yt = 2.726 – Yt-1 + 0.105×et – 0.860×et-1

NEW 1,1,1 Yt = 0.282×Yt-1 – 0.157×Yt-1 + 0.030×et – 0.057×et-1

NOM 0,1,1 Yt = – Yt-1 + 0.242×et + 0.174×et-1

ANONYM 1,1,0 Yt = 1.206×Yt-1 – 0.976×Yt-1 – 0.711×et

ARROW 1,1,0 Yt = 0.476×Yt-1 – 0.125×Yt-1 – 0.051×et

Following the above, a residual analysis was performed
to evaluate the model goodness of fit, as presented in Ta-
ble 7. Concerning the residuals over time, as mentioned in
Table 5, they do not display any obvious seasonality. The
Q-Q plots in Table 7 follow the linear trend of the samples
taken from a standard normal distribution which is an
indication that the residuals are normally distributed.
Furthermore, the ACF and PACF plots show a low corre-
lation with lagged versions of the residuals. Based on the
above, our model residuals are normally distributed and
uncorrelated.

TABLE 7: RESIDUAL ANALYSIS

NOC 1,1,0

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

CLONE 0,1,1

EVAL 1,1,1

PARM 0,1,1

NOM 0,1,1

NEW 1,1,1

ANONYM 1,1,0

ARROW 1,1,0

5.3 Forecast of Technical Debt Principal (RQ3)

Based on the forecasts of TD predictors performed in RQ2
and the model presented in RQ1, in this step we proceed
to forecasting the TD Principal value of the latest observa-
tions for each project. By moving from (t) to (t+1) lags it is
possible to predict multile iterations ahead. We have per-
formed a walk-forward validation [37][39] with 12 itera-
tions-ahead. The results will be tested on observation data
that have not been used during training, to ensure the
ability of the model to generalize and penalize errors.
Table 8 presents the estimation accuracy of the proposed
methodology that is based on the combination of ARIMA
and BSR and compares the accuracy of the method with
the ARIMA model for forecasting directly TD Principal

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 11

and with the Random walk prediction. All three models
are evaluated against the observed technical debt values.
The comparison is presented for multiple time steps into
the future [39]. In the case of the Random Walk, the ARI-
MA (0,1,0) model have been applied as a common method
followed by related literature [37]. In the case of the ap-
plication of ARIMA for the direct forecasting of TD Prin-
cipal, a regression analysis on the past TD values has been
applied to forecast future TD Principal values [39]. For
iterations 1 to 12 we evaluated the models by comparing
the RMSE, MAPE and MAE. The results indicate that the
proposed model is relative stable for all 12 steps ahead. In
the case of RMSE, MAPE and MAE, our model presents
lower errors than random walk.

TABLE 8
RANDOM WALK, REGRESSION AND ARIMA TD COMPARISON

S
te

p
s

ah
ea

d
 ARIMA random

walk (0,1,0)

ARIMA TD

Forecast

Proposed

Methodology
O

b
se

rv
ed

F
o

re
ca

st

R
M

S
E

M
A

P
E

M
A

E

F
o

re
ca

st

R
M

S
E

M
A

P
E

M
A

E

F
o

re
ca

st

R
M

S
E

M
A

P
E

M
A

E

1 5.96 5.97 8.51 5.93 5.02 5.60 16.2 5.53 4.54 4.99 4.73 4.92 4.18

2 5.12 5.97 6.95 5.93 4.65 5.64 16.0 5.58 4.87 4.99 4.55 4.91 4.55

3 5.18 6.01 6.69 5.97 4.72 5.68 16.7 5.61 4.80 5.01 4.44 4.92 4.65

4 5.25 6.05 6.45 6.01 4.76 5.72 17.5 5.65 4.66 5.02 4.50 4.93 4.67

5 5.33 6.09 6.14 6.05 4.32 5.77 18.3 5.70 4.93 5.04 4.73 4.94 4.92

6 5.49 6.13 6.02 6.09 4.32 5.81 18.7 5.75 4.56 5.07 4.98 4.98 4.95

7 5.64 6.16 5.73 6.12 4.36 5.88 19.0 5.82 4.79 5.11 4.80 5.02 4.98

8 5.43 6.20 5.27 6.15 4.55 5.94 19.4 5.88 4.66 5.16 4.86 5.06 5.15

9 5.77 6.24 5.26 6.20 5.13 6.02 19.9 5.96 5.19 5.19 4.54 5.09 5.35

10 5.91 6.28 5.07 6.23 5.03 6.07 21.1 6.02 5.24 5.20 4.66 5.09 5.42

11 6.06 6.30 4.78 6.26 4.62 6.14 22.1 6.09 5.42 5.21 4.49 5.09 5.61

12 6.02 6.32 4.50 6.27 4.33 6.22 22.5 6.17 5.69 5.26 4.14 5.13 5.68

Fig. 4. Proposed approach (Node.js)

In Figure 4, we present the 12 forecasted steps based on
the JavaScript project “Node.JS” (13th project as presented
in Appendix). In all iterations, the proposed methodology

outperforms the random walk and the regression model.
The random walk model presents a fluctuation in step 5.
Based on the results, the predictive power of all models
decreases slowly in further future steps, while they tend
in many cases in long-future prediction to present similar
MAPE and APE error values. By average, for all projects,
our model based on ARIMA outperforms both Random
Walk as well as regression based on TD values.

6. DISCUSSION

In this study we proposed a methodology for identifying
significant TD predictors; forecasting the values of these
predictors in future observations and subsequently predict-
ing TD Principal based on these values. The results of the
study will be therefore discussed with respect to: (a) the abil-
ity of the methodology to forecast TD in future version of the
system—see Section 6.1; (b) the predictors that affect TD
Principal of JS applications—see Section 6.2; and (c) the im-
plications to researchers and practitioners—see Section 6.3.

6.1 JSTD Predictive Power & Interpretation

Regarding the ability of JSTD to forecast the values of the
TD predictors, our findings show that the ARIMA model
is capable to forecast accurately future observations. This
finding agrees with other studies that applied ARIMA for
forecasting software quality attributes that are primitive
(i.e., can be directly calculated from the source code) [19],
[31]. It seems though that when using ARIMA to forecast
TD that is a synthesized metric (i.e., its value depends on
other metrics), the accuracy of the method deteriorates as
we proceed in long-term predictions (increased future
steps). This finding is in accordance with [28] and [41]
who argue that machine learning techniques that are able
to synthesize the values of independent variables to make
predictions of TD Principal appear to be more sufficient
and accurate in long-term forecasting compared to time-
series models that take into consideration just the previ-
ously observed values of TD Principal.

6.2 TD Predictors’ Analysis

Quantitative Findings & Theoretical Interpretation: The
majority of traditional source code size metrics such as
NOC, CLONE, NOM, PARM are found to be highly signif-
icant TD predictors. These results are aligned with related
work that also appoints that software formulated in clas-
ses (NOC) [39] and methods (NOM) [40] presents less TD
Principal while software with duplications and many pa-
rameters [40], [3] tend to be more complex and thus pre-
sent more TD. Unlike other studies that associate TD with
object-oriented metrics [22], in this study we were not
able to confirm or solidly reject this finding, since for the
majority of the participating projects we were not able to
calculate all OO metrics as defined by Chimader and Ke-
merer [9]. This is indicative of the special nature of the JS
applications, where the object-oriented paradigm is very
loosely defined compared to stricter OO languages, such
as Java; thus, typical OO metrics have not emerged as
important TD predictors for the case of JS projects.
However, keeping in mind that OOP was first introduced
with ECMA script in 2015, we can assume that strict OO

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

practices may have not yet spread to the community.
Nevertheless, there are practices that are language-
specific and involve directly or indirectly OO practices
such as the creation of anonymous objects and functions.
The NEW keyword creates new empty JavaScript objects
in the run-time, including a constructor prototype object.
The language compiler calls the constructor and returns
the new object. ANONYM functions on the other hand
can be invoked immediately, used as an argument to oth-
er functions, or assigned to a variable. Both anonymous
functions and objects (NEW and ANONYM) metrics are
found to increase TD Principal, probably due to the fact
that they are associated with the creation of objects in the
run-time, a fact that increases system complexity and de-
teriorates code readability. On the other hand, several
controversial characteristics of the language such as the
ARROW functions and the EVAL strings seem to decrease
TD. The ARROW functions are syntactically compact
functions that are created dynamically to evaluate an ex-
pression and return the result, without allowing binding
to “this”, “super” or “new” target keywords. In both cases,
there is “hidden” source code that is incorporated indi-
rectly and has a one-time-run and non-repeatable effect
on the overall program. Despite the general opinion that
these two aspects of the language should be carefully
adopted and only in suitable cases, it seems that JS pro-
grammers make rational use of them.

Qualitative Interpretation based on Expert Opinion: One
of the main limitations of the purely quantitative studies
in software engineering is the usually narrow interpreta-
tion of the results, and the lack of the deep understanding
of the findings. To proceed one step further than inter-
preting the quantitative findings from our point of view,
we have seeked for the expert opinion of JS developers.
To this end, we have organized a short survey with 15
medium experience JS developers (5-10 years of pro-
gramming) and asked them to interpret our findings. As a
first step, we asked them to confirm or oppose the identi-
fied relations between predictors and the level of TD in JS
applications. The results are summarized in Figure 5. The
results of the study suggest that the developers confirmed
at a rate higher than 90% that NOC, PARAM, and CLONE
metrics are related to TD. The most marginal evaluations
(2 out of 3 developers are “seeing” the relation) were
identified for NOM and NEW, closely followed by EVAL
and ARROW.

Fig. 5. Experts’ Opinion on TD Predictors

Next, we asked them to present the reasons for which
they believe a specific metric is an indicator of TD Princi-

pal. After analysing and synthesizing the opinions of the
experts, the following interpretations have emerged as
the most prominent ones:
• Size Metrics: The developers highlighted that a larger

system (in terms of NOC) is inevitable to accumulate
more TD, due to the provided functionality (needed
complexity). However, in terms of TD Principal density
a system with more classes will probably yield less TD
Principal. A similar argumentation has been provided
for NOM: high levels of NOM and NOC is a sign of
good fragmentation and single responsibility adoption.
On the other hand, the number of PARAMS was well-
accepted as an indicator of method complexity and
thereof a sign of high TD Principal accumulation. It is
worth mentioning that there was no developer who
opposed this relation.

• CLONED lines of code: The develeopers suggested
that code duplication is a smell itself, being responsible
for potential repetition of bugs and future code in-
consestencies. Additionally, they highlighted that apart
from making the codebase bigger, in case of a change you
should find and change all the cloned blocks, harden-
ing the maintainance process.

• EVAL function: The developers showcased two views
with the use of EVAL. First, it hides complexity into the
code. However, more importantly the developers
characterized EVAL as a huge security threat since mali-
cious code can run inside the application without
permission and third-party code can see the scope of
the application, which can lead to possible attacks. In
that sense, any use of EVAL will definitely need to be
re-written in refactoring sessions. Nevertheless, at this
point we need to note that security is a quality proper-
ty whose relevance to TD Principal is controversial,
since it is a run-time quality attribute.

• NEW keyword: The developers perceive NEW as pos-
sible source of TD, since it introduces additional cou-
pling and hurts modularity. One developer mentioned
that: “…direct instantiations of objects make the client
bound to a concrete class; thus, the system less modular.
The use of factory patterns and dependency inversion are
preferable…”. On the other side, some developers men-
tioned that using NEW is “a more OO way of calling
functions”, so it makes sense to using it. This is a prob-
able reason for the marginal results of the qualitative
evaluation.

• ANONYM functions: The developers that agreed that
anonymous functions are harmuful to system TD,
supporting that each function must have a name, so as to
be easily spotted in the code. If there are no names for
functions one needs to rely on the willingness of the
developer to add comments into the code (“The
mainetenance becomes very difficult without method names,
especially if there are no comments”). Additional concerns
were raised in terms of hindering reuse for similar pur-
poses. On the other end, some developers mentioned
that the use of anonymous functions reduce the size of the
code and therefore can reduce TD Principal. However,
usually this decrease is low in absolute values and TD
issues are not identified in method signatures.

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 13

• ARROW functions: Although the rationale of arrow
functions and anonymous funtions is similar, the de-
velopers validated the positive impact of arrow func-
tions in TD, highlighting mostly on hiding complexity
and reducing code duplication. An important difference
in the use of the two is the fact that arrow functions
are usually smaller in size and simpler, compared to
anonymous functions, which can be lengthier and usu-
ally nested as arguments in other functions, hurting the
readability of the code.

6.3 Implications to Researchers and Practitioners

Under this scope, the overall findings of the current re-
search indicate that the proposed methodology for pre-
dicting TD Principal of JavaScript applications based on
the combination of ARIMA and BSR model can offer use-
ful impli-cations to both researchers and practitioners.
We encourage researchers to adopt JSTD and the pro-
posed methodology and enhance them by incorporating
expert knowledge in the definition of the regression mod-
el used, in the parametrization of the ARIMA model, and
in the inclusion / exclusion of the TD independent varia-
bles. Additionally, researchers are encouraged to evaluate
the proposed methodology on closed source software.
Additionally, given the importance of cross-project vali-
dation, we encourage a replication of the evaluation of
RQ2-RQ3 on groups of projects that the training set (RQ1)
is different from the testing set. Furthermore, based on
other research efforts [41], we encourage researchers to
enhance the current methodology on JS class-level basis
considering that while JS is capable of object-oriented
programming, few research efforts focus on this subject
[18]. The latter would be interesting to observe differences
concerning TD significant parameters. Another interest-
ing implication for researchers would be to explore if the
groups of parameters studied in this work present some
kind of uniform and joint effect on TD Principal, exploit-
ing fitting analysis methods (e.g., factor analysis). Finally,
researchers are encouraged to experiment with different
forecasting / prediction techniques in the first two steps of
the approach and compare the plethora of the available
statistical, ML, DL algorithms that exist in the litertaure.
Regarding practitioners, we encourage them to adopt the
proposed methodology and tool in order to be able to
predict TD Principal in future observations. Also, it is
important for the community to understand that TD is
project-specific and language-specific. Therefore, the use
of language specific-tools on software repositories that are
project-specific or company-specific may boost the ability
of a company to manage its own TD.

7 THREATS TO VALIDIY

In this section, we discuss the threats to validity that we
have identified for this study. Regarding Conclusion Validi-
ty that refers to how reasonable are the findings of the
analysis, we mention that regarding the statistical power
of the results, we calculated a variety of regression and
ARIMA models for all projects participating, in order to
validate the proposed approach. The model comparisons

based on statistical tests, as described in Sections 3.1 and
3.2, showed a high level of accuracy in the proposed
methodology. Regarding the error rate probability prob-
lem, we selected common, pre-defined validation proce-
dures (KPSS test, Ljung-Box test). Furthermore, re-
garding the heterogeneity of data, we used project-
specific datasets to ensure the relativity of the data in-
cluded in the analysis. The set of metrics that we have
selected to use in our study for quantifying technical debt
(see Table 3) belong to well-known metric suites. These
include the most popular suites [15] Chidamber & Ke-
merer metrics [9] and the Li & Henry suite of metrics [25].
However, some metrics cannot be applied to JavaScript
language programs due to the language nature (lack of
class notation formalization or even class support to early
versions [44]). In expansion to this, metrics-based specifi-
cally on the JavaScript programming language were in-
troduced, such as the number of obfuscation incidents
[42], the version of ECMAScript applied [18], the number
of anonymous and arrow type functions, and the usage of
language-specific keywords (like “NEW”, “WITH” and
“EVAL”) [20]. Finally, the estimated ground-truth TD
principal value highly depends on the threashold (i.e.,
5%) that we have set to consider agreement among TD
benchmarker tools. The use of a different threashold
(stricter—e.g., 1% or more relaxed—e.g., 10%) might have
yield to a different result. Nevertheless, to the best of our
knowledge there is no other dataset to reuse having
commonly agreed values of TD principal.
Regarding Internal Validity an attempt to formalize a
methodology over TD based on quality parameters over
time is presented. The causal relationships identified in
this study, as documented in Section 6.1, can be consid-
ered as indicators of possible cause-effect relationships
among the participating parameters without excluding
other relationships between variables that may affect the
maintainability of applications that did not participate in
this study.
Concerning Reliability, we believe that the replication of
our research is safe, and the overall reliability is ensured.
The process that has been followed in this study has been
thoroughly documented in Section 4, to be easily repro-
duced by any interested researcher. All metrics calculated,
as well as the overall extraction of the defined data set
was performed with the use of widely used research
tools, as documented in Section 4.1, as well as the JSTD
tool developed for our research and is based on the
source code of these tools. In either case, future verifica-
tions of the accuracy of this tool would be valuable. Nev-
ertheless, we cannot guarantee the replicability of results
if different study design decisions were made (e.g., using
a 6-month or 24-month sliding window for RQ3).
Concerning the External validity and in particular the gen-
eralizability supposition, changes in the findings might
occur if the application data set for which the sample re-
leases were analyzed is altered in both projects and size.
Future replications of this study, on data from other pro-
jects, would be valuable to verify these findings.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2022-04-0160

8 CONCLUSION

Technical Debt has a large impact on software quality and
maintenance cost over time. Forecasting this concept is
considered to be critical for managing the software life-
cycle, and both are influenced by a variety of parameters.
In this study, we presented and validated a methodology
to model the predictors related to the technical debt of
JavaScript applications by applying Backwards Stepwise
Regression and Autoregressive Integrated Moving Aver-
age methods. We exploited the influence of these predic-
tors, the predictive power of the constructed model, and
the ability to forecast both concepts over time.

To investigate the validity of the proposed approach
we performed a case study on 105 JavaScript applications
analyzing in total 19,636 releases of JavaScript applica-
tions, testing the estimation accuracy of the derived mod-
els on all releases. Furthermore, we developed a tool to
automate the whole process of data retrieval, storage,
evaluation, and analysis. The results from the case study
suggested that the proposed approach is capable of
providing stable accurate forecasts with high accuracy.
Furthermore, JavaScript-explicit features as the “new” and
“eval” keywords, as well as the “anonymous” and “arrow”
functions, are among the features of JavaScript language
that affect TD.

Overall, JSTD is a tool, that can be a useful for practi-
tioners when monitoring the TD Principal of JS applica-
tions. JSTD can help towards the creation of TD Principal
prediction models, trained on a large number of project
releases, by just accessing a GitHub repository. On the
other hand, the results of the analysis show that the fore-
casts actually require information from just 1 or 2 previ-
ous releases and therefore the need of thousands of re-
leases is actually not a prerequisite. In this manuscript we
experimented on a large number of releases in order to
exemplify the proposed approach, but we believe, that
the existence of a large number of historical releases is not
necessary in order to produce accurate results. Based on
these results, a methodology and tool have been provided
for the benefit of both researchers and practitioners. Fu-
ture replications of the current study, as well as the com-
parison of the provided methodology would be valuable.

ACKNOWLEDGMENT

This work has received funding from the European Un-
ion’s H2020 research and innovation programme, under
grant agreement: 871177 (SmartCLIDE).

REFERENCES

[1] Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou. A. 2017.

The relation between technical debt and corrective mainte-

nance in PHP web applications. Inf. and Soft Technology.

[2] Amanatidis, T., et al., (2020). Evaluating the agreement

among technical debt measurement tools: building an empiri-

cal benchmark of technical debt liabilities. Empir Software

Eng 25, 4161–4204.

[3] Alégroth, E., Steiner, M., Martini, A. 2016. Exploring the

Presence of Technical Debt in Industrial GUI-Based Testware:

A Case Study, 2016 IEEE 9th Int. Conf. on Soft. Testing, Ver-

ification and Validation Workshops, pp. 257-262.

[4] Amin, A., Grunske, L., Colman, A. 2013. An approach to

software reliability prediction based on time series modeling,

Journal of Systems and Software, 2013, 1923-1932.

[5] Avgeriou, P., et al. An Overview and Comparison of Tech-

nical Debt Measurement Tools, IEEE Software, vol. 38, no. 3,

pp. 61-71, May-June 2021.

[6] Baldassari, B. 2012. SQuORE: a new approach to Software

Project Quality Measurement, Intern. Conference on Software

& Systems Engineering and their Applications, 25 Oct. 2012

[7] Borboudakis, G., Tsamardinos, I. 2019. Forward-backward

selection with early dropping. J. Mach. Learn. Res. 2019.

[8] Box, G., Jenkins, G., 1976. Time Series Analysis: Forecasting

and Control. Holden Day, San Francisco.

[9] Chidamber, S., Kemerer, C. 1994. A Metrics Suite for Object-

Oriented Design", IEEE Trans. Software Engineering, vol. 20.

[10] Chatzimparmpas, A., Bibi, S., Zozas, I., Kerren, A. 2019.

Analyzing the Evolution of Javascript Applications. ENASE

[11] Cunningham, W. 1992. The WyCash Portfolio Management

System. In Addendum to the proceedings on Object oriented

programming systems, languages, and applications. 29-30.

[12] Curtis, B., Sappidi, J., Szynkarski, A. 2012. Estimating the

Principal of an Application's Technical Debt. IEEE Software.

[13] Draper, N., Smith, H. 1981. Applied Regression Analysis, 2d

Edition, New York: John Wiley & Sons, Inc.

[14] Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. 2013. Regres-

sion: models, methods and applications. Springer Science.

[15] Fioravanti, F., Nesi, P. 2001. Estimation and prediction met-

rics for adaptive maintenance effort of object-oriented sys-

tems. IEEE Transactions on software engineering 2001.

[16] Gallaba, K., Mesbah, A., Beschastnikh, I. 2015. Don't Call Us,

We'll Call You: Characterizing Callbacks in Javascript, 2015

ACM/IEEE Int. Symp. on Empirical Software Engineering

and Measurement (ESEM), pp. 1-10.

[17] Gaudin, O. 2009. Evaluate your technical debt with sonar,

Sonar, Jun 11, 2009.

[18] Gizas, A., Christodoulou, S., Papatheodorou, T. 2012. Com-

parative evaluation of javascript frameworks." 21st Interna-

tional Conference on World Wide Web, pp. 513-514. ACM.

[19] Goulão, M., Fonte, N., Wermelinger, M., Brito e Abreu, F.

2012. Software Evolution Prediction Using Seasonal Time

Analysis: A Comparative Study. European Conference on

Software Maintenance and Reengineering, CSMR.

[20] Hafiz, M., Hasan, S., King, Z., Wirfs-Brock, A. Growing a

language: An empirical study on how (and why) developers

use some recently-introduced and/or recently-evolving JavaS-

cript features, Journal of Systems and Software, 2016.

[21] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S.,

Fedak, V., Shapochka, A. 2015. A Case Study in Locating the

Architectural Roots of Technical Debt, 37th IEEE Int. Conf.

on Software Engineering, 2015, pp. 179-188.

[22] Kosti, M., Ampatzoglou, A., Chatzigeorgiou, A., Pallas, G.,

Stamelos I., Angelis, L. 2017. Technical Debt Principal As-

sessment Through Structural Metrics, 43rd Software Engi-

neering and Advanced Applications (SEAA), pp. 329-333.

[23] Kumar, S., Bahsoon, R., Chen, T., Buyya, R. 2019. Identify-

ing and Estimating Technical Debt for Service Composition in

SaaS Cloud, 2019 IEEE International Conference on Web

Services (ICWS), pp. 121-125.

[24] Letouzey, J.L. 2012. The SQALE method for evaluating tech-

nical debt. 3rd International Workshop on Managing Technical

Debt, 2012, Zurich, Switzerland, June 5, 2012. 31–36.

[25] Li, W., Henry, S. 1993. Maintenance Metrics for the Object-

Oriented Paradigm, 1st Int. Soft. Metrics Symp., 52-60.

[26] Lin Y., Li M., Yang C., Yin C. 2017 A Code Quality Metrics

Model for React-Based Web Applications. Intelligent Compu-

ting Methodologies. ICIC 2017., vol 10363. Springer, Cham.

ZOZAS ET AL.: FORECASTING THE PRINCIPAL OF CODE TECHNICAL DEBT IN JAVASCRIPT APPLICATIONS 15

[27] Ljung, G., Box. G., 1978. On a measure of lack of fit in time

series models, Biometrika, 65,2, August, pp. 297–303.

[28] Mathioudaki M., Tsoukalas D., Siavvas M., Kehagias D. 2021

Technical Debt Forecasting Based on Deep Learning Tech-

niques. Comp. Science & Applications, v.12955, Springer.

[29] Misra, S., Cafer, F. 2012. Estimating Quality of JavaScript.

International Arab Journal of Information Technology.

[30] Mirghasemi, S., Barton, J., Petitpierre, C. 2011. Naming

anonymous javascript functions. Object oriented programming

systems languages and applications companion, 277–288.

[31] Raja, U., Hale, D.P., Hale, J.E. 2009. Modeling software evo-

lution defects: a time series approach. J. Softw. Maint. Evol.:

Res. Pract., 21: 49-71.

[32] Richards G., Hammer C., Burg B., Vitek J. 2011 The Eval

That Men Do. In: Mezini M. (eds) ECOOP 2011 – Object-

Oriented Programming, vol 6813. Springer, Heidelberg.

[33] Runeson, P., Host, Μ., Rainer, Α., Regnell, Β. 2012. Case

study research in software engineering: Guidelines and exam-

ples. John Wiley & Sons.

[34] Salamea, M., Farré, C. 2019. Influence of Developer Factors

on Code Quality: A Data Study, 2019 19th International Con-

ference on Software Quality, Reliability and Security, 120-125

[35] Yogesh S., Kaur, A., Ruchika, M. 2009. Comparative analysis

of regression and machine learning methods for predicting

fault proneness models. Int. J. Comput. Appl. Technol. 2009.

[36] Schwarz, G. 1978, Estimating the dimension of a model, An-

nals of Statistics, 6 (2): 461–464.

[37] Stone, M. 1974. Cross-validatory choice and assessment of

statistical predictions, Journal of the Royal Statistical Society:

Series B (Methodological), vol. 36, no. 2, pp. 111–133.

[38] Tsoukalas, D., et al., 2018. Methods and Tools for TD Estima-

tion and Forecasting: A State-of-the-art Survey. IEEE Conf.

on Intelligent Systems 2018: 698-705

[39] Tsoukalas, D., et al., 2019. On the Applicability of Time Se-

ries Models for Technical Debt Forecasting, 15th China-

Europe Int. Symp. on Soft. Engin. Education.

[40] Tsoukalas, D., Kehagias, D., Siavvas, M., Chatzigeorgiou, A.

2020. Technical debt forecasting: An empirical study on open-

source repositories. J. Syst. Softw. 170: 110777

[41] Tsoukalas, D., Mittas, N., Chatzigeorgiou, A., Kehagias, D.,

Ampatzoglou, A. 2021. Machine Learning for Technical Debt

Identification, IEEE Transactions on Software Engineering.

[42] Wang, Y., Cai, W., and Wei, P. 2016. A deep learning ap-

proach for detecting malicious JavaScript code. Security

Comm. Networks, 9: 1520– 1534.

[43] Wang, M., Wright, J., Buswell, R., Brownlee, A. 2013. A

comparison of approaches to stepwise regression for global

sensitivity analysis used with evolutionary optimization. 13th

Conf. of the Int. Build. Perf. Sim. Assoc. 2551-2558.

[44] Wei, X. 2013. Verification and Validation of JavaScript. Doc-

toral thesis, Durham University.

[45] Zozas, I., Bibi, S., Ampatzoglou, A., Sarigiannidis, P.G. 2019.

Estimating the Maintenance Effort of JavaScript Applications.

SEAA 2019: 212-219
[46] A. Ampatzoglou, N. Mittas, A. A. Tsintzira, A. Ampatzoglou,

E. M. Arvanitou, A. Chatzigeorgiou, P. Avgeriou, L. Angelis,

“Exploring the Relation between Technical Debt Principal and

Interest: An Empirical Approach”, Information and Software

Technology, Elsevier, 128, 2020.

Ioannis Zozas is currently a Ph.D.

student from 2017 to the present, at

the department of Electrical and

Computer Engineering, University of

Western Macedonia. Received a

bachelor’s and master’s degree from

the department of Applied Informat-

ics, University of Macedonia. Cur-

rently working in the banking sector.

His research interests are software

source code quality, JavaScript, and Software Engineering.

Stamatia Bibi received the B.Sc.

degree in informatics and the Ph.D.

degree in software engineering from

the Aristotle University of Thessaloni-

ki, Greece, in 2002 and 2008, respec-

tively. She is currently an Assistant

Professor in software engineering

with the Department of Electrical and

Computer Engineering, University of

Western Macedonia, Kozani, Greece.

Her research interests include pro-

cess models, software effort / cost

estimation, quality assessment, tech-

nical debt management, and cloud computing.

Apostolos Ampatzoglou received

the B.Sc. degree in information sys-

tems, in 2003, the M.Sc. degree in

computer systems, in 2005, and the

Ph.D. degree in software engineering

from the Aristotle University of Thes-

saloniki, in 2012. He is currently an

Assistant Professor with the Depart-

ment of Applied Informatics, Universi-

ty of Macedonia, Greece, where he

carries out research and teaching in the area of software engineer-

ing. Before joining the University of Macedonia, he was an Assistant

Professor with the University of Groningen, The Netherlands. He has

published more than 100 articles in international journals and con-

ferences, and is/was involved in more than 15 research and devel-

opment ICT projects, with funding from national and international

organizations. His current research interests include technical debt

management, software maintainability, reverse engineering software

quality management, open-source software, and software design.

