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Abstract: Dynamic data (including environmental, traffic, and sensor data) were recently recognized
as an important part of Open Government Data (OGD). Although these data are of vital importance
in the development of data intelligence applications, such as business applications that exploit traffic
data to predict traffic demand, they are prone to data quality errors produced by, e.g., failures of
sensors and network faults. This paper explores the quality of Dynamic Open Government Data.
To that end, a single case is studied using traffic data from the official Greek OGD portal. The
portal uses an Application Programming Interface (API), which is essential for effective dynamic
data dissemination. Our research approach includes assessing data quality using statistical and
machine learning methods to detect missing values and anomalies. Traffic flow-speed correlation
analysis, seasonal-trend decomposition, and unsupervised isolation Forest (iForest) are used to detect
anomalies. iForest anomalies are classified as sensor faults and unusual traffic conditions. The iForest
algorithm is also trained on additional features, and the model is explained using explainable artificial
intelligence. There are 20.16% missing traffic observations, and 50% of the sensors have 15.5% to
33.43% missing values. The average percent of anomalies per sensor is 71.1%, with only a few sensors
having less than 10% anomalies. Seasonal-trend decomposition detected 12.6% anomalies in the data
of these sensors, and iForest 11.6%, with very few overlaps. To the authors’ knowledge, this is the
first time a study has explored the quality of dynamic OGD.

Keywords: open government data; dynamic government data; high-valuable data; real-time data;
traffic data; data quality; isolation forest; eXplainable artificial intelligence

1. Introduction

The open government data (OGD) movement, which urged governments and public
organizations to open up their data for others to reuse for both private and commercial
purposes, emerged at the beginning of the 21st century [1]. Innovative political initiatives
such as the Public Sector Information (PSI) Directive in Europe in 2003 [2] and the U.S.
President’s Obama open data program in 2009 [3] supported this movement and made
OGD a political priority. In the next years, numerous OGD portals at various administrative
levels (e.g., local, regional, national, etc.) and in many countries across the globe were
launched [1,4–6].

The expected benefits for citizens, businesses, and public administration and the
potential impact on the society as a whole have been extensively described in the liter-
ature. OGD are expected to strengthen transparency [7] and improve decision-making
processes [8], stimulate economic growth and innovation [9,10], and provide opportunities
for the development of more effective public services [11,12], including Integrated Public
Services (IPS) [13]. However, so far, the impact of OGD is still rather limited [14], with
many studies exploring the reasons that hinder open government initiatives from reaching
their full potential [6].
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OGD is a rapidly evolving phenomenon. The amount of OGD produced and dissemi-
nated increases exponentially, and new types of data are being generated. For example, dy-
namic data (including environmental, traffic, satellite, meteorological, and sensor-generated
data) have been recently recognized by the European Commission as an important part
of OGD, presenting huge potential economic value [15]. Due to the suitability of dynamic
OGD for the creation of value-added services, applications and high-quality and decent
jobs, they are recognized as high-value data (HVD), whose reuse has significant societal,
environmental, and economic benefits [15]. The collection and dissemination of this type of
data impose new requirements and challenges. For example, dynamic data are character-
ized by their high variability and rapid obsolescence, making their immediate availability
and regular updates crucial for the creation of added-value services and applications.
Moreover, sensors are prone to malfunctions caused by, e.g., bad weather and temperature
conditions, resulting in anomalous observations [16]. As a result, anomaly detection and
classification methods need to be applied to detect and correct corrupt or inaccurate records.
Although the quality of OGD has been recognized as being of vital importance, related
works (e.g., [6,17,18]) tend to focus more on the quality of the metadata and not on the
data itself.

At the same time, innovative data analysis and exploitation methods for OGD emerge,
such as artificial intelligence [19], including machine learning [20]. These technologies
can provide opportunities for the creation of innovative and intelligent services and ap-
plications, which are built upon the use and combination of new types of OGD. These
applications are considered “data intelligence applications”. For example, data intelligence
applications exploiting traffic data involve predicting various traffic states such as traffic
flow, traffic speed, and traffic demand [21].

Hence, in order to be able to better understand and achieve the economic and social
potential offered by the reuse of OGD, we need to keep pace with those rapid changes and
investigate the exploitation of new types of OGD employing state-of-the-art technologies.

The objective of this paper is to explore the quality of Dynamic Open Government Data
in order to facilitate the development of effective, efficient, and entrusted data intelligence
applications. To this end, we focus on and study a single case, namely the traffic data of the
Region of Attica that are provided through data.gov.gr (accessed on 24 October 2022), the
official Greek OGD portal. This case was selected because it involves the use of an API for
accessing HVD for traffic, which allows for immediate availability and regular updates of
the data. Specifically, traffic data are updated hourly in the Greek OGD portal.

Our research approach involves the exploration and evaluation of the provided data
regarding the existence of missing values and anomalies. Anomaly detection comprises
both the identification of (i) anomalous flow-speed correlations and (ii) deviations from
the normal traffic pattern (see Section 2.2 for details). These two present complementary
views of the traffic data quality. Deviations from the normal traffic pattern are detected
using a statistical method and an unsupervised machine learning method with one variable.
Detected deviations are also classified in sensor faults and unusual traffic conditions. The
quality of traffic data is further explored by implementing a second machine learning
scenario that uses multiple variables.

This paper is organized as follows: Section 2 presents the background knowledge
required to understand the content of this work. Section 3 describes in detail the steps
followed in this research. Section 4 provides the details of the case vignettes of this work
and explores traffic data. Then, Section 5 detects the missing values in the traffic data, while
Section 6 detects anomalies in the data using three methods, namely flow-speed correlation
analysis (Section 6.1), seasonal-trend decomposition using Loess (Section 6.2), and isolation
forest (Section 6.3). It also classifies detected anomalies as sensor faults and unusual traffic
conditions. Thereafter, Section 7 explores anomalies in the traffic data using multiple
variables. Finally, Section 8 discusses the results of this work, and Section 9 concludes
this study.

data.gov.gr
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2. Background

This section presents the background knowledge required to understand the content
of this paper. Specifically, it describes dynamic Open Government Data, including open
traffic data, the anomaly detection methods used in this work, and anomaly explanation.

2.1. Dynamic Open Government Data

Open Government Data (OGD) are data published by the public sector, freely dis-
tributed to all citizens without further restrictions [22]. The term “open” refers to any data
or information that can be equally and freely used, modified or shared by all citizens and
businesses [11,23]. Today, a large number of public authorities and National Statistical
Institutes internationally have already demonstrated their commitment to opening their
data by launching OGD portals (e.g., the European Data Portal (https://data.europa.eu/
accessed on 25 October 2022)). OGD portals provide a plethora of datasets. For instance,
the European Data Portal provides 1,538,031 datasets describing data that can be classified
into 13 themes, including transport, economy and finance, environment, and population
and society. In total, 0.75% of the datasets (10,667) come from Greece.

Dynamic data (including environmental, traffic, satellite, meteorological and sensor-
generated data) have been recently recognized as an important part of OGD [15]. The
importance of dynamic data, also mentioned as real-time data, has already been stressed in
the literature (e.g., [24]). Unlike static data, dynamic data are characterized by their high
variability and rapid obsolescence, making their immediate availability and regular updates
crucial for the creation of added-value services and applications. Hence, the transmission
of dynamic data should be possible immediately after their collection via an Application
Programming Interface (API).

Open Traffic Data

Dynamic (or real-time) data with traffic-related information (e.g., counted number
of vehicles, average speed) generated from sensors are increasingly provided by Open
Government Data (OGD) portals. This type of data facilitates the delivery of public services
in the Smart City context, improving the quality of citizens’ life and stimulating economic
growth [25].

Open Traffic Data are usually aggregated by minute or hour and are available in
various standard formats (e.g., using the JavaScript Object Notation—JSON, or eXtensible
Markup Language, XML formats). However, that data are not always provided in real-time
and cannot easily be retrieved to an external solution using an Application Programming
Interface (API) [26]. Specifically, only a few of the OGD portals use an Application Pro-
gramming Interface (API) to enable accessing and retrieving the data, hampering their
use in data intelligence applications. In addition, only a few of the OGD portals provide
streaming traffic data, i.e., updated traffic measurements every minute, while the rest of
them update data every 5 min, 1 h or 1 day. Finally, some of them only provide access to
historical data.

For instance, the Norwegian Public Roads Administrations’ Traffic Data API (https:
//www.vegvesen.no/trafikkdata/api accessed on 25 October 2022) provides hourly ag-
gregated traffic data from the roads in Norway. The API can be accessed via a Graphical
User Interface (GUI) or via programming languages to obtain data such as traffic vol-
umes, spatial information, and number of lanes. The provided historical data trace back
to 2019. The Swedish OGD portal (https://api.trafikinfo.trafikverket.se/ accessed on 25
October 2022) provides a GUI for querying streaming traffic data with the POST method
for API. The data are returned in XML or JSON format and contain traffic flow data, ar-
rivals and departures of ferries, road condition information, weather information etc. The
streaming data are updated every minute. Historical data cannot be accessed through the
API. In addition, the open API from Helsinki (https://helsinki-public.azurewebsites.net/
accessed on 25 October 2022) provides sensor traffic such as the volume of vehicles,
their average speed and type. The open API is updated every 5 min and returns data
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from the past hour aggregated in 5 min, 1 h, or 1 day intervals in JSON format. Fur-
thermore, a promising OGD initiative is provided by the government of Switzerland
(https://opentransportdata.swiss/en/cookbook/rt-road-traffic-counters/ accessed on 25
October 2022), where various road authorities record traffic movements in a grouped,
summarized dataset, which is freely accessible. The OGD traffic dataset contains traffic
measures from the country’s most important roads near significant urban regions and na-
tional highways. The dataset uses the DATEX II, a standard for the exchange of road traffic
data based on a specific XML schema. The advantage of this portal is that it returns real-time
streaming data every minute. New incoming data replace the last published data, while his-
torical data are not available in this portal. To the authors’ knowledge, the Swiss OGD portal
is the only European open portal that provides streaming data using 1 min intervals. The
data can be downloaded in JSON format with an http POST request using an API key (to-
ken) after a user’s registration. Finally, this study examines the quality of sensor-generated
data from the Greek OGD portal (https://www.data.gov.gr/datasets/road_traffic_attica/
accessed on 25 October 2022). Provided traffic data include hourly aggregated information
for traffic flow and average speed can be downloaded in CSV or JSON format but can also
be accessed via an API using authorization keys (tokens). Traffic data are updated hourly
in the portal.

2.2. Anomaly Detection

Sensors are prone to malfunctions caused by, e.g., bad weather, temperature conditions,
or damages, resulting in anomalous observations. There is a plethora of definitions in the
data mining and statistics literature for anomalies. For instance, they have been defined as
outliers, abnormalities, discordants, or deviants [27] and as observations that do not follow
the well-defined normal behavior of data [28]. Under the assumption that the majority of
observations in a dataset are normal, anomalies only represent a very small proportion
of the dataset, and their distribution significantly deviates from the distribution of the
rest of the data [29]. In this direction, anomaly detection refers to the research area and
techniques that detect data points that deviate from the dataset by calculating the likelihood
of this point being an anomaly, also called an anomaly score. Finally, a threshold value is
defined so that points with an anomaly score greater than this threshold are considered
anomalies. Therefore anomaly detection problems are defined as binary label classification
tasks determining whether an observation is normal or an anomaly. Anomaly detection has
a wide range of applications in several domains, such as intrusion detection for computer-
based systems, fraud detection for banks and insurance companies, and medical anomaly
detection for health monitoring systems [30]. In the Internet of Things (IoT) domain, sensor
monitoring process demands high quality and trustworthy detection of corrupt sensor
data, ensuring the quality of the transmitted data. In-situ sensors and wireless sensor
networks (WSN) produce large sequences of observations. Therefore, anomaly detection
for sensor-generated data is strongly linked with time-series analysis and forecasting.

There are two main categories for sensor anomaly detection: simple statistical or time-
series analysis techniques and machine learning techniques. The former refers to statistical
approaches for time series anomaly detection such as regressive models ARIMA, moving
average, HA [31] and time series decomposition techniques such as the seasonal-trend
decomposition. The latter refers to machine learning methods that learn specific patterns
from the time-series data and are further categorized into supervised and unsupervised
approaches. Supervised anomaly detection methods are applied on labeled time series
datasets, such that for each observation (timestamp), the label is known (anomaly or
normal data point), and the dataset contains both normal points and outliers. Examples of
supervised anomaly detection algorithms are neural networks LSTMs (Long Short Memory
Networks) [32] and one-class SVM (Support Vector Machines) [33]. On the contrary,
unsupervised anomaly detection methods assume that time-series data are unlabeled. Most
of the unsupervised approaches use distance-based methods or auto-encoders (neural
networks that reconstruct the input data) [34]. Finally, apart from statistical and machine
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learning methods, several domain-oriented thresholds are defined in order to determine
whether an observation is considered anomalous. In our case, this threshold is defined as
the flow-speed correlation value, the maximum number of vehicles that can pass a specific
counting point (a sensor) in a particular time interval.

In our research approach, anomaly detection comprises both the identification of
(a) anomalous flow-speed correlations and (b) deviations from the normal traffic pattern
using a statistical time-series method and an unsupervised machine learning algorithm.
These two present complementary views of the traffic data quality. To this end, we employ
the following methods, respectively.

2.2.1. Anomalous Flow-Speed Correlation

In traffic data, the number of vehicles counted by a sensor and their average speed
are strongly correlated. In particular, considering that each sensor measures data that pass
from one or more lanes, the maximum number of vehicles that can pass in all lanes in one
hour can be calculated as [35]:

number_o f _vehicles =
average_speed ∗ 1000

average_vehicle_length +
average_speed

3.6

∗ number_o f _lanes

where average_speed is the average speed provided by the sensors measured in km per
hour and average_vehicle_length is the average length of the different types of vehicles,
the fraction average_speed/3.6 represents the “safe driving distance” that should be kept
between vehicles and is based on the vehicle speed, and number_of_lanes is the number of
lanes in the road each sensor is positioned. The value of average_vehicle_length is set to four.
When the number of vehicles measured by a sensor in an hour is higher than this value,
then the measurement is considered an anomaly.

2.2.2. Seasonal-Trend Decomposition Using Loess for Anomaly Detection

The seasonal-trend decomposition of periodic time series using Loess (STL) is a funda-
mental method for time series analysis, with many applications in anomaly detection and
forecasting [36]. The robust STL algorithm performs seasonal-trend decomposition using
the statistical smoother “locally estimated scatter plot smoothing”-“Loess” (a generalization
of the moving average technique) and locally-weighted regression functions to decompose
the time series. Specifically, STL considers the original time series as a composition of three
components (additive model):

yt = Tt + St + Rt (1)

where yt is the observed data at time t, Tt denotes the trend in time series, St is the seasonal
component of the original time series, and Rt denotes the remainder component. STL
employs a statistical smoother called the loess (locally estimated scatter plot smoothing, a
generalization of moving average technique), using locally-weighted regression functions
to decompose the time series. The trend component shows a general pattern in time
series on a long-term basis, the linear increasing (uptrend) or decreasing (downtrend).
Furthermore, the seasonal component refers to the repeating patterns (periodic patterns)
over time. Finally, the remaining variations in time series are the remainder component, also
known as the noise. The remainder component is calculated by subtracting the trend and
seasonal components from the original series. The remainder curve indicates the existence
of noise present in the data. The decomposition procedure consists of the following steps,
which are repeated iteratively until a final convergence [36]:

The first step is the noise removal from the time series using bilateral filtering, where
neighbors with similar values are used to smooth the time series. The literature proposes
a filter window of length 2H + 1 and filter weights computed by the Gaussian filter
functions [37–39]. After denoising, the trend extraction is employed by modeling the trend
difference using Least Absolute Deviations (LAD) and l1 regularizations. The trend is
computed through the LAD loss function as an optimization problem by minimizing the
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sum of absolute deviations (such as the least square technique). After the trend removal
from the time series, the seasonal extraction is performed by a non-local seasonal filtering.
The seasonality component is defined as a weighted linear combination of the 2H + 1
neighbors of yt. The K-neighborhood technique for seasonality extraction indicates that
data points with similar seasonality to yt will be given larger weights based on their
distance to yt in the time dimension. As mentioned previously, these steps are performed
iteratively by the STL algorithm until convergence. After the final iteration, the results
of the STL decomposition algorithm are three time series and three independent graphs
representing seasonal and residual trends.

STL decomposition is very useful for anomaly detection in time series by analyzing
the residual curve of the STL output time series. For that reason, after the decomposition
procedure, the remainder curve is divided into an area of normal data points and an area
of outliers or anomalies. The limits of these areas in the remainder curve can be defined by
various methods, such as the interquartile range (IQR) method or the empirical rule for
normal distribution [40].

2.2.3. Unsupervised Anomaly Detection with Isolation Forest

The recent development of machine learning and Big data analytics has introduced a
wide variety of methods for anomaly detection. Moreover, unsupervised learning methods
seem to be significantly useful for anomaly detection problems due to their ability to
learn patterns from unlabeled data. Since the majority of real-world datasets do not
contain labeled anomalous data, unsupervised learning approaches are a suitable choice.
Unsupervised learning models do not learn patterns on labeled data but perceive the data
structure in order to classify it into a particular set of classes. In the anomaly detection
context, they assume that only a very small proportion of the dataset is anomalous and data
groups of similar instances are considered normal. Ref. [41] performs anomaly detection
using the unsupervised approach for detecting anomalies on surveillance videos while [42]
detects anomalies in hyperspectral images with an unsupervised Deep Belief Network.
Furthermore, ref. [43] uses an unlabeled Satellite dataset to detect outliers, implementing a
deep auto-encoder technique, and ref. [44] demonstrates a method based on unsupervised
learning for detecting noise on acoustic sensors.

The isolation Forest (iForest) is an anomaly detection algorithm based on the hypothe-
sis that outliers are always rare and a few data points among the whole dataset (far from the
center of normal clusters) [45]. This ensemble method isolates the outlier data points from
the rest of the data, by portioning the data set using isolation trees (binary trees). Each node
of an isolation tree consists of a randomly selected attribute A and a split value S, such that
S A, while S corresponds to the minimum or maximum value of the selected attribute. The
general idea is that anomalous data points are very different and easier to divide than the
normal data points, and they are also closer to the root nodes of the isolation trees [46,47].
After the creation of a completed forest by generating T random isolation trees, the path
length h(x) to isolate a data point x is calculated using the average number of the path
lengths to isolate x from each isolation tree. The anomaly score is defined as:

s(x) = 2−
E[(h(x)]

c(n) , (2)

where c(n) is the average value of paths h(x) that is defined as:

c(n) = 2H(n− 1)− 2(n− 1)
n

, (3)

where H is the harmonic number, and it can be estimated by ln(i) + 0.5772156649 (Euler’s
constant) [45]. If the anomaly score is closer to 1 the data point is considered an anomaly, x
is an isolated point, and the path h(x) is relatively small. On the other hand, when h(x) is
large, then x is not an isolated point and the anomaly score tends to 0; thus, the data point
is considered nominal [45,48].
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2.3. Anomaly Explanation

Machine learning models are complex algorithms, often referred as “black box”, that
in many cases do not provide enough explanations regarding their predictions so that
human users can understand. During the last decade, there has been high concern among
the research community about the lack of transparency, accountability and interpretability
of complex machine learning predictive models that might have consequences in many
domains [49]. Therefore, under the recent development of eXplainable Artificial Intelli-
gence (XAI), a second post-hoc model is created that explicitly explains the first predictive
“black box” model. XAI has been recently employed not only in Open Government Data
(OGD) [20] but also in healthcare [50,51] and transport data [52]. This new field of XAI
has applications in the anomaly detection research area named as eXplainable Anomaly
Detection (XOD). Anomaly detection explanations refer to the definition of a post-hoc
model that explains why the initial model categorizes the objects as normal or anomalies
and determines the internal causes of their predictions. In particular, explanations in unsu-
pervised anomaly detection are equivalent to a supervised classifier ignoring the training
process, finding specific patterns and subspaces in the data, and performing statistical
computations in order to determine the rank of data between inliers and outliers [53].
Post-hoc explanations are useful for highly unintelligible models such as neural networks
and ensemble techniques (such as decision trees, random forests, and isolation forests).

The most commonly used methods developed to explain predictions (or anomalies)
from supervised or unsupervised classifiers are LIME [54] and SHAP—SHapley Additive
exPlanation [55]. LIME is an explainable model that is trained on a sample data, and the
model’s predictions use sparse linear models as explanations. LIME performs explanations
by creating an interpretable model with local data around the neighborhood of an instance.
After the model’s predictions on each sample, these sample data are weighted to the
adjacency to the given instance. For example, ref. [56] proposes an explainable anomaly
detection framework using SHAP for predictive maintenance in a manufacturing system,
and ref. [57] explains anomalies of a deep auto-encoder model with SHAP explanations.
The SHAP framework is used by [58] to explain anomalies from maritime engines with the
Isolation Forest algorithm. In this study, we implement the SHAP approach to explain the
traffic anomalies from the OGD sensor dataset.

SHAP assigns an importance value, called the Shapley value, inspired by game theory,
to explain a particular prediction in compliance with the following properties: (i) local
accuracy—the explanation model matches the original model, (ii) missingness—missing
features on the original model have no impact on the explanation and (iii) consistency—
transformations of the model that increase or stabilize the contribution of a feature re-
gardless of other inputs do not lead to the decrease in this input’s attribution [55]. The
prediction f (x) can be explained as:

f (x) = g(x′) = φ0 + φix′i (4)

where g(x′) is the explanation model, x is the input value, φ0 is the baseline when all the
input features are missing. According to [55], SHAP explains the output of an instance by
calculating the Shapley value, i.e., the contribution of each feature to the output (prediction,
anomaly):

φi = ∑
S⊆F/i

|S|!(|F| − |S| − 1)!
|F|! [ fS∪i(xS∪i)− fS(xS)] (5)

φi denotes the importance of the ith variable, F is the set of all variables, S represents
all possible subsets and fS(xS), fS∪i(xs∪i) denote the output of the model before and after,
including the ith variable to S, respectively.
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3. Research Approach

The research approach of this work uses five steps, namely (1) data collection, (2) data
exploration, (3) missing values analysis, (4) anomaly detection and classification, and
(5) anomaly detection using multiple variables.

(1) Data collection. In this step, available traffic data from data.gov.gr (accessed on 25
October 2022) are collected using the data.gov.gr (accessed on 25 October 2022) API. These
data have been produced by sensors that are positioned in the Attica Region in Greece. In
addition, the position of the sensors is specified and mapped to latitude and longitude
geographic coordinators in order to be able to present data in map visualizations.

(2) Data exploration. This step uses statistical analysis and visualizations to explore
the collected traffic data for better understanding. Specifically, it explores the number of
sensors that produced traffic data during each month and the InterQuartile Range (IQR)
of the vehicles measured by each sensor. It also explores the correlation of the sensors.
To this end, it employees the Pearson correlation coefficient for the number of vehicles
counted each hour of the day by each sensor. The Pearson correlation is a commonly
used measurement for searching correlations between time series, dividing the correlation
among two variables for the product of the square of their variance. Sensors that are located
nearby one another or three other sensors, i.e., their distance is lower than 2000 m, and that
have a Pearson correlation coefficient greater than 0.8 are considered strongly correlated
sensors. Weakly correlated sensors have a Pearson correlation coefficient greater than 0.7.

(3) Missing values analysis. Since the traffic data are dynamic data collected by sensors,
there is a chance that some observations may be missing due to various reasons such as
failures of sensors, network faults, and other issues. In this context, this step searches for
observations that are missing from the traffic data based on two dimensions; (i) the time,
and (ii) the sensors. The first case searches for the missing observations per day. To this
end, we calculate for each day the number of observations that should be available for all
sensors, and then we subtract this number from the number of available observations. This
analysis was used to select the “best” time window for the traffic data, i.e., the time window
with the least missing observations. For the second case, the total number of missing values
per sensor is calculated. Additional statistical analyses are employed in order to explore
the distribution of the sensors’ missing observations.

(4) Anomaly detection and classification. This step identifies traffic data anomalies,
i.e., observations that do not follow the well-defined normal behavior. It also classifies
detected anomalies into (i) anomalies from unusual traffic conditions (e.g., traffic accidents,
weather conditions), and (ii) anomalies from sensor faults. In this work, anomaly detection
comprises both the identification of (a) anomalous flow-speed correlations using flow-speed
correlation analysis, and (b) deviations from the normal traffic pattern using two methods,
namely, Seasonal-Trend decomposition using Loess (STL), and unsupervised learning
isolation Forest (iForest), which are described in Section 2. All methods are applied to traffic
data regarding the time period described by the “best” time window found in the previous
step. The flow-speed correlation analysis is used to calculate the number of anomalies per
sensor. Descriptive statistics are then used to describe and summarize calculated anomalies.
The flow-speed correlation analysis helps to identify the “best” sensors, i.e., sensors with
the lowest number of anomalies. In order to further explore the quality of data, we use
the STL and iForest methods to detect anomalies in data related to the “best” sensors.
For these two methods, missing values in data are imputed using the linear interpolation
method. Specifically, we apply the STL decomposition in the traffic data and examine
the residual curve to detect anomalies. We then specify the upper and lower fence for
outlier detection by applying the IQR method in the residual curve. We experiment with
multiple values in order to find the best scalar that the IQR will be multiplied by. We then
classify into sensor faults and unusual traffic conditions the STL anomalies of the “best”
sensors with distance between them lower than 2000 m and whose produced data are
correlated based on the correlation analysis of the data exploration step. Anomalies that
are simultaneously detected from correlated traffic sensors are considered unusual traffic

data.gov.gr
data.gov.gr
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conditions. This is based under the assumption that for proximal sensors, the unusual
traffic condition will occur on the majority of sensors in the area. On the contrary, sensor
faults are anomalies caused by sensor malfunctions, and hence, the adjacent traffic sensors
will not capture them. Similar to the STL method, iForest is also applied to the “best”
sensors’ data to detect anomalies based on their counted vehicles. The fine-tuning of the
created model includes tuning the contamination hyper-parameter that represents the
proportion of outliers in data. The detected anomalies are classified to sensor faults and
unusual traffic conditions similarly to the STL anomalies. We compare the classifications of
the two methods and find the number of measurements that were detected as anomalies by
both STL and iForest methods.

(5) Anomaly detection using multiple variables. This step further explores the quality
of traffic data using six additional features to create the iForest model; the average speed
of the vehicles and also five temporal features, namely, (i) the weekday, a binary variable
showing whether the observation is recorded on a weekday (value 1) or weekend (value 0),
(ii) daylight, a binary variable to show whether the measurement was made in day (value 1)
or night (value 0), (iii) the day of the week of the measurement, a number in the range 0–6
(0 = Monday and 6 = Sunday), and (iv) the hour of the day of the measurement, a number
in the range 0–23. It also employs the SHapley Additive exPlanation (SHAP) framework
and, specifically, the TreeSHAP variant to explain the results of the created iForest model.
Two types of visualizations are used: (i) SHAP summary plots that are beeswarm plots
where each dot’s position is determined by the feature on the y-axis and the Shapley value
on the x-axis. The color represents the value of the feature from low to high, and (ii) SHAP
dependence plots that show how a feature’s value (x-axis) impacts the prediction (y-axis) of
every sample (each dot) in a dataset and how the change in SHAP values across a feature’s
value range.

4. Case Vignettes
4.1. The Official Greek Open Government Data Portal

Data.gov.gr (accessed on 25 October 2022) is the official Greek data portal for Open
Government Data (OGD). The latest version of the data portal was released in 2020 and
provides access to 49 datasets published by the central government, local authorities, or
other Greek public bodies classified in ten thematic areas, including environment, economy,
and transportation.

The major update and innovation of the latest version of the Greek OGD portal was
the introduction of an Application Programming Interface (API) that enables accessing and
retrieving the data through either a graphical interface or code. The API is freely provided
and can be employed to develop various products and services, including data intelligence
applications. In order to use the API, users need to obtain a token by completing a registra-
tion process and providing personal information (i.e., name, email, and organization) as
well as the reason for using the API.

The introduction of the API enables the timely provision of dynamic data that are
frequently updated. The API can be used, for example, to retrieve datasets describing data
related to a variety of transportation systems (e.g., road traffic for the Attica region, ticket
validation of Attica’s Urban Rail Transport, and route information and passenger counts of
Greek shipping companies). The frequency of the data update varies.

4.2. Traffic Data in the Region of Attica

Traffic data for the Attica region in Greece are collected from traffic sensor nodes,
which periodically transmit information regarding the number of vehicles on specific roads
of Attica along with their speed. The data are aggregated hourly in order to avoid raising
privacy issues. Data are updated hourly with only one hour delay.

We used the API provided by data.gov.gr (accessed on 25 October 2022) and collected
4,230,819 records for a 22-month period, i.e., from 5 November 2020 to 31 June 2022. Each
record includes (a) the unique identifier of the sensor (e.g., MS834), (b) the road in which
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the sensor is located along with (c) a detailed text description of its position, (d) the date
and time of the measurement, (e) the absolute number of the vehicles detected by the sensor
during the hour of measurement, and (f) their average speed in km per hour. The exact
position of the sensor is a text description in the Greek language and usually provides
details, including whether the sensor is located on a main or side road, or on an exit or
entrance ramp, the direction of the road (e.g., direction to center), and the distance to main
roads (e.g., “200 m from Kifisias avenue”).

The collected traffic data have been produced by 425 sensors. We manually mapped
the position of the sensors to latitude and longitude geographic coordinators in order
to be able to present data in a map visualization. Specific position details are missing
for one sensor (i.e., the sensor with identifier “MS339”), making it impossible to find its
exact coordinates.

According to the data, the sensors did not start producing traffic data at the same
time, and few of them stopped before the end of the period. Figure 1a presents the number
of sensors that produced traffic data each month. Most sensors (370 or 87%) produce
data from the first month of the data (November 2020), and then the number of sensors
producing data gradually increases to reach the 420 sensors in June 2021. Specifically,
during June 2021, 25 new sensors were introduced and, in the same month, two sensors
stopped producing data. A new sensor also started producing data in July 2021, resulting
in 421 sensors, and then a sensor stopped producing data on August 2021, resulting again
in 420 sensors. Finally, in December 2021, two new sensors started producing data, and
two stopped keeping the number of sensors stable to 420 until the end of June 2022. We
excluded from this work the data related to sensors that stopped producing data (namely
sensors with IDs ‘MS136’, ‘MS137’, ‘MS858’, ‘MS1000’, and ‘MS1001’). Finally, we gathered
a total of 4,228,021 observations.

(a) (b)
Figure 1. Number of sensors that produce traffic data per day and distribution of the IQR of the
number of vehicles measured by each sensor. (a) Number of sensors that produce traffic data each
month. (b) Distribution of the IQR of the vehicles measured by each sensor.

We then calculated the InterQuartile Range (IQR) of the counted vehicles measured by
each sensor. Figure 1b shows the right-skewed distribution of IQR, meaning that few of the
sensors probably counted large number of vehicles.

We also explored the correlation between all sensors by calculating the Pearson corre-
lation coefficient for the number of vehicles counted each hour of the day by each sensor.
In order for two sensors to be correlated, their distance should be lower than or equal to
2000 m. Based on this criterion, out of the 425 sensors, 417 have at least three correlated
sensors (Table 1), while the average number of correlated sensors is 40.76. From these
sensors, 404 have a Pearson correlation coefficient greater than 0.8, while 410 have a Pearson
correlation coefficient greater than 0.7. Finally, there are six sensors that have one or two
correlated sensors, while two sensors are isolated.
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Table 1. Correlation of sensors based on the counted number of vehicles counted each hour of the
day. Correlated sensors have distance ≤ 2000 m and more than 3 correlations. Strongly correlated
sensors have distance ≤ 2000 m and more than 3 correlations with Pearson coefficient ≥ 0.8. Weakly
correlated sensors have distance≤ 2000 m and more than 3 correlations with Pearson coefficient≥ 0.7.
Loosely correlated sensors have distance ≤ 2000 m and 1 or 2 correlations.

Correlation

Total number of sensors 425
Correlated sensors 417

Strongly correlated sensors 404
Weakly correlated sensors 410
Loosely Correlated sensors 6

Isolated sensors 2

5. Missing Values

In this section, we search for observations that are missing from the traffic data based
on two dimensions; (i) the time and (ii) the sensors. In the first case, we calculate the
missing values per day, whilst in the second, the missing values per sensor.

Considering all the sensor measurements in the time frame between 5 November 2020
and 30 June 2022 and the time interval each of the 420 sensors was producing data, the num-
ber of the total potential observations would be 5,295,504. However, 1,067,483 observations
(or 20.16%) are missing. Figure 2 presents the number of missing observations per day. The
number of missing observations are increased until the end of May 2021. However, from
June 2021, there is a significant decrease in the number of observations that are missing.
Finally, the number of missing observations starts to eliminate after January 2022 and,
specifically, after 2 January 2022. We select the time period from 2 January 2022 to 23 June
2022 as the “best” time period. This time period includes 75,425 missing observations.

Figure 2. Number of observations that are missing per day.

We also calculate the percent of missing observations for each sensor from 5 November
2020 to 30 June 2022. Figure 3 presents the street map with the 420 sensors and also the
boxplot, which presents the distribution of the missing observations per sensor. The sensors
are positioned on 93 main roads in the region of Attica. In Figure 3a, a mark is displayed
over each sensor’s longitude and latitude in the region of Attica. The colors of the marks
indicate the percent of missing observations of the sensor; red color marks represent sensors
with higher percentages of missing observations, green marks sensors with lower percent-
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ages of missing observations, and yellow marks sensors with intermediate percentages of
missing observations. In addition, the boxplot in Figure 3b presents the distribution of the
number of missing observations per sensor. The median percent of missing observations
is 33.1%, meaning that half of the sensors have less than or equal percentages of missing
observations to the median, and half of the sensors have greater than or equal percentages
of missing observations to it. In total, 50% of the sensors have a percentage of missing
observations in the range of 15.5–33.43% (interquartile range box). In addition, according
to the whiskers of the boxplot (bottom 25% and top 25% of the data values, excluding
outliers), the percent of missing observations of each sensor may be as low as 10.3% and as
high as 56.8%. In addition, based on our calculations, only eight sensors have less than 10%
missing observations. Finally, only one sensor has a percentage of missing observations
above 60%.

(a)
(b)

Figure 3. Map of sensors and boxplot for the missing values per sensor. (a) View of the 420 sensors
on a map. Each point on the map represents a sensor. Red color marks represent sensors with
higher percentages of missing values, green marks sensors with low percentages of missing values.
(b) Percent of missing values per sensor in a boxplot showing the lower (Q1) and upper (Q3) quartile,
the median and mean values. Data falling outside the lower (Q1)–upper (Q3) quartile range are
plotted as outliers of the data.

6. Anomaly Detection

In this section, we detect the anomalies in the traffic data based on three anomaly
detection methods, namely (i) flow-speed correlation, (ii) seasonal-trend decomposition
with Loess, and (iii) isolation forest. The time window we select to perform the above
analyses is the “best” time window starting from 2 January 2022 to 23 June 2022. In this
time window, the dataset includes 1,679,898 records with measurements produced by
420 sensors.

6.1. Flow-Speed Correlation Analysis

We first calculate the number and percentages of anomalies per sensor based on
the flow-speed correlation analysis method described in the research approach section
(Section 3). In order to be able to calculate the number of vehicles that can pass in all
lanes, we manually found the number of lanes that each sensor tracks and mapped them
to the records. We discovered 1,230,928 observations that count more vehicles than the
number calculated by the filter (59.4% of total potential observations). We also calculate
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the number of anomalies per sensor. This number ranges from 0 to 3853 anomalies. In
addition, the mean number of detected anomalies per sensor is 2937.8, while the median
is 3264 anomalies per sensor. Table 2 presents the descriptive statistics for the anomalies
detected per sensor.

The flow-speed correlation analysis showed that the vast majority of sensor recordings
of the OGD dataset exceed the threshold value. For example, sensors MS792 and MS108
have 92.04% and 91.58% of anomalies, respectively. Only nine sensors have less than 10%
anomalies based on the flow-speed correlation analysis (Table 3). We, henceforth, consider
them as the “best” sensors for the selected time window. For these sensors, we calculate
the number of anomalies based on the STL decomposition and iForest methods to further
explore the quality of the traffic OGD. For both of these methods, identified missing values
were imputed using the linear interpolation method.

Table 2. Descriptive statistics considering the number of anomalies per sensor using the flow-speed
correlation analysis.

Number of Anomalies Mean Number of Anomalies

mean 2937.8 71.1
standard deviation 821.7 19.9

min 0 0
first quartile 2824 68.4

median 3264 79
third quartile 3416 82.75

max 3853 93.3

Table 3. Traffic sensors with less than 10% detected anomalies using the flow-speed correlation
analysis.

Sensor ID Hours of Anomaly Percentage of Anomalies (%)

MS346 378 9.1
MS121 321 7.73
MS941 308 7.41
MS309 295 7.10
MS944 178 4.28
MS145 48 1.15
MS134 18 0.43
MS502 14 0.33
MS734 8 0.19

6.2. Anomaly Detection and Classification with STL Decomposition

The STL decomposition is applied to aggregated traffic data for the corresponding
time window between 2 January 2022 and 23 June 2022 (4152 h). STL detects 4720 anomalies
related to the nine “best” sensors (12.6% of 37,368 total records) of Table 3. Figure 4 shows an
example of STL decomposition related to the observations of one sensor (sensor “MS734”)
for the selected time window. For anomaly detection, we examine the last curve of the STL
method, the residual curve. Therefore, we apply the IQR method in the residual curve to
specify the upper and lower fence for outlier detection. Observations above the upper limit
and below the lower limit are considered anomalies. Finally, we set the scalar multiplied
with IQR to three after a set of experiments. The upper and lower limits of the residual
curve are defined using the following formula:

Upperlimit = Q3 + 3IQR (6)

Lowerlimit = Q1 − 3IQR (7)
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Figure 4. STL decomposition of time series of sensor MS734.

The residual curve for sensor “MS734” depicted in Figure 5 shows that anomalies of
this particular sensor are detected both in positive and negative peaks of the remainder
component of STL.

Finally, we classify the STL traffic anomalies into sensor faults and unusual traffic
conditions. We only classify anomalies detected by sensors with a distance between them
lower than 2000 m and whose produced data are correlated based on the correlation
analysis made in Section 4.2. Among the “best” sensors, only two pairs, i.e., “MS941” and
“MS121”, and “MS145” and “MS734”, satisfy the previous criteria. Specifically, the distance
between “MS941” and “MS121” is 1538.34 m, while the Pearson correlation between their
produced data is 0.835128. In addition, the distance between “MS145” and “MS734” is
1333.49 m, while the Pearson correlation between their produced data is 0.783.

Table 4 shows the total number of anomalies detected by the STL decomposition
method for the nine reliable sensors and the number of STL anomalies classified as unusual
traffic conditions and sensor faults. The classification shows that unusual traffic conditions
and sensor faults are almost equally distributed within the total number of anomalies. We
further explored the classified anomalies. In total, 97% of unusual traffic conditions were
detected during the day (between 07:00 and 20:00) and 56% were classified on weekdays. In
total, 90% of sensor faults were detected in daylight, while 62% were detected on weekdays.

Table 4. Anomalies detected by the STL decomposition.

Sensor ID STL Anomalies Unusual Traffic Conditions Sensor Faults

MS121 359 179 180
MS134 502 n/a n/a
MS145 464 256 208
MS309 679 n/a n/a
MS346 489 n/a n/a
MS502 384 n/a n/a
MS734 615 256 359
MS941 454 179 275
MS944 774 n/a n/a

Figure 6 depicts the anomalies detected in the data produced by sensor “MS734” on
the residual curve upon the original time series. Among these anomalies, unusual traffic
conditions are depicted as green dots. These anomalies are also detected by STL on the
correlated sensor “MS145”. On the contrary, anomalies that are not recorded by proximal
sensors on the same timestamp are considered sensor faults and depicted with red dots.
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Figure 5. Residual curve of sensor “MS734” with the upper and lower fences of the IQR method. The
green dots represent unusual traffic conditions. Red dots represent sensor faults.

Figure 6. Time series of sensor “MS734” with anomalies detected by STL decomposition. Red dots
are anomalies classified as “sensor faults”, and green dots are anomalies classified as “unusual traffic
conditions”.

6.3. Anomaly Detection and Classification with Isolation Forest

Next, we apply the isolation Forest (iForest) algorithm to the OGD traffic dataset.
Similar to the STL method, iForest is implemented on the same time window between
2 January 2022 and 23 June 2022. The algorithm is deployed using python’s Scikit-learn
machine learning library (https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html/ accessed on 25 October 2022). Furthermore, the only
hyper-parameter of the model needed to be tuned is the contamination parameter, which
represents the proportion of outliers in the dataset. Similar to other ensemble learning
techniques, iForest is made up of a large number of decision trees. The number of isolation
trees is represented by the parameter nestimators, which is set to 100 for all the time series in
this experiment. Finally, the parameter maxsamples, which is the number of random samples
from the original dataset that will be created for the isolation trees, is set to 256. The iForest
algorithm detects 4353 anomalies out of 37,368 records (11.6%) of the data from the nine
sensors.

Similar to the STL method, we apply the classification method to the data of the
correlated sensors “MS121”, “MS145”, and “MS734” and “MS941”. Table 5 shows the
total number of anomalies (out of 4152 records per sensor) that were identified by iForest

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html/
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and the classified anomalies among the correlated sensors. The majority of anomalies are
classified as sensor faults. Especially for sensors “MS121” and “MS941”, 78.7% and 89.7%
of the detected anomalies, respectively, are classified as sensor faults. We further explored
the classified anomalies. A vast majority of classified unusual traffic conditions, almost
98%, were detected during daylight (between 07:00 and 20:00) and 55% of them during
weekdays. Finally, 81% of the detected sensor faults were recorded both in daylight hours
and on weekdays.

Table 5. Anomalies detected by the iForest algorithm.

Sensor ID iForest Anomalies Unusual Traffic Conditions Sensor Faults

MS121 287 61 226
MS134 441 n/a n/a
MS145 494 214 280
MS309 619 n/a n/a
MS346 535 n/a n/a
MS502 316 n/a n/a
MS734 575 214 361
MS941 385 61 324
MS944 701 n/a n/a

Figure 7 displays the anomalies detected by iForest classified as unusual traffic condi-
tions (green dots) and as sensor faults (red dots) for sensor “MS734”.

Figure 7. Time series of sensor “MS734” with anomalies detected by the iForest algorithm. Red dots
are anomalies classified as “sensor faults” and green dots are anomalies classified as “unusual traffic
conditions”.

In Table 6, the anomalies detected by STL and iForest are compared. For the nine
“best” sensors, each column points out the (i) total overlaps, (ii) overlaps of unusual traffic
conditions, and (iii) overlaps in sensor faults of the anomalies detected by the two methods.
We observe that only sensor “MS944” has a high value of overlap, with 420 anomalies
detected by both anomaly detection algorithms. On the contrary, our methods detect only
65 and 88 common anomalies for sensors “MS121” and “MS941”, respectively. According
to this table, the overlaps regarding the classification of anomalies are very low between the
two methods. Only sensor MS734 has 111 overlaps on sensor faults. The major differences
in the two proposed methods are also depicted in Figures 6 and 7. The iForest technique
detects anomalies mainly on the low and high peaks of the time series since the algorithm
manages to classify anomalies due to their significant deviation from the normal pattern.
On the contrary, as Figure 6 illustrates, STL applies anomaly detection on the residual curve
with the IQR method thinking of the time series as a combination of trend, seasonality and
remainder. Thus, it highlights anomalies taking into consideration trend and seasonality
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effects of the time series. These might be significant reasons for the small number of overlaps
between the two methods, as Table 6 suggests. However, our experiments are conducted
only on 9 out of 420 sensors of the traffic network due to the flow-speed correlation analysis
results. Thus, we need a more reliable dataset with a greater number of sensors to correctly
compare the two methods.

Table 6. Comparison of STL decomposition and isolation forest anomaly detection algorithms.

Sensor ID Total Overlap Unusual Traffic Conditions Sensor Faults

MS121 88 15 52
MS134 222 n/a n/a
MS145 115 34 45
MS309 180 n/a n/a
MS346 177 n/a n/a
MS502 176 n/a n/a
MS734 211 34 111
MS941 65 15 29
MS944 420 n/a n/a

7. Anomaly Detection Using Multiple Variables

In order to further explore the quality of the OGD traffic dataset, we train the isolation
Forest (iForest) algorithm on additional features and make explanations using the SHapley
Additive exPlanation (SHAP) framework to interpret the classification of anomalies. Our
goal is to explore specific patterns among the traffic dataset that may lead to anomalies
and, hence, deteriorate its quality. In this direction, the following explanations do not
interpret the exact reasons in anomalies but rather give an estimation of what the indicators
are that might contribute to a traffic anomaly. The iForest algorithm is suitable for high-
dimensional anomaly detection involving multiple features during the partitioning process.
The main difference from the one-feature implementation is that the algorithm randomly
selects a feature every time it partitions a data point. Then the model selects a split value
between the minimum and maximum values of the selected feature. For that reason, we
calculated four temporal features from our time series: (i) the weekday, a binary variable
showing whether the observation is recorded on a weekday (value 1) or weekend (value
0), (ii) daylight, a binary variable to show whether the measurement was made in the day
(value 1) or night (value 0), (iii) the day of the week of the measurement, a number in the
range 0–6 (0 = Monday and 6 = Sunday), and (iv) the hour of the day of the measurement,
a number in the range 0–23. Finally, we also add the average speed of vehicles measured
by the traffic sensors for one hour.

The iForest algorithm is explained using the SHAP values of every data instance
obtained by the nine “best” sensors. For the calculation of SHAP values, the TreeSHAP
model [55] was used to provide an anomaly explanation.

In order to understand how several variables affect the detection of anomalies, we
created a SHAP summary plot. Figures 8 and 9 show the global interpretation of Shapley
values for sensors MS734 and MS941, respectively. The plots present the features with the
highest impact on the output of the model in descending global importance. The X-axis
shows the Shapley values of each measurement for every feature; Shapley values below
zero mean that the model classifies a data instance as an anomaly, while Shapley values
greater than zero mean that iForest classifies a data instance as normal. In these figures, each
dot represents the Shapley value of every data instance (every observation). Each dot is also
colored by the value of that feature from high to low, with red dots representing high values
and blue dots as low values of a feature. According to the summary plots in Figures 8 and 9,
“WeekDay” and “Average Speed” are the two features with the highest impact for anomaly
detection. “WeekDay” is a feature that indicates whether the measurement took place on
a workday “WeekDay” = 1) or during the weekend (“WeekDay” = 0). Therefore, high
values of this feature indicate that the recording happened on a weekday. Data points
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that are recorded on weekends are represented in the summary plots with blue color and
have low (negative) Shapley values, meaning that anomalies are more likely detected on
weekends. On the contrary, data instances that are recorded in a weekday are presented in
the summary plots with red color and have high (positive) Shapley values, indicating that
normal points are more likely detected on a weekday. We are also interested in long left tails
that form the beeswarm plots because they correspond to extreme anomalies (extremely
negative Shapley values). In the case of sensor MS734 (Figure 8), extremely low values of
“Average Speed” correspond to very low Shapley values meaning that low average speeds
are indicators of extreme anomalies. Moreover, in the same plot, high values of “Counted
vehicles”, a feature with low global importance, imply the existence of very high anomalies
for both sensors. In the same way, both summary plots illustrate that blue dots of variable
“daylight” are mostly gathered on the negative part of X-axis, implying that the algorithm
detects anomalies during night hours. Finally, “Day of the Week” does not display a clear
pattern regarding its influence on the model’s outcome.

Figure 8. Distribution of SHAP values for each feature, sensor “MS734”.

Figure 9. Distribution of SHAP values for each feature, sensor “MS941”.

In order to fully understand the relationship between a feature’s values and the
model’s outcomes and estimate the influence of variables on anomaly detection, we also
create SHAP dependence plots. A dependence plot depicts every data instance (i.e., every
row) as a blue dot. These dots form a scatter plot of the feature’s raw values versus the
corresponding SHAP values. Figure 10 illustrates dependence plots for the two measured
variables of the traffic sensors: average speed and counted vehicles for sensor MS734.
SHAP values above the y = 0 line lead to the detection of normal points, whereas those
below it are considered anomalies. For instance, the pattern of the Figure 10a plot indicates
that sensor measurements with zero average speed are considered anomalies. Furthermore,
there is a range of average speed between 33 and 42 km/h, where the corresponding SHAP
values are positive, indicating that sensor measurements between this range are more likely
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considered normal. Figure 10b shows the number of counted vehicles measured by sensor
MS734 and their corresponding SHAP values. For this sensor, measurements with more
than 3800 vehicles per hour have a significant decrease in SHAP values, clearly indicating
anomalous traffic behavior. Moreover, recordings with counted vehicles between zero and
3800 vehicles per hour can be both normal and anomalous.

(a) (b)
Figure 10. SHAP dependence plots of sensor “MS734”. (a) Average speed vs. SHAP values. (b)
Traffic flow vs. SHAP values.

8. Discussion

During the last two decades, the Open Government Data (OGD) phenomenon has
rapidly evolved. In these years, numerous OGD portals have already opened up their data
for free reuse, and the economic and social potential of OGD has significantly increased. In
order to facilitate the involvement of OGD in the creation of data intelligence applications,
various technologies have been used. Linked data is a technological paradigm that was
proposed early on [1] and has already been adopted by many OGD portals developed
by, e.g., the Scottish Government (https://statistics.gov.scot/ accessed on 25 October
2022) and the UK Department for Communities and Local Government (DCLG) (http://
opendatacommunities.org/ accessed on 25 October 2022). Linked data not only facilitated
the integration of data both inside and across data portals but also ensured the provision of
high-quality data. This is of vital importance in specific types of OGD, such as statistical
data, where data are described in different granularity levels [59]. The provision of high-
quality statistical data that can be easily integrated enables the emergence of added-value
scenarios that can be easily implemented. Indeed, in our previous work, we employed
linked statistical data from the Scottish OGD portal to facilitate policy-making related to
house prices in Scotland using machine learning and explainable artificial intelligence
technologies [20].

Today, however, the amount of Open Government Data (OGD) that are being pro-
duced and disseminated is exponentially growing while new types of data are also being
generated, such as dynamic OGD (e.g., traffic data generated by sensors), which were
recognized as an important part of OGD. At the same time, the recent emergence of innova-
tive data analysis and exploitation methods (e.g., artificial intelligence including machine
learning) opens up new opportunities for exploiting OGD. It is, hence, important to define
and address the new challenges that are related to the exploitation of these new types of
data using innovative methods in order to extract the potential that previous types of data
and methods cannot.

In this context, this paper focused on traffic data, which is a prominent example of
high-value data, and explored the quality of Attica traffic data. To the authors’ knowledge,
this is the first time a study has explored the quality of OGD by studying their data and
not the metadata provided by OGD portals. For example, previous works are based
on assessing metadata, such as the data formats available (including whether they are

https://statistics.gov.scot/
http://opendatacommunities.org/
http://opendatacommunities.org/
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provided in a machine readable format) [4,6], the accuracy of the metadata (i.e., whether
the provided metadata are correct) [4,60], the timeliness of the metadata (i.e., whether
metadata are up-to-date) [61], and the discoverability, reusability and accessibility of the
datasets [4,62].

The data used in this work are provided by data.gov.gr (accessed on 25 October 2022)),
the official Greek OGD portal, through an API, ensuring their immediate availability and
are updated hourly with only a one hour delay. The research approach includes steps
that can applied to assess the quality of more traffic datasets provided by other OGD
portals. We found that considering the time frame between 5 November 2020 and 30 June
2022, and the number of days each one of the 420 sensors was producing data, 20.16%
of the observations are missing. In addition, 50% of the sensors have a percentage of
missing values in the range 15.5–33.43% (interquartile range box). We also used flow-speed
correlation analysis to detect anomalous flow-speed correlations and two methods, namely
Seasonal-Trend decomposition using Loess (STL) and unsupervised learning isolation
Forest (iForest), to detect deviations from the normal traffic pattern. The flow-speed
correlation analysis found that the mean percent of anomalies per sensor is 71.1%. Only
nine sensors have less than 10% anomalies based on the flow-speed correlation analysis.
For these nine sensors, STL decomposition detected 4720 anomalies (12.6%) and isolation
Forest, 4353 anomalies (11.6%). However, the comparison of the two methods showed that
there a few overlaps between the proposed methods. STL manages to detect anomalies by
taking into consideration seasonality and trend effects, while iForest mainly detects the
high and low peaks of the corresponding time series. As a result, using both methods to
detect anomalies appears to be a good strategy. Furthermore, our proposed classification
method showed that both unusual traffic conditions and sensor faults are detected mainly
on weekdays and during daylight hours, while the iForest algorithm manages to detect
more sensor faults than the STL method. Finally, in order to have an estimation of the
factors that influence traffic anomalies, we implemented the SHAP framework upon the
iForest model. The results showed that average speed and the day during the recording
(weekday or weekend) are the most significant factors. Moreover, we found that very
low values of average speed have a high contribution to the identification of anomalies,
while sensor measurements with counted vehicles per hour greater than 3800 lead to the
classification of extreme anomalies.

9. Conclusions

The findings of this study demonstrate that, while traffic data from the Greek OGD
portal may be retrieved promptly via the API and are constantly updated, they confront
major quality difficulties. However, this may not be the case for all OGD portals’ dynamic
data. We believe that further research in the dynamic data of other OGD sites will disclose
datasets of higher quality that might be potentially used in added-value scenarios. In any
case, the exploration of big and real-time data provided by OGD portals will enable iden-
tifying and addressing organizational and technical challenges that hamper the effective
dissemination of high-value government data.
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