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Abstract: (1) Background: Length of stay (LOS) has been suggested as a marker of the effectiveness
of short-term care. Artificial Intelligence (AI) technologies could help monitor hospital stays. We
developed an AI-based novel predictive LOS score for advanced-stage high-grade serous ovarian
cancer (HGSOC) patients following cytoreductive surgery and refined factors significantly affecting
LOS. (2) Methods: Machine learning and deep learning methods using artificial neural networks
(ANN) were used together with conventional logistic regression to predict continuous and binary LOS
outcomes for HGSOC patients. The models were evaluated in a post-hoc internal validation set and a
Graphical User Interface (GUI) was developed to demonstrate the clinical feasibility of sophisticated
LOS predictions. (3) Results: For binary LOS predictions at differential time points, the accuracy
ranged between 70–98%. Feature selection identified surgical complexity, pre-surgery albumin, blood
loss, operative time, bowel resection with stoma formation, and severe postoperative complications
(CD3–5) as independent LOS predictors. For the GUI numerical LOS score, the ANN model was a
good estimator for the standard deviation of the LOS distribution by ± two days. (4) Conclusions:
We demonstrated the development and application of both quantitative and qualitative AI models to
predict LOS in advanced-stage EOC patients following their cytoreduction. Accurate identification of
potentially modifiable factors delaying hospital discharge can further inform services performing
root cause analysis of LOS.

Keywords: machine learning; deep learning; artificial intelligence; surgical cytoreduction; epithelial
ovarian cancer; length of stay; graphical user interface

1. Introduction

Cancer of the fallopian tube, ovary, or peritoneum (EOC) is the leading cause of death
from gynecological malignancy in the western world [1]. Over 70% of women diagnosed
with EOC have advanced disease at presentation (FIGO stage 3–4) [1]. High-grade serous
ovarian cancer (HGSOC), yet the most prevalent, is now recognized as a single clinical
entity. The treatment includes a combination of cytoreductive surgery and platinum-based
chemotherapy. The surgery aims at maximal cytoreduction of all visible disease, ideally
reaching a total macroscopic tumor clearance. When the cancer is at an advanced stage,
surgery can be extensive resulting in prolonged hospitalizations.
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Length of stay (LOS) is a measurable outcome that can be used as a benchmark of
short-term surgical care. Through the introduction of the Enhanced Recovery after Surgery
(ERAS) pathway, an effort has been made to shorten the LOS for patients following major
surgery, whilst still assuring that they receive effective treatment and high-quality care [2].
The PROFAST trial focused exclusively on EOC and provided much-needed randomized
evidence supporting surgical quality improvement in ERAS implementation compared
with conventional management [3].

The accepted “ideal” LOS resulting from optimal major surgery is deemed to be
five days or less [4]. Excessive or prolonged LOS has also been suggested as a marker
of the effectiveness of care, as it may increase medical resource utilization, overall cost,
readmissions, and short-term mortality [5]. Proposed definitions of prolonged LOS include
time spent in the hospital beyond the median or the 90th percentile [6]. Identification of
modifiable risk factors at admission, to predict LOS, could lead to appropriately targeted
interventions. In our institution, the average LOS following major EOC surgery ranges
between five and seven days. Inpatient stays longer than seven days are associated with a
higher risk of post-discharge adverse outcomes and complications compared to short stays
(less than seven days) regardless of admission causes [7].

In EOC, the factors affecting LOS following cytoreductive surgery are incompletely
characterized. Most of the knowledge comes from the surgical oncology literature [8,9].
Such factors may include increasing age or frailty, low albumin, high comorbidity scores,
and blood transfusion [6,10]. Optimal stoma care and severe surgical site infections (SSIs)
could be responsible for prolonged LOS [11–13]. Risk-prediction algorithms for severe
postoperative complications after ovarian cytoreductive surgery have been proposed [14].
Models to improve performance in predicting LOS have been additionally explored [15].

Modern public health studies use data mining technologies to explore the complex risk
factors of diseases. Such sophisticated methods through low-cost computational methods
represent significant advances in an era of stringent health economics. Machine learning
(ML) and deep learning (DL) approaches to predict new data from identified patterns have
been applied in a variety of hospital settings [16]. An accurate prediction can sometimes
be difficult with conventional statistics because patient characteristics show a multidimen-
sional and non-linear relationship. We previously employed ML algorithms to improve
the prediction accuracy of complete cytoreduction in advanced HGSOC patients [17]. In
addition, we highlighted the importance of feature selection for accurate 2-year prognosis
estimation in the same population by use of ML [18]. The usefulness of ML as a prognostic
tool in the ovarian cancer environment has been previously demonstrated [18]. Machine
Learning methods could help monitor hospital stays to improve standards of care. We
hypothesized that some of the factors affecting LOS are not endogenous, hence potentially
modifiable. We sought to improve the accuracy of predicting LOS in advanced-stage HG-
SOC patients undergoing cytoreductive surgery using ML/DL algorithms. Equally, we
aimed to develop a DL-based novel predictive LOS score and refine factors significantly
affecting LOS. The primary outcome was the prediction accuracy of several ML methods,
based on a set of performance metrics for differential LOS time points, and the investigation
of feature associations. The secondary outcome was the development and generation of
DL-driven real-time predictions in a post-hoc sub-cohort of HGSOC patients by treating
LOS as a continuous variable.

2. Materials and Methods

Prospectively registered data from consecutive patients diagnosed with histologi-
cally proven diagnosis of advanced stage HGSOC, who underwent elective cytoreductive
surgery from January 2014 to December 2019 at St James’s University Hospital, Leeds by
a certified Gynaecologic Oncology Surgeon was analyzed. Our tertiary center has been
recently accredited by the European Society of Gynaecologic Oncology as a Centre of
Excellence for ovarian cancer surgery. The patients were discussed at the central multi-
disciplinary team (MDT) meeting and were prospectively recorded in the hospital-wide
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Patient Pathway Manager (PPM) electronic database. The study was approved by the
Institutional Review Board (MO20/133163/18.06.20) and performed according to the stan-
dards outlined in the Declaration of Helsinki. The MDT criteria for the decision and timing
of surgery have been previously reported [19]. Only HGSOC patients with at least one
pre-treatment CA125 were included in the study. Patients aged <18 years, as well as those
with progressive disease or recurrent disease undergoing secondary cytoreduction, were
excluded. An Enhanced Recovery after Surgery (ERAS) pathway was implemented at
our center in 2015. Facilities have been described in detail elsewhere [19]. Postoperative
critical care unit (CCU) admission was electively booked for high-risk HGSOC patients,
who were scheduled to undergo complex major surgery, including multi-visceral resections
or undertook preoperative cardiopulmonary exercise (CPEX) fitness testing [20]. The train-
ing cohort consisted of consecutive patients from January 2014 to December 2017 (ERAS
implementation and transition). Consecutive patients from January 2018 to December 2019
were included in the post-hoc validation cohort from the same institutional database using
the same criteria as the derived cohort (ERAS evaluation).

Predictive variables were selected a priori from the hospital database. Demographic
characteristics included age, year of diagnosis, body mass index (BMI), pre-operative co-
morbidities using the Charlson Co-morbidity Index (CCI), Eastern Cooperative Oncology
Group (ECOG) performance status (PS), preoperative albumin and timing of surgery
(primary or interval). Intraoperative characteristics included operative time, surgical
complexity score (SCS), disease score (DS), residual disease (RD), and estimated blood
loss. These variables are widely available at tertiary centers and shown to be independent
predictors of postoperative morbidity and mortality in EOC patients [14]. The postoperative
complications were recorded according to the Clavien-Dindo classification (grade 3–5)
(CD3–5) [21]. Only severe SSIs were recorded. The CCI was categorized as 0, 1, or 2; with
higher scores indicating greater co-morbidity [22]. The SCS was assigned based on the
Aletti classification as low, intermediate, and high [23]. Outcomes also included ideal
LOS and prolonged LOS. Patients experiencing the optimal (ideal) stay of <five days were
identified, as were those with a prolonged LOS > five days or >90th centile [24].

Descriptive statistics were displayed by frequency and percentages for binary and
categorical variables and by means and standard deviations (SD) or medians (with lower or
upper quartiles) for continuous variables. The Chi-square test was performed for categorical
variables and Fischer’s exact tests were used for binary variables. Conventional linear
logistic regression (LR) was used as a baseline.

2.1. Feature Selection

Feature selection aimed to identify the smallest group of independent predictive variables
with the highest association to the dependent variable to ensure the best performance and
minimize over-fitting. All variables were evaluated individually, one by one against the
continuous vector of LOS classification responses. Despite several feature selection methods
serving the purpose, we selected this simple methodology objectively verifying the features
and their respective values representing the highest correlation and p-value < 0.05 when
compared to the continuous values of the variable of interest (LOS). All the variables that
obtained significant correlation (p-value < 0.05) were included in the model to facilitate
the understanding of the model construction, allowing feature reduction without the use
of complex selection algorithms, especially when dealing with poorly correlated clinical
variables, which could make the application difficult.

To optimize the latent collinearity and avert variable over-fitting, a correlation analysis
was performed by assessing the determination coefficient (R2) and the root mean square
error of cross-validation (RMSEVC). A poor correlation between variables was observed
if the R2 was low or the RMSEVC was elevated. Variables with a threshold of >0.6 were
eliminated to determine the input variables for the final model. The variables selected for
use were the following: age; SCS; Disease Score (DS); Albumin Level; Estimated blood
loss (EBL); Operative Time (OT); Bowel Resection; CCU Admission, and Clavien-Dindo
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complications (3–5). These were variables readily available in the electronic health records
as shown in Table 1:

Table 1. Table of all clinical, readily available variables (selected, p-value < 0.05, and unselected,
p-value > 0.05) initially interrogated for the LOS prediction. Only variables with p-value < 0.05 were
employed in both the calibration and classification process, and finally in the construction of the
proposed prediction score.

Variable Type p-Value

Age Numerical 0.049
BMI Numerical 0.317

Performance Status Numerical 0.293
CCI Numerical 0.985

Type of Surgery Categorical 0.124
SCS Numerical 0.000

Disease Score Categorical 0.002
CA 125 Numerical 0.458

Albumin Numerical 0.001
EBL Numerical 0.000

Operative Time Numerical 0.000
Bowel Resection Categorical 0.000

Residual Numerical 0.363
R0 Categorical 0.262

CCU Admission Categorical 0.000
Clavien-Dindo complications Categorical 0.000

2.2. Model Development

The model development followed a standard data science approach. The raw clinical
data were uploaded on the MATLAB environment version 8.4 (R2014b) (MathWorks Inc.,
Natick, MA, USA) for pre-processing and subsequent multivariate analysis. The Classification
Toolbox (for MATLAB) was also used to build supervised classification models [25]. The PLS
toolbox version 7.9.3 (Eigenvector Research, Inc., Manson, WA, USA) was also used to build
calibration models. One patient with missing information was discarded from the dataset.
Data normalization was carried out to avoid bias towards certain variables.

For the construction of classification models, the categorical variables were trans-
formed into binary dummy variables and were labeled as positive or negative according to
the classification problem. The LOS values for the total dataset were evaluated through
histograms to assess the level of normality of these data by considering an average value
with up to three standard deviations (99.7%), with a limit value of LOS equal to 24 days,
within the normal Gaussian curve. Thus, eight samples were taken from the total set.
The training and test groups were constructed using the Kennard-Stone uniform sample
selection algorithm, widely used in the literature (calibration to prediction ratio, 70%:30%).
The training group was used to build the initial model. With the model built, the training
group was evaluated. The validation set was built from 50% of the samples, using the
Venetian cross-validation (CV) Splits method. In this method, the dataset was randomly
split into five, almost equal sub-samples; each one was used as a test set in one of five
different feature selection processes using the remaining groups as a training set. This set
served to optimize some parameters and to make an estimate of the prediction for those
samples that were not used in the construction of the model. The test group consisted of
those samples that were never used in either the training set or the cross-validation (CV)
set. These were new samples tested by the best-fitted final model and their hit-and-miss
values were extremely important as they demonstrated how the model reacted to new
samples added. Lastly, only the features extracted in all five feature selection processes were
selected as most relevant for the subsequent analysis steps. This scalable strategy enabled
us to feature the regression models based on the reduced set of relevant variables. For the
linear regression models, given the right-skewed distribution of all LOS measurements, the
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dependent variable (i.e., LOS) was log-transformed. For model development, the selection
of predictor variables was based on those variables that passed the multicollinearity test
(variance inflation factor < 2.0). For the non-parametric models, all features were used
and the algorithm itself determined which of those remained in the models. All model
parameters were determined based on the training data set.

2.3. Multivariate Analysis

State-of-the-art supervised classifiers, suitable for the type and size of the dataset
were tested in a multivariate fashion. The algorithms were chosen because of their relative
simplicity for interpretation and through our testing of several ML algorithms during
model development. The algorithms included LR methods; support vector machine (SVM)
and artificial neural networks (ANN) in backpropagation (BPN) configuration.

The SVM-based classification is powerful, robust, and widely used in various knowl-
edge domains. The model performs a non-linear data transformation to maximize the
margins that separate the samples from different groups. The SVM classification rule is
obtained when the following equation is used [26]:

f (x) = sign(
NSV

∑
i=1

αiyik
(

xi, zj
)
+ b (1)

where the value of NSV is the number of support vectors. αi is the Lagrange multiplier
operator, and yi is the class membership. k

(
xi, zj

)
is the kernel function and b is the bias

parameter.
The Artificial Neural Network (ANN) was of the backpropagation (BPN) type. This

algorithm works with learning layers of different sizes and configurations. Indeed, it is a
type of DL because it “learns” and uses the artificial neurons to calculate the input and the
final output of the model, estimating an error for each simulation, performing simulations,
and adjusting their weights to ultimately obtain the smallest possible error. This is a strategy
not routinely used by common ML algorithms, such as SVM, which has been used in this
work and has proved to be highly robust in prediction problems. Unlike other algorithms,
BPN controls errors by resubmitting flawed solutions to the initial neurons, allowing the
backpropagation method to improve in the next iteration. These ML/DL paradigms have
been comprehensively described in our previous work [27]. Clinicians are mostly familiar
with regressions, odds ratios, and hazard ratios. Hence conventional logistic regression
(LR) was used as a benchmark.

2.4. Model Performance

The performance of the different qualitative and quantitative models was evaluated
differently, according to their nature. The classification models were evaluated through
well-known figures of merit such as accuracy, sensitivity, specificity, F-score, and G-score,
considering the results of the external test set. Accuracy measures the proportion of samples
that were correctly identified in their respective groups considering the number of true
and false negatives. Sensitivity measures the proportion of samples considered to be
positive samples that were correctly identified. Specificity, on the other hand, measures the
proportion of samples from the negative group that was correctly identified. The F-score
and G-score figures of merit measure the performance of the models built considering the
unbalanced dataset and without considering the size of the classes, respectively.

For the evaluation of quantitative models, figures of merit widely known as the Root
Mean Square Error (RMSE), and the Bias value for the calibration, cross-validation, and
prediction sets were used. The statistical quality parameters for the models were calculated
as follows [28]:

Accuracy (AC) =
(

TP + TN
TP + FP + TN + FN

)
∗ 100 (2)
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Sensitivity (SENS) =
(

TP
TP + FN

)
∗ 100 (3)

Speci f icity (SPEC) =
(

TN
TN + FP

)
∗ 100 (4)

F− Score =
(

2 ∗ SENS ∗+SPEC
SENS + SPEC

)
(5)

G− Score =
√

SENS ∗ SPEC (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

2.5. Development of the LEEDS L-AI-OS Score

To generate real-time predictions, numerous LOS predictions at different model prob-
ability output thresholds were performed in the training and test sets. We employed the
ANN (BPN) model in calibration mode to turn discrete values into continuous values.
Nine features were selected as a threshold, offering the best compromise of computing
time required and possible information loss. A range of values, including minimum and
maximum, were set for each feature continuous and categorical as below:

Age–Continuous: 41–90 (years)
SCS–Continuous: 2–11
DS–Categorical: 1–3
ALB–Continuous: 27–49 (g/dL)
EBL–Continuous: 100–4000 (mL)
OT–Continuous: 65–480
Bowel Resection with Stoma–Categorical: 0–1 (no–yes)
CCU–Categorical: 0–1 (no–yes)
CD3–5–Categorical: 0–1 (no–yes)
A software tool (Calibration Tools Hall, UFRN, Natal, Brazil, upon request) was

developed by using the ANN (BPN) regression algorithm based on the above-selected
features. The algorithm fine-tunes the weights of a neural network based on the error rate
obtained from the preceding iteration. Therefore, the error rates become reduced rendering
the model more reliable.

All values were numerically entered or selected, resulting in the Graphical User
Interface GUI) resetting to the closest minimum/maximum value in one or all input 9
variables. The ‘Predict LOS’ button was used to estimate the length of stay as a result.
The EQUATOR Guideline for reporting ML predictive models and the STROBE statement
for reporting observational studies were followed for the development of the predictive
models [29,30].

3. Results

A flow chart of the study is illustrated in Figure 1. Descriptive cohort statistics are
shown in Table 2. The cohort has been previously described [27]. A total of 201 (two samples
removed) samples and 84 samples (three samples were removed from the calibration and
post-hoc test sets, respectively) were used for the analysis. The mean and median LOS was
6.0 and 5.0 days (IQR 3–24), respectively. Histograms of the LOS distribution across the
HGSOC cohort are shown in Figure 2. The rate of ideal LOS continuously improved for
every subsequent year from 32% in 2016 to 73.5% in 2019 despite increasing mean SCS,
reflecting the efficiency of the ERAS pathway.
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1) vs. non-ideal LOS reached the mark of 70% accuracy in the validation set, best esti-
mated by LR. For the prediction of prolonged LOS (Definition 1; ≥7 days), ANN outper-
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Figure 1. Workflow and organization for model selection, internal and post-hoc validation of the
length of stay (LOS) prediction in advanced stage high grade serous ovarian cancer patients (HGSOC)
following their cytoreductive surgery using Machine Learning. Both classification and numerical
LOS predictions were interrogated.

Table 2. Cohort descriptive statistics.

Variable
Age

(Years)

Surgical
Complexity
Score (SCS)

Disease
Score (DS)

Pre
Surgery

Alb (ALB)

Estimated Blood
Loss (EBL) (mL)

Operative
Time (OT)

(min)

LOS
(Days)

Mean 64 4 2 39 484 181 6

Standard
Deviation 10 2 1 4 411 76 4

Minimum 41 2 1 27 100 65 3

Maximum 90 11 3 49 4000 480 24

Tenth
Percentile 50 2 2 34 200 105 4

Lower
Quartile 56 2 2 36 250 120 5

Median 65 3 2 38 400 160 5

Upper
Quartile 73 4 2 41 500 225 7

90th centile 77 6 3 43 900 285 9
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Figure 2. Histograms of the residual length of stay (LOS) distribution of advanced-stage HGSOC
patients following their cytoreductive surgery for the: (A) training (B) test samples. Residual LOS is
the difference between the observed LOS values and the model-predicted LOS values.

Three well-defined time points were interrogated; namely interval 1, which differenti-
ated patients with ideal LOS (≤five days) from patients who stayed ≥five days; interval 2,
which differentiated patients with prolonged LOS ≥ seven days (Definition 1); and interval
3, which differentiated patients with prolonged LOS ≥ 10 days (Definition 2). Results from
binary classification predictions between patients with ideal LOS (Interval 1) vs. non-ideal
LOS reached the mark of 70% accuracy in the validation set, best estimated by LR. For
the prediction of prolonged LOS (Definition 1; ≥7 days), ANN outperformed SVM and
LR reaching an accuracy of 76%. For prolonged LOS (Definition 2; >90th centile), the best
accuracy was achieved by LR, followed by SVM (98% vs. 94%, respectively). However, as
the F-score is widely used in ML as a test of accuracy, for intervals 1 and 2, ANN proved
to be more effective as a classification algorithm. For interval 3, SVM proved to be the
best model. Herein, the F-Score figure of merit as a choice criterion was 63%, 59%, and
66% for intervals 1, 2, and 3, respectively (Table 3). Notably, 0% values in the sensitivity
measures, F-score, and G-score for interval 3 were observed. Indeed, in the test set, the
LR model misclassified all the samples from the training set, which was actually referring
to the group of patients with LOS < nine days, thus generating a sensitivity of 0%. Subse-
quently, this result automatically generated values of 0% for F-score and G-score, values
Feature selection identified SCS, pre-surgery albumin, EBL, OT, bowel resection with stoma
formation, and severe postoperative complications (CD3–5) as statistically significant. The
correlation structure of the continuous and categorical variables was demonstrated by a
correlation heatmap, as shown in Figure 3.
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Table 3. Prediction performance of the three models for (1) ideal (2) prolonged 1; (above median) (3) prolonged 2; (above 90th centile) length of stay (LOS).

LOS
(1 ≤ 5 d)—Ideal

(2 ≥ 6 d)—Prolonged 1
(3 ≥ 9 d)—Prolonged 2

Model Set Accuracy Sensitivity Specificity F-Score G-Score

1 ANN TRAIN 93% 93% 93% 93% 93%

1 ANN CV 62% 62% 62% 62% 62%

1 ANN TEST 64% 67% 59% 63% 63%

1 SVM TRAIN 79% 91% 68% 78% 79%

1 SVM CV 72% 79% 65% 71% 72%

1 SVM TEST 69% 89% 45% 60% 63%

1 LR TRAIN 73% 78% 68% 73% 73%

1 LR TEST 70% 91% 45% 60% 64%

2 ANN TRAIN 98% 99% 98% 98% 98%

2 ANN CV 71% 64% 76% 69% 70%

2 ANN TEST 76% 45% 87% 59% 63%

2 SVM TRAIN 100% 100% 100% 100% 100%

2 SVM CV 72% 67% 75% 71% 71%

2 SVM TEST 68% 39% 79% 52% 56%

2 LR TRAIN 75% 51% 90% 65% 68%

2 LR TEST 75% 35% 90% 50% 56%

3 ANN TRAIN 97% 96% 97% 96% 96%

3 ANN CV 80% 54% 84% 66% 67%

3 ANN TEST 89% 50% 90% 64% 67%

3 SVM TRAIN 97% 81% 100% 90% 90%

3 SVM CV 86% 35% 94% 51% 57%

3 SVM TEST 94% 50% 95% 66% 69%

3 LR TRAIN 90% 46% 97% 63% 67%

3 LR TEST 98% 0% 100% 0% 0%



Curr. Oncol. 2022, 29 9097

Curr. Oncol. 2022, 29, FOR PEER REVIEW  9 
 

 

>90th centile), the best accuracy was achieved by LR, followed by SVM (98% vs. 94%, 
respectively). However, as the F-score is widely used in ML as a test of accuracy, for in-
tervals 1 and 2, ANN proved to be more effective as a classification algorithm. For in-
terval 3, SVM proved to be the best model. Herein, the F-Score figure of merit as a choice 
criterion was 63%, 59%, and 66% for intervals 1, 2, and 3, respectively (Table 3). Notably, 
0% values in the sensitivity measures, F-score, and G-score for interval 3 were observed. 
Indeed, in the test set, the LR model misclassified all the samples from the training set, 
which was actually referring to the group of patients with LOS < nine days, thus gener-
ating a sensitivity of 0%. Subsequently, this result automatically generated values of 0% 
for F-score and G-score, values Feature selection identified SCS, pre-surgery albumin, 
EBL, OT, bowel resection with stoma formation, and severe postoperative complications 
(CD3–5) as statistically significant. The correlation structure of the continuous and cate-
gorical variables was demonstrated by a correlation heatmap, as shown in Figure 3. 

 
Figure 3. Correlation heatmap showing the pairwise associations between the variables selected for 
the calibration model (significant variables with p < 0.05). The association between the continuous 
variables was examined using Pearson’s correlation. The highest correlation was observed between 
SCS and DS. SCS = Surgical Complexity Score; ALB = Pre-Surgery Albumin; EBL = Estimated blood 
loss; OT = Operative time; DS = Disease Score; BWL = Bowel Resection; CCU = CCU Admission; 
CLA = Clavien Dindo complication 3–5. 

Figure 3. Correlation heatmap showing the pairwise associations between the variables selected for
the calibration model (significant variables with p < 0.05). The association between the continuous
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To promote clinical implementation, a user-friendly, password-protected GUI was
developed (the Leeds-LAIOS score) to enable standardization of postoperative LOS predic-
tion (as a continuous variable) in HGSOC women following their cytoreductive surgery.
The interface procures probability results and visualization of the risk position for LOS for
clinical implementation and early interpretation by surgeons. The statistical parameters for
the model calibration were as follows:

RMSE (Calibration): 2.2281; RMSE (Cross-Validation): 2.5846; RMSE (Prediction):
1.5079; Bias (Calibration): 0.0102; Bias (Cross-Validation): 0.0000; Bias (Prediction): 0.119.
These values demonstrated the suitability of the regression model to be based on neural
networks. Hence, the RMSE was a good estimator for the standard deviation of the
LOS distribution by ±two days. To validate the regression model, residual plots visually
confirmed the validity of the model (Figure 4). For the numerical prediction (LOS as a
continuous variable), a difference between the measured and expected value of up to 2 days
was estimated in 93% of the samples; a difference of up to 1 day in 73% of the samples, and
finally, in 30% of the samples the LOS prediction was equal to that measured clinically on
the patients.
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predicted samples in cross-validation methodology. A residual is a measure of how far away a point is
vertically from the regression line. Simply, it is the error between a predicted value and the observed
actual value. The residual plot has the residual values on the y-axis and the independent variable on the
x-axis. A good residual plot has a high density of points close to the origin and a low density of points
away from the origin. It is symmetric about the origin showing the residual errors are approximately
distributed in the same manner. (C) Residual plot of the differences between the observed data values
and the ANN model predicted values for the calibration and the prediction samples.

4. Discussion

To the best of our knowledge, this study is the first to construct optimal data-driven
ML/DL models to accurately predict and comprehensively quantify postoperative LOS
in HGSOC patients. Such predictive models have already tested the intra-institutional
performances, and shown to improve surgical morbidity and mortality by 45% and 31%,
respectively [30]. Our approach allowed for the comparison of selected ML algorithms to
identify the method with the most favorable performance for predicting LOS at various time
points. Different definitions for prolonged LOS were interrogated for the differential binary
classification predictions. A definition of prolonged LOS as longer than the median LOS
may help models achieve better generalizability. Not surprisingly, conventional regression
performance was comparable with ML/DL performance, likely due to class imbalance
and varying degrees of collinearity. Arguably, LR was easy to implement, required the
least computing power, and would not carry the “black box” feature common to many ML
models.

We demonstrated a direct clinical application of ML for the numerical LOS prediction
allowing for comparison against the more conventional (LR) approach. We developed a
GUI, which can be used to address one of the main patient’s concerns; that is, the duration
of hospital stays, using readily available clinical data from the hospital environment. The
numerical models focused on mining different LOS patterns for patients with different
LOS (even 1-day apart) and the modeling successfully discriminated between patients
with different LOS patterns. At first, the models were evaluated using all available clinical
variables. However, the initial results were not significant prompting further refinements
to produce clinically meaningful outputs. The internally validated performances were
satisfactory with good calibration. The calibration curves visually showed that the averaged
predicted LOS probability of the models were consistent with the observed outcomes across
different LOS risk groups from low to high. By demonstrating the utility of ML algorithms,
we determined the impact of several variables, shown to be predictors of short-term
outcomes in EOC patients [14,31].

By using the F-score as a choice criterion, ANN proved to be more effective as a
classification algorithm except for LOS > nine days prediction, whereas SVM proved to be
the best model. This varying accuracy could be due to class imbalance, albeit it was not our
scope to show that AI outplays conventional methods. Nevertheless, this versatility can be
useful and help rationalize the transition from conventional statistics, which clinicians are
mostly familiar with, toward the wider application of AI frameworks. To overcome the
resilience for the widest adaptation in the clinical environment, Explainability Artificial
Intelligence (XAI) can be powerful to unveil the potential “black box” of AI [32]. Our team
has pioneered the implementation of XAI in the EOC trajectory and provided insight into
the potential influence of human factors on surgical decision-making at cytoreduction [33,34].
Due to some features’ collinearity, it was also inevitable that a post-operative feature was
included amongst the list of features forming the post-hoc model, which would have even
affected the overall model’s accuracy.

Our study shows that it is possible to base the assessment of a unit’s performance on
LOS because it adjusts for the case mix and complexity of the operation. We identified
an association between longer LOS and several clinical factors following HGSOC surgical
cytoreduction, many of which can be potentially affected by surgical decisions. Women
with an HGSOC diagnosis are generally older, have additional comorbidities, and present
with disseminated disease. The advanced-stage disease is commonly associated with
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weight loss, severe malnutrition, and impaired gastrointestinal function, resulting in a
protracted surgical recovery [35]. Primary chemotherapy could potentially impact some
of these factors, as shown to decrease intraoperative blood loss, earlier resumption to
ambulation, and return of intestinal function [36]. Nevertheless, in our study, the timing of
surgery did not impact hospital stay.

Identification of at-risk patients for a prolonged hospital stay may aid in targeted
interventions to reduce hospital stay, improve the quality of care, and decrease healthcare
costs. The novel (L)L-AI-OS scoring system was developed to standardize the LOS predic-
tion using an AI algorithm, which is particularly helpful when counseling EOC patients
about their peri-operative risks. It mostly incorporates pre-operative and intra-operative
parameters, and can be used in clinical trials, internal audits, routine practice, and future
benchmarking (Figure 5). Inevitably, postoperative complications were included as an
independent variable in the scoring system, because for modeling the extreme LOS, in-
corporation of data from post-operative events is essential affecting 50–70% of patients.
In this respect, complication rates may be reported separately as they emphasize severity.
Therefore, the score can serve as a basis for clinical recommendations to mitigate the risk of
long hospitalization by minimizing the risk of postoperative complications in addition to
serving as a proxy for patient acuity.
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LAIOS button navigates to the feeder interface. The length of stay (LOS) index assigns weighted risk
points to each significant factor in a scoring system to predict hospital stay (D) The GUI is password
protected. (E) The help button routes to more information about the prediction model including the
values of the numerical variables and the statistical parameters.

Despite an ERAS pathway being employed in cytoreductive surgery, the operative
factors remain a barrier to early discharge, yet differ according to the complexity of the
surgery. Operative time is an often-analyzed factor influencing outcomes of patients
undergoing cytoreductive surgery. It procures a surrogate for the technical complexity
of a procedure. Surgical complexity is associated with prolonged LOS even with an
established ERAS pathway in place [31]. Intrinsic non-modifiable predictors for LOS differ
with operative complexity, and this should be considered when planning benchmarking and
research across units. Our mean LOS was comparable to the UK ERAS data, which includes
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the National Bowel Cancer Audit Programme [35]. The length of hospital stay is also known to
be proportional to compliance [36]. A combination of worse compliance, increased morbidity,
and slower functional recovery due to the case-mix could be responsible for the delayed LOS.
The delayed recovery pattern fits with the literature demonstrating that early postoperative
deviation from ERAS goals and compliance could predict prolonged LOS [37].

All the cytoreductive surgeries were elective. Not surprisingly, operative time re-
flecting greater surgical effort, potentially increasing the surgical risk would predispose to
longer recovery times [10]. Significant factors found in our study could be used to formulate
individual disease-specific treatment pathways and early discharge planning to decrease
inpatient LOS. Additionally, prioritizing laboratory tests and avoiding test duplication can
effectively decrease the LOS [38]. Nevertheless, Gynaecologic Oncology specific prevention
bundles did not affect LOS or readmission rates, albeit, they significantly reduced wound
infection rates [39].

Furthermore, an individual prolonged LOS risk profile can be used as a decision-
making aid to the physician’s subjective judgment while adjusting a patient’s LOS [40].
Advanced HGSOC patients frequently require extensive procedures including bowel re-
sections and upper abdominal surgery. It is expected that patients requiring stomas will
stay longer compared to those with continuity of their bowels maintained. Nonetheless,
patients with the longest delay to the initial stoma nurse visit had the longest LOS [41]. The
timing of performing such operations early during the week may reduce LOS due to the
absence of stoma teaching over the weekend.

An inverse relation between serum albumin and LOS among patients with gyneco-
logical cancers has been documented [42]. This is likely due to increased postoperative
complications [43,44], reflecting adverse survival outcomes [45]. The more severely mal-
nourished the patient is, the lower the levels of serum albumin. Addressing malnutrition
and poor quality of life may decrease patient length of hospitalization and hospital readmis-
sion [46]. The key recommendations against cancer-related malnutrition have been recently
updated [47]. Nutritional supplementation may produce a small weight gain benefit in
the elderly group but does not provide evidence of improvement in functional benefit or
reduction in LOS [48]. Meaningful reductions in SSIs can be achieved by implementing a
multidisciplinary care bundle at a hospital-wide level, resulting in bigger differences in
wound-related rather than organ-space SSIs [39]. Prognostic models of SSIs using daily
clinical wound assessment have been reported [49]. As morbidity-related infections and
wound complications from surgery can increase hospital stay, nutrition support during
the peri-operative period is warranted [13]. A sensible approach would be to implement
oncology protocols providing recommendations for nutritional screening, assessment tools,
and supplementations. A previous study found that gynecological cancer patients with
two or more pre-existing co-morbidities had significantly longer LOS than those with one
or no co-morbidities [50]. Notably, we failed to show any effect of patient obesity on LOS,
but an indirect association cannot be excluded, obesity being the culprit for increased OT
and SSIs [51].

Large ERAS studies have also demonstrated that stoma formation when performed as
part of the primary colorectal surgery prolongs LOS. Despite preoperative stoma education,
it was therefore not surprising that in our study, stoma formation remained consistently
an independent predictor of prolonged LOS. Our study also shows that over the four-
year period, the overall median LOS has significantly reduced. This was partly due to
the increased proportion of patients experiencing ideal LOS, which was promoted as a
good care measure following the introduction of the ERAS pathway in our institution [27].
Implementation of ERAS pathways for advanced-stage EOC results in a shorter LOS
due to earlier recovery and a lower rate of readmission, with no increase in morbidity
or mortality [3]. From other short-term outcomes, we only assessed the rate of hospital
readmission. There were no rapid postoperative deaths -a negative outcome- which would
positively influence LOS. Occasionally, a patient who is rapidly discharged can be rapidly
readmitted if not successfully recovered.
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Prolonged LOS, CCU stays, hospital readmissions, and aggressive therapies, such
as chemotherapy and surgery have all come under scrutiny due to emphasis given on
improved palliative care and quality of life for patients near their end of life. Critical care
admission was an independent predictor of LOS. This is in line with other studies [31],
and is likely a reflection of pre-operative frailty albeit co-morbidities had no effect on the
cohort. A large proportion of our CCU admissions were elective, which suggests potential
over-utilization, yet it remains practically difficult to achieve the ERAS goals in a critical
care ward [52].

The LOS models for this group of patients are relatively new in the UK. The American
College of Surgeons’ National Surgical Quality Improvement Program (NSQIP) risk calcu-
lator is an alternative model that predicts LOS based on preoperative data. It appears that
in the EOC population, it significantly underestimates the LOS probably because surgical
coding does not include several sub-procedures during cytoreductive surgery [53].

This was a single-center retrospective study with a limited rate of heterogeneity in the
study population, which may differ from other tertiary unit settings. The study suffers a
small risk for “time-dependent” bias, as CD3–5 complications were a time-varying feature
introduced after patients had already spent some time in the hospital. This can be a problem
with regression models albeit, in this study, we explored feature associations rather than
causative inferences. Nevertheless, ML retains the strength of the structural model used
for the prediction even when applied in other populations and reveals different prediction
features. We noted the recording of the discharge date as a single endpoint. We did not
record the “medically fit for discharge” date to account for whether the discharge was
delayed for social reasons. Studies show that having a dedicated discharge coordinator with
effective early discharge planning following four days of inpatient care can significantly
reduce inpatient LOS [54]. The length of stay can be longer for patients discharged to
a nursing home or rehabilitation facility [55]. Audits designed to identify stays that are
longer than expected for reasons other than surgical performance will potentially support
the development of better discharge pathways.

This information can assist the hospital trust with discharging patients within the ideal
length of time and facilitate resource allocation for the delivery of care. Discharging patients
earlier, not only decreases costs, but also the risk of patients developing hospital-acquired
infections. We anticipate the formation of collaboration net to allow comparison between
the trusts, and to identify potential ‘outliers’. In this way, centers with poorer outcomes may
improve their care through the comparison of practices driven by a competitive spirit [56].
Validation of our results in prospective studies will valuably integrate AI methods in clinical
practice and benefit clinicians and cancer patients.

5. Conclusions

Length of stay is a measurable outcome that can be used as a benchmark of surgical
care. We demonstrated the development and application of both quantitative and qualita-
tive models to predict LOS in advanced-stage EOC patients following their cytoreduction.
These predictive ML algorithms may facilitate the quality improvement of modern care by
enhancing prediction accuracy for LOS. Complex EOC cytoreduction may be associated
with a rise in postoperative LOS, a cost-related outcome. Using ML methods, we more
accurately refined potentially modifiable factors delaying hospital discharge, which may
further inform services performing root cause analysis of LOS. For this inherently high-risk
population, our prediction scoring system serves as critical information when counseling
patients about the peri-operative risks.
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