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Abstract—Quality improvement can be performed at the: (a) micro-management level: interventions applied at a fine-grained 

level (e.g., at a class or method level, by applying a refactoring); or (b) macro-management level: interventions applied at a 

large-scale (e.g., at project level, by using a new framework or imposing a quality gate). By considering that the outcome of any 

activity can be characterized as the product of impact and scale, in this paper we aim at exploring the impact of Technical Debt 

(TD) Macro-Management, whose scale is by definition larger than TD Micro-Management. By considering that TD artifacts 

reside at the micro-level, the problem calls for a nested model solution; i.e., modeling the structure of the problem: artifacts have 

some inherent characteristics (e.g., size and complexity), but obey the same project management rules (e.g., quality gates, 

CI/CD features, etc.). In this paper, we use the Under-Bagging based Generalized Linear Mixed Models approach, to unveil 

project management activities that are associated with the existence of HIGH_TD artifacts, through an empirical study on 100 

open-source projects. The results of the study confirm that micro-management parameters are associated with the probability of 

a class to be classified as HIGH_TD, but the results can be further improved by controlling some project-level parameters. 

Based on the findings of our nested analysis, we can advise practitioners on macro-technical debt management approaches 

(such as “control the number of commits per day”, “adopt quality control practices”, and “separate testing and development 

teams”) that can significantly reduce the probability of all software artifacts to concentrate HIGH_TD. Although some of these 

findings are intuitive, this is the first work that delivers empirical quantitative evidence on the relation between TD values and 

project- or process-level metrics. 

Index Terms — Technical Debt, Metrics / Measurement, Quality Analysis and Evaluation, Software maintenance   

——————————   ◆   —————————— 

1 INTRODUCTION

echnical Debt (TD) is evident and can be accumulated 
during every software development activity [1]. Due 

to its multifaced nature (architecture, code, build TD, etc. 
[2]) there is a variety of causes that have been related to 
TD accumulation [3][4]; constituting effective TD preven-
tion or repayment a non-trivial task. According to the 
literature, upon the identification of high-TD and high-
risk artifacts (i.e., high interest amount or probability of 
paying interest), the software engineer can initiate a refac-
toring process to reduce the amount of TD [2] in the spe-
cific software artifact. For example, in the case of code TD, 
if a class is very long and undergoes frequent maintenance, 
the extract class refactoring can be applied, to lead to more 
maintainable code—i.e., producing less TD interest [5]. 

We consider such repayment activities which are fo-
cused on design hotspots and the impact of the solutions 
is local—as TD Micro-Management. Additionally, these 
solutions are a-posteriori ones, i.e., the system has suffered 
from TD consequences for some time, and afterwards 
some reactive measures are taken. On the other hand, by 
studying the causes that can lead to TD accumulation 

(e.g., there is no adoption of quality control and monitoring 
tools), one could identify proactive management practices, 
which can be considered a-priori and prevent the accumu-
lation of TD [3]. We consider activities which: (a) have a 
global impact (all artifacts of the system are affected and 
(b) prevent TD accumulation as TD Macro-Management.  

 
FIG. 1: CONTEXT DESCRIPTION & MOTIVATION 

Figure 1 visualizes this context. Suppose a software pro-

ject that comprises of X classes. At the project level, we 
visualize two possible causes of TD: “No quality control 
tools” that is not satisfied by current practices (orange 
bubble) and “Having an Experienced Team” which holds 
(green bubble). At the class level, we suppose that Class A 
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suffers from “Low Cohesion” (orange bubble), Class B suf-
fers from “High Coupling” (orange bubble), whereas Class 

X is of “Good Quality” (green bubble). On the one hand, 
working with a TD Micro-Management technique (blue con-
tinuous arrow), a developer can resolve the TD item of 
Class A, by applying the “Extract Class” refactoring—
however, the other classes are not affected. On the other 
hand, the project manager can impose the use of “Quality 
Gates” and affect the code quality of all classes of the sys-
tem—applying TD Macro-Management. Given the afore-
mentioned context, in this work, we aim at answering the 
following general research question: “Which combination of 
TD Micro- and Macro-Management methods can be the most 
efficient for preventing the accumulation of TD”? 

As a first step in studying TD Macro-Management, in 
this work, we quantitively explore the relation between a 
pre-determined list of TD causes [3] and TD accumula-
tion, through an empirical study on 100 open-source 
software projects. We note that HIGH_TD artifacts are 
extracted from a TD Benchmarker, identifying the agreed 
HIGH_TD artifacts, as indicated by three top TDM tools1: 
SonarQube, CAST, and Squore [6]. In other words, arti-
facts are considered as HIGH_TD ones, when there is a 
consensus by three tools that their level of TD places them 
among the most problematic artifacts. According to the 
threshold set in the TD Benchmarker [6], only 12% of the 
artifacts in the benchmark are characterized as such, 
while the rest are NOT_HIGH_TD artifacts, which do not 
raise any alarms about the level of TD. Out of the most 
prevalent causes of TD, we are able to state management 
guidelines that can be useful for practitioners to prevent 
the accumulation of TD in all software artifacts. Howev-
er, identifying the most prevalent causes of TD accumula-
tion is challenging. Solving this problem yields for a nov-
el methodological / analysis approach, for two reasons: 
• nested nature of the problem. By definition TD Macro-

Management parameters (i.e., project-level metrics) 
have equal values for all the artifacts of the same pro-
ject, whereas TD Micro-Management parameters (e.g., 
class metrics) have different values for every artifact. 
In other words, units of analysis (classes) are nested in-
to contextual/aggregate units (projects) resulting in 
multi-level data. In that sense, traditional statistical 
analysis would fail and a multi-level statistical model-
ing approach would be required.  

• need for identifying project-level activities that can 
prevent the accumulation of TD. Black-box machine 
learning approaches that produce accurate models for 
predicting if an artifact has accumulated high levels of 
TD or not (given the values of TD Micro- and Macro-
management parameters) are not suitable. The reason 
for this is that Machine Learning models suffer from 

 

1 We note that while the use of three different tools in a development 
process is theoretically feasible, we believe that this would hardly be 
possible in practice. Employing more than one tool would be very cost-
ly, since most of the existing tools are commercial ones, and require 
significant effort to deploy, configure and familiarize with. Even if a 
development team employs more than one tool, the identification of 
HIGH_TD classes does not simply consist in finding the union of all 
findings (leading to an unrealistic number of suggestions, rendering 
the process intractable), but on archetypal analysis (see [6]). 

low interpretability [7], whereas the goal of the study 
is to explore the TD Micro- and Macro-Management 
parameters and identify the most prevalent ones.  

By considering both the need for a multi-level statistical 
approach, as well as the need for reaching an explainable 
model, we propose the use of Generalized Linear Mixed 
Models (GLMMs) models; i.e., a branch of statistical tech-
niques that uniformly models fixed and random effects 
(Fixed: TD Macro- and Micro-Management parameters, 
Random: the variance attributed to the nested design 
(classes are nested within projects).  
Given the above, and by considering the main research 
question of this work, as well as the required steps to 
achieve it, the main contributions of this study are:  
• the compilation of a list of TD Micro- and Macro-

management parameters, by studying the literature on 
causes of TD accumulation—we note that this is the 
first study that attempts to map causes of TD accumu-
lation to specific metrics;  

• a dataset of values of these parameters for 100 open-
source software projects, extracted by mining soft-
ware repositories (GitHub & Jira)—this dataset is the 
first one in the TD community that involves project-
level measurements of product and process quality;  

• the introduction of an explanatory data analysis 
methodology that is able to handle the nested nature 
of the software—to the best of our knowledge, despite 
the indisputable nested nature of software systems, 
this the first time that a nested solution is used;  

• the provision of empirical quantitative evidence, 
based on a large-scale dataset, that can unveil the most 
important management activities for TD prevention—
this is the first study that brings evidence on the rele-
vance of project management level parameters that 
can be used to prevent TD accumulation. 

2 RELATED WORK 

In this section, we present related work and background 
information required to facilitate the understanding of 
our work. First, we present related work, i.e., studies that 
aim at performing TD items identification (see Section 
2.1); and in Section 2.2, we present the main causes of 
Technical Debt accumulation that will set the basis for 
defining our metric-based approach. 

2.1 Technical Debt Identification 

In the literature, we have identified two systematic map-
ping studies related to TD identification—i.e., the process 
of understanding which artifacts suffer from TD. First, 
Alves et al. [8] collected and investigated approximately 
100 studies. They highlight several TD indicators that can 
be used to identify the amount of TD of a system. Some of 
the top mentioned indicators are “code smells”, “software 
architecture issues”, “automatic static analysis issues”, 
etc. Additionally, in this study, we observe that almost all 
the papers use source code artifacts to identify TD items 
(e.g., even for architectural TD), most probably because of 
the tools that exist for TD measurement. Additionally, 
Ben Idris et al. [9] examined 43 empirical studies, pub-
lished in a period of 4 years. They suggest that the most 
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common TD indicator is “code smells”, while the second 
most commonly used indicators are “code comments” 
and “Defect/Bugs”. Finally, regarding the identification 
of TD items, the authors highlight the variety of available 
tools, denoting as the most commonly used: SonarQube.  

This strategy leaves an important gap in the TD identifi-
cation, since the project-level is completely neglected. 

By focusing one some striking primary studies out of 
these works (we cannot focus on all, since the literature is 
vast), Zazworka et al. [10] tried to evaluate the TD items 
that different stakeholders report and the differences with 
three automated approaches for the TD identification. 
From this research, we can observe that there is not a lot 
of overlap with the TD items that the tools and the stake-
holders reported. This points out the importance of the 
role of the developers in the identification of TD, and how 
different stakeholders know and consider different debts 
in their projects. Finally, Zazworka et al [11] analyzed 
multiple versions of Apache Hadoop with four different 
TD identification techniques namely, modularity viola-
tions, grime buildup, code smells, and automatic static 
analysis. They found out that there is a limited degree of 
overlapping, when using the different approaches: differ-
ent techniques tend to point to different classes and there-
fore to different problems.  

There is a need for multiple TD indicators, especially in 
the non-source code part of a project, because to the best 
of our knowledge this option has not been studied yet. 

2.2 Causes of Technical Debt 

In this section, we present the most common causes of TD 
based on the literature. The four studies that are dealing 
with identifying possible causes of TD accumulation are 
outlined below. Martini et al. [4] performed a multiple-
case embedded study in seven sites at five large organiza-
tions to investigate the current causes for the accumula-
tion of architectural TD (ATD). As a result of this study, 
the authors provided a taxonomy of causes and their in-
fluence in the accumulation of ATD. Martini and Bosch 
[12] conducted a case study to investigate: (a) the most 
dangerous ATD items in terms of effort paid later; (b) the 
effects triggered by such ATD items; and (c) if there are 
sociotechnical patterns of events that trigger the creation 
of ATD. The results suggested that TD items can be con-
tagious, causing other parts of the system to be contami-
nated with the same problem, which may lead to nonlin-
ear growth of interest. The authors also presented a mod-
el of ATD effects for TD repayment prioritization.  

Yli-Huumo et al. [13] performed a case study to inves-
tigate the role of technical debt management in software 
development. In particular, the goal of this study was to 
explore the causes of TD accumulation, as well as its ef-
fects, and the strategies that are being used for technical 
debt management. The results of this study suggested 
that the reasons for incurring TD were management deci-
sions that were made in order to reach deadlines, or un-
knowingly due to lack of knowledge. Finally, as a more 
recent work in this area, Rios et al. [3] conducted an in-

dustrial survey in different countries in order to investi-
gate the trends in the TD area including the causes and 
the effects of TD. The survey design reached a large num-
ber of targeted responded: eventually 107 practitioners 
from 11 countries have reacted positively to the survey. 
The results of this study suggested that most of the practi-
tioners were familiar with the concept of TD. As a final 
outcome, Rios et al. [3] identified 78 causes that lead to 
TD occurrence. Out of them, we focus on the most cited 
causes that lead to the accumulation of TD. Based on Rios 
et al. [3], the top-14 most cited causes of TD referring to 
TD Macro-Management are: 

• Change in Project—TD can be accumulated due to the 
need for continuous changes in the project—the need 
for velocity will lead to neglecting the quality of pro-
duced code. Usually, large volumes of change bring 
more pressure.  Example: “Constant request for chang-
es in the project”. 

• Close Deadlines—Having close and unrealistic dead-
lines can lead to promoting quick and dirty imple-
mentation solutions, increasing TD. Close deadlines 
are usually accompanied by frequent releases. Exam-
ple: “The rush of managers (customers) that want to 
receive something working asap”. 

• Dependencies to External Components—TD accumu-
lation can occur when the project depends on an ex-
ternal component; either due to the quality of external 
components or due to less control over the external 
project. Example: “The fact that Angular 2 functionality 
is not yet stable, even with a deadline to fix the bugs”.  

• Inaccurate or Complex Requirement—TD can occur 
due to failure, lack of clarification, complexity or poor 
definition in the collected requirements. Inaccurate re-
quirements can lead to many changes (interest proba-
bility), whereas complex requirements will lead to 
more complex code. Example: “Lack of clarification of 
requirements”.   

• Inappropriate Testing—A project that is poorly tested, 
or even when the tests were poorly planned or do not 
have good coverage, can lead to more corrective 
maintenance requests; thereof, more TD accumulation. 
Example: “Lack of testing”; 

• Lack of Interest in Acquiring Knowledge—Refers to 
the lack of interest of the team in seeking knowledge 
to develop new skills. Getting stuck with old technol-
ogies, might lead to unnecessary complexity that 
might be resolved with new technologies and skills. 
Example: “Lack of interest and willingness of the team 
to acquire knowledge”. 

• Lack of Specific Teams—Occurs when there is no spe-
cific team to perform any software process activity, 
such as test team, development team, maintenance 
team, documentation team, etc. In practice, having the 
code being tested or reviewed with a “fresh look” by a 
different group would lead to more accurate TD iden-
tification. Example: “Lack of a separate testing team”. 

• Lack of Team Communication—TD can occur when 
there is communication problem between team mem-
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bers. Lack of communication might lead to more effort 
to understand code, and additional introduction of 
bugs. Example: “Lack of integration of business areas, 
analysts of systems, developers and the test area”. 

• No Adoption of Good Practices—TD can be accumu-
lated, when there is no use of good practices (e.g., pat-
terns, refactorings, quality gates, etc.) that would facil-
itate the accomplishment and maintenance of activi-
ties in the project. Example: “Employment of bad de-
sign practices”. 

• No Awareness of the Importance of Testing & Refac-
toring—TD can occur when the team do not recognize 
the importance of documenting, refactoring, and test-
ing the software. Example: “To think that certain tasks 
(tests, refactoring) are not important”. 

• No Focus on Documentation—When a company has 
no culture on documentation and thus does not rec-
ognize its importance will probably accumulate more 
TD, since the effort to understand the codebase will be 
higher. Example: “The manager's vision that documen-
tation is non-productive time”. 

• Pressure—TD accumulation occurs when there is high 
pressure on team members to meet deadlines and 
speed deliveries—this usually drifts the focus from 
quality improvement. Example: “Pressure to meet 
short deadlines”. 

• Structural Change in Organization—When companies 
undergo structural changes, the development process 
might be altered, leading to producing code of poor or 
deteriorated quality. Example: “Changes in the struc-
ture of a company lead to postponement of refactoring 
sessions”.  

• Team Overload—When the development team has 
accumulated activities, either because of a lack of ade-
quate management or because members have left the 
team, will lead to time pressure, leading to TD accu-
mulation. Example: “The accumulation of activities did 
not allow a loophole for extensive refactoring, so this 
was being pushed to the end of the project”. 

In addition, several other causes that can be related to TD 
Micro-Management parameters have been identified: 

• Poor Documentation—Refers to the lack of any kind 
of documentation (from documents to comments).  
Example: “Lack of code documentation”. 

• Experience of Contributors—Refers to the experience 
of the developers in specific software activities. Exam-
ple: “Lack of experience of programmers”. 

• Poor Design—Refers to poorly designed projects, with 
bad quality metrics.  Example: “Poorly designed class 
with high cohesion or coupling”. 

3 METHODOLOGY  

In this section, we describe the methodology that enables 
the analysis, given the nested design of the problem. In 
Section 3.1, we present the necessary background infor-
mation for enabling the understanding of the proposed 
analysis; in Section 3.2 the data collection process; where-
as in Section 3.3 the proposed data analysis methodology. 

3.1 Methodology Overview 

In this section, we present background information neces-
sary for facilitating the understanding of the proposed 
data analysis methodology (see Section 3.3). To this re-
gard, we discuss the inherent challenges posed by the 
nature of the problem under investigation and the data 
collected for empirically assessing TD Micro- and Macro-
Management opportunities, as well as, the advanced sta-
tistical and ML approaches adopted in a unified method-
ology to overcome these hurdles.      

The first challenge concerns the research design of the 
experimental setup, in which the units of analysis (i.e., 
artifacts) are organized as a two-level hierarchy, repre-
senting: (a) TD Macro-Management (or project-level) pa-
rameters; and (b) TD Micro-Management (or class-level) 
parameters. The hierarchical structure of the data imposes 
the need for the application of appropriate statistical pro-
cedures, since class-level measurements, corresponding to 
the classes of the same project are expected to be more 
similar, compared to classes of a different project, due to 
the fact that they share common characteristics. To this 
regard, traditional statistical approaches ignore depend-
encies within grouped data or they lack sophisticated 
mechanisms able to take into consideration the multi-
level structure of the data leading, in turn, to statistical 
validity issues and erroneous decision-making.    

Due to the above reasons, we decided to make use of 
an advanced modeling technique belonging to the general 
branch of Mixed Effects Models (MEMs) [14] that are able 
to deal with both the hierarchical structure of the data 
and the random variation associated with sampling high-
er-level units, projects in our case. Described briefly, 
MEMs investigate simultaneously two types of effects: (a) 
the fixed and (b) the random effects. The former type of 
effects (fixed effects) is associated to factors affecting the 
mean value of the response and they are constant (or 
fixed) across all observations. In simple words, fixed ef-
fects can be thought as factors of primary interest from 
the practitioner point of view that deserve a thorough 
investigation to understand how each factor may affect 
the changes in the response. In contrast, random effects 
are associated to the sources of variance in an experi-
mental setup modeling how the total variation is decom-
posed into different variance components. Although ran-
dom effects may be used in a wide range of experimental 
designs (e.g., longitudinal data, repeated measures etc.) 
for providing insights about the variability at different 
levels of interest, in our case, this type of effects takes into 
consideration the two-level data structure of the experi-
mental units that is classes are nested within projects. Given 
the nature of the response (a dichotomous variable—𝑰𝑖) 
indicating if a TD artifact is characterized by the TD 
Benchmarker tool as HIGH_TD or NOT_HIGH_TD, we 
decided to make use of the Generalized Linear Mixed Mod-
els (GLMMs) with the logit link function2.  

The second challenge stems from the sparsity of 
HIGH_TD classes. According to Amanatidis et al. [6], the 

 

2  𝑔(⋅) = 𝑙𝑛(𝑝/(1 − 𝑝)), where 𝑝 is the probability of an artifact to be 
identified as having accumulated high levels of TD 
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level of agreement for classes that are identified as prob-
lematic by all three used tools is 7.7% (for the examined 
dataset in their study). This finding is considered intuitive 
in the sense that different TD measurement tools rely on 
different rulesets for calculating whether a class suffers 
from TD or not. Indeed, in our sample, the investigation 
of the distribution of the response variable (an expected 
dichotomous variable) indicates that the HIGH_TD clas-

ses are under-presented (6.3% of classes) compared to 
NOT_HIGH_TD classes, leading to a well-known phe-
nomenon in ML, namely the class imbalance problem. The 
highly-skewed response distribution poses significant 
barriers to statistical and ML algorithms leading to poor 
performances, especially for the minority class, since most 
of these approaches are developed under the assumption 
of equal sample sizes for both levels of the response. 

 
FIG. 2. METHODOLOGICAL FRAMEWORK 

To alleviate this inherent limitation for the vast majori-
ty of approaches to deal with the class imbalance prob-
lem, we designed a simulation resampling technique, 
named: Under-Bagging based GLMM (UBGLMM) [15], 
combining the merits of: (a) bootstrap aggregating (bagging) 
[16], a well-known type of ensemble learning; and (b) ran-
dom under-sampling [17]. The general idea behind the pro-
posed approach is the building of an ensemble consisting 
of a large number (𝐵) of GLMMs fitted on random sub-
samples drawn independently from the original dataset 
following an under-sampling strategy, which aims at bal-
ancing the class distribution of the response through the 
random elimination of cases belonging to the majority 
class. The whole framework along with its main compo-
nents and the necessary steps are summarized in Figure 2. 

In the first step of the approach (Step 1), each project 
(𝑝𝑖), from the collection of the total 𝑃 projects, is subjected 
to a random under-sampling process for balancing the 
number of NOT_HIGH_TD classes to the number of 
HIGH_TD classes in order to mitigate the class imbalance 
problem. The set of 𝑃 projects consisting of an equal 
number of NOT_HIGH_TD and HIGH_TD classes are 
merged into a unified dataset with TD Macro-
Management (project-level) parameters and TD Micro-
Management (class-level) parameters (Step 2). The 
merged dataset constitutes the basis for the fitting of a 
GLMM taking into consideration both fixed and random 
effects, so as to appropriately handle the hierarchical na-
ture of the experimental data (Step 3). This step, essential-
ly, results into the estimated coefficients of the GLMM 
providing to us a straightforward inference on the fixed 
effects of both TD Macro- and Micro-Management pa-
rameters on the response (NOT_HIGH_TD / HIGH_TD 
classes) and random effects that is the variance decompo-
sition into project- and class-levels. 

Algorithm 1: Pseudo code of the proposed methodology 

Data: Number of repetitions: B, Project List: pList 

1 for (Project p: pList) 

2      C1.add(p.getHighTDClasses) // C1: Minority class 

3      C2.add(p.getNotHighTDClasses) // C2: Majority class  

4 end 

5 for (i=0; i<B; i++) 

6      Balanced_List.clear() 

7      for (k=0; k<C1.size(); k++) 

8           p = C2.get(random) 

9           Balanced_List .add(p) 

10      end 

11      Balanced_List.add(C1) 

12      GLMM.fit(Balanced_List) 

13 end 

Steps 1-3 are repeated for a large number of times (𝐵), 
leading, in turn, to the formation of an empirical distribu-
tion 𝑏𝑘

∗𝑖 (𝑖 = 1, … 𝐵) for the set of 𝐾 parameters (class- and 
project-level metrics), which can be used to construct (1 −
𝑎)% under-bagged percentile confidence intervals (UBCIs), 
inferring the fixed effects of TD Micro- and Macro-
Management parameters on the response (Step 4). More 
specifically, the (1 − 𝑎)% UBCI for the 𝑘 parameter based 
on the 𝐵 estimates derived from UBGLMM approach can 
be evaluated through the following formula: 

[𝑏𝑘𝑎/2

∗ , 𝑏𝑘(1−𝑎/2)

∗ ]  (1) 

where, 𝑎 represents the prespecified significance level, 
whereas 𝑏𝑘𝑎/2

∗  and 𝑏𝑘(1−𝑎/2)

∗  are the lower and upper limits 

corresponding to the 100(𝑎/2)-th and the 100(1 − 𝑎/2)-

th percentiles of the empirical distribution, respectively. 

class1.1
NOT_HIGH_TD

class1.2
HIGH_TD

... class1.N
HIGH_TD

Project 1

class2.1
HIGH_TD

class2.2
NOT_HIGH_TD

... class2.N
NOT_HIGH_TD

Project 2

classP.1
HIGH_TD

classP.2
HIGH_TD

... classP.N
NOT_HIGH_TD

Project P

...

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

bk
*i  (merging undersamples of projects)

Project 1                                             Project 2                                                   Project P

class1.1  class1.3     class1.N           class 2.2  class2.4     class2.N             classP.1   classP.3     classP.N

... ... ...

[ f1(x), f2(x), f3(x), ..., fB(x) ]

GLMM (estimation of parameters considering the 
hierarchical structure of data)

construction of CI based on empirical distribution of each parameter

repeat Steps1..3
B times
bootstrap samples

Step 1

Step 2

Step 3
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Last but not least, the empirical distribution of the under-

bagged estimates 𝑏𝑘
∗𝑖 (𝑖 = 1, … 𝐵) can be also used for cal-

culating an approximation of the unknown population 

parameter 𝛽𝑘 via the following equation 

𝑏𝑘
𝑈𝐵 1

𝐵
= ∑ 𝑏𝑘

∗𝑖𝐵
𝑖=1     (2) 

To highlight the above process related to the construc-
tion of the UBCI (Eq. (1)) and the estimates of the exam-
ined parameters (Eq. (2)), we, indicatively, demonstrate 
an example related to the examination of the No Adoption 
of Good Practices Macro-Management metric. Following 
the above under-sampling strategy and the fitting of a 
UBGLMM model for 𝐵 = 1000  repetitions (Steps 1-3), the 
process resulted into 1000 under-bagged estimates for the 
No Adoption of Good Practices parameter. The set of 𝐵 =
1000 under-bagged estimates of the fitted models’ forms, 
in turn, an empirical distribution that is graphically dis-
played in Figure 3. Hence, the evaluation of the 95% UB-
CI (lower and upper bounds represented by the black 
vertical lines, respectively) is a straightforward task 
through the identification of the 2.5-th and the 97.5-th 
percentile values of the constructed empirical distribution 
(see also the results in the second column of Table 2 in 
Section 2). Moreover, the mean value of this empirical 
distribution (represented by the red line) is the final un-
der-bagged estimate (Eq. (2)) concerning the coefficient of 
the No Adoption of Good Practices Macro-Management TD 
metric of the model.          

 
FIG. 3: EXAMPLE DISTRIBUTION  

3.2 Data Collection 

For the purpose of this study, we have analyzed 100 
open-source software projects. To have a common source 
of information for project retrieval and to be sure that all 
of them are being developed using the same techniques, 
we selected the Apache Software Foundation organiza-
tion from GitHub. To be able to calculate all the selected 
metrics for each project, we have applied the following 
two restrictions in the project selection process. First of 
all, the projects must be developed in the Java program-
ming language, to be able to calculate the majority of the 
TD Micro-Management parameters. Secondly, the pro-
jects should also rely on Jira as an issue tracking system. 
This was vital for the calculation of some TD Marco-
Management parameters. The final list of selected projects 
can be found in Appendix A, along with some descriptive 
characteristics.  

To be able to calculate all of the TD Micro- and Macro- 
Management Metrics, we had to use a variety of existing 
tools, or create our own. On the one hand, concerning TD 

Micro-Management, we use established class-level met-
rics used for assessing software assets maintainability—
see first part of Table 1. The selection of metrics relied on 
a secondary study by Riaz et al. [34], suggesting that the 
metrics suites of CK and Li and Henry are the most com-
monly used maintainability predictors. On top of that, 
regarding developers experience per class we relied on 
the metric by Tsoukalas et al. [25], and for “Poor Design” 
we used TD Interest [21], as the most relevant for the TD 
phenomenon. The metrics are calculated relying on four 
different tools: CKJM [18], Metrics Calculator3 [19], 
PyDriller [20], and SDK4ED Interest Calculator [21].  

On the other-hand, to the best of our knowledge, there 
are neither metrics, nor tools, for assessing the TD Macro-
Management parameters. For this reason, we had to de-
fine our own metrics for each TD cause, described in Sec-
tion 2.2, and are presented in the second part of Table 1, 
along with their calculation method. The presentation of 
the TD Macro-Management metrics follows the order of 
TD project-level causes (see Section 2.2). For example, the 
cause “Change in Project” has led us to consider a metric: 
“Average LoC changes between commits”, or the “Close Dead-
lines” TD accumulation cause has inspired us for studying 
the: “Average days between releases” metric. Nevertheless, 
we need to clarify that, since for each TD accumulation 
cause, a number of different metrics could have been in-
troduced, the obtained results are coupled to the defined 
metrics and not to the TD causes that have been used as 
an inspiration. Therefore, any interpretations stand closer 
to the metrics rather than the corresponding cause. De-
spite the employed interpretation strategy to avoid severe 
construct validity threats, in Section 6, we further discuss 
the possible complications more extensively. 

The dichotomous response variable expresses if a class 
of the dataset is classified as HIGH_TD or not. The as-
sessment is performed with a tool4 based on Machine 
Learning classifiers that uses source code metrics and 
repository activity information as predictors [33], validat-
ed with a large number of open-source software classes 
[25]. As ground truth for the development of the em-
ployed classification framework an empirical benchmark 
of classes that exhibit high levels of TD was used [6], 
based on the convergence of three widely adopted TD 
assessment tools, namely SonarQube, CAST, and Squore. 
In other words, a class that is classified as HIGH_TD cor-
responds to an artifact which would probably be identi-
fied as problematic by three leading TD analysis tools, 
thereby expressing a commonly agree TD item.  

3.3 Data Analysis 

3.3.1 Data Pre-processing  

The dataset of this study, encompasses artifacts assessed 
as HIGH / NOT_HIGH_TD by the TD Benchmarker tool 
[25] along with the class- and project-level metrics evalu-
ated by the examined tools. The initial dataset comprised 
90,669 classes and their associated measurements at both 
TD Macro- and Micro-Management. 

 

3 https://github.com/dimizisis/metrics_calculator 
4 http://160.40.52.130:3000/tdclassifier 
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TABLE 1: METRICS USED FOR THE TD MICRO- AND MACRO-MANAGEMENT 

 
Metric Calculation method / Description M SD Mdn Min Max 

M
ic

ro
-T

D
M

 

Coupling Between Objects (CBO) Number of dependencies a file has 9.22 8.09 7 0 43 

Weighted Method per Class (WMC) Counts the number of branch instructions in a class 15.23 21.15 8 0 325 

Depth of Inheritance Tree (DIT) Counts the number of “fathers” a class has 2.03 1.89 1 1 144 

Response for a Class (RFC) Counts the number of unique method invocations in a class 17.49 22.41 10 0 561 

Lack of Cohesion of Methods (LCOM) Subtracts the number of cohesive from the non-cohesive pairs of methods 43.06 172.71 3 0 3257 

Lines of Code (LoC) Counts the lines of code 77.64 108.12 41 1 3876 

Data Abstraction Coupling (DAC) Counts the number of user-defined classes as class properties 0.34 0.93 0 0 9 

Message Passing Coupling (MPC) Total number of methods called 20.91 35.97 6 0 276 

Number of Classes (NoC) Measures the number of immediate descendants of the class 0.48 3.97 0 0 365 

Complexity Counts the amount of decision logic in a source code 11.50 21.76 2 0 188 

Documentation Percentage of comment lines in comparison with the source code lines 11.21 17.32 2.10 0 97 

Experience of Contributors Percentage of the lines authored by the highest contributor to a class 88.29 17.81 100 16.12 100 

Poor Design / TD Interest Amount of money that has to be paid as an overhead when changes are being made, due to 

the code quality of the codebase. 

0.91 2.26 0.26 0 180.31 

M
ac

ro
-T

D
M

 

Changed Lines The average changed lines of code per commit 470.96 334.66 399.28 137.89 2316.58 

Release Distance Days that passed between each release in Github 173.04 120.44 139.74 4.33 515.82 

Number of Dependencies Number of dependencies of the project. 49.78 57.23 31.5 0 251 

Jira Issues Size Average size (in words) of the Jira issues description 98.18 54.4 85.68 32.42 284.1 

Test Coverage (%) Test coverage as a percentage of the functions covered by test by the total number of func-

tions 

0.24 0.33 0.14 0.01 1.91 

Commits since a new technology is added Number of commits that pass since the addition of a new technology (obtained by counting 

the file extension) 

419.46 334.31 316.42 98 1533 

Distinction of Development & Testing Check if there is an intersection between team members reporting and resolving issues in Jira No: 33,867 (47.42%) Yes: 37,552 (52.58%) 

Emails among team members Average number of emails the developers exchanged from the official mail-archives of 

Apache 

206.47 179.19 140.22 13.25 714.8 

Code inefficiencies Average number of code inefficiencies (with the help of Checkstyle tool) for each line of code 1.15 1.58 0.7 0.06 11.37 

Number of Refactoring Average number of refactoring that appear in a commit (based on Refactoring Miner) 5.36 9.02 3.12 0.66 61.84 

Size of Javadoc’s Average size of each list item in the Javadoc 9.73 5.72 7.92 1 23.56 

Commits per Day Average number of commits per day 1.77 1.97 1.01 0.24 10.57 

Changes in Board Meetings Changes of the members in the official board meetings of Apache 3.77 16.67 1.51 0.68 128.44 

Number of Members Number of official team members of a project 19.98 11.73 17.5 4 57 

 Note M, SD, Mdn, min, max represent the mean, standard deviation, median, minimum, maximum values, respectively 



8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 

 

 

The descriptive statistics and the graphical inspection 
of the measurements for the set of independent variables 
(class- and project-level metrics) indicated highly-skewed 
distributions due to the existence of extreme outlying 
points. For this reason, we decided to identify and filter 
out these outliers through the evaluation of the 𝑧-scores 
for each class-level metric using a threshold value of 3.0, 
since they will strongly affect the fitting process of the 
final model. This pre-processing step resulted into the 
removal of 2,670 classes. Finally, the limited number of 
HIGH_TD classes within specific projects led us to ex-
clude projects presenting less than 20 HIGH_TD classes. 
We decided to exclude from any further analysis projects 
containing only a limited number of HIGH_TD classes, 
since they would not be representative cases from the 
unknown population that we wish to infer about. For 
example, clerezza and commons-io accumulated only seven 
HIGH_TD classes, and thus, any inference about the ran-
dom effects through the insertion of these projects into 
the analysis would be covered by a significant amount of 
variability. Applying the aforementioned decisions, 
yielded a final dataset consisting of 71,419 classes from 58 
Java projects. Out of those 3,675 (5.15%) were character-
ized as HIGH_TD (response variable). 

3.3.2 Model Building  

Regarding the building of the GLMMs, the fitting phase 
was based on a two-step process for the selection of the 
set of the independent variables that will form the TD 
Micro- and Macro-Management parameters, correspond-
ing to class- and project-level metrics, respectively. As far 
as TD Micro-Management parameters are concerned, we 
followed a feature selection strategy based on predefined 
criteria synthesized via the careful examination of the 
class-level metrics and the interpretation / calculation 
formula for each metric. Such an approach is aligned with 
the general guidelines for selecting fixed effect factors in 
MEMs suggesting the insertion of independent variables 
obtained from the researchers’ expertise and knowledge 
and the understanding of the problem rather than a naïve 
approach that takes into consideration the whole set of 
the collected features [22]. The selection of class-level 
metrics was conducted satisfying the following criteria:      
C1. Class-metrics that are linear combinations of other 

class-metrics should be excluded. This criterion has 
been set due to limitations of statistical methods that 
use the covariance matrix and related problems (e.g., 
problem of ranks, irreversibility, etc.); 

C2. Class-metrics that are highly correlated to other class-
metrics, i.e., presenting a statistically significant 
Spearman correlation coefficient higher than 0.6 
should be excluded. This criterion has been set since 
multicollinearity causes problems in statistical meth-
odologies; and 

C3. Class-metrics that are not highly correlated with the 
response, i.e., Spearman correlation coefficient lower 
than 0.1 should be excluded.   This criterion has been 
set due to the fact that an independent variable that is 
very weakly correlated to the response variable can of-
fer very limited interpretability. 

The adaption of the above selection strategy resulted into 
a set of five metrics (CBO, LCOM, Complexity, Experience of 
Contributors, MPC) that will be used into the Micro-
Management component of the model. Due to C1 we ex-
cluded RFC, since its calculation involves both MPC and 
WMC. Due to C2, we have excluded LoC, which is very 
strongly correlated to CBO, WMC, MPC, and TD Interest. 
Also, we excluded Focus on Producing more at the Expense 
of Quality, which is correlated to TD Interest; WMC which 
is correlated to LCOM, and DAC being correlated to CBO.  
Finally, in the dilemma of excluding either TD Interest or 
MPC, we preferred to retain MPC since it is a primary 
metric, whereas TD Interest is a compound one. Based on 
C3, we excluded DIT, NOCC, and Documentation. 

Concerning the Macro-Management part of the model, 
we made use of a forward selection strategy, since, to the 
best of our knowledge, this is the first research attempt 
focusing on the investigation of the potential effects for an 
extensive set of Macro-Management parameters on TD 
accumulation. Thus, there is a relatively limited body of 
knowledge and empirical evidence that could guide the 
process. Described briefly, the model incorporating the 
class-level metrics (TD Micro-Management parameter 
component) is fitted, while in each iteration, the algo-
rithm adds in project-level metrics belonging to the TD 
Macro-Management parameters list one by one. The TD 
Macro-Management parameter selected for an entry into 
each iteration is the one leading to a model that presents a 
statistically significant difference compared to the model 
of the previous iteration based on the Wald test, whereas 
among the candidates of statistically significant project-
level metrics, the metric resulting to the model with the 
lowest Akaike Information Criterion (AIC) value is finally 
selected. The process is iteratively repeated until there is 
no further improvement by the insertion of project-level 
metrics from the set of candidates that do not participate 
in derived solution of the previous iterations. The execu-
tion of the forward selection algorithm revealed a set of 
three project-level metrics (pressure, non-adoption of good 
practices, and lack of specific team) that will be inserted into 
the TD Macro-Management part of the model along with 
the five metrics of the TD Micro-Management part. 
 

4 EXPERIMENTAL RESULTS  

This section presents the findings extracted from the pro-
posed multi-level statistical approach. Table 2 summariz-
es the results obtained from the execution of the UB-
GLMM algorithm on the examined dataset. The second 
column (“UB Estimate”) presents the estimated coeffi-
cients by which each metric participates into either the 
micro- or macro-management parts of the final model 
along with the corresponding 95% UBCIs.  

In addition, Figure 4 visualizes the empirical under-
bagged distributions for each class- and project-level met-
ric obtained from 𝐵 = 100 repetitions of the UBGLMM 
algorithm, whereas the vertical red line indicates the zero 
value for facilitating hypothesis testing. In our case, the 
findings (Table 2 and Figure 4) reveal that the null hy-
pothesized value (the zero value) falls outside of the con-
structed 95% UBCIs for all class- and project-level met-
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rics, which practically means, that the identified TD Mi-
cro- and Macro-Management activities present statistical-
ly significant fixed effects on the response. 

TABLE 2: RESULTS OF UBGLMM ALGORITHM 

Metric 

UB Estimate 

95% UBCI 

OR 

95% CI for OR 

CBO 0.1429 

[0.1346, 0.1512] 

1.1536 

[1.1441, 1.1632] 

LCOM 0.0014 

[0.0009, 0.0020] 

1.0014 

[1.0009, 1.0020] 

Complexity 0.0384 

[0.0360 ,0.0410] 

1.0391 

[1.0367, 1.0419] 

Contributors Experience  -0.0081 

[-0.0108, -0.0053] 

0.9919 

[0.9893, 0.9947] 

MPC 0.0165  

[0.0148, 0.082] 

1.0166 

[1.0149, 1.0184] 

Pressure -0.1825 

[-0.2066, -0.1605] 

0.8332 

[0.8133, 0.8517] 

No Adoption of Good 

Practices 

0.1533 

[0.1346, 0.1721] 

1.1657 

[1.1441, 1.1878] 

Lack of Specific Teams: 

Yes 

-0.3283 

[-0.4207, -0.2446] 

0.7201 

[0.6566, 0.7830] 

To provide an intuitive and straightforward interpre-
tation of the effects for the final set of Micro- and Macro-
Management parameters on TD accumulation, we com-
puted also the Odds Ratio (OR) (3rd column, first line of 
Table 2) and their associated 95% CIs (3rd column, second 
line of Table 2) for the class-level and project-level met-
rics, respectively, which quantifies the ratio of the proba-
bility of a TD-artifact to be assessed as HIGH_TD to the 
probability of being assessed as NOT_HIGH_TD. Gener-
ally, the larger the OR, the higher odds that the class will 
be assessed as HIGH_TD, whereas, odds ratios smaller 
than one indicate the TD-artifact has fewer odds of being 
assessed as HIGH_TD. For example, the value of OR for 
the CBO metric indicates that as the number of depend-
encies for a class file increase by one unit, the odds for the 
class to be assessed as HIGH_TD increases by a factor of 
1.1536, which practically means an increase of 15.36%. 
Regarding the interpretation of the OR for the categorical 
project-level metric Lack of Specific Team (i.e., No Distinc-
tion among Development and Testing Team), the value is 
lower than one, signifying that a TD-artifact to be as-
sessed as HIGH_TD is more likely at level No (i.e., when 
there is no distinction between the Development and 
Testing roles), since ‘No’ is the reference category for this 
specific factor (Table 1). 

 

 
FIG. 4: IMPORTANCE OF MICRO- AND MACRO-TD PARAMETERS 

Interpretation of Micro TD-Management Results: When 
interpreting the OR values, the range of the metrics, as 
well as the ease with which the metrics can be changed by 
one unit, must be considered. By considering that: (a) 
LCOM is a sensitive metric, whose values can change 
even by the addition of only one method or splitting a 
class [23]; whereas (b) coupling and complexity metrics are 
fluctuating less along evolution and the improvement of 

their metric scores requires more complex refactoring 
opportunities, e.g., replacing conditionals with polymor-
phism or re-arranging methods in classes; we can suggest 
that managing cohesion is a promising way for reducing 
the probability of a class to classified as HIGH_TD. The 
sign in these relations is positive, as expected, since an 
increase in the levels of these qualities hurts the main-
tainability of the system [24]. Interestingly, an increase in 
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the Experience of Developers tends not to reduce the proba-
bility of writing lowered-TD code, but rather increases it. 
A tentative interpretation of this, which is also supported 
by the literature [25], is that experienced developers are 
more reluctant to change their development habits or fol-
low standards in their way programming. 

The findings of the study suggest that proper object-
oriented design, dealing with modularity (i.e., balance 
between coupling and cohesion), abstractness, and un-
necessary complexity; can lead to improved TD Micro-
Management. 

Interpretation of Macro TD-Management Results: Re-
garding project-level metrics, we can also make some in-
teresting observations. First, we can conclude that the 
sign of the relations (as presented in Table 2) is intuitive. 
In particular, putting pressure on the developers to make 
frequent commits (Pressure) is a good practice in software 
development [27], supported by many modern develop-
ment methodologies. The frequent committing dictates a 
careful development process, possibly implying Continu-
ous Integration strategies, and frequent testing, since 
committed code must pass the functional and quality 
tests. Additionally, the Non-Adoption of Quality Practices 
(e.g., not performing quality checks, leading to inefficien-
cies creeping into the code) is expected to lead to accumu-
lation of code TD, especially by considering that the ma-
jority of TD measurement tools identify TD items, by 
counting quality rule violations. Finally, our results sug-
gest that the use of Different Teams for Development and 
Testing is a practice that can aid in improving quality, 
since a different perspective and viewpoint is always 
beneficial for effective quality audits [29].  

By considering the range of values for the TD Macro-
Management parameters, as well as the ease of chang-
ing their values by one unit, we can claim that commit-
ting code daily is a practice that must be promoted 
among practitioners. 

Regarding the random effects of the final model (see 
Table 2), the variance decomposition showcases that the 
proportion of the variance attributed to classes differ-

ences is lower (𝜎𝑐𝑙𝑎𝑠𝑠
2𝑈𝐵

= 0.067, 95% 𝑈𝐵𝐶𝐼 [0.046, 0.103]) 
compared to the variance attributed to project differences 

𝜎𝑝𝑟𝑜𝑗𝑒𝑐𝑡
2𝑈𝐵

= 0.237, 95% 𝑈𝐵𝐶𝐼 [0.189, 0.289]. Therefore, an 

interesting follow-up investigation would be to explore 
whether a practitioner should invest in TD Macro-
Management to prevent TD accumulation. To provide a 
straightforward answer to the above critical issue, we 
decided to perform a sensitivity analysis by examining, if 
the insertion of project-level metrics contributes to the 
better understanding of the examined phenomenon—
suggesting that the TD Macro-Management parameters 
play an important role on if a class is classified as a 
HIGH_TD one. To this end, we repeated the analysis by 
applying the proposed UBGLMM approach relying, sole-
ly, on the set of class-level metrics and compare the find-
ings to the model incorporating both class- and project-
level metrics. To compare the performances of Model A 

(containing both Micro- and Macro-Management parame-
ters) versus Model B (containing only Micro-Management 
parameters), we made use of the Wald test followed by a 
win-tie-loss strategy [30]. In other words, we counted the 
number of times the Wald test resulted into a statistically 
significant difference between the fitting of the two mod-
els, while for selection purposes, the model with the low-
est AIC value is finally chosen. The findings indicated 
that Model A presented lower AIC values compared to 
Model B for the whole set of repetitions. Regarding the 
results of the hypothesis testing procedure, the 𝑝-value of 
the Wald test was below the alpha level of 0.05 for the 
entirety of the repetitions.  

Based on our empirical evidence we can claim that TD 
Macro-Management can contribute to an effective TD 
prevention. 

 

5 IMPLICATIONS TO RESEARCHERS AND 

PRACTITIONERS 

The findings of this study (as presented in Table 2, Figure 
4, and the boxed text in Section 4) can be summarized as 
follows: (a) TD Macro-Management showed to be an effi-
cient way for preventing classes of a project to accumu-
late TD; (b) Coupling, Cohesion, and Complexity metrics 
are the most important parameters of TD Micro-
Management—as also supported by the literature; and (c) 
Number of Commits, Use of a Different Team for Testing 
and Development, and the Adoption of Good Quality 
Practices are the most important TD Macro-Management 
parameters. These findings can be important for both re-
searchers and practitioners. 
Implications to Researchers: First, based on the fact that 
the proposed approach was able to provide empirical 
evidence, considering the nested nature of the problem, 
we encourage researchers to apply the proposed ap-
proach for various software engineering problems—we 
expect that almost all software engineering research prob-
lems can be approached as such. The uniform analysis at 
both levels, aids in surpassing important mining software 
repository problems (e.g., the overrepresentation of pro-
jects that contribute a large portion of the dataset [31]) 
advancing the state-of-research, which until now focused 
only at one of the two levels. Applying a nesting ap-
proach can: (a) limit the need of aggregating data from 
the class-level to the project-level, so as to work with pro-
ject metrics; (b) limit the unhandled dependence of data 
that rely on the same project, being treated as independ-
ent observations; and (c) enables the development of 
models combining information at both levels.  

Additionally, based on finding (a) we confirm the rel-
evance of the TD causes literature [3][4][12][13], provid-
ing the first quantitative and independent empirical evi-
dence on their relation to TD accumulation. Interesting 
future work in this direction would be to assess more 
causes, and provide additional metrics for their quantifi-
cation. Additionally, another extension to this work 
would be to explore project metrics in isolation so as to 
explore their relation to the percentage of classes in a sys-
tem that are classified as HIGH_TD. Finally, based on 
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finding (c) we can encourage researchers to propose ap-
proaches or processes that will integrate TD accumulation 
prevention measures. An important step in this direction 
would be the adoption and assessment of such approach-
es by software practitioners, mostly evaluating their long-
term costs and benefits. For instance, how does the cost of 
“Adopting Good Quality Practices” compare to the benefit 
that they can bring (e.g., “Reduced Maintenance Cost”, “Re-
duced Bug Fixing Costs”, etc.)? An analysis of the point at 
which process improvements are over-engineered is very 
important in order not to over-spent resources (increasing 
cost) for gaining a minimal benefit. Similar approaches 
are well-established in the manufacturing domain, name-
ly: Poor Quality Cost Management [32]. 
Implications to Practitioners: Based on finding (a) we 
encourage project managers to pay attention to technical 
management practices that can prevent the accumulation 
of TD, since there seems to be an important association 
between managerial decisions and TD costs. This implica-
tion becomes even more important by considering, apart 
from the impact, also the wide scope of such interven-
tions. Additionally, by synthesizing findings (b) and (c), 
we encourage technical managers to adopt into their pro-
cesses the following steps: 
• Impose developers to commit their code at least once 

per day; 
• While committing, the adoption of good quality prac-

tices must be automatically assessed, through tools. 
• Quality gates must check the coupling, cohesion, and 

complexity of the code. In case of a need for a quality 
compromise class cohesion must be advised: i.e., opt 
for more and small classes, that might present some 
additional coupling; 

• Upon code commit, a separate team must check the 
code manually, both from a functional or a non-
functional perspective. 

Despite the fact that the above steps are strongly support-
ed by empirical evidence, we need to highlight (as men-
tioned before) that the ordering, effectiveness, and cost 
feasibility of such approach needs to be studied in future 
work. 

6 THREATS TO VALIDITY 

This study exploring the importance of TD Micro- and 
Macro-Management with regard to the probability of 
software artifacts to exhibit high values of TD is based on 
specific metrics outlined in Table 1 and Table 2. TD Mi-
cro-Management metrics, such as size, complexity, cou-
pling and cohesion have been widely studied and their 
relation to software quality is proven. On the other hand, 
the field of TD Macro-management metrics reflecting pro-
ject-wide strategies and policies, is less studied. As a re-
sult, the findings are subject to construct validity threats 
in the sense that the examined class probability of accu-
mulating high or low levels of TD might be loosely con-
nected to the selected metrics. Furthermore, even if the 
causes of TD are assumed to be valid, the TD metrics for 
expressing them and the associated calculation method 
are not unique. A set of different metrics for capturing TD 
Macro-Management (e.g., extract through the list of worst 

reasons of TD smells [35]) strategies might have led to 
different findings. Nevertheless, we believe that the use of 
a forward selection strategy for the macro-management 
metrics resulted in a set of statistically significant metrics 
which are sound, quantifiable and diverse. For the re-
sponse variable expressing whether a class is suffering 
from HIGH_TD or not, concerns could be raised on its 
accuracy, considering the challenges in objectively identi-
fying and measuring TD. However, for the employed 
dataset, the response variable reflects the level of agree-
ment among three leading TD analysis tools, meaning 
that a high TD class has a high probability of being unan-
imously designated as such by three different approaches, 
mitigating the relevant construct validity threat.  

The fact that the analysis has been performed on 100 
open-source Java projects threatens the external validity 
of our findings. In particular, we cannot generalize the 
observations regarding the importance of TD Micro- and 
Macro-Management approaches to industrial software or 
programs written in different programming languages. 
Nevertheless, the longevity, number of projects and the 
good practices followed by the Apache Software Founda-
tion regarding the organization and management of their 
projects, partially mitigate the generalization threats as 
these open-source projects follow strict guidelines and 
closely monitor the progress. In any case, replication 
studies on projects with different characteristics can shed 
light into the value of TD Macro-Management processes.  

Finally, reliability threats for the kind of study that we 
have presented are associated to the ability of replicating 
it and reaching the same results. To mitigate this threat, 
the study protocol is extensively described in Section 3 
explicitly listing all data collection and analysis steps. 
Researcher bias has been avoided since the dataset has 
been subject only to automated analysis with no subjec-
tive interpretation by the researchers. A replication pack-
age consisting of all metrics values for each unit of analy-
sis is available and we encourage the independent repli-
cation of the investigation in similar settings5. 

7 CONCLUSION AND FUTURE WORK 

In this study, we aimed at identifying possible causes of 
TD accumulation, so as to provide explicit suggestions for 
avoiding the existence of HIGH_TD classes in a software 
system, by applying with Micro- or Macro-Management 
interventions. The nature of the problem (many classes 
belong to the same project, and share some common 
characteristics) led us in using a nested modelling ap-
proach to surpass the problems that traditional correla-
tion analysis would face. In particular, we proposed the 
Under-Bagging based Generalized Linear Mixed Models (UB-
GLMM) data analysis methodology that can use class- 
and project-level metrics in the same model and discrimi-
nate their fixed and random effects. 

The results of the study suggested that TD Micro-
Management (methods that manage class-level parame-
ters) and TD Macro-Management approaches (methods 
that manage project-level parameters) can both contribute 
 

5 https://users.uom.gr/~a.ampatzoglou/aux_material/TD_Nested.xlsx   

https://users.uom.gr/~a.ampatzoglou/aux_material/TD_Nested.xlsx


12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 

 

 

to efficient prevention of TD accumulation. In particular, 
we have provided quantitative empirical evidence that 
Reducing Coupling Between Objects, Limiting Lack of 
Cohesion of Methods, Reducing Complexity, Adopting 
Good Quality Practices, Controlling Commit Frequency, 
and Using Different Teams for Development and Testing 
can be efficient ways for preventing the accumulation of 
TD into classes. The results have been interpreted and 
contrasted with existing literature (see Section 4), and 
various implications for researchers and practitioners 
have been stated (see Section 5). 
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