
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Assessing TD Macro-Management: A Nested
Modelling Statistical Approach

Nikolaos Nikolaidis1, Nikolaos Mittas2, Apostolos Ampatzoglou1, Elvira-Maria Arvanitou1,

Alexander Chatzigeorgiou1

Abstract—Quality improvement can be performed at the: (a) micro-management level: interventions applied at a fine-grained

level (e.g., at a class or method level, by applying a refactoring); or (b) macro-management level: interventions applied at a

large-scale (e.g., at project level, by using a new framework or imposing a quality gate). By considering that the outcome of any

activity can be characterized as the product of impact and scale, in this paper we aim at exploring the impact of Technical Debt

(TD) Macro-Management, whose scale is by definition larger than TD Micro-Management. By considering that TD artifacts

reside at the micro-level, the problem calls for a nested model solution; i.e., modeling the structure of the problem: artifacts have

some inherent characteristics (e.g., size and complexity), but obey the same project management rules (e.g., quality gates,

CI/CD features, etc.). In this paper, we use the Under-Bagging based Generalized Linear Mixed Models approach, to unveil

project management activities that are associated with the existence of HIGH_TD artifacts, through an empirical study on 100

open-source projects. The results of the study confirm that micro-management parameters are associated with the probability of

a class to be classified as HIGH_TD, but the results can be further improved by controlling some project-level parameters.

Based on the findings of our nested analysis, we can advise practitioners on macro-technical debt management approaches

(such as “control the number of commits per day”, “adopt quality control practices”, and “separate testing and development

teams”) that can significantly reduce the probability of all software artifacts to concentrate HIGH_TD. Although some of these

findings are intuitive, this is the first work that delivers empirical quantitative evidence on the relation between TD values and

project- or process-level metrics.

Index Terms — Technical Debt, Metrics / Measurement, Quality Analysis and Evaluation, Software maintenance

—————————— ◆ ——————————

1 INTRODUCTION

echnical Debt (TD) is evident and can be accumulated
during every software development activity [1]. Due

to its multifaced nature (architecture, code, build TD, etc.
[2]) there is a variety of causes that have been related to
TD accumulation [3][4]; constituting effective TD preven-
tion or repayment a non-trivial task. According to the
literature, upon the identification of high-TD and high-
risk artifacts (i.e., high interest amount or probability of
paying interest), the software engineer can initiate a refac-
toring process to reduce the amount of TD [2] in the spe-
cific software artifact. For example, in the case of code TD,
if a class is very long and undergoes frequent maintenance,
the extract class refactoring can be applied, to lead to more
maintainable code—i.e., producing less TD interest [5].

We consider such repayment activities which are fo-
cused on design hotspots and the impact of the solutions
is local—as TD Micro-Management. Additionally, these
solutions are a-posteriori ones, i.e., the system has suffered
from TD consequences for some time, and afterwards
some reactive measures are taken. On the other hand, by
studying the causes that can lead to TD accumulation

(e.g., there is no adoption of quality control and monitoring
tools), one could identify proactive management practices,
which can be considered a-priori and prevent the accumu-
lation of TD [3]. We consider activities which: (a) have a
global impact (all artifacts of the system are affected and
(b) prevent TD accumulation as TD Macro-Management.

FIG. 1: CONTEXT DESCRIPTION & MOTIVATION

Figure 1 visualizes this context. Suppose a software pro-

ject that comprises of X classes. At the project level, we
visualize two possible causes of TD: “No quality control
tools” that is not satisfied by current practices (orange
bubble) and “Having an Experienced Team” which holds
(green bubble). At the class level, we suppose that Class A

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

T

————————————————

• Nikolaos Nikolaidis is with the Department of Applied Informatics, Uni-
versity of Macedonia, Greece. E-mail: nnikolaidis@uom.edu.gr

• Nikolaos Mittas is with the Department of Chemistry, International Hel-
lenic University, Greece. E-mail: nmittas@chem.ihu.gr

• Apostolos Ampatzoglou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: a.ampatzoglou@uom.edu.gr

• Elvira-Maria Arvanitou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: e.arvanitou@uom.edu.gr

• Alexander Chatzigeorgiou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: achat@uom.edu.gr

mailto:nnikolaidis@uom.edu.gr
mailto:nmittas@chem.ihu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:e.arvanitou@uom.edu.gr
mailto:achat@uom.edu.gr

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

suffers from “Low Cohesion” (orange bubble), Class B suf-
fers from “High Coupling” (orange bubble), whereas Class

X is of “Good Quality” (green bubble). On the one hand,
working with a TD Micro-Management technique (blue con-
tinuous arrow), a developer can resolve the TD item of
Class A, by applying the “Extract Class” refactoring—
however, the other classes are not affected. On the other
hand, the project manager can impose the use of “Quality
Gates” and affect the code quality of all classes of the sys-
tem—applying TD Macro-Management. Given the afore-
mentioned context, in this work, we aim at answering the
following general research question: “Which combination of
TD Micro- and Macro-Management methods can be the most
efficient for preventing the accumulation of TD”?

As a first step in studying TD Macro-Management, in
this work, we quantitively explore the relation between a
pre-determined list of TD causes [3] and TD accumula-
tion, through an empirical study on 100 open-source
software projects. We note that HIGH_TD artifacts are
extracted from a TD Benchmarker, identifying the agreed
HIGH_TD artifacts, as indicated by three top TDM tools1:
SonarQube, CAST, and Squore [6]. In other words, arti-
facts are considered as HIGH_TD ones, when there is a
consensus by three tools that their level of TD places them
among the most problematic artifacts. According to the
threshold set in the TD Benchmarker [6], only 12% of the
artifacts in the benchmark are characterized as such,
while the rest are NOT_HIGH_TD artifacts, which do not
raise any alarms about the level of TD. Out of the most
prevalent causes of TD, we are able to state management
guidelines that can be useful for practitioners to prevent
the accumulation of TD in all software artifacts. Howev-
er, identifying the most prevalent causes of TD accumula-
tion is challenging. Solving this problem yields for a nov-
el methodological / analysis approach, for two reasons:
• nested nature of the problem. By definition TD Macro-

Management parameters (i.e., project-level metrics)
have equal values for all the artifacts of the same pro-
ject, whereas TD Micro-Management parameters (e.g.,
class metrics) have different values for every artifact.
In other words, units of analysis (classes) are nested in-
to contextual/aggregate units (projects) resulting in
multi-level data. In that sense, traditional statistical
analysis would fail and a multi-level statistical model-
ing approach would be required.

• need for identifying project-level activities that can
prevent the accumulation of TD. Black-box machine
learning approaches that produce accurate models for
predicting if an artifact has accumulated high levels of
TD or not (given the values of TD Micro- and Macro-
management parameters) are not suitable. The reason
for this is that Machine Learning models suffer from

1 We note that while the use of three different tools in a development
process is theoretically feasible, we believe that this would hardly be
possible in practice. Employing more than one tool would be very cost-
ly, since most of the existing tools are commercial ones, and require
significant effort to deploy, configure and familiarize with. Even if a
development team employs more than one tool, the identification of
HIGH_TD classes does not simply consist in finding the union of all
findings (leading to an unrealistic number of suggestions, rendering
the process intractable), but on archetypal analysis (see [6]).

low interpretability [7], whereas the goal of the study
is to explore the TD Micro- and Macro-Management
parameters and identify the most prevalent ones.

By considering both the need for a multi-level statistical
approach, as well as the need for reaching an explainable
model, we propose the use of Generalized Linear Mixed
Models (GLMMs) models; i.e., a branch of statistical tech-
niques that uniformly models fixed and random effects
(Fixed: TD Macro- and Micro-Management parameters,
Random: the variance attributed to the nested design
(classes are nested within projects).
Given the above, and by considering the main research
question of this work, as well as the required steps to
achieve it, the main contributions of this study are:
• the compilation of a list of TD Micro- and Macro-

management parameters, by studying the literature on
causes of TD accumulation—we note that this is the
first study that attempts to map causes of TD accumu-
lation to specific metrics;

• a dataset of values of these parameters for 100 open-
source software projects, extracted by mining soft-
ware repositories (GitHub & Jira)—this dataset is the
first one in the TD community that involves project-
level measurements of product and process quality;

• the introduction of an explanatory data analysis
methodology that is able to handle the nested nature
of the software—to the best of our knowledge, despite
the indisputable nested nature of software systems,
this the first time that a nested solution is used;

• the provision of empirical quantitative evidence,
based on a large-scale dataset, that can unveil the most
important management activities for TD prevention—
this is the first study that brings evidence on the rele-
vance of project management level parameters that
can be used to prevent TD accumulation.

2 RELATED WORK

In this section, we present related work and background
information required to facilitate the understanding of
our work. First, we present related work, i.e., studies that
aim at performing TD items identification (see Section
2.1); and in Section 2.2, we present the main causes of
Technical Debt accumulation that will set the basis for
defining our metric-based approach.

2.1 Technical Debt Identification

In the literature, we have identified two systematic map-
ping studies related to TD identification—i.e., the process
of understanding which artifacts suffer from TD. First,
Alves et al. [8] collected and investigated approximately
100 studies. They highlight several TD indicators that can
be used to identify the amount of TD of a system. Some of
the top mentioned indicators are “code smells”, “software
architecture issues”, “automatic static analysis issues”,
etc. Additionally, in this study, we observe that almost all
the papers use source code artifacts to identify TD items
(e.g., even for architectural TD), most probably because of
the tools that exist for TD measurement. Additionally,
Ben Idris et al. [9] examined 43 empirical studies, pub-
lished in a period of 4 years. They suggest that the most

NIKOLAIDIS ET AL.: ASSESSING TD MACRO-MANAGEMENT: A NESTED MODELLING STATISTICAL APPROACH 3

common TD indicator is “code smells”, while the second
most commonly used indicators are “code comments”
and “Defect/Bugs”. Finally, regarding the identification
of TD items, the authors highlight the variety of available
tools, denoting as the most commonly used: SonarQube.

This strategy leaves an important gap in the TD identifi-
cation, since the project-level is completely neglected.

By focusing one some striking primary studies out of
these works (we cannot focus on all, since the literature is
vast), Zazworka et al. [10] tried to evaluate the TD items
that different stakeholders report and the differences with
three automated approaches for the TD identification.
From this research, we can observe that there is not a lot
of overlap with the TD items that the tools and the stake-
holders reported. This points out the importance of the
role of the developers in the identification of TD, and how
different stakeholders know and consider different debts
in their projects. Finally, Zazworka et al [11] analyzed
multiple versions of Apache Hadoop with four different
TD identification techniques namely, modularity viola-
tions, grime buildup, code smells, and automatic static
analysis. They found out that there is a limited degree of
overlapping, when using the different approaches: differ-
ent techniques tend to point to different classes and there-
fore to different problems.

There is a need for multiple TD indicators, especially in
the non-source code part of a project, because to the best
of our knowledge this option has not been studied yet.

2.2 Causes of Technical Debt

In this section, we present the most common causes of TD
based on the literature. The four studies that are dealing
with identifying possible causes of TD accumulation are
outlined below. Martini et al. [4] performed a multiple-
case embedded study in seven sites at five large organiza-
tions to investigate the current causes for the accumula-
tion of architectural TD (ATD). As a result of this study,
the authors provided a taxonomy of causes and their in-
fluence in the accumulation of ATD. Martini and Bosch
[12] conducted a case study to investigate: (a) the most
dangerous ATD items in terms of effort paid later; (b) the
effects triggered by such ATD items; and (c) if there are
sociotechnical patterns of events that trigger the creation
of ATD. The results suggested that TD items can be con-
tagious, causing other parts of the system to be contami-
nated with the same problem, which may lead to nonlin-
ear growth of interest. The authors also presented a mod-
el of ATD effects for TD repayment prioritization.

Yli-Huumo et al. [13] performed a case study to inves-
tigate the role of technical debt management in software
development. In particular, the goal of this study was to
explore the causes of TD accumulation, as well as its ef-
fects, and the strategies that are being used for technical
debt management. The results of this study suggested
that the reasons for incurring TD were management deci-
sions that were made in order to reach deadlines, or un-
knowingly due to lack of knowledge. Finally, as a more
recent work in this area, Rios et al. [3] conducted an in-

dustrial survey in different countries in order to investi-
gate the trends in the TD area including the causes and
the effects of TD. The survey design reached a large num-
ber of targeted responded: eventually 107 practitioners
from 11 countries have reacted positively to the survey.
The results of this study suggested that most of the practi-
tioners were familiar with the concept of TD. As a final
outcome, Rios et al. [3] identified 78 causes that lead to
TD occurrence. Out of them, we focus on the most cited
causes that lead to the accumulation of TD. Based on Rios
et al. [3], the top-14 most cited causes of TD referring to
TD Macro-Management are:

• Change in Project—TD can be accumulated due to the
need for continuous changes in the project—the need
for velocity will lead to neglecting the quality of pro-
duced code. Usually, large volumes of change bring
more pressure. Example: “Constant request for chang-
es in the project”.

• Close Deadlines—Having close and unrealistic dead-
lines can lead to promoting quick and dirty imple-
mentation solutions, increasing TD. Close deadlines
are usually accompanied by frequent releases. Exam-
ple: “The rush of managers (customers) that want to
receive something working asap”.

• Dependencies to External Components—TD accumu-
lation can occur when the project depends on an ex-
ternal component; either due to the quality of external
components or due to less control over the external
project. Example: “The fact that Angular 2 functionality
is not yet stable, even with a deadline to fix the bugs”.

• Inaccurate or Complex Requirement—TD can occur
due to failure, lack of clarification, complexity or poor
definition in the collected requirements. Inaccurate re-
quirements can lead to many changes (interest proba-
bility), whereas complex requirements will lead to
more complex code. Example: “Lack of clarification of
requirements”.

• Inappropriate Testing—A project that is poorly tested,
or even when the tests were poorly planned or do not
have good coverage, can lead to more corrective
maintenance requests; thereof, more TD accumulation.
Example: “Lack of testing”;

• Lack of Interest in Acquiring Knowledge—Refers to
the lack of interest of the team in seeking knowledge
to develop new skills. Getting stuck with old technol-
ogies, might lead to unnecessary complexity that
might be resolved with new technologies and skills.
Example: “Lack of interest and willingness of the team
to acquire knowledge”.

• Lack of Specific Teams—Occurs when there is no spe-
cific team to perform any software process activity,
such as test team, development team, maintenance
team, documentation team, etc. In practice, having the
code being tested or reviewed with a “fresh look” by a
different group would lead to more accurate TD iden-
tification. Example: “Lack of a separate testing team”.

• Lack of Team Communication—TD can occur when
there is communication problem between team mem-

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

bers. Lack of communication might lead to more effort
to understand code, and additional introduction of
bugs. Example: “Lack of integration of business areas,
analysts of systems, developers and the test area”.

• No Adoption of Good Practices—TD can be accumu-
lated, when there is no use of good practices (e.g., pat-
terns, refactorings, quality gates, etc.) that would facil-
itate the accomplishment and maintenance of activi-
ties in the project. Example: “Employment of bad de-
sign practices”.

• No Awareness of the Importance of Testing & Refac-
toring—TD can occur when the team do not recognize
the importance of documenting, refactoring, and test-
ing the software. Example: “To think that certain tasks
(tests, refactoring) are not important”.

• No Focus on Documentation—When a company has
no culture on documentation and thus does not rec-
ognize its importance will probably accumulate more
TD, since the effort to understand the codebase will be
higher. Example: “The manager's vision that documen-
tation is non-productive time”.

• Pressure—TD accumulation occurs when there is high
pressure on team members to meet deadlines and
speed deliveries—this usually drifts the focus from
quality improvement. Example: “Pressure to meet
short deadlines”.

• Structural Change in Organization—When companies
undergo structural changes, the development process
might be altered, leading to producing code of poor or
deteriorated quality. Example: “Changes in the struc-
ture of a company lead to postponement of refactoring
sessions”.

• Team Overload—When the development team has
accumulated activities, either because of a lack of ade-
quate management or because members have left the
team, will lead to time pressure, leading to TD accu-
mulation. Example: “The accumulation of activities did
not allow a loophole for extensive refactoring, so this
was being pushed to the end of the project”.

In addition, several other causes that can be related to TD
Micro-Management parameters have been identified:

• Poor Documentation—Refers to the lack of any kind
of documentation (from documents to comments).
Example: “Lack of code documentation”.

• Experience of Contributors—Refers to the experience
of the developers in specific software activities. Exam-
ple: “Lack of experience of programmers”.

• Poor Design—Refers to poorly designed projects, with
bad quality metrics. Example: “Poorly designed class
with high cohesion or coupling”.

3 METHODOLOGY

In this section, we describe the methodology that enables
the analysis, given the nested design of the problem. In
Section 3.1, we present the necessary background infor-
mation for enabling the understanding of the proposed
analysis; in Section 3.2 the data collection process; where-
as in Section 3.3 the proposed data analysis methodology.

3.1 Methodology Overview

In this section, we present background information neces-
sary for facilitating the understanding of the proposed
data analysis methodology (see Section 3.3). To this re-
gard, we discuss the inherent challenges posed by the
nature of the problem under investigation and the data
collected for empirically assessing TD Micro- and Macro-
Management opportunities, as well as, the advanced sta-
tistical and ML approaches adopted in a unified method-
ology to overcome these hurdles.

The first challenge concerns the research design of the
experimental setup, in which the units of analysis (i.e.,
artifacts) are organized as a two-level hierarchy, repre-
senting: (a) TD Macro-Management (or project-level) pa-
rameters; and (b) TD Micro-Management (or class-level)
parameters. The hierarchical structure of the data imposes
the need for the application of appropriate statistical pro-
cedures, since class-level measurements, corresponding to
the classes of the same project are expected to be more
similar, compared to classes of a different project, due to
the fact that they share common characteristics. To this
regard, traditional statistical approaches ignore depend-
encies within grouped data or they lack sophisticated
mechanisms able to take into consideration the multi-
level structure of the data leading, in turn, to statistical
validity issues and erroneous decision-making.

Due to the above reasons, we decided to make use of
an advanced modeling technique belonging to the general
branch of Mixed Effects Models (MEMs) [14] that are able
to deal with both the hierarchical structure of the data
and the random variation associated with sampling high-
er-level units, projects in our case. Described briefly,
MEMs investigate simultaneously two types of effects: (a)
the fixed and (b) the random effects. The former type of
effects (fixed effects) is associated to factors affecting the
mean value of the response and they are constant (or
fixed) across all observations. In simple words, fixed ef-
fects can be thought as factors of primary interest from
the practitioner point of view that deserve a thorough
investigation to understand how each factor may affect
the changes in the response. In contrast, random effects
are associated to the sources of variance in an experi-
mental setup modeling how the total variation is decom-
posed into different variance components. Although ran-
dom effects may be used in a wide range of experimental
designs (e.g., longitudinal data, repeated measures etc.)
for providing insights about the variability at different
levels of interest, in our case, this type of effects takes into
consideration the two-level data structure of the experi-
mental units that is classes are nested within projects. Given
the nature of the response (a dichotomous variable—𝑰𝑖)
indicating if a TD artifact is characterized by the TD
Benchmarker tool as HIGH_TD or NOT_HIGH_TD, we
decided to make use of the Generalized Linear Mixed Mod-
els (GLMMs) with the logit link function2.

The second challenge stems from the sparsity of
HIGH_TD classes. According to Amanatidis et al. [6], the

2 𝑔(⋅) = 𝑙𝑛(𝑝/(1 − 𝑝)), where 𝑝 is the probability of an artifact to be
identified as having accumulated high levels of TD

NIKOLAIDIS ET AL.: ASSESSING TD MACRO-MANAGEMENT: A NESTED MODELLING STATISTICAL APPROACH 5

level of agreement for classes that are identified as prob-
lematic by all three used tools is 7.7% (for the examined
dataset in their study). This finding is considered intuitive
in the sense that different TD measurement tools rely on
different rulesets for calculating whether a class suffers
from TD or not. Indeed, in our sample, the investigation
of the distribution of the response variable (an expected
dichotomous variable) indicates that the HIGH_TD clas-

ses are under-presented (6.3% of classes) compared to
NOT_HIGH_TD classes, leading to a well-known phe-
nomenon in ML, namely the class imbalance problem. The
highly-skewed response distribution poses significant
barriers to statistical and ML algorithms leading to poor
performances, especially for the minority class, since most
of these approaches are developed under the assumption
of equal sample sizes for both levels of the response.

FIG. 2. METHODOLOGICAL FRAMEWORK

To alleviate this inherent limitation for the vast majori-
ty of approaches to deal with the class imbalance prob-
lem, we designed a simulation resampling technique,
named: Under-Bagging based GLMM (UBGLMM) [15],
combining the merits of: (a) bootstrap aggregating (bagging)
[16], a well-known type of ensemble learning; and (b) ran-
dom under-sampling [17]. The general idea behind the pro-
posed approach is the building of an ensemble consisting
of a large number (𝐵) of GLMMs fitted on random sub-
samples drawn independently from the original dataset
following an under-sampling strategy, which aims at bal-
ancing the class distribution of the response through the
random elimination of cases belonging to the majority
class. The whole framework along with its main compo-
nents and the necessary steps are summarized in Figure 2.

In the first step of the approach (Step 1), each project
(𝑝𝑖), from the collection of the total 𝑃 projects, is subjected
to a random under-sampling process for balancing the
number of NOT_HIGH_TD classes to the number of
HIGH_TD classes in order to mitigate the class imbalance
problem. The set of 𝑃 projects consisting of an equal
number of NOT_HIGH_TD and HIGH_TD classes are
merged into a unified dataset with TD Macro-
Management (project-level) parameters and TD Micro-
Management (class-level) parameters (Step 2). The
merged dataset constitutes the basis for the fitting of a
GLMM taking into consideration both fixed and random
effects, so as to appropriately handle the hierarchical na-
ture of the experimental data (Step 3). This step, essential-
ly, results into the estimated coefficients of the GLMM
providing to us a straightforward inference on the fixed
effects of both TD Macro- and Micro-Management pa-
rameters on the response (NOT_HIGH_TD / HIGH_TD
classes) and random effects that is the variance decompo-
sition into project- and class-levels.

Algorithm 1: Pseudo code of the proposed methodology

Data: Number of repetitions: B, Project List: pList

1 for (Project p: pList)

2 C1.add(p.getHighTDClasses) // C1: Minority class

3 C2.add(p.getNotHighTDClasses) // C2: Majority class

4 end

5 for (i=0; i<B; i++)

6 Balanced_List.clear()

7 for (k=0; k<C1.size(); k++)

8 p = C2.get(random)

9 Balanced_List .add(p)

10 end

11 Balanced_List.add(C1)

12 GLMM.fit(Balanced_List)

13 end

Steps 1-3 are repeated for a large number of times (𝐵),
leading, in turn, to the formation of an empirical distribu-
tion 𝑏𝑘

∗𝑖 (𝑖 = 1, … 𝐵) for the set of 𝐾 parameters (class- and
project-level metrics), which can be used to construct (1 −
𝑎)% under-bagged percentile confidence intervals (UBCIs),
inferring the fixed effects of TD Micro- and Macro-
Management parameters on the response (Step 4). More
specifically, the (1 − 𝑎)% UBCI for the 𝑘 parameter based
on the 𝐵 estimates derived from UBGLMM approach can
be evaluated through the following formula:

[𝑏𝑘𝑎/2

∗ , 𝑏𝑘(1−𝑎/2)

∗] (1)

where, 𝑎 represents the prespecified significance level,
whereas 𝑏𝑘𝑎/2

∗ and 𝑏𝑘(1−𝑎/2)

∗ are the lower and upper limits

corresponding to the 100(𝑎/2)-th and the 100(1 − 𝑎/2)-

th percentiles of the empirical distribution, respectively.

class1.1
NOT_HIGH_TD

class1.2
HIGH_TD

... class1.N
HIGH_TD

Project 1

class2.1
HIGH_TD

class2.2
NOT_HIGH_TD

... class2.N
NOT_HIGH_TD

Project 2

classP.1
HIGH_TD

classP.2
HIGH_TD

... classP.N
NOT_HIGH_TD

Project P

...

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

UNDERSAMPLING
#NOT_HIGH_TD = #HIGH_TD

bk
*i (merging undersamples of projects)

Project 1 Project 2 Project P

class1.1 class1.3 class1.N class 2.2 class2.4 class2.N classP.1 classP.3 classP.N

...

[f1(x), f2(x), f3(x), ..., fB(x)]

GLMM (estimation of parameters considering the
hierarchical structure of data)

construction of CI based on empirical distribution of each parameter

repeat Steps1..3
B times
bootstrap samples

Step 1

Step 2

Step 3

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Last but not least, the empirical distribution of the under-

bagged estimates 𝑏𝑘
∗𝑖 (𝑖 = 1, … 𝐵) can be also used for cal-

culating an approximation of the unknown population

parameter 𝛽𝑘 via the following equation

𝑏𝑘
𝑈𝐵 1

𝐵
= ∑ 𝑏𝑘

∗𝑖𝐵
𝑖=1 (2)

To highlight the above process related to the construc-
tion of the UBCI (Eq. (1)) and the estimates of the exam-
ined parameters (Eq. (2)), we, indicatively, demonstrate
an example related to the examination of the No Adoption
of Good Practices Macro-Management metric. Following
the above under-sampling strategy and the fitting of a
UBGLMM model for 𝐵 = 1000 repetitions (Steps 1-3), the
process resulted into 1000 under-bagged estimates for the
No Adoption of Good Practices parameter. The set of 𝐵 =
1000 under-bagged estimates of the fitted models’ forms,
in turn, an empirical distribution that is graphically dis-
played in Figure 3. Hence, the evaluation of the 95% UB-
CI (lower and upper bounds represented by the black
vertical lines, respectively) is a straightforward task
through the identification of the 2.5-th and the 97.5-th
percentile values of the constructed empirical distribution
(see also the results in the second column of Table 2 in
Section 2). Moreover, the mean value of this empirical
distribution (represented by the red line) is the final un-
der-bagged estimate (Eq. (2)) concerning the coefficient of
the No Adoption of Good Practices Macro-Management TD
metric of the model.

FIG. 3: EXAMPLE DISTRIBUTION

3.2 Data Collection

For the purpose of this study, we have analyzed 100
open-source software projects. To have a common source
of information for project retrieval and to be sure that all
of them are being developed using the same techniques,
we selected the Apache Software Foundation organiza-
tion from GitHub. To be able to calculate all the selected
metrics for each project, we have applied the following
two restrictions in the project selection process. First of
all, the projects must be developed in the Java program-
ming language, to be able to calculate the majority of the
TD Micro-Management parameters. Secondly, the pro-
jects should also rely on Jira as an issue tracking system.
This was vital for the calculation of some TD Marco-
Management parameters. The final list of selected projects
can be found in Appendix A, along with some descriptive
characteristics.

To be able to calculate all of the TD Micro- and Macro-
Management Metrics, we had to use a variety of existing
tools, or create our own. On the one hand, concerning TD

Micro-Management, we use established class-level met-
rics used for assessing software assets maintainability—
see first part of Table 1. The selection of metrics relied on
a secondary study by Riaz et al. [34], suggesting that the
metrics suites of CK and Li and Henry are the most com-
monly used maintainability predictors. On top of that,
regarding developers experience per class we relied on
the metric by Tsoukalas et al. [25], and for “Poor Design”
we used TD Interest [21], as the most relevant for the TD
phenomenon. The metrics are calculated relying on four
different tools: CKJM [18], Metrics Calculator3 [19],
PyDriller [20], and SDK4ED Interest Calculator [21].

On the other-hand, to the best of our knowledge, there
are neither metrics, nor tools, for assessing the TD Macro-
Management parameters. For this reason, we had to de-
fine our own metrics for each TD cause, described in Sec-
tion 2.2, and are presented in the second part of Table 1,
along with their calculation method. The presentation of
the TD Macro-Management metrics follows the order of
TD project-level causes (see Section 2.2). For example, the
cause “Change in Project” has led us to consider a metric:
“Average LoC changes between commits”, or the “Close Dead-
lines” TD accumulation cause has inspired us for studying
the: “Average days between releases” metric. Nevertheless,
we need to clarify that, since for each TD accumulation
cause, a number of different metrics could have been in-
troduced, the obtained results are coupled to the defined
metrics and not to the TD causes that have been used as
an inspiration. Therefore, any interpretations stand closer
to the metrics rather than the corresponding cause. De-
spite the employed interpretation strategy to avoid severe
construct validity threats, in Section 6, we further discuss
the possible complications more extensively.

The dichotomous response variable expresses if a class
of the dataset is classified as HIGH_TD or not. The as-
sessment is performed with a tool4 based on Machine
Learning classifiers that uses source code metrics and
repository activity information as predictors [33], validat-
ed with a large number of open-source software classes
[25]. As ground truth for the development of the em-
ployed classification framework an empirical benchmark
of classes that exhibit high levels of TD was used [6],
based on the convergence of three widely adopted TD
assessment tools, namely SonarQube, CAST, and Squore.
In other words, a class that is classified as HIGH_TD cor-
responds to an artifact which would probably be identi-
fied as problematic by three leading TD analysis tools,
thereby expressing a commonly agree TD item.

3.3 Data Analysis

3.3.1 Data Pre-processing

The dataset of this study, encompasses artifacts assessed
as HIGH / NOT_HIGH_TD by the TD Benchmarker tool
[25] along with the class- and project-level metrics evalu-
ated by the examined tools. The initial dataset comprised
90,669 classes and their associated measurements at both
TD Macro- and Micro-Management.

3 https://github.com/dimizisis/metrics_calculator
4 http://160.40.52.130:3000/tdclassifier

NIKOLAIDIS ET AL.: ASSESSING TD MACRO-MANAGEMENT: A NESTED MODELLING STATISTICAL APPROACH 7

TABLE 1: METRICS USED FOR THE TD MICRO- AND MACRO-MANAGEMENT

Metric Calculation method / Description M SD Mdn Min Max

M
ic

ro
-T

D
M

Coupling Between Objects (CBO) Number of dependencies a file has 9.22 8.09 7 0 43

Weighted Method per Class (WMC) Counts the number of branch instructions in a class 15.23 21.15 8 0 325

Depth of Inheritance Tree (DIT) Counts the number of “fathers” a class has 2.03 1.89 1 1 144

Response for a Class (RFC) Counts the number of unique method invocations in a class 17.49 22.41 10 0 561

Lack of Cohesion of Methods (LCOM) Subtracts the number of cohesive from the non-cohesive pairs of methods 43.06 172.71 3 0 3257

Lines of Code (LoC) Counts the lines of code 77.64 108.12 41 1 3876

Data Abstraction Coupling (DAC) Counts the number of user-defined classes as class properties 0.34 0.93 0 0 9

Message Passing Coupling (MPC) Total number of methods called 20.91 35.97 6 0 276

Number of Classes (NoC) Measures the number of immediate descendants of the class 0.48 3.97 0 0 365

Complexity Counts the amount of decision logic in a source code 11.50 21.76 2 0 188

Documentation Percentage of comment lines in comparison with the source code lines 11.21 17.32 2.10 0 97

Experience of Contributors Percentage of the lines authored by the highest contributor to a class 88.29 17.81 100 16.12 100

Poor Design / TD Interest Amount of money that has to be paid as an overhead when changes are being made, due to

the code quality of the codebase.

0.91 2.26 0.26 0 180.31

M
ac

ro
-T

D
M

Changed Lines The average changed lines of code per commit 470.96 334.66 399.28 137.89 2316.58

Release Distance Days that passed between each release in Github 173.04 120.44 139.74 4.33 515.82

Number of Dependencies Number of dependencies of the project. 49.78 57.23 31.5 0 251

Jira Issues Size Average size (in words) of the Jira issues description 98.18 54.4 85.68 32.42 284.1

Test Coverage (%) Test coverage as a percentage of the functions covered by test by the total number of func-

tions

0.24 0.33 0.14 0.01 1.91

Commits since a new technology is added Number of commits that pass since the addition of a new technology (obtained by counting

the file extension)

419.46 334.31 316.42 98 1533

Distinction of Development & Testing Check if there is an intersection between team members reporting and resolving issues in Jira No: 33,867 (47.42%) Yes: 37,552 (52.58%)

Emails among team members Average number of emails the developers exchanged from the official mail-archives of

Apache

206.47 179.19 140.22 13.25 714.8

Code inefficiencies Average number of code inefficiencies (with the help of Checkstyle tool) for each line of code 1.15 1.58 0.7 0.06 11.37

Number of Refactoring Average number of refactoring that appear in a commit (based on Refactoring Miner) 5.36 9.02 3.12 0.66 61.84

Size of Javadoc’s Average size of each list item in the Javadoc 9.73 5.72 7.92 1 23.56

Commits per Day Average number of commits per day 1.77 1.97 1.01 0.24 10.57

Changes in Board Meetings Changes of the members in the official board meetings of Apache 3.77 16.67 1.51 0.68 128.44

Number of Members Number of official team members of a project 19.98 11.73 17.5 4 57

 Note M, SD, Mdn, min, max represent the mean, standard deviation, median, minimum, maximum values, respectively

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

The descriptive statistics and the graphical inspection
of the measurements for the set of independent variables
(class- and project-level metrics) indicated highly-skewed
distributions due to the existence of extreme outlying
points. For this reason, we decided to identify and filter
out these outliers through the evaluation of the 𝑧-scores
for each class-level metric using a threshold value of 3.0,
since they will strongly affect the fitting process of the
final model. This pre-processing step resulted into the
removal of 2,670 classes. Finally, the limited number of
HIGH_TD classes within specific projects led us to ex-
clude projects presenting less than 20 HIGH_TD classes.
We decided to exclude from any further analysis projects
containing only a limited number of HIGH_TD classes,
since they would not be representative cases from the
unknown population that we wish to infer about. For
example, clerezza and commons-io accumulated only seven
HIGH_TD classes, and thus, any inference about the ran-
dom effects through the insertion of these projects into
the analysis would be covered by a significant amount of
variability. Applying the aforementioned decisions,
yielded a final dataset consisting of 71,419 classes from 58
Java projects. Out of those 3,675 (5.15%) were character-
ized as HIGH_TD (response variable).

3.3.2 Model Building

Regarding the building of the GLMMs, the fitting phase
was based on a two-step process for the selection of the
set of the independent variables that will form the TD
Micro- and Macro-Management parameters, correspond-
ing to class- and project-level metrics, respectively. As far
as TD Micro-Management parameters are concerned, we
followed a feature selection strategy based on predefined
criteria synthesized via the careful examination of the
class-level metrics and the interpretation / calculation
formula for each metric. Such an approach is aligned with
the general guidelines for selecting fixed effect factors in
MEMs suggesting the insertion of independent variables
obtained from the researchers’ expertise and knowledge
and the understanding of the problem rather than a naïve
approach that takes into consideration the whole set of
the collected features [22]. The selection of class-level
metrics was conducted satisfying the following criteria:
C1. Class-metrics that are linear combinations of other

class-metrics should be excluded. This criterion has
been set due to limitations of statistical methods that
use the covariance matrix and related problems (e.g.,
problem of ranks, irreversibility, etc.);

C2. Class-metrics that are highly correlated to other class-
metrics, i.e., presenting a statistically significant
Spearman correlation coefficient higher than 0.6
should be excluded. This criterion has been set since
multicollinearity causes problems in statistical meth-
odologies; and

C3. Class-metrics that are not highly correlated with the
response, i.e., Spearman correlation coefficient lower
than 0.1 should be excluded. This criterion has been
set due to the fact that an independent variable that is
very weakly correlated to the response variable can of-
fer very limited interpretability.

The adaption of the above selection strategy resulted into
a set of five metrics (CBO, LCOM, Complexity, Experience of
Contributors, MPC) that will be used into the Micro-
Management component of the model. Due to C1 we ex-
cluded RFC, since its calculation involves both MPC and
WMC. Due to C2, we have excluded LoC, which is very
strongly correlated to CBO, WMC, MPC, and TD Interest.
Also, we excluded Focus on Producing more at the Expense
of Quality, which is correlated to TD Interest; WMC which
is correlated to LCOM, and DAC being correlated to CBO.
Finally, in the dilemma of excluding either TD Interest or
MPC, we preferred to retain MPC since it is a primary
metric, whereas TD Interest is a compound one. Based on
C3, we excluded DIT, NOCC, and Documentation.

Concerning the Macro-Management part of the model,
we made use of a forward selection strategy, since, to the
best of our knowledge, this is the first research attempt
focusing on the investigation of the potential effects for an
extensive set of Macro-Management parameters on TD
accumulation. Thus, there is a relatively limited body of
knowledge and empirical evidence that could guide the
process. Described briefly, the model incorporating the
class-level metrics (TD Micro-Management parameter
component) is fitted, while in each iteration, the algo-
rithm adds in project-level metrics belonging to the TD
Macro-Management parameters list one by one. The TD
Macro-Management parameter selected for an entry into
each iteration is the one leading to a model that presents a
statistically significant difference compared to the model
of the previous iteration based on the Wald test, whereas
among the candidates of statistically significant project-
level metrics, the metric resulting to the model with the
lowest Akaike Information Criterion (AIC) value is finally
selected. The process is iteratively repeated until there is
no further improvement by the insertion of project-level
metrics from the set of candidates that do not participate
in derived solution of the previous iterations. The execu-
tion of the forward selection algorithm revealed a set of
three project-level metrics (pressure, non-adoption of good
practices, and lack of specific team) that will be inserted into
the TD Macro-Management part of the model along with
the five metrics of the TD Micro-Management part.

4 EXPERIMENTAL RESULTS

This section presents the findings extracted from the pro-
posed multi-level statistical approach. Table 2 summariz-
es the results obtained from the execution of the UB-
GLMM algorithm on the examined dataset. The second
column (“UB Estimate”) presents the estimated coeffi-
cients by which each metric participates into either the
micro- or macro-management parts of the final model
along with the corresponding 95% UBCIs.

In addition, Figure 4 visualizes the empirical under-
bagged distributions for each class- and project-level met-
ric obtained from 𝐵 = 100 repetitions of the UBGLMM
algorithm, whereas the vertical red line indicates the zero
value for facilitating hypothesis testing. In our case, the
findings (Table 2 and Figure 4) reveal that the null hy-
pothesized value (the zero value) falls outside of the con-
structed 95% UBCIs for all class- and project-level met-

NIKOLAIDIS ET AL.: AN EMPIRICAL ASSESSMENT OF TECHNICAL DEBT MACRO-MANAGEMENT OPPORTUNITIES 9

rics, which practically means, that the identified TD Mi-
cro- and Macro-Management activities present statistical-
ly significant fixed effects on the response.

TABLE 2: RESULTS OF UBGLMM ALGORITHM

Metric

UB Estimate

95% UBCI

OR

95% CI for OR

CBO 0.1429

[0.1346, 0.1512]

1.1536

[1.1441, 1.1632]

LCOM 0.0014

[0.0009, 0.0020]

1.0014

[1.0009, 1.0020]

Complexity 0.0384

[0.0360 ,0.0410]

1.0391

[1.0367, 1.0419]

Contributors Experience -0.0081

[-0.0108, -0.0053]

0.9919

[0.9893, 0.9947]

MPC 0.0165

[0.0148, 0.082]

1.0166

[1.0149, 1.0184]

Pressure -0.1825

[-0.2066, -0.1605]

0.8332

[0.8133, 0.8517]

No Adoption of Good

Practices

0.1533

[0.1346, 0.1721]

1.1657

[1.1441, 1.1878]

Lack of Specific Teams:

Yes

-0.3283

[-0.4207, -0.2446]

0.7201

[0.6566, 0.7830]

To provide an intuitive and straightforward interpre-
tation of the effects for the final set of Micro- and Macro-
Management parameters on TD accumulation, we com-
puted also the Odds Ratio (OR) (3rd column, first line of
Table 2) and their associated 95% CIs (3rd column, second
line of Table 2) for the class-level and project-level met-
rics, respectively, which quantifies the ratio of the proba-
bility of a TD-artifact to be assessed as HIGH_TD to the
probability of being assessed as NOT_HIGH_TD. Gener-
ally, the larger the OR, the higher odds that the class will
be assessed as HIGH_TD, whereas, odds ratios smaller
than one indicate the TD-artifact has fewer odds of being
assessed as HIGH_TD. For example, the value of OR for
the CBO metric indicates that as the number of depend-
encies for a class file increase by one unit, the odds for the
class to be assessed as HIGH_TD increases by a factor of
1.1536, which practically means an increase of 15.36%.
Regarding the interpretation of the OR for the categorical
project-level metric Lack of Specific Team (i.e., No Distinc-
tion among Development and Testing Team), the value is
lower than one, signifying that a TD-artifact to be as-
sessed as HIGH_TD is more likely at level No (i.e., when
there is no distinction between the Development and
Testing roles), since ‘No’ is the reference category for this
specific factor (Table 1).

FIG. 4: IMPORTANCE OF MICRO- AND MACRO-TD PARAMETERS

Interpretation of Micro TD-Management Results: When
interpreting the OR values, the range of the metrics, as
well as the ease with which the metrics can be changed by
one unit, must be considered. By considering that: (a)
LCOM is a sensitive metric, whose values can change
even by the addition of only one method or splitting a
class [23]; whereas (b) coupling and complexity metrics are
fluctuating less along evolution and the improvement of

their metric scores requires more complex refactoring
opportunities, e.g., replacing conditionals with polymor-
phism or re-arranging methods in classes; we can suggest
that managing cohesion is a promising way for reducing
the probability of a class to classified as HIGH_TD. The
sign in these relations is positive, as expected, since an
increase in the levels of these qualities hurts the main-
tainability of the system [24]. Interestingly, an increase in

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

the Experience of Developers tends not to reduce the proba-
bility of writing lowered-TD code, but rather increases it.
A tentative interpretation of this, which is also supported
by the literature [25], is that experienced developers are
more reluctant to change their development habits or fol-
low standards in their way programming.

The findings of the study suggest that proper object-
oriented design, dealing with modularity (i.e., balance
between coupling and cohesion), abstractness, and un-
necessary complexity; can lead to improved TD Micro-
Management.

Interpretation of Macro TD-Management Results: Re-
garding project-level metrics, we can also make some in-
teresting observations. First, we can conclude that the
sign of the relations (as presented in Table 2) is intuitive.
In particular, putting pressure on the developers to make
frequent commits (Pressure) is a good practice in software
development [27], supported by many modern develop-
ment methodologies. The frequent committing dictates a
careful development process, possibly implying Continu-
ous Integration strategies, and frequent testing, since
committed code must pass the functional and quality
tests. Additionally, the Non-Adoption of Quality Practices
(e.g., not performing quality checks, leading to inefficien-
cies creeping into the code) is expected to lead to accumu-
lation of code TD, especially by considering that the ma-
jority of TD measurement tools identify TD items, by
counting quality rule violations. Finally, our results sug-
gest that the use of Different Teams for Development and
Testing is a practice that can aid in improving quality,
since a different perspective and viewpoint is always
beneficial for effective quality audits [29].

By considering the range of values for the TD Macro-
Management parameters, as well as the ease of chang-
ing their values by one unit, we can claim that commit-
ting code daily is a practice that must be promoted
among practitioners.

Regarding the random effects of the final model (see
Table 2), the variance decomposition showcases that the
proportion of the variance attributed to classes differ-

ences is lower (𝜎𝑐𝑙𝑎𝑠𝑠
2𝑈𝐵

= 0.067, 95% 𝑈𝐵𝐶𝐼 [0.046, 0.103])
compared to the variance attributed to project differences

𝜎𝑝𝑟𝑜𝑗𝑒𝑐𝑡
2𝑈𝐵

= 0.237, 95% 𝑈𝐵𝐶𝐼 [0.189, 0.289]. Therefore, an

interesting follow-up investigation would be to explore
whether a practitioner should invest in TD Macro-
Management to prevent TD accumulation. To provide a
straightforward answer to the above critical issue, we
decided to perform a sensitivity analysis by examining, if
the insertion of project-level metrics contributes to the
better understanding of the examined phenomenon—
suggesting that the TD Macro-Management parameters
play an important role on if a class is classified as a
HIGH_TD one. To this end, we repeated the analysis by
applying the proposed UBGLMM approach relying, sole-
ly, on the set of class-level metrics and compare the find-
ings to the model incorporating both class- and project-
level metrics. To compare the performances of Model A

(containing both Micro- and Macro-Management parame-
ters) versus Model B (containing only Micro-Management
parameters), we made use of the Wald test followed by a
win-tie-loss strategy [30]. In other words, we counted the
number of times the Wald test resulted into a statistically
significant difference between the fitting of the two mod-
els, while for selection purposes, the model with the low-
est AIC value is finally chosen. The findings indicated
that Model A presented lower AIC values compared to
Model B for the whole set of repetitions. Regarding the
results of the hypothesis testing procedure, the 𝑝-value of
the Wald test was below the alpha level of 0.05 for the
entirety of the repetitions.

Based on our empirical evidence we can claim that TD
Macro-Management can contribute to an effective TD
prevention.

5 IMPLICATIONS TO RESEARCHERS AND

PRACTITIONERS

The findings of this study (as presented in Table 2, Figure
4, and the boxed text in Section 4) can be summarized as
follows: (a) TD Macro-Management showed to be an effi-
cient way for preventing classes of a project to accumu-
late TD; (b) Coupling, Cohesion, and Complexity metrics
are the most important parameters of TD Micro-
Management—as also supported by the literature; and (c)
Number of Commits, Use of a Different Team for Testing
and Development, and the Adoption of Good Quality
Practices are the most important TD Macro-Management
parameters. These findings can be important for both re-
searchers and practitioners.
Implications to Researchers: First, based on the fact that
the proposed approach was able to provide empirical
evidence, considering the nested nature of the problem,
we encourage researchers to apply the proposed ap-
proach for various software engineering problems—we
expect that almost all software engineering research prob-
lems can be approached as such. The uniform analysis at
both levels, aids in surpassing important mining software
repository problems (e.g., the overrepresentation of pro-
jects that contribute a large portion of the dataset [31])
advancing the state-of-research, which until now focused
only at one of the two levels. Applying a nesting ap-
proach can: (a) limit the need of aggregating data from
the class-level to the project-level, so as to work with pro-
ject metrics; (b) limit the unhandled dependence of data
that rely on the same project, being treated as independ-
ent observations; and (c) enables the development of
models combining information at both levels.

Additionally, based on finding (a) we confirm the rel-
evance of the TD causes literature [3][4][12][13], provid-
ing the first quantitative and independent empirical evi-
dence on their relation to TD accumulation. Interesting
future work in this direction would be to assess more
causes, and provide additional metrics for their quantifi-
cation. Additionally, another extension to this work
would be to explore project metrics in isolation so as to
explore their relation to the percentage of classes in a sys-
tem that are classified as HIGH_TD. Finally, based on

NIKOLAIDIS ET AL.: AN EMPIRICAL ASSESSMENT OF TECHNICAL DEBT MACRO-MANAGEMENT OPPORTUNITIES 11

finding (c) we can encourage researchers to propose ap-
proaches or processes that will integrate TD accumulation
prevention measures. An important step in this direction
would be the adoption and assessment of such approach-
es by software practitioners, mostly evaluating their long-
term costs and benefits. For instance, how does the cost of
“Adopting Good Quality Practices” compare to the benefit
that they can bring (e.g., “Reduced Maintenance Cost”, “Re-
duced Bug Fixing Costs”, etc.)? An analysis of the point at
which process improvements are over-engineered is very
important in order not to over-spent resources (increasing
cost) for gaining a minimal benefit. Similar approaches
are well-established in the manufacturing domain, name-
ly: Poor Quality Cost Management [32].
Implications to Practitioners: Based on finding (a) we
encourage project managers to pay attention to technical
management practices that can prevent the accumulation
of TD, since there seems to be an important association
between managerial decisions and TD costs. This implica-
tion becomes even more important by considering, apart
from the impact, also the wide scope of such interven-
tions. Additionally, by synthesizing findings (b) and (c),
we encourage technical managers to adopt into their pro-
cesses the following steps:
• Impose developers to commit their code at least once

per day;
• While committing, the adoption of good quality prac-

tices must be automatically assessed, through tools.
• Quality gates must check the coupling, cohesion, and

complexity of the code. In case of a need for a quality
compromise class cohesion must be advised: i.e., opt
for more and small classes, that might present some
additional coupling;

• Upon code commit, a separate team must check the
code manually, both from a functional or a non-
functional perspective.

Despite the fact that the above steps are strongly support-
ed by empirical evidence, we need to highlight (as men-
tioned before) that the ordering, effectiveness, and cost
feasibility of such approach needs to be studied in future
work.

6 THREATS TO VALIDITY

This study exploring the importance of TD Micro- and
Macro-Management with regard to the probability of
software artifacts to exhibit high values of TD is based on
specific metrics outlined in Table 1 and Table 2. TD Mi-
cro-Management metrics, such as size, complexity, cou-
pling and cohesion have been widely studied and their
relation to software quality is proven. On the other hand,
the field of TD Macro-management metrics reflecting pro-
ject-wide strategies and policies, is less studied. As a re-
sult, the findings are subject to construct validity threats
in the sense that the examined class probability of accu-
mulating high or low levels of TD might be loosely con-
nected to the selected metrics. Furthermore, even if the
causes of TD are assumed to be valid, the TD metrics for
expressing them and the associated calculation method
are not unique. A set of different metrics for capturing TD
Macro-Management (e.g., extract through the list of worst

reasons of TD smells [35]) strategies might have led to
different findings. Nevertheless, we believe that the use of
a forward selection strategy for the macro-management
metrics resulted in a set of statistically significant metrics
which are sound, quantifiable and diverse. For the re-
sponse variable expressing whether a class is suffering
from HIGH_TD or not, concerns could be raised on its
accuracy, considering the challenges in objectively identi-
fying and measuring TD. However, for the employed
dataset, the response variable reflects the level of agree-
ment among three leading TD analysis tools, meaning
that a high TD class has a high probability of being unan-
imously designated as such by three different approaches,
mitigating the relevant construct validity threat.

The fact that the analysis has been performed on 100
open-source Java projects threatens the external validity
of our findings. In particular, we cannot generalize the
observations regarding the importance of TD Micro- and
Macro-Management approaches to industrial software or
programs written in different programming languages.
Nevertheless, the longevity, number of projects and the
good practices followed by the Apache Software Founda-
tion regarding the organization and management of their
projects, partially mitigate the generalization threats as
these open-source projects follow strict guidelines and
closely monitor the progress. In any case, replication
studies on projects with different characteristics can shed
light into the value of TD Macro-Management processes.

Finally, reliability threats for the kind of study that we
have presented are associated to the ability of replicating
it and reaching the same results. To mitigate this threat,
the study protocol is extensively described in Section 3
explicitly listing all data collection and analysis steps.
Researcher bias has been avoided since the dataset has
been subject only to automated analysis with no subjec-
tive interpretation by the researchers. A replication pack-
age consisting of all metrics values for each unit of analy-
sis is available and we encourage the independent repli-
cation of the investigation in similar settings5.

7 CONCLUSION AND FUTURE WORK

In this study, we aimed at identifying possible causes of
TD accumulation, so as to provide explicit suggestions for
avoiding the existence of HIGH_TD classes in a software
system, by applying with Micro- or Macro-Management
interventions. The nature of the problem (many classes
belong to the same project, and share some common
characteristics) led us in using a nested modelling ap-
proach to surpass the problems that traditional correla-
tion analysis would face. In particular, we proposed the
Under-Bagging based Generalized Linear Mixed Models (UB-
GLMM) data analysis methodology that can use class-
and project-level metrics in the same model and discrimi-
nate their fixed and random effects.

The results of the study suggested that TD Micro-
Management (methods that manage class-level parame-
ters) and TD Macro-Management approaches (methods
that manage project-level parameters) can both contribute

5 https://users.uom.gr/~a.ampatzoglou/aux_material/TD_Nested.xlsx

https://users.uom.gr/~a.ampatzoglou/aux_material/TD_Nested.xlsx

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

to efficient prevention of TD accumulation. In particular,
we have provided quantitative empirical evidence that
Reducing Coupling Between Objects, Limiting Lack of
Cohesion of Methods, Reducing Complexity, Adopting
Good Quality Practices, Controlling Commit Frequency,
and Using Different Teams for Development and Testing
can be efficient ways for preventing the accumulation of
TD into classes. The results have been interpreted and
contrasted with existing literature (see Section 4), and
various implications for researchers and practitioners
have been stated (see Section 5).

ACKNOWLEDGEMENTS

The work of Dr. Arvanitou was financially supported by
the action “Strengthening Human Resources Research
Potential via Doctorate Research” of the Operational Pro-
gram “Human Resources Development Program, Educa-
tion and Lifelong Learning, 2014-2020”, implemented
from State Scholarship Foundation (IKY) and co-financed
by the European Social Fund and the Greek public (Na-
tional Strategic Reference Framework (NSRF) 2014–2020).
The work of Mr. Nikolaidis is funded by the University of
Macedonia Research Committee as part of the “Principal
Research 2020” funding program. The work of Dr. Chat-
zigeorgiou and Dr. Ampatzoglou has been financed from
the European Union’s Horizon 2020 Research and Inno-
vation Programme through SmartCLIDE project under
Grant Agreement No. 871177.

REFERENCES
[1] E. M. Arvanitou, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou,

I. Stamelos, “Monitoring technical debt in an industrial set-

ting”, 23rd International Conference on the Evaluation and As-

sessment in Software Engineering (EASE' 19), Copenhagen,

Denmark, ACM (2019), 14-17 April

[2] Z. Li, P. Avgeriou, P. Liang, “A systematic mapping study on

technical debt and its management”, J. Syst. Softw., 101 (2015),

Elsevier, pp. 193-220.

[3] Rios, N., Spínola, R. O., Mendonça, M. and Seaman, C. (2020).

The practitioners’ point of view on the concept of technical

debt and its causes and consequences: a design for a global

family of industrial surveys and its first results from Brazil.

Empirical Software Engineering. pp. 1-72.

[4] Martini, A., Bosch, J. and Chaudron, M. (2014). Architecture

technical debt: Understanding causes and a qualitative model.

40th Conference on SEAA. pp. 85-92.

[5] V. Lenarduzzi, V. Mandić, A. Katin, and D. Taibi. 2020. “How

long do Junior Developers take to Remove Technical Debt

Items?”, 14th International Symposium on Empirical Software

Engineering and Measurement (ESEM '20). ACM, 1–6.

[6] T. Amanatidis, N. Mittas, A. Moschou, A. Chatzigeorgiou, A.

Ampatzoglou, L. Angelis, “Evaluating the agreement among

technical debt measurement tools: building an empirical

benchmark of technical debt liabilities”, Empir. Softw. Eng., 25

(5) (2020), pp. 4161-4204

[7] Carvalho DV, Pereira EM, Cardoso JS. Machine Learning In-

terpretability: A Survey on Methods and Metrics. Electronics.

2019; 8(8):832

[8] Alves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O.,

Shull, F. and Seaman, C., 2016. Identification and management

of technical debt: A systematic mapping study. Information

and Software Technology, 70, pp.100-121.

[9] Ben Idris, M., 2020. Investigate, identify and estimate the tech-

nical debt: a systematic mapping study. SSRN: 3606172.

[10] Zazworka, N., Spínola, R.O., Vetro', A., Shull, F. and Seaman,

C., 2013, April. A case study on effectively identifying tech-

nical debt. 17th International Conference on Evaluation and

Assessment in Software Engineering (pp. 42-47).

[11] Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Sea-

man, C. , Shull, F., 2014. Comparing four approaches for tech-

nical debt identification. Software Quality Journal, pp.403-426.

[12] Martini, A. and Bosch, J. (2017). On the interest of architectural

technical debt: Uncovering the contagious debt phenomenon.

Journal of Software: Evolution and Process, 29(10).

[13] Yli-Huumo, J., Maglyas, A. and Smolander, K. (2016). How do

software development teams manage technical debt? –An em-

pirical study. Journal of Systems and Software. pp. 195-218.

[14] Jiang, J. Linear and generalized linear mixed models and their

applications. Springer Science & Business Media, 2007.

[15] Raghuvanshi, B. S., & Shukla, S. (2019). Class imbalance learn-

ing using UnderBagging based kernelized extreme learning

machine. Neurocomputing, 329, 172-187.

[16] Breiman, L. (1996). Bagging predictors. Machine learning,

24(2), 123-140.

[17] Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of

the behavior of several methods for balancing machine learn-

ing training data. SIGKDD explorations newsletter, 6(1), 20-29.

[18] M. Aniche, Java code metrics calculator (CK), 2015.

[19] A. Ampatzoglou, A. Gkortzis, S. Charalampidou and I. Sta-

melos, “An Embedded Multiple-Case Study on OSS Design

Quality Assessment across Domains”, 7th International Sym-

posium on Empirical Software Engineering and Measurement

(ESEM’13), ACM, 10 - 11 October 2013, Baltimore, USA.

[20] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python

Framework for Mining Software Repositories,” 26th ACM Joint

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE), 2018.

[21] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Am-

patzoglou, A. Chatzigeorgiou, and P. Avgeriou, “A framework

for managing interest in technical debt: an industrial valida-

tion,” in Proceedings of the 2018 International Conference on

Technical Debt, 2018, pp. 115–124.

[22] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou and P.

Avgeriou, "Software metrics fluctuation: a property for assist-

ing the metric selection process", Information and Software

Technology, vol. 72, pp. 110-124, 2016.

[23] Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J.,

Fisher, D. N., Goodwin, C. E., ... & Inger, R. (2018). A brief in-

troduction to mixed effects modelling and multi-model infer-

ence in ecology. PeerJ, 6, e4794.

[24] Van Koten, C. and Gray, A.R., 2006. An application of Bayesian

network for predicting object-oriented software maintainabil-

ity. Information and Software Technology, 48(1), pp.59-67.

[25] D. Tsoukalas, N. Mittas, A. Chatzigeorgiou, D. Kehagias, A.

Ampatzoglou, T. Amanatidis, L. Angelis “Machine Learning

for Technical Debt Identification,” IEEE Trans. Softw. Eng., pp.

1–1, 2021.

[26] Van Vliet, H., and Van Vliet, J.C., 2008. Software engineering:

principles and practice (Vol. 13). Hoboken, NJ: Wiley & Sons.

[27] Asklund, U. and Bendix, L., 2002. A study of configuration

management in open-source software projects. IEE Proceed-

ings - Software, 149(1), pp.40-46.

[28] K. Herzig and A. Zeller, “The impact of tangled code changes,”

in 2013 10th Working Conference on Mining Software Reposi-

tories (MSR), May 2013, pp. 121–130

NIKOLAIDIS ET AL.: AN EMPIRICAL ASSESSMENT OF TECHNICAL DEBT MACRO-MANAGEMENT OPPORTUNITIES 13

[29] Ammann P., and Offutt J., “Introduction to Software”, Cam-

bridge Press, 1st Edition, 2008.

[30] Demšar, J. (2006). Statistical comparisons of classifiers over

multiple data sets. The Journal of Machine Learning Research,

7, 1-30.

[31] N. Saarimäki, S. Moreschini, F. Lomio, R. Penaloza, and V.

Lenarduzzi, “Towards a Robust Approach to Analyze Time-

Dependent Data in Software Engineering”, IEEE International

Conference on Software Analysis, Evolution and Reengineer-

ing (SANER ‘22), Hawaii, USA, April 2022.

[32] Ampatzoglou A, Arvanitou E-M, Ampatzoglou A, Avgeriou P,

Tsintzira A-A, Chatzigeorgiou A. 2021. Architectural decision-

making as a financial investment: an industrial case study. In-

formation and Software Technology 129:106412

[33] D. Tsoukalas, A. Chatzigeorgiou, A. Ampatzoglou, N. Mittas,

D. Kehagias, “TD Classifier: Automatic Identification of Java

Classes with High Technical Debt”, 5th International Confer-

ence on Technical Debt (TechDEBT' 22), ACM, Pennsylvania,

USA, May 2022

[34] Riaz, M., Mendes, E. and Tempero, E. "A systematic review

on software maintainability prediction and metrics", 3rd Inter-

national Symposium on Empirical Software Engineering and

Measurement (ESEM’09), IEEE Computer Society, Florida,

USA, pp. 367-377, 15-16 October 2009.

[35] D. Falessi and R. Kazman, "Worst Smells and Their Worst Rea-

sons," 2021 IEEE/ACM International Conference on Technical

Debt (TechDebt), 2021, pp. 45-54.

Nikolaos Nikolaidis is an PhD

student at the Department of

Applied Informatics in the Uni-

versity of Macedonia, Greece. He

received a BSc in Applied Infor-

matics from the same university

in 2018. He is currently em-

ployed as a research associate in

the Software Engineering group

of University of Macedonia, working on multiple research

projects. His research interests are technical debt manage-

ment, mining software repositories, and software quality

assurance.

Dr. Nikolaos Mittas is an Assis-

tant Professor in the Department

of Chemistry at the International

Hellenic University. He received

the BSc degree in Mathematics

from the University of Crete and

the MSc and PhD degrees in

Informatics from the Aristotle

University of Thessaloniki (AUTH). His current research

interests are focused on the application of statistics and data

analytics in the area of Software Engineering and Project

Management.

Dr. Apostolos Ampatzoglou is

an Assistant Professor in the De-

partment of Applied Informatics

in University of Macedonia

(Greece), where he carries out

research and teaching in the area

of software engineering. Before

joining University of Macedonia,

he was an Assistant Professor in

the University of Groningen

(Netherlands). He holds a BSc on Information Systems

(2003), an MSc on Computer Systems (2005) and a PhD in

Software Engineering by the Aristotle University of Thessa-

loniki (2012). He has published more than 100 articles in in-

ternational journals and conferences, and is/was involved in

over 15 R&D ICT projects, with funding from national and

international organizations. His current research interests are

focused on technical debt management, software maintaina-

bility, reverse engineering software quality management,

open-source software, and software design.

Dr. Elvira-Maria Arvanitou is a

Post-Doctoral Researcher at the

Department of Applied Infor-

matics, in the University of Mac-

edonia, Greece. She holds a PhD

degree in Software Engineering

from the University of Groning-

en (Netherlands, 2018), an MSc

degree in Information Systems

from the Aristotle University of

Thessaloniki, Greece (2013), and a BSc degree in Information

Technology from the Technological Institute of Thessaloniki,

Greece (2011). Her PhD thesis has been awarded as being

part of the top-3 ICT-related in Netherlands for 2018. Her

research interests include technical debt management, soft-

ware quality metrics, and software maintainability.

Dr. Alexander Chatzigeorgiou is

a Professor of Software Engineer-

ing in the Department of Ap-

plied Informatics and Dean of

the School of Information Sci-

ences at the University of Mace-

donia, Thessaloniki, Greece. He

received the Diploma in Electri-

cal Engineering and the PhD

degree in Computer Science

from the Aristotle University of Thessaloniki, Greece, in 1996

and 2000, respectively. From 1997 to 1999 he was with Intra-

com S.A., Greece, as a software designer. His research inter-

ests include object-oriented design, software maintenance,

technical debt and evolution analysis. He has published

more than 150 articles in international journals and confer-

ences and participated in a number of European and national

research programs. He is a Senior Associate Editor of the

Journal of Systems and Software.

