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Abstract: We deal with the problem of class imbalance in data mining and machine learning classifi-
cation algorithms. This is the case where some of the class labels are represented by a small number
of examples in the training dataset compared to the rest of the class labels. Usually, those minority
class labels are the most important ones, implying that classifiers should primarily perform well
on predicting those labels. This is a well-studied problem and various strategies that use sampling
methods are used to balance the representation of the labels in the training dataset and improve
classifier performance. We explore whether expert knowledge in the field of Meteorology can enhance
the quality of the training dataset when treated by pre-processing sampling strategies. We propose
four new sampling strategies based on our expertise on the data domain and we compare their
effectiveness against the established sampling strategies used in the literature. It turns out that our
sampling strategies, which take advantage of expert knowledge from the data domain, achieve class
balancing that improves the performance of most classifiers.

Keywords: meteorological data mining and machine learning; class imbalance; classification;
randomized undersampling; SMOTE oversampling; undersampling using temporal distances

1. Introduction

Imbalanced or skewed training datasets make predictive modeling challenging since
most of the classifiers are designed assuming a uniform distribution of class labels among
the examples. There are classification problems that must deal with various degrees of
imbalance. The goal is to improve the quality of the training dataset, i.e., make it more bal-
anced, in order for the classifiers to achieve better predictive performance, specifically for
the minority class. Usually, the minority class is more important and, hence, the classifier
should be more sensitive to classification errors for the minority class than the majority
class [1]. A typical approach in the literature is the application of techniques for transform-
ing the training dataset to balance the class distribution including data oversampling for
the minority examples, data undersampling for the majority examples and combinations of
these techniques [1,2].

We attempt to enhance existing pre-processing sampling strategies by exploiting
expert knowledge from the domain of Meteorology. We use the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis 40-years dataset (See https://
www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-40-years, accessed on 29 Novem-
ber 2022, for details) (also known as ERA-40) and a dataset with the historical observations
of the meteorological station of Micra, Thessaloniki, Greece and we attempt to predict the
occurrence of precipitation on the ground at the meteorological station. We use various data
pre-processing strategies (based on oversampling and undersampling) for the selection of
the appropriate training dataset, and, we test their effectiveness on various classifiers.
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The input dataset consists of imbalanced data regarding the precipitation class variable,
where the minority class is only the 16.1% of the cases. It is known that such situations de-
grade the performance of data mining or machine learning classifiers. In [3], we determined
the minimum training dataset size that can ensure effective application of data mining
techniques specifically on meteorological data. The performance of various classifiers did
not increase significantly for training dataset sizes of more than 9 years. Also, the results
were not affected by the way we chose the training dataset examples, i.e., randomly isolated
examples totalling nine years versus nine entire yearly sets of examples randomly selected.
In this paper, we take advantage of the above finding by choosing appropriately large
training datasets for the tested classifiers.

The contribution of this study is the proposal of effective sampling strategies on
meteorological training datasets that are based on our expertise on the data domain. In our
experimental study, we compare common sampling strategies from the literature and
the proposed new strategies and show that the newly proposed strategies improve the
performance of most classifiers.

The remainder of the paper is organized as follows. Section 2 discusses the problem
of class imbalance, reviews recent works that address it using domain knowledge, and,
describes the sampling strategies used in the literature as well as the novel sampling
strategies we propose. Section 3 describes the datasets we used for applying the sampling
strategies on the training dataset and the classifiers that we compared. Section 4 discusses
the methodology used in the experiments. In Section 5, we present the analysis and the
results, and, finally, we conclude in Section 6.

2. The Problem of Class Imbalance

A very good introduction to the problem of class imbalance and the related research
efforts is given in [4,5]. Ref. [4] provides a comprehensive review of the subject and dis-
cusses the initial solutions that were proposed to deal with the problem of class imbalance.
Ref. [5] discusses the role that rare classes and rare cases play in data mining, the problems
that they can cause and the methods that have been proposed to address these problems.

Over the years the problem of class imbalanced has been studied extensively. There
exist numerous papers that use standard data agnostic oversampling and undersampling
techniques to create balanced training datasets. Regarding meteorological data, ref. [6] first
applies oversampling to increase thunderstorm examples in the training dataset and then
uses deep neural networks to predict thunderstorms. Similarly, ref. [7] applies standard
oversampling techniques on radar image data to improve rainfall prediction, while [8]
presents a framework for predicting floods, in which it embeds re-sampling to address class
imbalance. Finally, ref. [9] does not apply any sampling strategies but experiments with
various classifiers and concludes that Self-Growing Neural Networks perform better when
predicting fog events using data with class imbalance.

Various research works attempt to exploit domain knowledge to address the class
imbalance problem, but not in the meteorological domain. Ref. [10] addresses the problem
of noisy and borderline examples when using oversampling methods, while [11] deals
simultaneously with the problems of class imbalance and class overlap. Ref. [12] uses
domain specific knowledge to address the problem of class imbalance in text sentiment
classification. Finally, ref. [13] exploits domain knowledge to address multi-class imbalance
in classification tasks for manufacturing data.

In our study, we use the most common sampling strategies found in the literature
to address the class imbalance problem, namely, the randomized undersampling and the
SMOTE oversampling methods and their combination. SMOTE stands for Synthetic Minor-
ity Oversampling Technique [14]. Besides the natural distribution, we employ the commonly
used 30% and 50% (or balanced) distributions regarding the minority class [1]. We also
examine the within-class distribution in addition to the between-class distribution [15],
using a combination of the randomized undersampling and the SMOTE oversampling
methods in both minority and majority examples.



Appl. Sci. 2022, 12, 12402 3 of 12

In an effort to take into account the peculiarities of the data domain when sampling the
training datasets and to examine how these could affect the performance of the classifiers,
we applied two novel strategies when constructing balanced datasets, i.e., datasets where
the number of majority and minority examples is equal. In the first strategy, we applied the
k-Means clustering algorithm using “classes to clusters” evaluation to select only the most
homogeneous majority examples. In the second strategy, we rejected the majority examples
that were closer to the minority examples with respect to their temporal distance in days us-
ing three different values for the distance. Then, we further reduced the number of majority
examples to achieve a balanced distribution using the randomized undersampling method.
We are not aware of any other attempt that uses large meteorological databases and at the
same time domain specific sampling techniques to address the class imbalance problem.

We used five different classifiers to build models for predicting our class variable.
The training/test set method was used to evaluate the models and to reveal the best sampling
strategy for meteorological data. As an evaluation metric, we used the Area Under the ROC
(Receiver Operating Characteristics) Curve (AUC) [5,16].

3. Datasets
3.1. ERA-40 Dataset

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 40-
years dataset (ERA-40) is a global atmospheric analysis of many conventional observations
and satellite data streams for the period of September 1957 to August 2002. Reanalysis
products are used increasingly in many fields that require an observational record of
the state of either the atmosphere or its underlying land and ocean surfaces. There are
numerous data products that are separated into dataset series based on resolution, vertical
coordinate reference, and likely research applications. In this study, we used the ERA-40
2.5 degree latitude-longitude gridded upper air analysis on pressure surfaces. This dataset
contains 11 variables on 23 pressure surfaces on an equally spaced global 2.5 degree latitude-
longitude grid. All variables are reported four times a day at 00, 06, 12 and 18UTC for the
entire period [17].

We created our initial dataset choosing the values of 10 variables on 7 pressure surfaces
on one node. We used only the data from the node with geographical coordinates 40◦ N
latitude and 22.5◦ E longitude, which is the closest node to the Meteorological Station of
Micra, Thessaloniki, Greece located at 40.52◦ N, 22.97◦ E and altitude of 4m. We omitted
the 11th variable of the Ozone mass mixing ratio. The 1000 hPa, 925 hPa, 850 hPa, 700 hPa,
500 hPa, 300 hPa and 200 hPa are the 7 pressure surfaces we chose, because these are
the ones that are mainly used by the meteorology forecasters operationally. In addition,
the values of the barometric pressure on mean sea level in Pa supplement the initial dataset
that consists of 71 variables.

Furthermore, the initial values of most of the variables for each pressure surface and
the pressure on mean sea level were transformed to make them easier to understand or to
express them in the same metric units as used operationally by the meteorologists. More
specifically, specific humidity initially expressed in kg·kg−1 was converted to g·kg−1 and
vertical velocity in Pa·s−1 to hPa·h−1. The relatively small values of both vorticity (relative)
in s−1 and divergence also in s−1 were multiplied by 106, and the value of potential vorticity
in K·m2·kg−1·s−1 by 108. Regarding the wind, wind direction in azimuth degrees and wind
speed in knots were calculated using the U and V velocities in m−1. Also, the azimuth
degrees for the wind direction were assigned into the eight discrete values of north (N),
northeast (NE), etc., used in meteorology. The geopotential in m2·s−2 was divided by the
World Meteorological Organization (WMO) defined gravity constant of 9.80665 m·s−2,
thus, it was transformed to geopotential height in gpm. Finally, the values of barometric
pressure on mean sea level were expressed in hPa, and only the values of temperature in K
and relative humidity as percentage (%) on pressure surfaces remained unchanged.
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3.2. Class Variable

The 6-hourly main synoptic surface observation data of the Meteorological Station of
Micra, Thessaloniki, Greece completed our initial dataset. More specifically, we collected
the recorded precipitation data of the period 1 January 1960 00UTC–31 December 2001
18UTC. We assigned the value ‘yes’ to the 6-hourly records of rain, drizzle, sleet, snow,
shower at the station or the records of thunderstorm at the station or around it, and the
value ‘no’ to the rest of the records, thus, creating the class variable of our study. Our
purpose is to use the ERA-40 atmospheric analysis data at node 40◦ N, 22.5◦ E to predict the
precipitation at the station. We mention that the determination of the recorded precipitation
is taking into account both the present and past weather of the synoptic observation,
and that snow or thunder have priority over rain. Tables 1 and 2 depict the distribution of
the precipitation types that had been recorded in the Meteorological Station according to
the defined sub-clusters.

Table 1. Natural distribution of values within the minority class variable (precipitation ‘yes’).

Rain/Drizzle Snow/Sleet Thunder Total ‘Yes’

7154 547 2181 9882
11.66% 0.89% 3.55% 16.1%

Table 2. Natural distribution of values within the majority class variable (precipitation ‘no’).

Fog Fair/Cloudy Total ‘No’

1395 50,087 51,482
2.27% 81.62% 83.9%

3.3. Predictor Variables

In the pre-processing phase we applied data reduction using the Principal Component
Analysis (PCA) extraction method to remove highly correlated variables from the ERA-40
dataset. We used the SPSS statistical software package to process the entire ERA-40 dataset
and to produce a new one that consisted of a reduced number of uncorrelated variables.

After applying PCA and examining the component matrix of loadings and the variable
communalities, we deleted a total of 36 variables from our initial dataset that consisted
of 71 variables. The component model was re-specified six times with a final outcome of
35 variables and 9 components with eigenvalues greater than 1. This is exactly the same
methodology we used in a previous work of ours [18]. The analysis revealed the findings
of Table 3.

Table 4 displays the variance explained by the rotated components and additionally the
corresponding nine most highly correlated variables. The Total column gives the eigenvalue,
or amount of variance in the original variables accounted for by each component. The % of
Variance column gives the ratio of the variance accounted for by each component to the
total variance in all of the variables (expressed as a percentage). The % Cumulative column
gives the percentage of variance accounted for by the first 9 components.

The first nine rotated components explain nearly 85.2% of the variability in the original
variables and it is possible to considerably reduce the complexity of the data set by using
these components, with a 14.8% loss of information. As a result, we can reduce the
size of the ERA-40 dataset by selecting the 9 most highly correlated variables with the
9 principal components [18,19]. These meteorological parameters could express the state
of the troposphere where precipitation is created and reaches the ground. The reduced
ERA-40 dataset with the 9 chosen variables, as predictors, and the precipitation, as class
variable, comprised our experimental dataset with 61,364 examples. The size of the dataset
is explained by the fact that we have four daily examples (one every 6 h) for a period of
42 years (42 × 365 × 4 = 61,320 examples plus 11 × 4 = 44 examples for the 11 extra leap year
days of that period).
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Table 3. Most highly correlated variables to the rotated components.

Component Most Highly Correlated Initial Variable Other Highly Correlated Initial Variables

1st geopotential height on 200 hPa
geopotential height in the upper levels, the temperature almost in
all levels, and the specific humidity in low levels of
the atmosphere

2nd relative vorticity on 1000 hPa relative vorticity in low levels, the geopotential height on 925 hPa,
and the pressure at mean sea level

3rd wind direction on 300 hPa wind direction in middle and upper levels

4th wind speed on 300 hPa wind speed in upper levels

5th wind speed on 925 hPa wind speed in low levels

6th divergence on 300 hPa vertical velocity in the upper levels

7th temperature on 200 hPa relative vorticity on 200 hPa

8th potential vorticity on 500 hPa relative vorticity on 500 hPa

9th wind direction on 925 hPa wind direction in low levels

Table 4. Variance explained by rotated components and the representative variables.

Component Variable Total % of Variance % Cumulative

1st geopotential height 200 hPa 9.8 28 28

2nd relative vorticity 1000 hPa 4.2 11.9 39.9

3rd wind direction 300 hPa 2.9 8.4 48.3

4th wind speed 300 hPa 2.6 7.5 55.7

5th wind speed 925 hPa 2.4 7 62.7

6th divergence 300 hPa 2.3 6.7 69.4

7th temperature 200 hPa 2.1 6 75.4

8th potential vorticity 500 hPa 1.8 5 80.4

9th wind direction 925 hPa 1.7 4.8 85.2

4. Methodology

Since the focus of our study was to address the class imbalance problem, we used
a number of sampling strategies in order to balance the training datasets used in the
classification task.

Besides the training dataset with the natural distribution of the precipitation values
that are shown in Tables 1 and 2 (Strategy 1), we created nine more balanced training
datasets following different strategies (Strategies 2–10) (Table 5). Two of them followed the
30% distribution regarding the minority class variable and the other seven the balanced
distribution (50%). In the following we describe Strategies 2 through 10.

In the second and third strategies, we used the randomized undersampling method to
remove examples producing two datasets with a 30% (U30) and a 50% (U50) distribution
of the minority class, respectively [5].

Likewise, in the fourth and fifth strategies, we used a combination of the SMOTE
oversampling method to create new examples of the minority class and the randomized
undersampling method to remove examples from the majority class, achieving a 30%
(SU30) and a 50% (SU50) distribution of the minority class, respectively. We ran the SMOTE
oversampling method in the WEKA environment, using 3 nearest neighbors [14,20,21].

In the sixth strategy (BW), we formed balanced datasets not only between-classes but
also within-classes [15]. Thus, we employed the randomized undersampling method to
reduce the number of the examples for the large clusters of ‘Rain/Drizzle’ and ‘Fair/Cloudy’
and the SMOTE oversampling method to increase the number of the examples for the
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small clusters of ‘Snow/Sleet’, ‘Thunder’ and ‘Fog’. Thus, the sum of the ‘Rain/Drizzle’,
‘Snow/Sleet’ and ‘Thunder’ examples that belong to the minority class became equal to the
sum of the ‘Fair/Cloudy’ and ‘Fog’ examples of the majority class achieving the between-
class balance. Moreover, the number of the ‘Rain/Drizzle’, ‘Snow/Sleet’ and ‘Thunder’
examples became equal to each other, and, similarly, the number of ‘Fair/Cloudy’ and ‘Fog’
examples became equal to each other achieving the within-class balance.

Table 5. Description of used sampling strategies.

Strategy Acronym Description

1 UN Initial unbalanced dataset
2 U30 Randomized Undersampling 30%
3 U50 Randomized Undersampling 50%
4 SU30 SMOTE Oversampling + Randomized Undersampling 30%
5 SU50 SMOTE Oversampling + Randomized Undersampling 50%
6 BW Balanced between-classes and within subclasses
7 CU Remove majority examples that cluster with minority ones + Randomized Undersampling
8 D1U Select only majority examples > 1 day away from minority ones + Randomized Undersampling
9 D2U Select only majority examples > 2 days away from minority ones + Randomized Undersampling

10 D4U Select only majority examples > 4 days away from minority ones

Strategies 7 through 10 are newly proposed sampling strategies that take into consid-
eration the nature of the data at hand. More specifically, in the seventh strategy (CU), we
applied the k-means clustering algorithm to the entire dataset using WEKA. We set the
number of clusters equal to five and chose the “classes to clusters” evaluation in WEKA to
evaluate each cluster according to the five classes of precipitation (Tables 1 and 2). In the
first step, we selected only the majority examples of the ‘Fair/Cloudy’ and ‘Fog’ labeled
clusters. In this manner, we rejected all the majority examples that clustered in the three
clusters that corresponded to the three minority classes. The idea is that these examples
are not good majority representatives since they cluster with minority examples and the
classifiers would suffer to distinguish between them. Then, we employed the randomized
undersampling method to further reduce the number of majority examples in order to
achieve a balanced distribution.

Finally, we introduced three more strategies to reduce the excessive number of majority
examples that comprise the majority class. For each majority example, we added a new
attribute that expressed its temporal distance to the closest minority example. Then, we
selected only the majority examples that had a temporal distance greater than one day
(D1U), or two days (D2U), or four days (D4U). And finally, similarly to strategy CU, we
employed in the D1U and D2U strategies the randomized undersampling method to further
reduce the number of majority examples and achieve a balanced distribution. In the case of
the D4U strategy, the number of the majority examples after the reduction was very close to
the number of the minority examples. The idea of the temporal distance arose from the fact
that during the precipitation episodes there may be some intervals without precipitation
on the ground, while the meteorological factor for the precipitation still exists. It is possible
that the classifiers can not distinguish these cases of majority class from a minority one
leading to a degradation of their performance.

In Section 5, we provide the corresponding number of examples for each strategy
and the details regarding the sub-clusters of the precipitation class variable. The training
datasets were the input to five classifiers, namely, the Decision tree C4.5, the k-Nearest
Neighbor, the Multi-layer Perceptron with back-propagation, the Naïve Bayesian and the
RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [21].

We evaluated the resulting models on separate test datasets that followed the natural
distribution regarding the clusters of precipitation (Tables 1 and 2). The Area Under the
ROC Curve, or simply AUC, was the evaluation metric we used. The AUC measures the
performance of the classifiers as a single scalar. ROC graphs are two-dimensional graphs
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in which the True Positive Rate (the percentage of minority cases correctly classified as
belonging to the minority class) is plotted on the Y axis and the False Positive Rate (the
percentage of majority cases misclassified as belonging to the minority class) is plotted on
the X axis. An ROC graph depicts relative trade-offs between benefits (true positives) and
costs (false positives). The AUC is a reliable measure especially for imbalanced datasets to
get a score for the general performance of a classifier and to compare it to that of another
classifier [5,16].

5. Experiments and Results
5.1. Training/Test Datasets

The training/test set method was used to build and evaluate the data mining models.
The initial dataset of 61,364 examples was divided into 10 non-overlapping folds. By taking
each one of the 10 folds as a test set and the remaining 9 as a pool of examples for choosing
the training datasets, we formed 10 groups with 55,228 training examples and 6136 test
examples. Every fold was chosen randomly, but it followed the natural distribution according
to the clusters within the precipitation class variable, as shown in Tables 1 and 2. Thus, we
produced 10 test datasets with 6136 examples following the natural distribution that covered
the entire initial dataset. In our experiments we always used the above test datasets without
introducing any synthetic examples.

We created 100 training datasets by randomly taking 10 samples with replacement
consisting of 17,788 examples from the training examples of each one of the 10 groups. Fur-
thermore, we joined the same test dataset 10 times to the corresponding 10 training datasets
of each group and formed 100 training/test datasets with 23,924 examples (17,788 training
and 6136 test examples, 74.35–25.65%). It is noted that in the strategy of D4U, where we
used the four days restriction and reduced the number of majority examples close to the
number of minority examples, we formed only a total of 10 training datasets, one for
each group.

The different methodologies used to generate a training dataset, characterize the
different strategies that we followed to address the class imbalance problem. We employed
nine new training datasets according to the strategies that we described in Section 4.

Table 6 shows the number of examples of each of the five different types of precipitation
for: (a) the initial file (Initial), (b) the 10 groups (Groups), (c) the 10 folds or test sets (Folds),
and, (d) the sampled training datasets produced by the nine strategies. Notice that for all
strategies, we generated 10 samples per Group for a total of 100 samples of 17,788 examples.
The exception was D4U, where the generated testing datasets had an almost balanced
distribution of the majority and minority classes, hence, we generated a single sample per
Group for a total of 10 samples of 17,625 examples.

In Table 6, we observe that the total number of minority examples in the original
training datasets (Groups of 9 folds) was 8894. Hence, in order to produce a 50% balanced
training dataset, one needs to choose the same number of majority examples out of the
46,334 available ones. This is the reason we chose 17,788 as the size of the sampled training
dataset. These examples correspond to about 12 years of data that is an acceptable amount
of data for classification purposes according to our previous research [3], as we explained
in Section 1.

5.2. Algorithm Runs

To recap, we tested each one of the first nine strategies with 100 training/test datasets
(UN, U30, U50, SU30, SU50, BW, CU, D1U and D2U) and the tenth strategy with 10 train-
ing/test datasets (D4U), for a total of 910 training/test datasets.

These datasets comprised the input to the five classifiers that were run and evaluated
using WEKA. The classifiers were the decision tree C4.5 without pruning and Laplace
estimate (DT), the k-Nearest Neighbors with k = 5 and Euclidean distance (kNN), the RIP-
PER (RIP), the Naïve Bayesian (NB), and the Multilayer Perceptron neural network with
back-propagation (MP).
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Table 6. The natural distribution and the number of examples within the precipitation class variable
of the training datasets generated by the various sampling strategies.

Precipitation ‘Yes’ Precipitation ‘No’

Rain/Drizzle Snow/Sleet Thunder Total ‘Yes’ Fog Fair/Cloudy Total ‘No’ Total
11.66% 0.89% 3.55% 16.10% 2.27% 81.62% 83.90% 100.00%

Initial 7154 547 2181 9882 1395 50,087 51,482 61,364
Groups 6438 493 1963 8894 1256 45,078 46,334 55,228
Folds 715 55 218 988 140 5008 5148 6136

Strategy

UN 2069 171 639 2879 443 14,466 14,909 17,788
U30 3863 296 1177 5336 362 12,090 12,452 17,788
U50 6438 493 1963 8894 250 8644 8894 17,788

SU30 3863 296 1177 5336 362 12,090 12,452 17,788
SU50 6438 493 1963 8894 250 8644 8894 17,788
BW 2965 2964 2965 8894 4447 4447 8894 17,788
CU 6438 493 1963 8894 250 8644 8894 17,788

D1U 6438 493 1963 8894 250 8644 8894 17,788
D2U 6438 493 1963 8894 250 8644 8894 17,788
D4U 6438 493 1963 8894 193 8538 8731 17,625

The last three classifiers were run using the default settings of WEKA. Thus, we
performed 4550 runs in the WEKA environment and we present the results in Table 7 and
in Figures 1 and 2. Table 7 shows the mean value and the standard deviation of AUC of the
100 or 10 (for D4U) runs for each strategy and classifier.

RIPPERNaive BayesianM. Perceptronk-N. NeighbourDecision Tree

0,85

0,80

0,75

0,70

0,65

0,60

0,55

A
U

C

BW

SU50

SU30

U50

U30

UN

Figure 1. Box-plots of AUC values for strategies UN, U30, U50, SU30, SU50, BW and all classifiers.

Since it is impossible to plot all the box plots for all strategies and classifiers in a
single figure, we decided to use two figures. In the first figure, we compare the strategies
commonly used in the literature (2 through 6) against UN (strategy 1 that simply uses the
initial unbalanced dataset). In the second figure, we compare the newly proposed strategies
(7 through 10) against UN and the best strategy of the first figure.

Thus, Figure 1 depicts the box-plots of the corresponding AUC values for the first six
strategies. The white box-plots correspond to the UN strategy, the light gray box-plots to
the U30 strategy, the light gray box-plots with a pattern of black dots to the U50 strategy,
the dark gray box-plots to the SU30 strategy, the dark gray box-plots with a pattern of
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black dots to the SU50 strategy and the white box-plots with a pattern of black dots to the
BW strategy.

Figure 2. Box-plots of AUC values for strategies UN, U50, CU, D1U, D2U, D4U and all classifiers.

Table 7. Mean value and standard deviation (SD) of AUC. The top three strategies per classifier are
shown in red text.

Classifier

Strategy DT kNN MP NB RIP

UN Mean 0.728 0.711 0.786 0.773 0.586

SD 0.011 0.009 0.009 0.008 0.014

U30 Mean 0.727 0.734 0.795 0.773 0.665

SD 0.009 0.009 0.009 0.008 0.012

U50 Mean 0.737 0.759 0.803 0.774 0.732

SD 0.008 0.007 0.008 0.008 0.01

SU30 Mean 0.725 0.726 0.785 0.778 0.647

SD 0.01 0.009 0.009 0.008 0.016

SU50 Mean 0.722 0.73 0.783 0.779 0.676

SD 0.009 0.009 0.009 0.008 0.013

BW Mean 0.699 0.71 0.757 0.735 0.68

SD 0.011 0.012 0.012 0.008 0.012

CU Mean 0.631 0.607 0.638 0.735 0.644

SD 0.015 0.012 0.013 0.011 0.028

D1U Mean 0.76 0.774 0.806 0.77 0.739

SD 0.008 0.007 0.008 0.008 0.01

D2U Mean 0.759 0.77 0.802 0.766 0.735

SD 0.008 0.006 0.008 0.009 0.012

D4U Mean 0.757 0.768 0.795 0.759 0.706

SD 0.007 0.006 0.008 0.009 0.007
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We notice that the best strategy for each classifier, with the exception of Naïve Bayesian,
is the Randomized Undersampling with the balanced distribution (U50). Also, the classifier
with the highest AUC value is the Multilayer Perceptron with back-propagation Neural
Network. Regarding the Naïve Bayesian classifier, all strategies perform about equally
and it seems that only the combination of the SMOTE Oversampling and Randomized
Undersampling strategies (SU30, SU50) slightly improve the AUC metric. For the k-Nearest
Neighbor and RIPPER classifiers, the U30, U50, SU30 and SU50 strategies significantly
improve the performance on AUC, and, especially, the U50 strategy. For the Decision
Tree C4.5, only the U50 strategy performs slightly better than the Natural one (UN), and,
for the Multilayer Perceptron, the U50 strategy performs better than the Natural one (UN)
and the U30 strategy slightly better. The balanced distribution in both the between and
within-classes (BW) strategy gave the worst results on AUC with the exception of the
RIPPER classifier.

Likewise, Figure 2, depicts the box-plots of the corresponding AUC values for the
proposed four strategies (CU, D1U, D2U, D4U), and, additionally, the UN and U50 strategies
for comparison. The U50 strategy was chosen because of its performance shown in Table 7
and Figure 1. The white box-plots correspond to the UN strategy, the light gray box-plots
to the U50 strategy, the dark gray box-plots to the CU strategy, the white box-plots with a
pattern of black dots to the D1U strategy, the light gray box-plots with a pattern of black
dots to the D2U strategy, and the dark gray box-plots with a pattern of black dots to the
D4U strategy.

In both Figure 2 and Table 7 that highlights the top three performing strategies per
classifier, we notice that the strategies with the temporal distance restriction of each minority
example from the closer majority one (D1U, D2U and D4U) perform better than the UN
strategy on all classifiers with the exception of the Naïve Bayesian classifier. In addition,
they perform better than the U50 strategy in the case of the Decision Tree C4.5 and the
k-Nearest Neighbor classifiers. Regarding the Multi-layer Perceptron, Naïve Bayesian
and RIPPER classifiers, the D1U strategy performs about equally to or slightly better than
the U50 strategy, while it performs better than the D4U strategy. Finally, the CU strategy
gave very poor results on AUC and only in the RIPPER classifier it outperformed the
UN strategy.

6. Conclusions

We applied Principal Component Analysis to reduce the 71 initial chosen variables
of the ERA-40 dataset to 9 variables that were uncorrelated to each other, which explain
nearly 85.2% of the variability in the original variables. The reduced ERA-40 dataset and
the historical precipitation records of the Meteorological Station of Micra, Thessaloniki,
Greece were then input into five data mining and machine learning classifiers we used to
build models that predict the occurrence of precipitation at the station.

The Multilayer Perceptron with back-propagation neural network classifier outper-
forms all other classifiers on AUC, revealing the most effective classifier in this meteorolog-
ical domain.

Moreover, the proposed new strategy D1U with the balanced distribution resulting
from the combination of the one day restriction and the Randomized Undersampling
method is the recommended strategy to address the class imbalance problem for the
Multilayer Perceptron with back-propagation neural network, Decision Tree C4.5, k-Nearest
Neighbor and RIPPER classifiers. Alternatively, the Randomized Under-sampling with
the balanced distribution strategy U50 could also be used for the Multilayer Perceptron
with back-propagation neural network and RIPPER classifiers. Finally, regarding the Naïve
Bayesian classifier, the proposed sampling strategies did not improve its performance when
compared to the natural distribution. We observe that in the class imbalance problem,
the application of sampling strategies based on the expertise on the data domain can
improve the effectiveness of some classifiers.
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