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Abstract: The Reduction by Space Partitioning (RSP3) algorithm is a well-known data reduction
technique. It summarizes the training data and generates representative prototypes. Its goal is to
reduce the computational cost of an instance-based classifier without penalty in accuracy. The algo-
rithm keeps on dividing the initial training data into subsets until all of them become homogeneous,
i.e., they contain instances of the same class. To divide a non-homogeneous subset, the algorithm
computes its two furthest instances and assigns all instances to their closest furthest instance. This is
a very expensive computational task, since all distances among the instances of a non-homogeneous
subset must be calculated. Moreover, noise in the training data leads to a large number of small
homogeneous subsets, many of which have only one instance. These instances are probably noise,
but the algorithm mistakenly generates prototypes for these subsets. This paper proposes simple and
fast variations of RSP3 that avoid the computationally costly partitioning tasks and remove the noisy
training instances. The experimental study conducted on sixteen datasets and the corresponding
statistical tests show that the proposed variations of the algorithm are much faster and achieve higher
reduction rates than the conventional RSP3 without negatively affecting the accuracy.

Keywords: data reduction; Reduction by Space Partitioning; RSP3; prototype generation; instance-
based classification; kNN classifier

1. Introduction

Data reduction is a crucial pre-processing task [1] in instance-based classification [2].
Its goal is to reduce the high computational cost involved in such classifiers by reducing the
training data as much as possible without penalty in classification accuracy. In effect, Data
Reduction Techniques (DRTs) attempt to either select or generate a small set of training
prototypes that represent the initial large training set so that the computational cost of the
classifier is vastly reduced. The selected or generated set of training prototypes is called a
condensing set.

DRTs can be based on either the concept of Prototype Selection (PS) [3] or the concept
of Prototype Generation (PG) [4]. A PS algorithm collects representative prototypes from
the initial training set, while a PG algorithm summarizes similar training instances and
generates a prototype that represents them. PS and PG algorithms are based on the
hypothesis that training instances far from the boundaries of the different classes, also
called class decision boundaries, can be removed without penalty in classification accuracy.
On the other hand, the training instances that are close to class decision boundaries are the
only useful training instances in instance-based classification. In this paper, we focus on
the PG algorithms.

The RSP3 algorithm [5] is a well-known parameter-free PG algorithm. Its condensing
set leads to accurate and fast classifiers. However, the algorithm requires high computa-
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tional cost to generate its condensing set because it is based on a recursive partitioning
process that divides the training set into subsets that contain training instances of only one
class, i.e., they are homogeneous. The algorithm keeps dividing each non-homogeneous
subset into two new subsets and stops when all created subsets become homogeneous. The
center/mean of each subset constitutes a representative prototype that replaces all instances
of the subset. In each algorithm step, a subset is divided by finding the pair of its furthest
instances. The instances of the initial subset are distributed to the two subsets according to
their distances from those furthest instances. The pair of the furthest instances is retrieved
by computing all the distances between instances and finding the pair of instances with
the maximum distance. The computational cost of this task is high and may become even
prohibitive in cases of very large datasets. This weak point constitutes the first motive of
the present paper, namely Motive-A.

The quality and the size of the condensing set created by RSP3 depends on the degree
of noise in the training data [6]. Suppose that a training instance x that belongs to class A
lies in the middle of a data neighborhood with instances that belong to class B. In this case,
x constitutes noise. RSP3 splits the neighborhood into multiple subsets, with one of them
containing only instance x. The algorithm mistakenly considers x as a prototype and places
it in the condensing set. This observation constitutes the second motive of the present work,
namely Motive-B.

In this paper, we propose simple RSP3 variations which consider the two motives
presented above. More specifically, this paper proposes:

• RSP3 variations that replace the costly tasks of retrieving the pair of the furthest
instances by applying simpler and faster tasks based on which each subset is divided.

• A mechanism for noise removal. This mechanism considers each subset containing
only one instance as noise and does not generate prototypes for that subset. As a result,
it improves the reduction rates and the classification accuracy when it is applied on
noisy training sets. The proposed mechanism can be incorporated in any of the RSP3
variations (conventional RSP3 included).

The experiments show that the proposed variations are much faster than the original
version of RSP3. In most cases, accuracy is retained high, and the variations that incorporate
the mechanism for noise removal improve the reduction rates and the classification accuracy,
especially on noisy datasets. The experimental results are statistically validated by utilizing
the Wilcoxon signed rank test and the Friedman test.

The rest of the paper is organized as follows: The recent research works in the field of
PG algorithms are reviewed in Section 2. The RSPE algorithm is presented in Section 3. The
new RSP3 variations are presented in detail in Section 4. Section 5 presents and discusses
the experimental results and the results of the statistical tests. Section 6 concludes the paper
and outlines future work.

2. Related Work

Prototype Generation algorithms is a research field that has attracted numerous works
over the last decades; nowadays, this field is highly active and challenging due to the
explosion of Big Data.

In this direction, Triguero et al. [4] review PG algorithms introduced prior to 2012 and
present a taxonomy and an experimental comparison of them which show that the RSP3
algorithm achieves considerably high accuracy. Hence, in this paper, we focus our review
on research papers published after 2013.

Giorginis et al. [7] introduce two RSP3 variants that accelerate the original RSP3 algo-
rithm by adopting computational geometry methods. The first variant exploits the concept
of convex hull in the procedure of finding the pair of the furthest instances in each subset
created by RSP3. More specifically, the variant finds the instances that define the convex hull
in each subset. Then, it computes only the distances between the convex hull instances and
keeps the pair of instances with the largest distance. The second variant is even faster since
it approximates the convex hull by finding the Minimum Bounding Rectangle (MBR). The
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two variants share the motive of the high computational cost of RSP3 with the algorithms
presented in this work. However, the algorithms proposed by the present work avoid
complicated computational geometry methods. In effect, the development of the algorithms
presented here was motivated by the research conducted in [7].

A fast PG algorithm that is based on k-means clustering [8,9] is Reduction through Ho-
mogeneous Clustering (RHC) [10]. Like RSP3, this algorithm is based on the concept of ho-
mogeneity. Initially, the algorithm considers the whole training set as a non-homogeneous
cluster, and a mean instance is computed for each class present in the cluster. Then, the
k-means clustering algorithm uses the aforementioned instances as initial seeds. This
procedure is recursively applied for each non-homogeneous discovered cluster until all
clusters become homogeneous. The set of means of the homogeneous clusters becomes
the final condensing set. The experimental results show that the RHC algorithm is slightly
less accurate than RSP3; however, it achieves higher reduction rates. Not only was the
RHC algorithm was found to be much faster than RSP3, but it also was one of the fastest
approaches that took part in this experimental study [10]. A modified version of the RHC
algorithm has recently been applied on string data spaces [11,12].

ERHC [13] is a simple variation of RHC. It considers the clusters that contain only one
instance as noise and does not generate prototypes for them. In other words, ERHC incorpo-
rates an editing mechanism that removes noise from the training data in its data reduction
procedure. New RSP3 variations presented in the present paper adopt the same idea.

Gallego et al. [14] present a simple clustering-based algorithm which accelerates the
k-NN classification. Firstly, by using c-means clustering, their algorithm discovers clusters
in the training set, the number of which is defined by the user as an input parameter.
Afterwards, by searching for the nearest neighbors in the nearest cluster, the k-NN classifier
performs classification. Furthermore, the authors use Neural Codes (NC), which are feature-
based representations extracted by Deep Neural Networks, in order to further improve
their algorithm. These NC collect same class instances in order to be placed within the same
cluster. Typically, this algorithm cannot be considered a PG algorithm. Although the paper
refers to the means of clusters as prototypes, the algorithm does not achieve training data
reduction. However, the authors empirically compare their algorithm against several DRTs.

The algorithms presented in [15,16] cannot be considered as PG. Both are based on
pre-processing tasks that build a two-level data structure. The first level holds prototypes
while the second one stores the “real” training instances. The classification is performed by
accessing either the first or the second level of the data structure. The decision is based on
the area where the new unclassified instance lies and according to pre-specified criteria.
Like the previous paper, the authors compare the algorithms against DRTs.

The algorithm presented in [17] cannot be considered a PG algorithm. However, it is
able to perform efficient Nearest Neighbor searches in the context of k-NN classification.
As the authors state, the proposed caKD+ algorithm combines clustering, feature selection,
different k parameters in each resulted cluster and multi-attribute indexing in order to
perform efficient k-NN searches and classification.

Impedovo et al. [18] introduce a handwriting digit recognition PG algorithm. This
algorithm consists of two phases. In the first one, using the Adaptive Resonance Theory [19],
the number of prototypes is determined, and the initial set of prototypes is generated. In
the second phase, a naive evolution strategy is used to generate the final set of prototypes.
The technique is incremental, and, by modifying the previously generated prototypes or by
adding new prototypes, it can be adapted to writing style changes.

Rezaei and Nezamabadi-pour [20] present a swarm-based metaheuristic search algo-
rithm inspired by motion and gravity Newtonian laws [21], namely the gravitational search
algorithm, which is adapted for prototype generation. The authors include the RSP3 in
their experimental study.

Hu and Tan [22] improve the performance of NN classification by presenting two
methods for evolutionary computation-based prototype generation. The first one, namely
error rank, targets at upgrading the NN classifier’s generation ability by taking into account
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the misclassified instances, while the second one is able to avoid over-fitting by pursuing
the performance on multiple data subsets. The paper shows that by using the two proposed
methods, particle swarm optimization achieves better classification performance. This
paper also includes RSP3 in the experimental study.

Elkano et al. [23] present an one-pass Map-Reduce Prototype Generation technique,
namely CHI-PG, which exploits the Map-Reduce paradigm and uses fuzzy rules in or-
der to produce prototypes that are exactly the same, regardless of the number of Map-
pers/Reducers used. The proposed approach enhances the distributed prototype reduction
execution time without decreasing classification reduction rates and accuracy; however, its
input parameters must be empirically determined.

Escalante et al. [24] present a PG algorithm, namely Prototype Generation via Genetic
Programming, which is based on genetic programming. This algorithm generates pro-
totypes that maximize an estimate of the NN classifier’s generalization performance by
combining training instances through arithmetic operators. Furthermore, the proposed
algorithm is able to automatically select the number of prototypes for each class.

Calvo-Zaragoza et al. [25] use dissimilarity space techniques in order to apply PG
algorithms to structured representations. The initial structural representation is mapped to
a feature-based one, hence allowing the use of statistical PG methods on the original space.
In the experimental study, RSP3 and two other PG algorithms are used, while the results
show that RSP3 achieves the highest accuracy.

Cruz-Vega and Escalante [26] present a Learning Vector quantization technique, which
is based on granular computing and includes Big Data incremental learning mechanisms.
This technique, firstly, groups instances with similar features very fast, by using a one-pass
clustering task, and, then, it covers the class distribution by generating prototypes. It
comprises two stages. In the first one, the number of prototypes is controlled using a
usage-frequency indicator, and the best prototype is kept using a life index, while in the
second one, the useless dimensions are pruned of the training database.

Escalante et al. [27] present a prototype generation multi-objective evolutionary tech-
nique. This technique targets enhancing the reduction rate and accuracy at the same time,
and achieving a better trade-off between them, by formulating the prototype generation
task as a multi-objective optimization problem. In this technique, the amount of prototypes,
as well as the generalization performance estimation that the selected prototypes achieve,
are the key factors. The authors include RSP3 in their experimental study.

The algorithm proposed by Brijnesh J. Jain and David Schultz in [28] adapts the
Learning Vector Quantization (LVQ) PG method in time-series classification. In effect,
the paper extends the LVQ approach from Euclidean spaces to Dynamic Time Wrapping
spaces. The work presented by Leonardo A. Silva et al. [29] focuses on the number of
prototypes generated by PG algorithms. The work introduces a model that estimates the
ideal number of prototypes according to the characteristics of the dataset used. Last but
not least, I. Sucholutsky and M. Schonlau in [30] focus on PG methods for datasets with
complex geometries.

3. The Original Rsp3 Algorithm

RSP3 is one of the three proposed RSP algorithms [5]. The three algorithms are descen-
dants of the Chen and Jozwik algorithm (CJA) [31]. However, RSP3 is the only parameter-
free RSP algorithm (CJA included) and builds the same condensing set regardless of the
order of data in the training set.

RSP3 works as follows: It initially finds the pair of the furthest instances, a and b,
in the training set (see Figure 1). Then, it splits the training set into two subsets, Ca and
Cb, with the training instances assigned to their closest furthest instance. Then, in each
algorithm iteration and by following the aforementioned procedure, a non-homogeneous
subset is divided into two subsets. The splitting tasks stop when all created subsets become
homogeneous. Then, the algorithm generates prototypes. For each created subset C, RSP3
computes its mean by averaging its training instances. The mean instance that is labeled by
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the class of the instances in C plays the role of a generated prototype and is placed in the
condensing set.

finst2

finst1

Figure 1. The RSP3 algorithm divides the subset according to its furthest instances f inst1 and f inst2.

The pseudo-code presented in Algorithm 1 is a possible non-recursive implementation
of RSP3 that uses a data structure S to store subsets. In the beginning, the whole training set
(TS) is a subset to be processed, and it is placed in S (line 2). At each iteration, RSP3 selects
a subset C from S and checks whether it is homogeneous or not. If C is homogeneous, the
algorithm computes its mean instance and stores it in the condensing set (CS) as a prototype
(lines 6–9). Then, C is removed from S (line 17). If C is non homogeneous, the algorithm
finds the furthest instances a and b in C (line 11) and divides C into two subsets Ca and
Cb by assigning each instance of C to its closest furthest instance (lines 12–13). The new
subsets Ca and Cb are added to S (lines 14–15), and C is removed from S (line 17). The loop
terminates when S becomes empty (line 18), i.e., when all subsets become homogeneous.

Algorithm 1 RSP3
Input: TS {Training Set}
Output: CS {Condensing Set}

1: S← ∅ {Initialize structure that holds unprocessed subsets}
2: add(S, TS)
3: CS← ∅ {Initialize CS}
4: repeat
5: C← pick a subset from S
6: if C is homogeneous then
7: r ←mean instance of C
8: r.label ← class of instances in C
9: CS← CS ∪ {r} {add r in the condensing set}

10: else
11: (a, b)← furthest instances in C {Algorithm 2 is applied}
12: Ca ← set of C instances closer to a
13: Cb ← set of C instances closer to b
14: add(S, Ca)
15: add(S, Cb)
16: end if
17: remove(S, C)
18: until IsEmpty(S) {all subsets became homogeneous}
19: return CS

In the close to class decision boundaries areas, the training instances from different
classes are close to each other. RSP3 creates more prototypes for those data areas, since
many small homogeneous subsets are created. Similarly, more subsets are created and more
prototypes are generated for noisy data areas. In effect, a subset with only one instance
constitutes noise. In contrast, fewer and larger subsets are created for the “internal” data
areas which are far from the decision boundaries where a class dominates.

Sanchez, in his experimental study presented in [5], showed that RSP3 generates a
small condensing set. When an instance-based classifier such as k-NN utilizes the RSP3
generated condensing set, it achieves accuracy almost as high as when k-NN runs over
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the original training set. However, the computational cost of the classification step is
significantly lower.

The retrieval of the pair of the furthest instances in each subset requires the compu-
tation of all distances between the instances of the subset. This approach is simple and
straightforward. However, it is a computationally expensive task that burdens the overall
pre-processing cost of the algorithm. In cases of large datasets, this drawback may render
the execution of RSP3 prohibitive.

In this respect, the conventional RSP3 algorithm computes |C|×(|C|−1)
2 distances in

order to find the most distant instances in each subset C. Thus, for each subset division,
RSP3 proceeds with the pseudo-code outlined in Algorithm 2.

Algorithm 2 The Grid algorithm
Input: C {A subset containing instances inst1 through inst|C|}
Output: Dmax, f inst1, f inst2

1: Dmax ← 0
2: for i← 1 to |C| do
3: for j← i + 1 to |C| do
4: Dcurr ← distance(insti, instj)
5: if Dcurr > Dmax then
6: Dmax ← Dcurr
7: f inst1 ← insti
8: f inst2 ← instj
9: end if

10: end for
11: end for
12: return Dmax, f inst1, f inst2

In effect, a grid of distances is computed; hence, Algorithm 2 is labeled “The Grid
Algorithm”. It returns the furthest instances f inst1 and f inst2 in C along with their distance
Dmax. Hereinafter, each reference to the “RSP3” acronym implies the RSP3 algorithm
whereby the most distant instances are calculated by applying the Grid algorithm to all the
instances in each subset. It is worth mentioning that RSP3 as implemented in the KEEL
software [32] applies this simple and straightforward approach for finding the pair of the
most distant instances in C.

4. The Proposed Rsp3 Variations
4.1. The Rsp3 with Editing (Rsp3e) Algorithm

The RSP3 with editing (RSP3E) algorithm incorporates an editing mechanism that
removes noise from the training data. RSP3E is almost identical to the conventional RSP3.
However, it involves a major difference: If a subset with only one instance is created, this
subset is considered to be noise. In effect, such an instance is surrounded by instances that
belong to different classes. The algorithm does not proceed with the prototype generation
for this subset. Therefore, for each subset containing only one instance, RSP3E does not
generate a prototype in the condensed set. RSP3E addresses Motive-B (defined in Section 1).
RSP3E has been inspired by the idea first adopted by ERHC [13] and EHC [33].

4.2. The Rsp3-Rnd and Rsp3e-Rnd Algorithms

As already explained, RSP3 finds the pair of the furthest instances in each subset
in order to divide it. Likely, the most distant instances in a subset belong to different
classes. By splitting the subset using such instances, the probability of creating two large
homogeneous subsets is higher. Thus, RSP3 may need fewer iterations in order to divide
the whole training set into homogeneous subsets, and the reduction rates may be higher.

The RSP3-RND and RSP3E-RND algorithms were inspired by the following observa-
tion: RSP3 can run and produce a condensing set even if it selects any pair of instances
instead of the pair of the furthest instances. In that case, the algorithm will likely need
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more subset divisions and the data reduction rate will be lower. However, the procedure
of subset division will be much faster, since the costly retrieval of the furthest instances
will be avoided. This simple idea is adopted by RSP3-RND and RSP3E-RND that work
similarly to RSP3 and RSP3E, respectively, but they randomly select the pair of instances
used for subset division.

RSP3-RND and RSP3E-RND will generate different condensing sets in different ex-
ecutions. In other words, the number of divisions and the generated prototypes depend
on the selection of the random pairs of instances. RSP3-RND addresses Motive-A, while
RSP3E-RND addresses both motives.

4.3. The Rsp3-M and Rsp3e-M Algorithms

The RSP3-M and RSP3E-M algorithms are two more simple variations of RSP3 and
RSP3E, respectively. Both work as follows: Initially, the algorithms find the two top classes
in terms of instances belonging to them. These classes are called the common classes. The
mean instances of the common classes constitute the pair of instances based on which a
non-homogeneous set is divided into two subsets (see Figure 2).

m1

m2

Figure 2. The RSP3-M and RSP3E-M algorithms divide a subset according to the means of the two
most common classes in the subset m1 and m2.

Obviously, similar to RPS3-RND and RSP3E-RND, RSP3-M addresses Motive-A while
RSP3E-M addresses both motives. In effect, RSP3-M and RSP3E-M speed up the original
algorithm because they replace the computation of the furthest instances of a set with the
computation of the two common classes of the set and the corresponding mean instances,
which is a much faster approach. The idea behind RSP3-M and RSP3E-M is quite simple:
By dividing a non-homogeneous set into two subsets based on the means of the most
common classes in the subset, it is more probable for the algorithms to earlier obtain
large homogeneous subsets. We expect that both RSP3-M and RSP3E-M will increase the
reduction rates at a maximum level. However, this may negatively affect accuracy.

4.4. The Rsp3-M2 and Rsp3e-M2 Algorithms

The RSP3-M2 and RSP3E-M2 algorithms are almost identical to RSP3-M and RSP3E-M,
respectively. The only difference is that instead of using the generated mean instances of
the most common classes in order to divide a non-homogeneous subset, RSP3-M2 and
RSP3E-M2 identify and use the training instances that are closer to the mean instances
(see Figure 3). We expect that this may reduce the reduction rates, and as a result, the
accuracy achieved by RSP3-M2 and RSP3E-M2 will be higher compared to that of RSP3-M
and RSP3E-M.

m1

m2

Figure 3. The RSP3-M2 and RSP3E-M2 algorithms divide a subset according to the instances that are
closer to the means of the two most common classes in the subset m1 and m2.
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5. Experimental Study
5.1. Experimental Setup

The original RSP3 algorithm and its proposed variations were coded in C++. Moreover,
we include the results of the NOP approach (no data reduction) for comparison purposes.
The experiments were conducted on a Debian GNU/Linux server equipped with a 12-
core CPU with 64 GB of RAM. The experimental results were measured by running the
k-NN classifier (with k = 1) over the original training set (case of NOP classifier) and the
condensing sets generated by the conventional RSP3 algorithm and its proposed variations.
The k parameter value is the only parameter used in the experimental study. Following the
common practice in the field of data reduction for instance-based classifiers, we used the
setting k = 1.

We used 16 datasets distributed by the KEEL [34] and UCI machine learning [35]
repositories, whose main characteristics are summarized in Table 1. Each dataset’s attribute
values were normalized to the range [0, 1], and we used the Euclidean distance as a
similarity measure. We removed all nominal and fixed-value attributes and the duplicate
instances from the KDD dataset, thus reducing its size to 141,481 instances.

As mentioned above, the major goal of the proposed variants of RSP3 is to minimize
the computational cost needed for the condensing set construction. High reduction rates
as well as keeping the accuracy at high levels are also goals. Thus, for each algorithm and
dataset, we used a five-fold cross-validation schema to measure the following four metrics:
(i) Accuracy (ACC), (ii) Reduction Rate (RR), (iii) Distance Computations (DC) required
for the condensing set construction (in millions (M)), and, (iv) CPU time (CPU) in seconds
required for the condensing set construction.

Table 1. Datasets characteristics.

Dataset Instances Attributes Classes

Balance (BL) 625 4 3
KDD Cup (KDD) 494,020/141,481 40 23

Banana (BN) 5300 2 2
Letter Image Recognition (LIR) 20,000 16 26

Landsat Satellite (LS) 6435 36 7
Magic Gamma Telescope (MGT) 19,020 11 2

MONK-2 (MNK) 432 6 2
Pen Digits (PD) 10,992 16 10
Phoneme (PH) 5404 5 2

Shuttle (SH) 58,000 9 7
Textrue (TXR) 5500 40 11

Yeast (YST) 1484 8 10
Pima (PM) 768 8 2

Twonorm (TN) 7400 20 2
Waveform (WF) 5000 21 3
Eye State (EEG) 14,980 14 2

5.2. Experimental Results

Table 2 presents, for each dataset and algorithm, the ACC, RR, DC and CPU measure-
ments. Table 3 summarizes the measurements of Table 2 and presents the average measure-
ments as well as the standard deviation and the coefficient variance of themeasurements.

Furthermore, Figures 4–7 present an overview of average measurements in bar dia-
grams. More specifically, Figure 4 depicts the average accuracy measurements computed
by averaging the ACC measurements achieved by the 1-NN classifier using the condens-
ing set generated by the algorithms. Correspondingly, Figure 5 presents the average RR
measurements achieved by the algorithms on the different datasets. Figure 6 illustrates the
average distance computations and Figure 7 shows the average CPU times. The diagrams
presented in Figures 4–6 are in linear scale, while the diagram presented in Figure 7 is in
logarithmic scale.
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The results reveal that all algorithms are relatively close in terms of accuracy. However,
RPS3, RSP3E, RSP3-RND, RSP3E-RND and RSP3E-M2 achieve the highest ACC measure-
ments. Nevertheless, the high reduction rates achieved by RSP3-M, RSP3-M2 and RSP3E-M
seem to negatively affect accuracy. Almost in all cases, RSP3E achieves the highest accuracy,
while RSP3E-RND and RSP3-M2 follow. The results indicate that the editing mechanism
incorporated by these algorithms is effective.

Concerning RR measurements, we observe in Table 2 that RSP3E-M has the highest
performance. However, as mentioned above, these high reduction rates negatively affect
accuracy. Furthermore, we observe that the algorithms that incorporate the editing mecha-
nism seem to be more effective in terms of RR measurements. In particular, by removing
the useless noisy instances from the data, they achieve higher RR measurements than the
algorithms that do not incorporate editing and, at the same time, their accuracy is either
improved or is not negatively affected.

Moreover, we can observe that the proposed RSP3 variations outperform the original
RSP3, in terms of RR, DC and CPU measurements, which concern the pre-processing cost
required for the condensing set construction. This happens because RSP3 computes a large
number of distances. In contrast, the proposed variations divide the subsets by avoiding
computationally costly procedures. As far as the large datasets are concerned (i.e., KDD,
SH, LIR, MGT), the gains are extremely high. In contrast, RSP3 leads to noticeably high
CPU costs. Figures 6 and 7 visualize this extreme superiority in terms of pre-processing
computational cost.

As far as the large datasets are concerned (i.e., KDD, SH), RSP3 leads to noticeably
intensive CPU. The experimental results reveal that RSP3-M and RSP3E-M are faster than
RSP3-M2 and RSP3E-M2, respectively. In addition, RSP3-M2 and RSP3E-M2 are faster than
RSP3-RND and RSP3E-RND, and the latter are faster then the original RSP3 algorithm and
the proposed RSP3E variant.

By observing Tables 2 and 3 and Figures 4–7, we observe that the variations with
the editing mechanism that removes the subsets containing only one instance (i.e., RSP3E,
RSP3E-RND, RSP3E-M and RSP3E-M2) achieve quite higher RR measurements when
compared with the corresponding methods without the editing mechanism, and, at the
same time, in most cases, they achieve higher accuracy.

Finally, the experimental results show that the RR measurements achieved by RSP3E-
M are the highest. In contrast, as expected, RSP3-RND is the algorithm with the lowest
reduction rates.

Figure 4. Average accuracy measurements.
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Figure 5. Average reduction rates measurements.

Figure 6. Average distance computations (in millions).

Figure 7. Average CPU measurements (in secs).
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Table 2. Comparison in terms of ACC(%)), RR(%), DC(M) and CPU (Secs).

Dataset NOP RSP3 RSP3E RSP3-RND RSP3E-RND RSP3-M RSP3E-M RSP3-M2 RSP3E-M2

BL

ACC: 80.61 72.75 86.86 74.37 86.86 66.19 71.80 69.72 82.21
RR: - 63.20 86.40 58.60 86.44 83.76 91.48 70.76 89.44
DC: - 0.254 0.254 0.007 0.007 0.005 0.005 0.007 0.007

CPU: - 0.198 0.149 0.087 0.062 0.039 0.042 0.068 0.089

KDD

ACC: 99.71 99.60 99.62 99.46 99.52 98.91 98.79 98.87 99.05
RR: - 98.54 99.06 97.76 98.53 99.30 99.58 99.09 99.44
DC: - 20,278.7 20,278.7 2.1 2.1 1.8 1.8 1.8 1.8

CPU: - 42,388.5 49,080.4 703.9 670.8 163.4 153.7 170.0 177.1

BN

ACC: 86.92 84.60 88.36 84.43 88.30 80.61 87.81 84.47 87.51
RR: - 75.09 90.43 73.70 89.83 82.39 91.73 77.96 90.43
DC: - 18.88 18.88 0.078 0.078 0.066 0.066 0.077 0.077

CPU: - 16.96 15.22 10.61 10.19 8.78 8.79 9.20 8.96

LIR

ACC: 95.75 95.56 91.87 95.56 90.98 92.05 89.82 94.70 92.03
RR: - 61.88 84.08 54.31 83.89 82.74 91.30 71.62 87.66
DC: - 329.8 329.8 0.48 0.48 0.39 0.39 0.44 0.44

CPU: - 1065.8 1175.6 1277.8 1418.0 199.9 189.9 539.5 541.9

LS

ACC: 89.94 89.76 89.06 90.02 89.79 86.62 87.02 89.46 89.70
RR: - 72.89 89.06 69.38 88.15 90.48 94.17 79.03 90.94
DC: - 34.02 34.02 0.11 0.11 0.08 0.08 0.11 0.11

CPU: - 113.3 109.3 25.9 26.1 3.8 3.7 11.1 11.8

MGT

ACC: 80.50 77.41 81.98 77.32 82.04 71.98 77.11 76.99 81.46
RR: - 58.75 84.32 56.48 84.37 80.68 89.11 64.50 85.34
DC: - 364.8 364.8 0.41 0.41 0.32 0.32 0.43 0.43

CPU: - 1062.3 1156.0 858.8 871.5 319.9 315.6 813.9 818.1

MNK

ACC: 90.51 91.22 91.21 80.31 84.71 88.88 89.81 87.50 87.73
RR: - 61.33 81.68 71.85 78.38 95.20 95.55 95.67 95.95
DC: - 0.125 0.125 0.004 0.004 0.002 0.002 0.002 0.002

CPU: - 0.098 0.099 0.017 0.017 0.007 0.007 0.007 0.007

PD

ACC: 99.33 99.16 99.05 99.00 98.73 96.78 96.95 98.23 98.39
RR: - 89.64 93.31 82.80 89.83 96.56 97.75 93.59 96.07
DC: - 86.14 86.14 0.19 0.19 0.15 0.15 0.17 0.17

CPU: - 133.35 122.85 29.45 25.86 2.85 2.53 6.09 5.97

PH

ACC: 89.64 86.62 86.16 86.21 85.90 82.73 83.79 86.21 85.80
RR: - 69.31 85.67 67.40 86.42 80.94 89.29 74.08 86.95
DC: - 21.37 21.37 0.09 0.09 0.07 0.07 0.09 0.09

CPU: - 25.04 22.76 17.06 18.75 8.55 8.21 11.59 11.73

SH

ACC: 99.93 99.48 99.58 99.25 99.20 99.01 98.71 95.83 95.95
RR: - 99.41 99.54 98.76 98.98 99.65 99.72 99.67 99.74
DC: - 5991.0 5991.0 0.77 0.77 0.60 0.60 0.64 0.64

CPU: - 3517.9 4183.2 16.8 14.9 5.2 4.4 5.4 5.0

TXR

ACC: 98.91 98.62 97.65 98.35 97.58 95.87 94.85 97.42 96.69
RR: - 82.32 89.84 77.92 87.81 94.62 96.41 88.94 93.67
DC: - 25.74 25.74 0.09 0.09 0.06 0.06 0.07 0.07

CPU: - 84.25 81.33 8.21 8.03 1.70 1.58 3.26 3.15

YST

ACC: 51.58 49.76 56.30 50.50 54.42 45.38 50.51 47.34 53.68
RR: - 28.16 83.83 25.78 84.47 50.13 81.33 33.99 82.54
DC: - 2.14 2.14 0.02 0.02 0.02 0.02 0.02 0.02

CPU: - 3.87 3.33 2.38 2.14 1.47 1.36 2.14 2.14

PM

ACC: 70.54 67.67 70.93 67.67 73.14 63.49 68.97 67.80 71.18
RR: - 44.56 81.63 40.91 81.95 69.67 84.53 50.78 82.25
DC: - 0.56 0.56 0.012 0.012 0.008 0.008 0.011 0.011

CPU: - 0.81 0.60 0.27 0.43 0.10 0.14 0.28 0.23

TN

ACC: 94.7 93.11 95.61 93.51 95.55 82.84 84.65 92.68 94.84
RR: - 84.31 92.21 74.17 88.48 97.91 98.52 84.35 92.59
DC: - 37.49 37.49 0.15 0.15 0.05 0.05 0.12 0.12

CPU: - 74.53 67.32 22.83 21.75 1.09 0.79 8.39 8.15

WF

ACC: 77.26 77.54 81.04 77.94 80.88 70.84 71.94 77.86 80.36
RR: - 57.03 85.11 50.31 84.42 91.15 93.90 61.36 86.23
DC: - 16.99 16.99 0.11 0.11 0.06 0.06 0.1 0.1

CPU: - 52.95 46.95 32.09 28.85 1.81 1.49 17.79 17.66

EEG

ACC: 45,62 47.31 44.48 46.81 44.71 48.10 46.21 46.93 45.13
RR: - 53.76 81.20 45.75 82.83 76.88 86.82 61.01 82.01
DC: - 499.1 499.1 0.36 0.36 0.26 0.26 0.39 0.39

CPU: - 972.4 1054.5 639.2 597.6 249.1 239.0 493.5 492.2

AVG

ACC: 84.47 83.14 84.99 82.54 84.52 79.39 81.17 82.00 83.86
RR: - 68.76 87.96 65.37 87.17 85.75 92.57 75.40 90.08
DC: - 1731.69 1731.69 0.31 0.31 0.25 0.25 0.27 0.27

CPU: - 3094.52 3569.98 227.84 232.19 60.48 58.20 130.76 131.51



Information 2022, 13, 572 12 of 16

Table 3. Statistics of experimental measurements (Average (AVG), Standard Deviation (STDEV),
Coefficient of Variation (CV)).

Dataset NOP RSP3 RSP3E RSP3-RND RSP3E-RND RSP3-M RSP3E-M RSP3-M2 RSP3E-M2

AVG

ACC: 84.47 83.14 84.99 82.54 84.52 79.39 81.17 82.00 83.86
RR: - 68.76 87.96 65.37 87.17 85.75 92.57 75.40 90.08
DC: - 1731.69 1731.69 0.31 0.31 0.25 0.25 0.27 0.27

CPU: - 3094.52 3569.98 227.84 232.19 60.48 58.20 130.76 131.51

STD

ACC: 16.53 16.77 15.71 16.52 15.63 17.04 15.92 16.71 15.49
RR: - 19.28 5.78 19.76 5.44 13.01 5.42 18.36 5.82
DC: - 5161.65 5161.65 0.52 0.52 0.45 0.45 0.45 0.45

CPU: - 10,517.29 12,182.89 403.95 425.69 107.31 104.05 252.08 253.07

CV

ACC: 84.47 0.20 0.20 0.18 0.20 0.18 0.21 0.20 0.18
RR: - 0.28 0.07 0.30 0.06 0.15 0.06 0.24 0.06
DC: - 2.98 2.98 1.68 1.68 1.82 1.82 1.67 1.67

CPU: - 3.40 3.41 1.77 1.83 1.77 1.79 1.93 1.92

5.3. Statistical Comparisons
5.3.1. Wilcoxon Signed Rank Test Results

Following the common approach that is applied in the field of PS and PG
algorithms [3,4,10,14,24,25,27], the experimental study is complemented with a Wilcoxon
signed rank test [36]. Thus, we statistically confirm the validity of the measurements
presented in Table 2. The Wilcoxon signed rank test compares all the algorithms in pairs,
considering the result achieved against each dataset. We applied the Wilcoxon signed rank
test using the PSPP statistical software.

As mentioned above, it is clear that RSP3-M and RSP3E-M compute fewer distances
than RSP3-M2 and RSP3E-M2, respectively. Furthermore, RSP3-M2 and RSP3E-M2 compute
fewer distances than RSP3-RND and RSP3E-RND, and the latter compute fewer distances
than RSP3 and RSP3E. Thus, we do not run the Wilcoxon test for the DC measurements.

Table 4 presents the results of the Wilcoxon signed rank test obtained for the ACC, RR
and CPU measurements. The column labeled “w/l/t” lists the number of wins, losses and
ties for each comparison test. The column labeled “Wilcoxon” (last column) lists a value that
quantifies the significance of the difference between the two algorithms compared. When
this value is lower than 0.05, one can claim that the difference is statistically significant.

In terms of accuracy, the results show that the statistical difference between the follow-
ing pairs is not significant: NOP versus RSP3E, NOP versus RSP3E-RND and NOP versus
RSP3E-M2. In contrast, the statistical difference between the conventional RSP3 algorithm
and NOP is significant. Thus, we can claim that the 1-NN classifier that runs over the
condensing set generated by the proposed RSP3E, RSP3E-RND and RSP3E-M2 algorithms
achieves as high accuracy as the 1-NN classifier that runs over the original training set.
Moreover, the test shows that there is no significant difference in terms of accuracy between
the original version of RSP3 and the following proposed variants: RSP3E, RSP3-RND, and
RSP3E-RND.

In contrast, there is statistical difference in terms of Reduction Rates and CPU times.
This means that we can obtain as high accuracy as that of the original RSP3 algorithm but
with lower computational cost, while the cost of the condensing set construction is lower.
Moreover, the test confirms that there is statistical difference in terms of accuracy between
the pairs RSP3-M versus RSP3-M2 and RSP3E-M versus RSP3E-M2. Although there is a
significant difference in terms of RR and CPU measurements, RSP3-M2 and RSP3E-M2 can
be considered better. Last but not least, the test shows that RSP3E, RSP3E-RND, RSP3E-M
and RSP3E-M2 dominate RSP3, RSP3-RND, RSP3-M and RSP3-M2, respectively, in terms
of reduction rates, while the accuracy and the CPU times are not negatively affected.
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Table 4. Results of Wilcoxon signed rank test on ACC, RR and CPU measurements.

Methods
Accuracy Reduction Rate CPU

w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.

NOP vs. RSP3 13/3 0.020 - - - -

NOP vs. RSP3E 8/8 0.501 - - - -

NOP vs. RSP3-RND 13/3 0.008 - - - -

NOP vs. RSP3E-RND 9/7 0.877 - - - -

NOP vs. RSP3-M 15/1 0.001 - - - -

NOP vs. RSP3E-M 14/2 0.001 - - - -

NOP vs. RSP3-M2 14/2 0.002 - - - -

NOP vs. RSP3E-M2 9/7 0.352 - - - -

RSP3 vs. RSP3E 7/9 0.215 0/16 0.000 6/10 0.215

RSP3 vs. RSP3-RND 9/5 0.778 15/1 0.000 1/15 0.001

RSP3 vs. RSP3E-RND 8/8 0.469 2/14 0.000 1/15 0.001

RSP3 vs. RSP3-M 15/1 0.001 0/16 0.000 0/16 0.000

RSP3 vs. RSP3E-M 13/3 0.015 0/16 0.001 0/16 0.000

RSP3 vs. RSP3-M2 14/2 0.001 0/16 0.007 0/16 0.000

RSP3 vs. RSP3E-M2 9/7 0.605 0/16 0.000 0/16 0.000

RSP3E vs. RSP3-RND 11/5 0.059 16/0 0.000 1/15 0.001

RSP3E vs. RSP3E-RND 11/4/1 0.139 10/6 0.109 1/15 0.001

RSP3E vs. RSP3-M 14/2 0.003 8/8 0.717 0/16 0.000

RSP3E vs. RSP3E-M 15/1 0.001 1/15 0.001 0/16 0.000

RSP3E vs. RSP3-M2 12/4 0.008 12/4 0.007 0/16 0.000

RSP3E vs. RSP3E-M2 12/4 0.007 1/14 0.004 0/16 0.000

RSP3-RND vs. RSP3E-RND 7/9 0.148 0/16 0.000 5/10 0.532

RSP3-RND vs. RSP3-M 14/2 0.010 0/16 0.000 0/16 0.000

RSP3-RND vs. RSP3E-M 12/4 0.079 0/16 0.000 0/16 0.000

RSP3-RND vs. RSP3-M2 11/4/1 0.036 0/16 0.000 1/15 0.001

RSP3-RND vs. RSP3E-M2 8/8 0.277 0/16 0.000 1/15 0.001

RSP3E-RND vs. RSP3-M 13/3 0.013 8/8 0.877 0/16 0.000

RSP3E-RND vs. RSP3E-M 14/2 0.010 1/15 0.001 0/16 0.000

RSP3E-RND vs. RSP3-M2 12/4 0.030 11/5 0.015 1/14 0.001

RSP3E-RND vs. RSP3E-M2 13/3 0.049 2/14 0.005 1/14 0.005

RSP3-M vs. RSP3E-M 5/11 0.056 0/16 0.000 3/12 0.100

RSP3-M vs. RSP3-M2 4/12 0.006 14/2 0.001 15/0/1 0.001

RSP3-M vs. RSP3E-M2 4/12 0.056 4/12 0.046 14/1/1 0.001

RSP3E-M vs. RSP3-M2 7/9 0.501 15/1 0.001 15/0/1 0.001

RSP3E-M vs. RSP3E-M2 4/12 0.020 13/3 0.002 15/0/1 0.001

RSP3-M2 vs. RSP3E-M2 4/12 0.063 0/16 0.000 6/8/2 0.975
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5.3.2. Friedman Test Results

The non-parametric Friedman test was used in order to rank the algorithms. The
test ranks the algorithms for each dataset separately. The best performing algorithm is
ranked number 1, the second best is ranked number 2, etc. We used the Friedman test
through the PSPP statistical software. The test was run three times, one for each criterion
measured. Table 5 presents the results of the Friedman test obtained for the ACC, RR and
CPU measurements, respectively.

The Friedman test shows that:

• RSP3E is the most accurate approach. RSP3E-RND, RSP3, RSP3-RND and RSP3E-M2
are the runners-up.

• RSP3E-M and RSP3E-M2 achieve the highest RR measurements. RSP3-M and RSP3E
are the runners-up.

• RSP3E-M and RSP3-M are the fastest approaches. RSP3-M2 and RSP3E-M2 are the
runners-up.

Table 5. Results of Friedman test on ACC, RR and CPU measurements.

Algorithm
Mean Rank

ACC RR CPU

NOP 6.94 - -

RSP3 5.94 2.06 1.5

RSP3E 6.78 5.03 1.75

RSP3-RND 5.16 1.06 3.34

RSP3E-RND 6.03 4.63 3.72

RSP3-M 2.38 5.13 7.09

RSP3E-M 3.13 7.63 7.72

RSP3-M2 3.59 3.75 5.34

RSP3E-M2 5.06 6.72 5.53

6. Conclusions

This paper proposed three RSP3 variations that aim at reducing the computational
cost involved by the original RSP3 algorithm. All the proposed variations replace the costly
task of finding the pair of the furthest instances in a subset by a faster procedure. The first
one (RSP3-RND) selects two random instances. The second one (RSP3-M) computes and
uses the means of the two most common classes in a subset. The last variation (RSP3-M2)
uses the instances that are closer to the means of the two most common classes in a subset.

Moreover, the present paper proposed an editing mechanism for noise removal. The
latter does not generate a prototype for each homogeneous subset that contains only
one training instance. In effect, this instance is considered noise and is removed. The
editing mechanism can be incorporated into any RSP3 algorithm (original RSP3 included).
Therefore, in this paper, we developed and tested seven new versions of the original
RSP3 PG algorithm (i.e., RSP3E, RSP3-RND, RSP3E-RND, RSP3-M, RSP3E-M, RSP3-M2,
RSP3E-M2).

The experimental study as well as the Wilcoxon and Fridman tests revealed that the
editing mechanism is quite effective since it removes a high number of irrelevant training
instances that do not contribute in classification accuracy. Thus, the reduction rates are
improved either with gains or, at least, without loss in accuracy. In addition, the results
showed that RSP3-M2 is more effective than RSP3-M. Although the RSP3-RND variation is
simple, it is quite accurate. This happens because the RR achieved by RSP3-RND is not
very high.
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In our future work, we plan to develop data reduction techniques for complex data,
such as multi-label data, data in non-metric spaces and data streams.

Author Contributions: Author Contributions: Conceptualization, S.O., T.M., G.E. and D.M.; method-
ology, S.O.,T.M., G.E. and D.M.; software, S.O., T.M., G.E. and D.M.; validation, S.O., T.M., G.E. and
D.M.; formal analysis, S.O., T.M., G.E. and D.M.; investigation, S.O., T.M., G.E. and D.M.; resources,
S.O., T.M., G.E. and D.M.; data curation, S.O., T.M., G.E. and D.M.; writing—original draft prepara-
tion, S.O., T.M., G.E. and D.M.; writing—review and editing, S.O., T.M., G.E. and D.M.; visualisation,
S.O., T.M., G.E. and D.M.; supervision, S.O., T.M., G.E. and D.M.; project administration, S.O., T.M.,
G.E. and D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://archive.ics.uci.edu/ml/ and https://sci2s.ugr.es/keel/datasets.php (accessed
on 2 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DRT Data Reduction Technique
PG Prototype Generation
PS Prototype Selection
RSP3 Reduction by Space Partitioning 3
RSP3E Reduction by Space Partitioning 3 with Editing
RSP3-RND Reduction by Space Partitioning 3 with Random pairs
RSP3E-RND Reduction by Space Partitioning 3 with Editing and Random pairs
RSP3-M Reduction by Space Partitioning 3 using Means
RSP3E-M Reduction by Space Partitioning 3 with Editing using Means

References
1. García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining; Intelligent Systems Reference Library; Springer:

Berlin/Heidelberg, Germany, 2015. [CrossRef]
2. Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theor. 1967, 13, 21–27. .

TIT.1967.1053964. [CrossRef]
3. Garcia, S.; Derrac, J.; Cano, J.; Herrera, F. Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study.

IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435. [CrossRef] [PubMed]
4. Triguero, I.; Derrac, J.; Garcia, S.; Herrera, F. A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor

Classification. Trans. Syst. Man Cyber Part C 2012, 42, 86–100. [CrossRef]
5. Sánchez, J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 2004, 37, 1561–1564.

[CrossRef]
6. Ougiaroglou, S.; Evangelidis, G. Dealing with Noisy Data in the Context of k-NN Classification. In Proceedings of the 7th Balkan

Conference on Informatics Conference, Craiova, Romania, 2–4 September 2015; ACM: New York, NY, USA, 2015; pp. 28:1–28:4.
[CrossRef]

7. Giorginis, T.; Ougiaroglou, S.; Evangelidis, G.; Dervos, D.A. Fast data reduction by space partitioning via convex hull and MBR
computation. Pattern Recognit. 2022, 126, 108553. [CrossRef]

8. Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA,
2010; pp. 563–564. [CrossRef]

9. Wu, J. Advances in K-means Clustering: A Data Mining Thinking; Springer Publishing Company, Incorporated: New York, NY, USA,
2012.

10. Ougiaroglou, S.; Evangelidis, G. RHC: Non-Parametric Cluster-Based Data Reduction for Efficient k-NN Classification. Pattern
Anal. Appl. 2016, 19, 93–109. [CrossRef]

11. Castellanos, F.J.; Valero-Mas, J.J.; Calvo-Zaragoza, J. Prototype generation in the string space via approximate median for data
reduction in nearest neighbor classification. Soft Comput. 2021, 25, 15403–15415. [CrossRef]

12. Valero-Mas, J.J.; Castellanos, F.J. Data Reduction in the String Space for Efficient kNN Classification Through Space Partitioning.
Appl. Sci. 2020, 10, 3356. [CrossRef]

13. Ougiaroglou, S.; Evangelidis, G. Efficient editing and data abstraction by finding homogeneous clusters. Ann. Math. Artif. Intell.
2015, 76, 327–349. [CrossRef]

https://archive.ics.uci.edu/ml/
https://sci2s.ugr.es/keel/datasets.php
http://doi.org/10.1007/978-3-319-10247-4
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TPAMI.2011.142
http://www.ncbi.nlm.nih.gov/pubmed/21768651
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1016/j.patcog.2003.12.012
http://dx.doi.org/10.1145/2801081.2801116
http://dx.doi.org/10.1016/j.patcog.2022.108553
http://dx.doi.org/10.1007/978-0-387-30164-8_425
http://dx.doi.org/10.1007/s10044-014-0393-7
http://dx.doi.org/10.1007/s00500-021-06178-2
http://dx.doi.org/10.3390/app10103356
http://dx.doi.org/10.1007/s10472-015-9472-8


Information 2022, 13, 572 16 of 16

14. Gallego, A.J.; Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Clustering-Based k-Nearest Neighbor Classification for
Large-Scale Data with Neural Codes Representation. Pattern Recogn. 2018, 74, 531–543. [CrossRef]

15. Ougiaroglou, S.; Evangelidis, G. Efficient k-NN classification based on homogeneous clusters. Artif. Intell. Rev. 2013, 42, 491–513.
[CrossRef]

16. Ougiaroglou, S.; Evangelidis, G.; Dervos, D.A. FHC: an adaptive fast hybrid method for k-NN classification. Log. J. IGPL 2015,
23, 431–450. [CrossRef]

17. Gallego, A.J.; Rico-Juan, J.R.; Valero-Mas, J.J. Efficient k-nearest neighbor search based on clustering and adaptive k values.
Pattern Recognit. 2022, 122, 108356. [CrossRef]

18. Impedovo, S.; Mangini, F.; Barbuzzi, D. A Novel Prototype Generation Technique for Handwriting Digit Recognition. Pattern
Recogn. 2014, 47, 1002–1010. [CrossRef]

19. Carpenter, G.A.; Grossberg, S.; Adaptive Resonance Theory (ART). In The Handbook of Brain Theory and Neural Networks; MIT
Press: Cambridge, MA, USA, 1998; pp. 79–82.

20. Rezaei, M.; Nezamabadi-pour, H. Using gravitational search algorithm in prototype generation for nearest neighbor classification.
Neurocomputing 2015, 157, 256–263. [CrossRef]

21. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. .
[CrossRef]

22. Hu, W.; Tan, Y. Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification.
IEEE Trans. Cybern. 2016, 46, 2719–2731. [CrossRef]

23. Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. CHI-PG: A fast prototype generation algorithm for Big Data classification problems.
Neurocomputing 2018, 287, 22–33. [CrossRef]

24. Escalante, H.J.; Graff, M.; Morales-Reyes, A. PGGP: Prototype Generation via Genetic Programming. Appl. Soft Comput. 2016,
40, 569–580. [CrossRef]

25. Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Prototype Generation on Structural Data Using Dissimilarity Space Represen-
tation. Neural Comput. Appl. 2017, 28, 2415–2424. [CrossRef]

26. Cruz-Vega, I.; Escalante, H.J. An Online and Incremental GRLVQ Algorithm for Prototype Generation Based on Granular
Computing. Soft Comput. 2017, 21, 3931–3944. [CrossRef]

27. Escalante, H.J.; Marin-Castro, M.; Morales-Reyes, A.; Graff, M.; Rosales-Pérez, A.; Montes-Y-Gómez, M.; Reyes, C.A.; Gonzalez,
J.A. MOPG: A Multi-Objective Evolutionary Algorithm for Prototype Generation. Pattern Anal. Appl. 2017, 20, 33–47. [CrossRef]

28. Jain, B.J.; Schultz, D. Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time
warping spaces. Pattern Recognit. 2018, 76, 349–366. [CrossRef]

29. Silva, L.A.; de Vasconcelos, B.P.; Del-Moral-Hernandez, E. A Model to Estimate the Self-Organizing Maps Grid Dimension for
Prototype Generation. Intell. Data Anal. 2021, 25, 321–338. [CrossRef]

30. Sucholutsky, I.; Schonlau, M. Optimal 1-NN prototypes for pathological geometries. PeerJ Comput. Sci. 2021, 7, e464. [CrossRef]
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