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Reduction through Homogeneous Clustering (RHC) and its editing variant (ERHC) are effective data reduction techniques for the

k-NN classifier. They are based on an iterative k-means clustering task that discovers homogeneous clusters. The centers of the

resulting homogeneous clusters constitute the instances of the reduced training set. Although RHC and ERHC are quite fast compared

to several well-known data reduction techniques, the iterative execution of k-means clustering renders both of them inappropriate for

data reduction tasks that need to be performed quickly, especially, when run over large training datasets. The present paper proposes

simple and very fast variations of the algorithms, which are appropriate for such environments. The variations are called RHC2 and

ERHC2 and replace the complete execution of k-means clustering with a fast task that assigns instances to the class centers. The

experimental study based on fourteen datasets, and, the corresponding statistical tests, show that the proposed RHC2 and ERHC2

variations are very fast and, at the cost of a small penalty on classification accuracy, they achieve higher reduction rates than their

predecessors and other two well-known data reduction techniques. They are good candidates when fast reduction on large datasets

is required.
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1 INTRODUCTION

Handling large volumes of training data in k-Nearest Neighbors (:-NN) classification [8] is a CPU intensive task.

Contrary to eager classifiers, which use the training data only to build a classification model, lazy classifiers like :-NN

use the available training data as the classification model that is examined whenever an unclassified instance needs to

be classified. In particular, for each unclassified instance G , :-NN classifier retrieves the : nearest to G neighbours by

computing all distances between G and the available training data. Then, G is classified to the most common class of

its nearest neighbors. Therefore, using exhaustive search for finding the nearest neighbours is inappropriate for large

training datasets.

Indexing methods, such as k-dimensional trees [5], ball-trees [18, 27], etc., can avoid exhaustive searches. Neverthe-

less, their use becomes problematic when they are applied on high-dimensional training data [28]. A dimensionality

reduction method can remedy this problem, however, it may result in information loss and the classification perfor-

mance may deteriorate. Data (or instance) reduction techniques (DRTs) [13, 26] do not alter the dimensional space.
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They pre-process the original training dataset and build a small set, which is called condensing set (CS) that represents

as much as possible the original one.

DRTs belong to two major categories: (a) Prototype Selection (PS) [13] algorithms and (b) Prototype Generation

(PG) [26] algorithms. PS algorithms retain some representative instances (prototypes) in CS. In contrast, PG algorithms

create groups with similar instances and generate prototypes for each group. Both categories consider that training

instances that are far from the class decision boundaries are useless and can be removed without penalty in accuracy.

Thus, PS and PG algorithms try to retain or generate prototypes for the close to the decision boundaries data areas.

Reduction through Homogeneous Clustering (RHC) [19] is an effective PG algorithm. It is based on an iterative k-

means clustering [29] task that discovers homogeneous clusters. The centers of the discovered homogeneous clusters

play the role of prototypes and are stored in CS. The Editing and Reduction through Homogeneous Clustering (ERHC)

algorithm [20] is a simple variation of RHC that can handle noisy training data. It works similar to RHC but does

not generate prototypes for single instance clusters. The idea is that single instance clusters constitute noise and are

removed. RHC and ERHC are considered fast PG algorithms that achieve high reduction rates either with gains or, at

least, without loss in classification accuracy [19, 20].

Although RHC and ERHC are quite fast compared to other well-known PS and PG algorithms [19, 20], the iterative

k-means clustering task renders both inappropriate for fast data reduction tasks, especially when they run over large

training datasets. This is the motive behind the present work. More specifically, the motivation is to examine if already

efficient DRTs can be modified in order to be able to be applied in environments where very fast data reduction tasks

are needed. The contribution of this paper is the development of new very fast RHC and ERHC variations. They are

called RHC2 and ERHC2 and are appropriate for fast data reduction tasks since they replace the costly execution of the

complete k-means clustering by a simpler and faster procedure for assigning the training instances to the class centers.

The experimental study shows that RHC2 and ERHC2 are much faster than their ancestors and other two well-known

PS algorithms [2, 14] with small penalty in classification accuracy.

The rest of the paper is organized as follows: Section 2 presents the recent related work in the field of prototype

generation. Section 3 reviews the RHC and ERHC algorithms. Section 4 presents the new RHC2 and ERHC2 variations.

Section 5 presents the experimental study and the results of the statistical tests. Section 6 concludes the paper and

gives directions for future work.

2 RELATED WORK

Prototype Generation is motivated by the explosion of Big Data and, therefore, it constitutes an active research field.

This section reviews the recent PG algorithms published after 2012. Triguero et al. [26] review PG algorithms intro-

duced prior to 2012 and present a taxonomy and an experimental study.

Impedovo et al. [16] propose a handwriting digit recognition PG algorithm that comprises of two stages. The first

stage uses the Adaptive Resonance Theory [7] to determine the number of prototypes and generate the initial proto-

types. The second stage uses a naive evolution strategy in order to generate the final condensing set. The algorithm is

an incremental approach and modifies the previously generated prototypes or adds new prototypes in the condensing

set. In practice, the proposed algorithm is adaptive to writing style changes.

A swarm-based metaheuristic search algorithm is presented by Rezaei and Nezamabadi-pour in [22]. The algorithm

is inspired by motion and gravity Newtonian laws [21] and is adapted for prototype generation.

Hu and Tan [15] present two methods for evolutionary computation based prototype generation. The methods

improve the performance of :-NN classification. The first method upgrades the :-NN classifier’s generation ability
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by considering the misclassified instances. The second method avoids over-fitting by pursuing the performance on

multiple data subsets. The authors claim that particle swarm optimization that uses the proposed methods achieves

better performance.

Elkano et al. in [10] present an one-pass Map-Reduce Prototype Generation algorithm. It is called CHI-PG and

exploits Map-Reduce. It uses fuzzy rules to generate prototypes. The prototypes are the same, regardless of the number

of Mappers/Reducers used. The algorithm improves the distributed prototype reduction execution time. At the same

time, classification reduction rates and accuracy are not negatively affected.

Prototype Generation via Genetic Programming is presented by Escalante et al. in [11]. The proposed algorithm is

based on genetic programming. It generates prototypes bymaximizing an estimate of the:-NN classifier’s performance

and by combining training instances through arithmetic operators.

The usage of Dissimilarity space techniques for prototype generation is proposed by Calvo-Zaragoza et al. in [6].

The use of statistical PG algorithms on the original space is allowed by a mapping technique that maps the initial

structural representation to a feature-based representation.

A Learning Vector Quantization method based on granular computing that uses Big Data incremental learning

mechanisms is presented by Cruz-Vega and Escalante in [9]. This method clusters instances with similar characteristics

very fast by utilizing a one-pass clustering task. Then, the method generates prototypes to cover the class distribution.

Themethod has two phases. In the first phase, the number of prototypes is controlled using a usage-frequency indicator

and the best prototype is kept using a life index. In the second phase, useless dimensions are pruned.

A prototype generation multi-objective evolutionary technique is proposed by Escalante et al. in [12]. This PG

technique targets at improving reduction rate and accuracy and achieving a good trade-off between them. This is

achieved by formulating the PG task as a multi-objective optimization problem. The amount of prototypes and the

generalization performance estimation that generates prototypes are the key factors in the proposed technique.

A Learning Vector Quantization PG algorithm for time series classification is proposed by Brijnesh J. Jain and David

Schultz in [17]. The paper is an extended version of Learning Vector Quantization. It applies a transformation from

Euclidean spaces to Dynamic Time Wrapping spaces.

A paper published by Leonardo A. Silva et al. [24] focuses on the number of prototypes generated by PG algorithms.

The paper proposes a model that estimates the ideal number of prototypes according to the characteristics of the

training data.

The research work conducted by I. Sucholutsky and M. Schonlau and published in [25] focuses on PG algorithms

for training data that has complex geometries.

The Condensed Nearest Neighbor (CNN) [14] is the first PS algorithm for condensing data in the literature and is

used inmany relevant papers for comparison purposes. Thus, we decided to follow the same approach and include CNN

in our experimental study. CNN is based on a very simple idea. Training instances whose nearest neighbor belongs

to a different class are probably close to decision boundaries. Therefore, they must be included in the condensing set

as prototypes. CNN works as follows: Initially, a random training instance moves from the training set (TS) to the

condensing set (CS). Then, for each instance G in TS, the algorithm finds and retrieves its nearest neighbor in CS. If the

two instances have different class labels, G moves from TS to CS, otherwise, G remains in TS. In this way, the size of CS

increases while the size of TS decreases. CNN performs multiple passes over TS trying to move more instances from

TS to CS by examining the new content of CS. The algorithm stops when no move is performed during a complete

pass of the instances in TS. IB2 [1] is one-pass PS algorithm, practically, the first iteration of CNN. Therefore, it is a

quite fast algorithm and it is appropriate to be compared with the proposed RHC2 and ERHC2 algorithms.
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Contrary to the proposed RHC2 and ERHC2 algorithms and their ancestors, CNN and IB2 build a different con-

densing set when examining the same training data in different order. Similarly to the proposed algorithms and their

ancestors, CNN and IB2 are parameter-free. They determine the size of the condensing set automatically without any

input parameter.

3 THE RHC AND ERHC ALGORITHMS

As mentioned above, RHC [19] belongs to PG algorithms and it is based on :-means clustering. Contrary to many

other DRTs, the size of its condensing set is determined without any input parameter. Thus, RHC is a parameter-free

algorithm.

Initially, RHC considers the whole training set as a non homogeneous cluster� , i.e., a set of instances that belong to

different classes. RHC computes a class center for each class present in� by finding the average value of the attributes

of the instances that belong to each class.

For example, if the � instances belong to five classes, the algorithm will compute five class centers. Then, :-means

clustering is executed using the computed class representatives as initial means, hence, it discovers five clusters. If a

discovered cluster contains instances of only one class (i.e., it is a homogeneous cluster), the cluster center plays the role

of prototype and is stored in�( . For all non-homogeneous discovered clusters, the aforementioned procedure is applied

recursively. The RHC algorithm stops when all non-homogeneous discovered clusters are split into homogeneous

clusters.

RHC produces many and small clusters for the close class border data areas. Consequently, more prototypes are

generated for those areas. On the other hand, it discovers large clusters for the “internal" class data areas. Thus, fewer

prototypes are generated. Furthermore, the use of the class centers as initial means is a very efficient approach because

the probability of discovering large homogeneous clusters is higher and that causes high reduction rates. Another

benefit of RHC is that it constructs the same CS regardless the order of the training data. In addition, RHC is quite easy

to implement.

The ERHC algorithm is a simple variation of RHC for datasets containing noise. ERHC deals with noise in the

training data by discarding single instance (homogeneous) clusters. These instances are probably noise since they are

surrounded by instances of other classes.

Since ERHC removes the noise from the training data, it achieves higher reduction rates than RHC. Moreover, ERHC

has good performance even when applied on noise-free training datasets.

4 THE PROPOSED RHC2 AND ERHC2 ALGORITHMS

The RHC2 and ERHC2 algorithmswork similar to RHC and ERHC, respectively. However, they aremuch faster because

they avoid the complete execution of k-means clustering in each algorithm iteration.

Similarly to RHC, RHC2 initially considers thewhole training dataset as a non-homogeneous cluster� and computes

a class representative for each class label 2; present in� by averaging the cluster’s instances that belong to each label.

Hence, RHC2 creates as many class representatives, suppose |= |, as the number of distinct classes labels in � . Then,

RHC2 splits� into |= | clusters by assigning its instances to their closest class representative without taking into account

the label of the instances. Whenever a homogeneous cluster is formed, its center is stored in CS as a prototype, labeled

by the unique class label present in the cluster. On the other hand, whenever a non-homogeneous cluster is formed, the

aforementioned procedure is repeated recursively. A non-recursive implementation of RHC2 is shown in Algorithm 1.
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Algorithm 1 RHC2

Input: )(

Output: �(

1: & ← ∅ {Initialize the queue that will hold the clusters to be processed}

2: �( ← ∅ {Initialize CS}

3: Enqueue(& , )() {the whole TS becomes an unprocessed cluster}

4: repeat

5: � ← Dequeue(&)

6: if homogeneous(�) then

7: A4? ← representative of � {average of its instances}

8: A4?.;014; ← class label of instances in �

9: �( ← �( ∪ {A4?}

10: else

11: =D<;014;B ← number of existing labels in C

12: A4?B ← {A4?8 |A4?8 a representative of existing label in C, 8 = 1 . . . =D<;014;B}

13: 2;DBC4AB ← {2;DBC4A8 |2;DBC4A8 initially empty cluster corresponding to A4?8 }

14: for each instance G ∈ � do

15: A4?8 ← nearest representative to G

16: 2;DBC4A8 ← 2;DBC4A8 ∪ G

17: end for

18: for each 2; ∈ 2;DBC4AB do

19: Enqueue(& , 2;)

20: end for

21: end if

22: until IsEmpty(&)

23: return �(

The algorithm takes a training set and returns a condensing set �( . It utilizes a queue, & , to hold the non homoge-

neous clusters of training instances. Initially, the complete training set is considered to be a non-homogeneous cluster

and is placed in & (line 1). At each repeat-until iteration, RHC2 dequeues a cluster � from & (line 5). If it is homoge-

neous (line 6), its center constitutes a prototype and is placed in �( (line 9). If � is non-homogeneous (line 10), for

each class label in� , RHC2 computes a class center or representative (lines 11–12) by averaging the instances of� that

belong to that label. If =D<;014;B classes are present in� , =D<;014;B class centers are computed. The class centers are

placed in A4?B . Then, the algorithm splits � into =D<;014;B clusters. An initially empty cluster for each class center is

created (line 13). Each training instance G , regardless its class label, is assigned to the cluster of the closest class center

in A4?B (lines 14–17). Each formed cluster is placed in & (line 18–20). The repeat-until loop continues until there is no

cluster in & (line 22).

The ERHC2 algorithm splits each non-homogeneous cluster in a similar manner to RHC2. Like ERHC, ERHC2

considers single instance clusters to be noise and discards them. Therefore, in the case of ERHC2, line 19 of Algorithm 1

is applied only to non-single instance clusters, so that, the prototypes created in line 7 from homogeneous clusters

represent more than one training instances.

Obviously, RHC2 and ERHC2 replace the computationally costly k-means clustering with the fast procedure that

assigns instances to the class centers. In reality, the fast procedure constitutes the first step of k-means clustering. It is

worth mentioning that RHC2 and ERHC2 inherit all the RHC and ERHC properties. Therefore, they are parameter-free

PG algorithms that produce the same CS regardless the order of the training data.
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Table 1. dataset characteristics

Dataset Instances Attributes Classes

Banana (BN) 5300 2 2

Eye State (EEG) 14980 14 2

KDD Cup (KDD) 141481 40 23

Letter Image Recognition (LIR) 20000 16 26

Landsat Satellite (LS) 6435 36 7

Magic Gamma Telescope (MGT) 19020 11 2

Pen Digits (PD) 10992 16 10

Phoneme (PH) 5404 5 2

Pima (PM) 768 8 2

Ring (RNG) 7400 20 2

Shuttle (SH) 58000 9 7

Twonorm (TN) 7400 20 2

Textrue (TXR) 5500 40 11

Yeast (YST) 1484 8 10

5 PERFORMANCE EVALUATION

5.1 Datasets

For the experimental study, fourteen datasets distributed by the KEEL [3] and UCI machine learning [4] repositories

were used. The datasets come from different domains and have different characteristics. Their main characteristics are

summarized in Table 1. The Euclidean distance was used as distance measure. The attribute values of each dataset were

normalized to the range [0,1].

5.2 Experimental Setup

The proposed RHC2 and ERHC2 algorithms as well as their ancestors RHC and ERHC were coded in C++. In addition,

for comparison purposes, we conducted experiments for the CNN and IB2 PS algorithms as well as for NOP approach.

NOP stands for “NoOperation", hence, indicates the fact that no data reduction is performed on the training dataset. The

NOP approach is the conventional k-NN classifier that runs over the original training set. We measured the accuracy

by running the 1-NN classifier over the original training set (case of NOP) and over the condensing sets generated by

the DRTs that took part in the experimental study.

We used a five-fold cross validation schema to measure the metrics of Accuracy (ACC), Reduction Rate (RR), and

Distance Computations (DST in thousands) needed for CS construction. The higher the RR, the faster the classifica-

tion is. Also, the fewer the distances computed for CS construction, the lower the pre-processing computational cost

required.

The major goal of the proposed algorithms is to reduce the computational cost required for the condensing set

construction at a minimum level. The goals of high reduction rates and keeping the classification accuracy at high

levels are also significant.

5.3 Experimental results

Table 2 presents the results of the experimental study. As expected, RHC2 and ERHC2 compute the fewest distances.

In most cases, RHC2 and ERHC2 are 10 times faster or more than the fastest competitor.
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Table 2. Comparison in terms of ACC(%), RR(%) and DST(in Thousands of distance computations)

Dataset NOP RHC ERHC RHC2 ERHC2 CNN IB2

BN

ACC 86.92 83.17 88.09 82.92 87.60 86.38 84.15

RR - 79.39 90.36 80.61 91.73 77.36 83.36

DST - 564.18 564.18 65.92 65.92 12095.48 1545.14

EEG

ACC 45.62 47.54 46.45 48.31 46.62 47.24 45.11

RR - 77.22 85.06 76.89 86.71 66.11 85.94

DST - 3870.43 3870.43 258.61 258.61 146134.02 8159.40

KDD

ACC 99.71 99.39 99.45 98.38 98.34 99.66 99.55

RR - 99.19 99.46 99.28 99.56 99.12 99.26

DST - 81593.69 81593.69 3404.88 3404.88 475607.46 58950.34

LIR

ACC 95.75 93.49 92.74 91.18 89.67 92.66 91.41

RR - 88.01 91.95 85.77 91.59 83.12 85.46

DST - 29606.11 29606.11 750.10 750.10 166004.67 23375.86

LS

ACC 89.94 88.93 88.69 86.59 87.07 87.75 86.71

RR - 90.04 93.10 90.45 93.92 79.92 84.31

DST - 1644.57 1644.57 89.63 89.63 19989.68 2294.72

MGT

ACC 80.50 74.79 79.99 71.53 76.90 76.78 74.54

RR - 79.38 86.72 80.61 89.10 64.09 73.58

DST - 3990.16 3990.16 320.48 320.48 266736.99 31166.01

PD

ACC 99.33 98.50 98.64 97.27 97.20 98.44 97.88

RR - 96.48 97.45 96.93 97.92 95.35 96.07

DST - 3007.78 3007.78 173.19 173.19 12026.86 1969.99

PH

ACC 89.64 85.06 85.99 82.62 83.40 87.69 84.55

RR - 80.74 87.90 80.94 89.29 75.53 80.86

DST - 711.31 711.31 71.24 71.24 14306.66 1970.61

PM

ACC 70.54 63.23 67.92 62.45 67.14 65.97 65.07

RR - 68.86 81.63 69.67 84.53 49.64 62.31

DST - 59.03 59.03 8.50 8.50 387.07 74.09

RNG

ACC 74.55 82.20 86.51 76.51 79.93 82.65 81.68

RR - 90.14 92.68 91.05 93.55 73.26 80.79

DST - 2184.73 2184.73 95.27 95.27 32015.24 3446.38

SH

ACC 99.93 99.79 99.71 98.12 97.82 99.92 99.91

RR - 99.63 99.70 99.66 99.72 99.65 99.66

DST - 9672.88 9672.88 745.84 745.84 20206.74 5296.20

TN

ACC 94.70 89.76 91.45 82.53 84.73 89.78 87.43

RR - 96.65 97.49 97.91 98.52 82.12 88.28

DST - 1534.66 1534.66 47.07 47.07 23191.84 2049.06

TXR

ACC 98.91 97.11 97.02 96.11 95.82 97.13 96.56

RR - 94.51 95.94 95.25 96.62 91.96 93.33

DST - 2724.36 2724.36 79.84 79.84 5017.76 826.96

YS

ACC 51.58 47.47 52.60 45.51 50.64 49.36 47.33

RR - 50.41 78.92 49.89 80.66 33.08 45.63

DST - 554.96 554.96 28.23 28.23 1464.26 378.53

The proposed algorithms achieved high reduction rates. Reduction rate measurements are critical in data reduction

tasks, since the higher the reduction rate is, the faster the execution of the:-NN classifier is on the produced condensing
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Table 3. Results of Wilcoxon signed rank test on ACC measurements

Methods
Accuracy

wins/losses Wilcoxon value

RHC vs ERHC2 10/4 0.551

ERHC vs ERHC2 13/1 0.001

CNN vs ERHC2 10/4 0.026

IB2 vs ERHC2 8/6 0.925

RHC vs RHC2 13/1 0.002

ERHC vs RHC2 13/1 0.004

CNN vs RHC2 13/1 0.002

IB2 vs RHC2 13/1 0.011

ERHC2 vs RHC2 8/6 0.084

set. It is obvious that RHC2 achieves higher reduction rates than RHC and ERHC2 achieves higher reduction rates than

ERHC. Also, both proposed algorithms achieve higher reduction rates than IB2 and CNN.

In the BN, PM, MGT and YS datasets, ERHC2 achieves higher classification accuracy than RHC and CNN. Similarly,

ERHC2 is more accurate than IB2 when the BN, EEG, LS, MGT, PM and YS datasets are used. Moreover, ERHC2 is more

accurate than RHC2 especially on datasets that contain noise.

RHC2 has a greater penalty in classification accuracy. We observe that only in the case of the EEG dataset it achieves

higher classification accuracy than RHC, IB2 and CNN. However, in most cases, its classification accuracy is close

enough to that of its competitors. ERHC seems to be the most accurate DRT. In many cases, it achieves even higher

classification accuracy than NOP.

A last comment is that the experimental results show that RHC2 and ERHC2 are very fast, thus, both are appropriate

for the purpose they were designed for.

Furthermore, both RHC2 and ERHC2 algorithms considerably reduce the training dataset. RHC2 has small penalty

in classification accuracy while ERHC2 can be as accurate as IB2, RHC and CNN.

5.4 Statistical tests

We conducted a Wilcoxon signed rank test [23] and a Friedman test to complement the experimental study. Both tests

are common in the field of PS and PG algorithms.

5.4.1 Wilcoxon Signed Rank Test results. We used the Wilcoxon signed rank test, a non-parametric test, to compare

the DRTs in pairs, examining their measurements on each dataset. The test statistically confirms the validity of the

descriptive measurements shown in Table 5.

Table 5 clearly demonstrates that RHC2 and ERHC2 computed the fewest distances and achieved the highest RR

measurements of all competitors. Therefore, we did not run the Wilcoxon signed rank test to confirm the validity of

these comparisons. We used the statistical test only for the ACC measurements.

The results of the Wilcoxon signed rank test are presented in Table 3. The column with header “Wilcoxon" lists the

Wilcoxon value. The latter quantifies the significance of the statistical difference between the two DRTs. When it is

lower than 0.05, the difference between the two algorithms is considered statistically significant.

The results of the Wilcoxon signed rank test show that the difference between the RHC-ERHC2 and IB2-ERHC2

pairs is not significant. Although ERHC2 beats CNN in four datasets, there is statistically significant difference between
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Table 4. Results of Friedman test on ACC, RR and DC measurements

Algorithm
Mean Rank

ACC RR DST

RHC 4.00 2.79 3.07

ERHC 5.00 4.93 3.07

RHC2 1.71 3.68 5.50

ERHC2 2.64 5.93 5.50

CNN 4.71 1.07 1.00

IB2 2.93 2.61 2.86

them. Therefore, we conclude that the proposed ERHC2 algorithm achieves higher reduction rates by computing an

extremely small number of distances compared to IB2 and RHC and, at the same time, classification accuracy is retained

as high as that of IB2 and RHC.

5.4.2 Friedman Test results. The Friedman test is also non parametric and is used to rank the DRTs. The best DRT

has the highest mean rank, the second best DRT has the second highest mean rank, etc. The Friedman test was run

three times, one for the ACC measurements, one for the RR measurements and one for the DST measurements. Table 4

presents the results of the test. As expected, the test confirms that RHC2 and ERHC2 are the fastest approaches. Also,

the test confirms that ERHC2 achieves the highest RR measurements and that RHC2 achieves higher RRmeasurements

than RHC, CNN and IB2. Last but not least, the test shows that in terms of accuracy, ERHC2 has almost the same mean

rank with IB2.

Table 5. Descriptive statistics of experimental measurements (Average (AVG), Standard Deviation (STDEV), Coefficient of Variation

(CV))

Dataset NOP RHC ERHC RHC2 ERHC2 CNN IB2

AVG

ACC 84.12 82.17 83.94 80.00 81.63 82.96 81.56

RR - 85.05 91.31 85.35 92.39 76.45 82.77

DST - 10122.77 10122.77 438.49 438.49 85370.34 10107.38

STD

ACC 17.74 17.88 16.92 17.54 16.52 17.40 17.865

RR - 13.68 6.56 13.83 5.87 18.83 14.64

DST - 21928.85 21928.85 888.21 888.21 137875.16 16846.86

CV

ACC 21.09 21.75 20.15 21.92 20.24 20.98 21.90

RR - 16.09 7.19 16.20 6.36 24.63 17.69

DST - 216.63 216.63 202.56 202.56 161.50 166.68

6 CONCLUSIONS AND FUTURE WORK

Computationally costly data reduction tasks are inappropriate in many domains where instance-based classification

is applied. This paper presented a preliminary work on the development of very fast data reduction algorithms for

instance-based classification.

More specifically, the paper presented the RHC2 and ERHC2 algorithms. Both are very fast variations of the known

RHC and ERHC algorithms, respectively.

Contrary to RHC and ERHC, RHC2 and ERHC2 avoid the computationally costly complete k-means clustering

procedure that runs over the instances of each non-homogeneous cluster. RHC2 and ERHC2 form as many clusters of

9
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instances as the number of classes in each non-homogeneous cluster by assigning the training instances of the non-

homogeneous cluster to their closest class center in the cluster. When a homogeneous cluster is discovered, its center

constitutes a prototype and is stored in CS.

The experimental study and the corresponding statistical tests showed that both proposed variations are very fast

and achieve higher reduction rates than RHC, ERHC, CNN and IB2, and, at the same time, in many cases their classifi-

cation accuracy is not negatively affected.

In the future, we plan to design new fast PS and PG algorithms that will be as accurate as state-of-the-art DRTs.

Moreover, we plan to apply RHC2 and ERHC2 in fast training data streams and to develop RHC2 and ERHC2 variations

that will be able to handle training data streams with concept drift.
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