
Received 17 March 2023, accepted 6 April 2023, date of publication 24 April 2023, date of current version 27 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269576

Deep Multi-Agent Reinforcement Learning With
Minimal Cross-Agent Communication
for SFC Partitioning
ANGELOS PENTELAS 1,2, (Student Member, IEEE),
DANNY DE VLEESCHAUWER 1, (Member, IEEE), CHIA-YU CHANG 1, (Member, IEEE),
KOEN DE SCHEPPER 1, (Associate Member, IEEE),
AND PANAGIOTIS PAPADIMITRIOU 2, (Senior Member, IEEE)
1Nokia Bell Laboratories, 2018 Antwerp, Belgium
2Department of Applied Informatics, University of Macedonia, 546 36 Thessaloniki, Greece

Corresponding author: Angelos Pentelas (apentelas@uom.edu.gr)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 101017109 (DAEMON).

ABSTRACT Network Function Virtualization (NFV) decouples network functions from the underlying spe-
cialized devices, enabling network processing with higher flexibility and resource efficiency. This promotes
the use of virtual network functions (VNFs), which can be grouped to form a service function chain (SFC).
A critical challenge in NFV is SFC partitioning (SFCP), which is mathematically expressed as a graph-
to-graph mapping problem. Given its NP-hardness, SFCP is commonly solved by approximation methods.
Yet, the relevant literature exhibits a gradual shift towards data-driven SFCP frameworks, such as (deep)
reinforcement learning (RL). In this article, we initially identify crucial limitations of existing RL-based
SFCP approaches. In particular, we argue that most of them stem from the centralized implementation of RL
schemes. Therefore, we devise a cooperative deep multi-agent reinforcement learning (DMARL) scheme
for decentralized SFCP, which fosters the efficient communication of neighboring agents. Our simulation
results (i) demonstrate that DMARL outperforms a state-of-the-art centralized double deep Q-learning
algorithm, (ii) unfold the fundamental behaviors learned by the team of agents, (iii) highlight the importance
of information exchange between agents, and (iv) showcase the implications stemming from various network
topologies on the DMARL efficiency.

INDEX TERMS Multi-agent reinforcement learning, network function virtualization, self-learning orches-
tration.

I. INTRODUCTION
Increasing processing demands, typically coupled with
highly stringent performance requirements, put modern
networks under severe stress. To mitigate the risk of
under-delivery, domain experts promptly re-conceptualized
several architectural components of networks, and pushed
innovations that render them more agile, cost-effective, and
high-performing. One such technology is Network Func-
tion Virtualization (NFV), which comprises a paradigm shift
from hardware-based to virtual network functions (VNFs).

The associate editor coordinating the review of this manuscript and

approving it for publication was Abderrahmane Lakas .

As such, common network functions can be implemented in
the form of virtual machines or containers and be deployed
on-demand within commercial off-the-shelf (COTS) servers.
In addition, multiple VNFs are arranged into an ordered
sequence to form a service function chain (SFC), which in
effect enforces an end-to-end flow processing policy.

Nonetheless, instilling such a high degree of flexibility into
networks via NFV comes with a certain cost, which in this
case is embodied bymanagement and orchestration (MANO)
complexity. Indeed, instantiating, configuring, monitoring,
and scaling SFCs comprise only a subset of operations
that need to be applied upon these new network constructs.
To support such features, the whole NFV endeavour is

40384

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-8502-7872
https://orcid.org/0000-0002-0718-8048
https://orcid.org/0000-0002-7020-8451
https://orcid.org/0000-0003-2839-7006
https://orcid.org/0000-0001-5005-8866
https://orcid.org/0000-0003-4725-8634

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

backed by the NFV MANO framework, which consists in a
hierarchical architecture that positions an NFV orchestration
(NFVO)module on top of virtualized infrastructure managers
(VIMs). Effectively, each VIM operates on a set of COTS
servers (which are typically deployed in a datacenter) and
has a detailed view on critical local parameters, e.g., resource
consumption levels, (anti-)affinity constraints, volume bind-
ings, etc. Yet, useful information frommultiple VIMs shall be
conveyed to the NFVO layer, since certain actions of the latter
might require the coordination of more than a single VIM.
This is the case for the SFC partitioning (SFCP) problem,
where the diverse location constraints of VNFs raises the need
for their distribution across multiple VIMs.

From an algorithmic point of view, SFCP is proven to
be an NP-hard optimization problem [1], which practically
implies scalability limitations. As being typical in problems
of such computational complexity, many studies model SFCP
as a mixed-integer linear program (MILP), and subsequently
propose heuristics or approximation algorithms that can cope
with the scalability issue at the expense of solution quality
(e.g., [2], [3]). However, these algorithms are usually tailored
to specific environments (e.g., certain network topologies),
constraints and objectives, thereby requiring drastic redesign
in case some problem parameters or goals alter. Additionally,
they generally assume perfect knowledge with regard to the
state of the physical network, which is highly unrealistic due
to high network dynamics.

To overcome these limitations, data-driven resource allo-
cation techniques, primarily based on reinforcement learn-
ing (RL), have recently started to gain traction within the
problem space of SFCP (e.g., [4], [5], [6], [7], [8], [9],
[10], [11], [12]). This algorithmic shift has its grounds on
several arguments. First, rapid advancements in the RL field
and, in particular, the application of deep neural networks
within the RL framework [13], empowers it to handle vast
state spaces. Prior to this development, RL methods were
unable to cope with large environments since quantifying
each state-action combination required testing it multiple
times. Second, RLmethods are inherently purposed to design
their own optimization strategies (i.e., policies). They achieve
this merely by interacting with the environment upon which
they are applied and by receiving a problem-specific reward
signal that expresses the decision quality. Given that these
features are aligned with the zero-touch network automation
endeavour set out by operators, it is only natural that RL
algorithms have become state-of-the-art SFCP methods.

A. LIMITATIONS OF CENTRALIZED SFCP WITH RL
With regard to centralized and RL-driven SFCP, the relevant
literature exhibits certain limitations, the most crucial of
which are listed and analyzed below:

1) ASSOCIATION OF INTENTS
A critical limitation of centralized SFCP with RL is the
association of the resource allocation intents of the NFVO

with the respective intents of the underlying VIMs. That
is, as it is common in hierarchical resource management
systems with global and local controllers (e.g., NFVOs and
VIMs, VIMs and hypervisors, k8s master and worker nodes),
the global controller queries the local controllers about their
available resources, and uses this information to compute a
resource allocation decision (which is eventually realized by
the latter). Effectively, this limits the inherent capacity of
the local controllers to express their own resource allocation
intents. In fact, global and local intents are not necessarily
conflicting; on the contrary, fostering the acknowledgement
of local intents can improve the resource allocation efficiency
of the overall system, since each local controller has a more
precise view of its actual state.

2) DECISION-MAKING WITH INCOMPLETE INFORMATION
The common assumption that a single learning agent, posi-
tioned at the NFVO layer (which is the standard practice in
centralized SFCP with RL), has a precise view over the entire
topology, is somehow unrealistic. In fact, the higher we move
along the NFV MANO hierarchy, the more coarse-grained
the information we have at our disposal (because of data
aggregation), which implies higher uncertainty. Conversely,
if a centralized RL approach admits partial observability,
it follows that the decision-making process relies on incom-
plete information.

3) DEPENDENCE OF ACTION SPACE ON TOPOLOGY NODES
In most works that propose centralized RL schemes for the
SFCP problem, the action space of the learning agent coin-
cides with the set of available points-of-presence (PoPs). This
is somewhat natural, since the centralized agent has to infer
which is the best PoP to host a particular VNF. However,
the dependence of the agent’s architecture on the physical
nodes of the substrate makes the RL scheme particularly
hard to scale. That is, the larger the action set, the longer
the training time. Our argument is further strengthened by
studies which employ techniques for shrinking the action
space, e.g., clustering a set of points-of-presence (PoPs) into
a single group, or placing the entire SFC within a single PoP
(e.g., [7], [11]).

B. CONTRIBUTIONS
Admittedly, targeting for a single solution that addresses
all of the aforementioned limitations would be extremely
optimistic. However, one can easily observe that most short-
comings stem from the centralized implementation of SFCP.
Indeed, a decentralized approach that assigns learning agents
locally to each VIM, in conjunction with a module at the
NFVO layer that coordinates the resulting local decisions,
would alleviate many of these limitations. In particular,
(i) the global and local intents would be naturally decoupled,
(ii) each agent would act based on detailed local observations;
thus, from the perspective of the overall system, the true state
would be fully observable, and (iii) it would be easier to
decouple action spaces from the physical topology. Along

VOLUME 11, 2023 40385

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

these lines, this work focuses on the investigation, the devel-
opment, and the evaluation of a decentralized SFCP scheme
based on cooperative deep multi-agent reinforcement learn-
ing (DMARL). Our main contributions are the following:

• We devise a DMARL framework for decentralized
SFCP. Our DMARL algorithm consists of independent
double deep Q-learning (DDQL) agents, and fosters the
exchange of concise, yet critical, information among
them.

• We develop a DDQL algorithm for centralized SFCP,
and compare its performance with DMARL.

• We quantify fundamental rules identified by the team of
agents over the course of training.

• We examine the impact of (imperfect) cross-agent com-
munication across various substrate network topologies.

The remainder of this article is structured as follows.
In Section II, we give a solid description of SFCP and basic
formulations for system models. In Section III, we elaborate
on deep RL and present a single-agent DDQL algorithm
for SFCP. In Section IV, we cast SFCP as a multi-agent
learning problem, and devise a DMARL algorithm to address
it. Section V includes our evaluation results and in Section VI
we discuss related work. A thorough discussion is given in
Section VII, and conclusions are laid out in Section VIII.

II. PROBLEM FORMULATION
In this section, we commence with a high-level description
of SFCP and, subsequently, we formalize important concepts
via system models.

A. PROBLEM DESCRIPTION
As already explained, a SFC is an ordered sequence of VNFs,
which enforces a flow processing policy. For instance, Fire-
wall → Packet inspection→ Load Balancer is a typical SFC
which can be seen useful in, e.g., securing and load balancing
a web application. Effectively, flows have to traverse the
entire set of VNFs with the specified order to reach their
destination.

To delve deeper, each VNF of the SFC requires computing
resources (e.g., CPU) for packet processing. Additionally,
connections among consecutive VNFs, henceforth termed as
virtual links (vlinks), require network resources (e.g., band-
width) in order to forward traffic from one VNF to another.
Such computing and network resources are offered by a
multi-datacenter system. Specifically, computing resources
are offered by servers, while network resources are allocated
from physical links. It is also quite common to assume that
computing resources are offered by a PoP (e.g., a datacenter).
Whether PoPs belong to a single or multiple administrative

domains has a crucial effect on SFCP. Concretely, in multi-
domain settings (where PoPs aremanaged bymultiple admin-
istrators), resource utilization parameters are confined within
each domain. Thereby, SFCP is typically solved via resource
bidding mechanisms, e.g., [14], [15], and [16]. On the
other hand, there are no information disclosure concerns in
single-domain scenarios. However, this leads to the common

FIGURE 1. An SFCP problem instance. On top, an SFC-R GR . At the
bottom, a multi-PoP topology GS . Resources of physical links are not
exhaustively depicted for figure clarity.

misunderstanding that each bit of information can be easily
conveyed to a centralized controller for decision-making with
full observability. While theoretically possible, the above
practice is simply ineffective, since it implies high com-
munication overheads [17]. Effectively, it is more realis-
tic to assume that PoPs expose descriptive statistics about
their resources, such as the average residual CPU capacity
of their servers. To this end, our work considers single-
domain settings, and it accounts for the limited information
that can be exchanged between PoPs and the centralized
controller.

Irrespective of the number of domain administrators, SFCP
boils down to the problem of computing a mapping between
the virtual elements of an SFC and their physical counter-
parts, while adhering to resource capacity constraints. Specif-
ically, VNFs are assigned to PoPs in a one-to-one fashion,
while virtual links are assigned to physical links in a one-to-
many fashion. Naturally, the VIM of each PoP then needs to
compute a placement of the sub-SFC elements (i.e., subset of
VNFs and vlinks) onto physical servers and intra-datacenter
links, but this topic is not within the scope of our work.
An illustration of an SFCP problem instance is given in
Fig. 1. An SFC (consisting of three VNFs) at the top of the
figure is considered to be partitioned over a six-PoP topology
at the bottom of the same figure. Both VNFs and virtual
links require resources (dark circular sectors), while PoPs and
physical links are characterized by available and allocated
resources (light and dark circular sectors, respectively). Fur-
ther, each SFC contains a source and a destination, while each
PoP is represented by its coordinates in a two-dimensional
space.

Optimality with respect to SFCP can take numerous
forms. For instance, it can be seen through the lens of load
balancing [18], throughput maximization [5], latency mini-
mization [3], fault tolerance (reliability) [11], cross-service
communication [19], or resource efficiency [20]. Our work
does not intend neither to add another problem dimension
nor to further explore an existing one; it rather focuses on
the investigation of an RL scheme that is more aligned with
current system architectures and goals. Here, we opt for the
latencyminimization objective, since a key problem for SFCP
is to fulfill the stringent low-latency requirements.

40386 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

B. SYSTEM MODELS
1) SERVICE FUNCTION CHAIN REQUEST (SFC-R) MODEL
Wemodel an SFC-Rwith the 5-tuple< GR, src, dst, t, 1t >.
GR = (VR,ER) is a directed graph, where VR and ER denote
the set of nodes and edges (i.e., VNFs and virtual links),
respectively. Additionally, dR(i) expresses the CPU demand
of VNF i ∈ VR, while dR(i, j) represents the bandwidth
requirements of (i, j) ∈ ER (both expressed as percentages).
src and dst indicate the source and the destination coordinates
of the SFC, while t expresses its arrival time, and 1t denotes
its lifespan.

We note that both src and dst aremodeled as auxiliary VNF
nodes with zero resource requirements (i.e., src, dst ∈ VR,
and dR(src) = dR(dst) = 0). Naturally, this introduces two
additional edges to the SFC graph, one from the src towards
the first VNF, and one from the last VNF towards the dst (see
top of Fig. 3). Further, we assume that the src and dst of an
SFC correspond to coordinates of arbitrary PoPs, denoted by
usrc and udst ∈ VS .

2) SUBSTRATE NETWORK MODEL
Wemodel a substrate network with an undirected graphGS =

(VS ,ES), whereVS andES denote the sets of nodes and edges.
Since we consider GS to be a PoP-level topology (i.e., a
network of datacenters), VS corresponds to PoPs, and ES to
inter-PoP links. dS,t (u) expresses the available CPU of node u
at time t (i.e., the average available CPU of servers belonging
to PoP u), and dS,t (u, v) denotes the available bandwidth of
the edge (u, v) at time t (again, as percentages). Last, D(u, v)
represents the propagation delay of a physical link (u, v).

III. SINGLE-AGENT REINFORCEMENT LEARNING
This section discusses single-agent RL optimization. We ini-
tially outline the common RL setting, and proceed with a
short description of the state-of-the-art DDQL algorithm.
Subsequently, we elaborate on our proposed DDQL approach
for SFCP.

A. BACKGROUND
The typical RL setting considers a learning-agent, an envi-
ronment, a control task subject to optimization, and a discrete
time horizon H = {1, 2, . . .}, which can as well be infinite.
At time t ∈ H , the agent observes the current state of the
environment st ∈ S, with S indicating the entire set of
possible states. Equipped with a set of actions X , the agent
shall interact with the environment by choosing xt ∈ X . Then,
the agent receives feedback regarding the quality of its action
via a reward signal rt , and the environment transitions to the
subsequent state st+1 ∈ S.
Conventionally, a RL task is modelled as a Markov deci-

sion process, defined by the tuple < S,X , S1,T ,R >. Here,
S and X are as before. S1 ∈ P(S) denotes the starting state
distribution, and T : S × X → P(S) is the state transition
function, where P(·) denotes the set of probability distribu-
tions over a set. Finally, R : S × X × S → R expresses the

reward function, which is generally denoted as Rt instead of
R(st , xt , st+1) for simplicity. Naturally, the aim of the agent is
to maximize the accumulated discounted reward over H , i.e.,∑

t∈H γ tRt , where γ ∈ [0, 1) is a discount factor employed
to prioritize immediate reward signals against those projected
farther into the future. To achieve that, the agent needs to
perform a sequence of actions based on a learned policy π ,
which is practically a function that maps states to probability
distributions over actions, i.e.,π : S → P(X), and the optimal
policy is denoted as π∗.

An important concept here is the action-value function,
which quantifies the agent’s incentive of performing a spe-
cific action on a particular state:

Q(st , xt) := Et

[
∞∑
k=0

γ kRt+k |st , xt

]
, (st , xt) ∈ S × X (1)

Apparently, if the agent explores its action selection on
the environment long enough such that Q-values represent
ground truth reward values, then finding the optimal policy
becomes trivial. That is, π∗(st) = argmaxx∈XQ(st , x). How-
ever, Q-values are treated as estimates, since the assump-
tion of perfect exploration is hardly ever realistic. To this
end, the agent needs to balance exploration and exploita-
tion, where the former shall strengthen its confidence on
Q estimations, and the latter will enable it to benefit from
accumulated knowledge. The most common approach to
achieve a favourable exploration-exploitation trade-off is via
an ϵ − greedy action selection strategy. According to it, the
agent performs a random action with probability ϵ, while
with probability 1 − ϵ the action with the highest Q-value
is selected. Given an initial ϵ, i.e., ϵ0, and a decay factor
ϵdecay ∈ (0, 1), the agent can gradually shift from exploratory
to exploitative:

ϵt = ϵ0 · (ϵdecay)t (2)

B. DOUBLE DEEP Q-LEARNING
A well-known method that leverages the notions above is
Q-learning, which is amodel-free,1 off-policy2 RL algorithm.
Q-learning attempts to find optimal policies via a direct esti-
mation ofQ-values, which are maintained in a tabular format.
Each time a state-action pair (st , xt) is visited, the respective
Q-value is updated. An apparent restriction here is the lack of
generalization capacity. That is, in problems with large state-
action spaces, the risk of scarce Q-updates is high.
To overcome this limitation, Mnih et al. [13] propose a

Q-function approximation scheme based on deep neural net-
works (NNs), commonly termed as deep Q-learning (DQL).
As per DQL, the learning capacity of the agent lies in a NN
which approximates theQ-function by parameterizing it, i.e.,
Q(s, x) ∼ Q(s, x; θ) (where θ represents a vector of weights
and biases of the NN). Ultimately, given a state as input, the

1It does not intend to discover the transition function.
2While following a specific policy, it assesses the quality of a different

one.

VOLUME 11, 2023 40387

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

FIGURE 2. Illustration of the typical DDQL architecture.

NN computes a Q-value for every possible action. Then, it is
up to an action selection strategy (e.g., ϵ − greedy) to choose
a particular action.

Two mechanisms that contribute to the success of DQL
are the replay memory and the coordination of an online
NN and a target NN [21]. The replay memory is used to
store state-action-reward-next state transitions; with a proper
sampling over it, we can subsequently train the online NN
with uncorrelated data. The interplay of the two NNs works
as follows: initially, the target NN is an exact replica of the
online NN, meaning that they share the same architecture,
weights and biases. However, it is only the online NN that
is updated at every training step, while its weights and biases
are copied to the target NN every δ training steps. The target
NN (represented by θ−) is used to temporarily stabilize the
target value which the online NN (represented by θ) tries to
predict. Effectively, the training of the learning agent boils
down to the minimization of Eq. (3), also known as loss
function. In the target term of Eq. (3), the greedy policy is
evaluated by the onlineNN,whereas the greedy policy’s value
is evaluated by the target NN. As per [21], this reduces the
overestimation of Q-values, which would be the case if both
the greedy policy and its value have been evaluated by the
online NN. An illustration of the DDQL framework is given
in Fig. 2.

L(θt) = E
[(
rt + γQ

(
st+1, argmax

x∈X
Q(st+1, x; θt); θ−

t
)

︸ ︷︷ ︸
target

− Q(st , xt ; θt)︸ ︷︷ ︸
predicted

)2]
(3)

C. DDQL FOR SFCP
We devise a single-agent RL algorithm for SFCP to serve
as a baseline for comparison with our multi-agent RL
scheme. Specifically, we opt for the DDQL method, as it
has demonstrated promising results within our problem space
(e.g., [7], [11], [16]). In our implementation, a training
episode consists of the placement of an entire SFC, whereas
a decision step refers to the placement of a single VNF of
the SFC.

1) OBSERVATIONS
At time t , the agent observes information ot about the cur-
rent VNF i and the SFC GR that it belongs to, as well as
information about the available resources of the substrate
physical topology GS . In particular, the agent receives the
length of the SFC (|VR|), the coordinates of the src (src.loc)
and dst (dst.loc) nodes of the SFC, the CPU demand of
VNF i (dR(i)), the ingress (dR(i−, i)) and egress (dR(i, i+))
bandwidth requirements of VNF i, as well as its order
(i.order) in the SFC. Regarding the physical network, the
agent observes the coordinates (u.loc) and the average avail-
able CPU (dS,t (u)) of each PoP u ∈ VS , and the available
bandwidth (dS,t (u, v)) of each link (u, v) ∈ ES . That is:

ot =
(
|VR|, src.loc, dst.loc︸ ︷︷ ︸

SFC state

,

dR(i), dR(i−, i), dR(i, i+), i.order,︸ ︷︷ ︸
VNF state

(u.loc, dS,t (u), ∀u ∈ VS), (dS,t (u, v), ∀(u, v) ∈ ES)︸ ︷︷ ︸
substrate state

)
Notice that, since ot does not hold information about the indi-
vidual servers of the topology (which are the elements that
actually host VNFs), the environment is partially observable,
hence we use observation ot instead of state st .

2) ACTIONS
In our centralized implementation, an action determines
which PoPwill host the current VNF i. Concretely, the agent’s
action set is X = {1, 2, . . . , |VS |}. Notice that, if decision
steps referred to the placement of an entire SFC instead of
individual VNFs, then the action space would have been
substantially larger (i.e., |X | = |VS ||VR|). This would have
an adverse effect on the algorithm’s performance.

3) REWARD
A VNF placement is deemed successful, if the selected PoP
has at least one server with adequate resources to host it.
An SFC placement (which is the ultimate goal) is deemed
successful, if all of its VNFs have been successfully placed
and all of its virtual links are assigned onto physical paths that
connect the VNFs correctly. For every successful VNF place-
ment, the agent receives rt = 0.1. If the current VNF is the
last VNF of the chain (i.e., terminal VNF) and is successfully
placed, then the virtual link placement commences (using
Dijkstra’s shortest path algorithm for every adjacent VNF
pair - similar to [6] and [10]). If this process is successfully
completed, the reward is computed as follows:

rt = 10 ·
|opt_path| + 1
|act_path| + 1

(4)

where |opt_path| is the length of the shortest path between the
src.loc and the dst.loc (recall that these are always associated
with PoP locations), and |act_path| is the length of the actual
path established by theDDQL algorithm. Apparently, the best
reward rt = 10 is given when |opt_path| = |act_path|.

40388 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

Algorithm 1 DDQL Training Procedure
1: Input: sfc_dataset, topology
2: env = Environment(sfc_dataset, topology)
3: agent = DDQLAgent(topology)
4: for sfc in sfc_dataset do {training episode}
5: done = False
6: state = env.reset()
7: env.place_src_dst()
8: score = 0
9: while not done do {training step}
10: action = agent.choose_action(state)
11: new_state, reward, done = env.step(action)
12: score += reward
13: agent.store(state, action, reward, new_state)
14: agent.learn() {train the online NN}
15: state = new_state
16: end while
17: end for

In case the placement of any VNF or virtual link fails (due
to inadequate physical resources), then rt = −10 and a new
training episode initiates.

4) ARCHITECTURE
As hinted by previous discussions, the functionality of our
DDQL agent relies on four key elements, namely an online
NN, a target NN, a replay memory, and an action selection
strategy. Both NNs comprise an input layer whose size equals
the length of the observation vector ot (i.e., |ot | = 3|VS | +

|ES |+9), two fully-connected hidden layers with 256 neurons
each, and an output layer with |VS | neurons. All layers are
feed-forward, the activation function applied on individual
cells is Rectified Linear Unit (ReLU), and the loss function
used is Eq. (3). The replay memory is implemented as a
queue, which stores the latest 10, 000 environment transi-
tions. The online NN samples 64 random transition instances
out of the replay memory at every training step, while the
target NN is updated every δ = 20 steps. Last, we employ an
ϵ − greedy action selection strategy, where, in Eq. (2), we set
ϵ0 = 1 and ϵdecay = 0.9998.

5) TRAINING
The instrumentation of the above is summarized in Algs. 1
and 2. In more detail, Alg. 1 describes the steps of the DDQL
training process, which takes place over a collection of SFCs
(sfc_dataset) and a physical PoP topology (topology) (line 1).
At each episode (line 4), the agent handles the placement of
a unique SFC. Prior to any action, the environment resets to
a new state in line 6 (i.e., we increment the SFC index in the
sfc_dataset by one, obtain the first VNF of the current SFC,
and generate random loads for PoPs and physical links), and
assigns the src and dst of the SFC to the respective PoPs
(line 7). The core learning process lies within lines 9-16.
First, the agent chooses an action based on the current state

Algorithm 2 Environment Transition Procedure
1: Input: action
2: done = False
3: PoP = decode(action)
4: n_success = place_node(vnf, PoP)
5: if n_success and vnf.is_terminal then
6: l_success, act_path, opt_path = place_links(sfc, topo)
7: if l_success then {successful SFCP}
8: reward = 10 ·

|opt_path|+1
|act_path|+1

9: else {insufficient link capacities}
10: reward = −10
11: end if
12: new_state = next_sfc()
13: done = True
14: else if n_success then {successful VNF allocation}
15: reward = 0.1
16: new_state = next_vnf()
17: else {insufficient PoP capacity}
18: reward = −10
19: new_state = next_sfc()
20: done = True
21: end if
22: return new_state, reward, done

(line 10), the environment transitions to a new state based on
the action being taken (line 11), the transition is stored in the
replay memory of the agent (line 13), the online NN is trained
(line 14), and the current score and state are updated (lines 12
and 15). The transitions of the environment to a new state are
further described in Alg. 2, which practically implements the
reward computation and episode termination logic described
earlier (see the Reward paragraph).

IV. MULTI-AGENT REINFORCEMENT LEARNING
We herein introduce cooperative multi-agent reinforcement
learning (MARL). Then, we discuss independentQ-learning,
which is the foundation of the proposed solution. Finally,
we describe in-detail a DMARL scheme for SFCP.

A. COOPERATIVE MARL
MARL builds upon the fundamental blocks of single-agent
RL, presented in Section III-A. In particular, MARL con-
siders a set of n agents A = {1, . . . , n} interacting with the
environment. At each time step t ∈ H , each agent α ∈ A
observes oα

t , and draws an action x
α
t from its own designated

action set Xα . The joint action xt = (x1t , . . . , x
n
t) is then

applied on the environment, which transitions to a new state
st+1. In extension, each agent α observes oα

t+1. Similar to
single-agent RL, the transition (st , xt , st+1) is evaluated by
means of a reward function R, and a scalar rα

t is sent to each
agent. In a fully cooperative MARL setting, all agents share
the same reward, i.e., rα

t = rt , ∀ α ∈ A.
In principle, the dynamics of the above scheme can be

captured by a cooperative Markov game, typically defined

VOLUME 11, 2023 40389

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

by the tuple < S,X, S1,T ,R,Z ,O, n >. Here, S, S1, T and
R are as in Section III-A. X = X1

× . . . × Xn denotes the
joint action space, Z expresses the space of observations, and
O : S × A → Z is the observation function that dictates
the partial observability of each agent (i.e., O can be seen
as the function that maps a state st and an agent α to an
observation oα

t ∈ Z). In this setting, the goal of each agent
α is to discover a policy πα

: Z → P(Xα), such that the
joint policy3 π = (π1, . . . , πn) : S → P(X) maximizes the
(discounted) accumulated reward.

B. INDEPENDENT Q-LEARNING
Undoubtedly, the simplest way of establishing a coopera-
tive MARL framework is to treat each learning agent as an
independent learning module. In this setting, if each agent is
realized as a Q-learning agent, the respective MARL system
is known as independent Q-learning (IQL) [22]. Amajor lim-
itation of IQL is its lack of convergence guarantees, primarily
stemming from the fact that the environment is non-stationary
from the perspective of each agent. Effectively, this means
that for an agent α, both its reward rt and its next observation
oα
t+1 are not solely conditioned on its current observation oα

t
and action xα

t . In other words, the transitions of the environ-
ment, and, in extension, the common rewards, are affected by
the actions of other agents as well. Even though obtaining an
optimized joint policy π while agents treat other agents as
part of the environment is seemingly difficult, IQL exhibits
good empirical performance [23].

Cooperative MARL is an active research field, given that
numerous control tasks can be seen through the lens of
multi-agent systems. In the context of collaborative DQL
agents, recent works (e.g., [24] and [25]) have established
frameworks that promote joint training of multiple agents
(i.e., centralized training - decentralized execution), under the
assumption that the Qtotal-function of the multi-agent system
can be decomposed into individual Q-functions such that,
if each agent α maximizes its own Qα , then Qtotal is also
maximized.

Irrespective of the promising advances in the field, our
work builds upon typical IQL for the following reasons.
First, IQL is simple enough to facilitate the interpretation
of the system’s learning behavior, as it avoids complex NN
training schemes. Second, as it is apparent in Section IV-C,
we envisage an action coordination module at the NFVO
layer to handle the constraints of SFCP, which can signifi-
cantly benefit the overall IQL framework.

C. DMARL FOR SFCP
We implement a DMARL scheme for SFCP. Specifi-
cally, we generate a single DDQL agent (as described in
Section III-B) for every PoP u in the substrate network GS .
For the rest of this section, we assume that agent α is associ-
ated with PoP u, and agent β with PoP v.

3Here, we implicitly assume that the union of partial observations of all
agents can compose the state space, i.e., ∪α∈Aoαt = st , ∀t .

1) OBSERVATIONS
At time t , each agent α ∈ A observes information oα

t about the
current VNF i and the SFC GR to which this VNF belongs,
as well as the available resources of the substrate physical
topology GS . In detail, agent α receives the length of the
SFC, the coordinates of src and dst nodes of the SFC, the
CPU demand of VNF i, the ingress and egress bandwidth
requirements of VNF i, and the order of this VNF in the SFC,
similar to the single-agent observation mentioned in Sec-
tion III-C. Regarding the physical network, agent α observes
the coordinates of PoP u, the available CPU (dS,t (us)) of every
server s ∈ u, and the available bandwidth of each physical
link connected to PoP u.

We further augment the observation space of agents
by enabling cross-agent communications. Specifically,
we define N (α) to be the set of neighboring agents of α,
i.e., N (α) = {β : distance(α, β) = 1, ∀β ∈ A − {α}},
where distance(α, β) refers to the length of the shortest path
between PoPs u and v in GS (recall that α operates over u and
β over v). Effectively, α receives the location coordinates and
the average CPU capacity from every PoP v managed by a
neighboring agent β ∈ N (α). As it will become apparent,
cross-agent communications are pivotal for the efficiency
of the system, since they enable agents to reason about the
state of other agents. Yet, to maintain the communication
overhead low, agents do not share their entire local state (i.e.,
the available CPU of each server - dS,t (us), ∀s ∈ u), rather
a single descriptive value (i.e., the average available CPU
across all servers - dS,t (u)).

As explained in Section IV-B, agents within MARL set-
tings operate over non-stationary environments, which prac-
tically implies that old experiences might become highly
irrelevant as agents shift from exploratory to exploitative.
To this end, we include a fingerprint [26] into the observation,
namely ϵ (the probability to select a random action), as a
means to distinguish old from recent experiences.

The last elements that are inserted into oα
t are three

binary flags, namely hosts_another , hosts_previous, and
in_shortest_path, which are computed by agent α prior
to action selection. In particular, hosts_another = 1 if
any VNF of the current SFC has been placed in PoP u,
hosts_previous = 1 if the previous VNF of the current VNF
has been placed in PoP u, and in_shortest_path = 1 if PoP u
is part of the shortest path between the src and the dst of the
SFC, while they are zero otherwise. These three flags will
be proven crucial for analyzing the behavior of the DMARL
system in Section V-C. As such, we define:

oα
t =

(
|VR|, src.loc, dst.loc︸ ︷︷ ︸

SFC state

,

dR(i), dR(i−, i), dR(i, i+), i.order,︸ ︷︷ ︸
VNF state

u.loc, (dS,t (us), ∀s ∈ u), (dS,t (u, v), ∀v ∈ N (u)), ϵ,︸ ︷︷ ︸
local state (resources and fingerprint)

40390 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

hosts_another, hosts_previous, in_shortest_path,︸ ︷︷ ︸
local state (flags)

(v.loc, dS,t (v), ∀v ∈ N (u)︸ ︷︷ ︸
neighbors’ condensed state

)
where N (u) denotes the neighboring nodes of u in the graph
GS . Note that, contrary to the single-agent case, here the team
of agents observes the true state of the environment, i.e.,
∪α∈Aoα

t = st . However, from the point of view of a single
agent, the environment is still partially observable.

2) ACTIONS
Agents are equipped with a set of actions that allows them to
express their intents based on their local state. In detail, all
agents share the same discrete set of actions X = {0, 1, 2},
where 0 indicates low willingness, 1 expresses a neutral
position, and 2 indicates high willingness, with respect to
hosting the current VNF. Note that the above action sets are
topology-agnostic (in contrast to the action set of our single-
agent DDQL, where there is one action for each PoP).

3) ACTION COORDINATION
The joint action xt = (x1t , . . . , x

n
t) of all agents is forwarded

to an action coordination module positioned at the NFVO
layer. This treats individual actions as soft decisions and
eventually computes the firm decision according to the overall
objective (e.g., load balancing, consolidation) and constraints
(e.g., each VNF at exactly one PoP). Here, we opt for a simple
action coordination scheme where (i) the agent with the high-
est action (ties broken arbitrarily) will enable its associated
PoP to be selected to host the current VNF, and (ii) the objec-
tive is solely dictated by the reward function, meaning that
the coordinator does not intend to achieve another objective.
For example, if the joint action is xt = (xα

t = 2, xβ
t = 0)

for the placement of a VNF i, the action coordination module
will infer that i will be positioned at node u, which is the PoP
of agent α, since xα

t > xβ
t .

4) REWARD
Our DMARL algorithm adopts a reward scheme similar to
the one presented in the single-agent case. That is, for every
successful VNF placement, all agents receive r = 0.1, and
for every successful SFC placement the common reward
is computed in Eq. (4). In case of a failed SFCP attempt
(inadequate physical resources), agents receive r = −10.

5) ARCHITECTURE
The proposed DMARL scheme is shown in Fig. 3, which
illustrates the mapping of the proposed elements and func-
tionalities onto the NFV MANO framework. At the top,
we depict an SFC request which is conveyed to the NFVO via
its northbound interface (NBI) in step 0. During step 1, the
NFVO forwards the VNF and the SFC states to the underlying
VIMs, and we assume that each VIM is associated with a
single PoP. Additionally, each VIM is equipped with a DDQL

FIGURE 3. The proposed DMARL scheme is decomposed from step 0 to
step 6 and mapped to the NFV MANO framework.

agent similar to the one described in Section III-C, their only
difference being the input and output layers. In particular, the
input layer of each DDQL agent α in the DMARL setting
has |oα

t | neurons, while its output layer consists of three
neurons (one for each action). The API calls depicted in
step 2 implement the cross-agent communication function-
ality, where each agent retrieves condensed information from
its neighbors. Step 3 refers to the computation of local state,
i.e., monitoring of available CPU of each server and updat-
ing the three binary flag values. Afterwards, agents convey
their soft actions via the NBIs of their VIMs towards the
southbound interface (SBI) of the NFVO (step 4), where
individual actions are aggregated into a joint action that is
handed over to the coordination module. The latter resolves
potential conflicts and, in principle, assesses the individual
preferences with respect to the overall objective (step 5).
Finally, the firm decision, which indicates the PoP that will
host the current VNF, is sent to the respective VIM (step 6).
This process is repeated until all VNFs and virtual links are
assigned, or until the SFCP fails (virtual links are assigned
via Dijkstra’s method, similar to the single-agent case - cf.
Section III-C).

6) TRAINING
The training procedure followed by the proposed DMARL
scheme is outlined in Alg. 3, which exhibits many similarities
with Alg. 1. Their core differences are as follows. First,
in line 1, the number of actions (n_actions) is provided as
input. That is, the number of actions is no longer determined
by the number of PoPs; it rather becomes a parameter of the
multi-agent framework. Specifically, the number of actions
affects (i) the capacity of agents to express their resource
allocation intents and (ii) the duration of the system’s

VOLUME 11, 2023 40391

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

Algorithm 3 DMARL Training Procedure
1: Input: sfc_dataset, topology, n_actions
2: env = Environment(sfc_dataset, topology)
3: marl =MARL(topology, n_actions)
4: for sfc in sfc_dataset do {training episode}
5: done = False
6: state = env.reset()
7: env.place_src_dst()
8: score = 0
9: while not done do {training step}
10: soft_actions = marl.choose_actions(state)
11: firm_action = env.coordinate(soft_actions)
12: new_state, reward, done = env.step(firm_action)
13: score += reward
14: marl.store(state, soft_actions, reward, new_state)
15: marl.train() {train the online NNs of all agents}
16: state = new_state
17: end while
18: end for

convergence. As a good compromise, we always set the num-
ber of actions to three in this work, i.e., actions are taken
from the set {0, 1, 2}. Another difference between the two
algorithms lies in the manner in which the state is interpreted
in line 6. In Alg. 3, state refers to the VNF and the SFC
state only, which is shared across all agents (see step 1 in
Fig. 3). However, in line 10, further subroutines are called so
that each agent chooses an action based on additional obser-
vations, such as its local state and neighboring (condensed)
states (cf. steps 2 and 3 in Fig. 3). In lines 11 and 12, the coor-
dination module derives the firm action, and the environment
transitions to a new state based on this action, as explained
in steps 4 to 6 in Fig. 3. In line 14, each agent stores its
transition into its replay memory (each agent expands the
state variable), and in line 15 all agents train their online NNs.

V. PERFORMANCE EVALUATION
This section covers a wide range of evaluation aspects,
primarily focusing on the proposed DMARL algorithm.
Initially, we present the simulation settings and the main
performance metrics that we take into consideration. Then,
we compare the single-agent DDQL method with the
DMARL scheme, and elaborate on the learning behavior
developed by the team of agents. Subsequently, we eval-
uate the cross-agent communication feature, and measure
its implications across various physical network topologies.
Finally, we experiment with an imperfect cross-agent com-
munication scheme, which is more grounded to reality.

A. EVALUATION ENVIRONMENT AND PERFORMANCE
METRICS
We consider linear SFCs consisting of two to five VNFs
(excluding the src and dst auxiliary VNFs). Unless otherwise
specified, the algorithms are trained with datasets containing
10, 000 SFCs (i.e., 10, 000 training episodes). Each VNF of

FIGURE 4. Topologies considered for evaluation.

an SFC requires 5 − 20% of a server’s CPU. Each time a
new SFC requests partitioning, the physical resources reset to
arbitrary states. In particular, all previously embedded VNFs
and virtual links are removed, and all servers generate random
CPU loads within 70 − 100%. That is, their available CPU
lies in 0 − 30%, and, in this way, we reduce the risk of
precluding feasible partitionings due to CPU insufficiency.
This approach (i) renders consecutive SFC placements (i.e.,
episodes) independent events, and (ii) enables us to reason
about the actual learning efficiency of the algorithms, as low
scores will be solely due to insufficient learning. Further, each
PoP comprises ten servers, i.e., each PoP is a (micro) data-
center. Regarding the bandwidth of inter-PoP physical links,
we assume that it always suffices for virtual link allocation in
our current study, and aim to explore extensive insights into
the aspect of virtual node allocations.

As illustrated in Fig. 4, we utilize three PoP topolo-
gies (i.e., GS) in our evaluations, which have been selected
to unveil critical properties of the multi-agent framework.
In particular, each topology comprises five PoPs; hence,
the (single-agent) DDQL algorithm works with five actions
(one per PoP), and the DMARL framework generates five
independent DDQL agents (one per PoP). We note that the
auxiliary src and dst VNFs of an SFC are associated with
random PoPs (i.e., src.loc and dst.locmight even coincide; in
this case, the length of the optimal path |opt_path| is zero).

While we employ several micro-benchmarks in order to
interpret and assess the algorithmic behaviors, two infor-
mative metrics refer to the tracking of (i) the accumulated
reward, and (ii) the rate of optimal and rejected partitionings.

B. COMPARISON WITH STATE-OF-THE-ART
We compare the performance of the (centralized) DDQL
against the (distributed) DMARL algorithm over the mesh
topology shown in Fig. 4a. Recall that DDQL serves as our
state-of-the-art benchmark method. Instead of using existing
DDQL schemes for SFCP (e.g., [7], [11], [16]), we devise
a DDQL implementation (cf. Section III-C) which better
matches our problem formulation and objective, thus allow-
ing for a fair comparison.

At first glance at Fig. 5a, where we plot the correspond-
ing scores as moving averages across the last 100 episodes,
we observe that both methods perform similarly. In partic-
ular, towards the end of the experiment, the two algorithms
manage to retrieve an average score of 7.0. Taking Eq. (4)
into account, we infer that both learning schemes obtain
SFCPs that are, on average, 30% from the optimal. However,

40392 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

FIGURE 5. Performance comparison between DDQL and DMARL.

by zooming in at the 4, 000 − 6, 000 episodes interval,
it becomes apparent that the DMARL framework exhibits
faster convergence towards the aforementioned score than
DDQL. In fact, this is further corroborated by Fig. 5b, where
it becomes clear that, at the exact same interval, the rate of
optimal partitionings of DMARL grows more rapidly than
that of DDQL. According to Fig. 5b, the rejection rates are
negligible for both algorithms.

Although informative, Figs. 5a and 5b do not convey a lot
about the differences of the underlying algorithmic behaviors.
To this end, we also consider Fig. 5c, which depicts the
footprint of optimal SFCPs. The most evident difference here
is centered on the incapacity of DDQL to achieve many 1 PoP
partitionings, which is counterbalanced by its higher capacity
to achieve >2 PoP partitionings, compared to DMARL. Our
interpretation of this behavior is as follows: DDQL has a
partial view of the real state, but its observation contains
information about the entire topology (see Section III-C).
This enhances its inherent capacity to distribute VNFs across
many PoPs, since it can reason about the state of the entire
multi-datacenter system. At the same time, its observations
only include the average available CPU capacities of each
PoP (i.e., dS,t (u) in ot), which limits its confidence in con-
solidating multiple VNFs into the same PoP. For instance,
if dS,t (u) = 0.15 for the PoP u ∈ VS , and the current
VNF i demands dR(i) = 0.18, then it is impossible for
DDQL to be certain whether i fits into a server of PoP
u. Conversely, a DMARL agent α operating over u has a
detailed view of the available CPU resources of all servers
in PoP u, e.g., α observes (dS,t (u1) = 0.10, . . . , dS,t (us) =

0.20, . . . , dS,t (u10) = 0.15), and, in this case, it can be certain
that server s of PoP u can accommodate VNF i.
Although the aforementioned limitation can be mitigated

by extending DDQL’s observation space with additional
metrics (at the risk of further slowing its convergence),
we deem that this analysis indicates the implications of
decision-making with incomplete information in the context
of SFCP.

C. DMARL ANALYSIS
To further delve into the behavior developed by the DMARL
scheme, we employ Fig. 6. Here, we attempt to shed light
into the learning aspect of the team of agents in the mesh
topology, by examining certain action selection rules that
have been identified over the course of training. To this end,
we monitor the evolution of p(x|f1, f2, f3) at every training
step, which shall be interpreted as the probability of taking
action x ∈ X = {0, 1, 2}, given that f1 = hosts_another ,
f2 = hosts_previous, and f3 = in_shortest_path (recall that
these are binary flags, defined in Section IV-C, and are part
of the observation oα

t).
As per Figs. 6a - 6e, every agent manages to discover

four key rules which, from a human perspective, seem rather
intuitive for the SFCP problem. Specifically, the increase
of p(0|0, 0, 0) implies that the agents tend to express low
willingness for hosting the current VNF when all flags are
down, i.e., no other VNFs are placed in the associated PoP
(hosts_another = 0), the previous VNF is placed in another
PoP (hosts_previous = 0), and the associated PoP is not in the
shortest path from the src and the dst (in_shortest_path = 0).
In contrast, a growing p(2|1, 1, 1) means that agents tend
to express high willingness to host the current VNF when
all flags are up. At the same time, the counter-intuitive
p(2|0, 0, 0) (high willingness when all flags are down) and
p(0|1, 1, 1) (low willingness when all flags are up) seem to
decrease over time. Our argument that these rules are indeed
learned is backed by the fact that the respective probabilities
diverge from the horizontal dotted line at p = 0.33, which
indicates random action selection. Nevertheless, these lines
never reach either 1.0 or 0.0, which may imply that the
additional observation dimensions (besides the three flags)
also play an important role in the action selection.

D. CROSS-AGENT COMMUNICATION
Wenow evaluate the impact of cross-agent communication on
the overall efficiency of the DMARL scheme across all three
PoP topologies shown in Fig. 4. Therefore, we implement a
variant of theDMARL algorithm,where agents do not receive
the neighbors’ condensed state (i.e., location and average
available CPU in oα

t).
Fig. 7 summarizes our findings for the mesh topology

(Fig. 4a). According to Figs. 7a and 7b, the DMARL scheme
with the communication feature on dominates the respective
scheme with communication off. In particular, the former
manages to converge faster towards an average score of 7.0,
and its rate of optimal partitionings grows slightly quicker,
compared to the latter. To interpret this performance differ-
ence, we lay out Figs. 7c and 7d for DMARL with com-
munication off, meant to be compared with Figs. 6b and 6c
respectively, where DMARL employs cross-agent communi-
cation. We focus on Agent 1 and Agent 2, since they operate
over two pivotal PoPs in the mesh topology (i.e., PoPs 1
and 2 are highly relevant for SFCs). From the comparison
of the respective p(x|f1, f2, f3)-lines, we observe that, when

VOLUME 11, 2023 40393

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

FIGURE 6. Action selection rules identified by DMARL agents.

FIGURE 7. Cross-agent communication in the mesh topology.

FIGURE 8. Cross-agent communication in the star topology.

cross-agent communication is disabled, action selection rules
are learned both slower and less firmly.

Results from the respective comparison in the star topology
(Fig. 4b) are depicted in Fig. 8. In particular, Figs. 8a and 8b
emphasize the superiority of the DMARL algorithm that uses
cross-agent communication. Here, the former converges both

faster and to a higher average reward, and the difference in
optimal partitionings is close to 10%. It is worth noting that,
we observed slower and less firm identification of action
selection rules in this case also, but the respective results are
omitted due to space limitations. Instead, we plot Fig. 8c,
where we zoom into a behavioral aspect of Agent 0 (since
PoP 0 is a pivotal PoP in the star topology). Specifically,
p(0|0, 0, 1) is lower for Agent 0 when cross-agent communi-
cation is enabled, meaning that this agent is still more likely to
select actions 1 or 2 when it is in the shortest path from the src
to the dst , even if it does not host another VNF or the previous
VNF. Note that the respective line for DMARL with commu-
nication off is closer to random. This corroborates the fact
that enabled communication augments Agent 0 to perceive
its position in the star topology and, hence, to potentially
facilitate SFCPs as an intermediate PoP.

Finally, we assess the cross-agent communication feature
in the linear PoP topology shown in Fig. 4c. Here, results
regarding the learning progress (Fig. 9a) and the rate of
optimal and rejected SFCPs (Fig. 9b) follow a similar trend
to that of the star topology, and the benefits of cross-agent
communication remain. Some insightful micro-benchmarks
regarding the difference of the two schemes are illustrated in
Figs. 9c and 9d. Specifically, these bar charts indicate action
selection frequencies per agent during the last 2, 000 episodes
(where agents are essentially purely exploitative, as ϵ → 0+).
Based on Fig. 9c, Agent 1 shows the most willingness to host
VNFs; however, this is contradicting to the linear topology in
which we would expect Agent 2 to participate in more SFCPs.
Therefore, Agent 2 cannot perceive its pivotal position in the
linear topology when the communication is off. In contrast,
in Fig. 9d, notice that action 2 frequencies are better aligned
with the position of agents in the linear topology. Specifically,
we observe that Agent 2 is the most willing to allocate its PoP
resources to VNFs, followed by its adjacent agents 1 and 3,
while agents 0 and 4 participate in less SFCPs, given their
outermost position in the linear topology. We also note that,
in principle, when communication is disabled, agents tend to
select action 1 (i.e., neutral position with respect to hosting
a VNF) more frequently, which can be interpreted as lack of
confidence in their learning capacity.

According to the analysis above, cross-agent commu-
nication of short, yet informative, messages (i) enables
faster and firmer identification of action selection rules, and

40394 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

FIGURE 9. Cross-agent communication in the linear topology.

FIGURE 10. Imperfect cross-agent communication schemes.

(ii) enhances the agents’ ability to identify their position
within the topology and adjust their action selection behavior
accordingly.

E. IMPERFECT CROSS-AGENT COMMUNICATION
The proposed DMARL scheme relies on the exchange of con-
cise information among neighboring agents. Effectively, this
is realized via cross-VIM/PoP communications (cf. step 2 in
Fig. 3). However, communications are hardly ever perfect.
For example, data communication may be delayed, pack-
ets may be lost, or erroneous data may appear owing to
lossy (de)compression or channel fluctuation. Moreover, the
communication medium may not be dedicated for a single
service; therefore, the opportunities for information exchange
between neighboring agents will be limited. Yet, if cross-
PoP communications are totally infeasible, one can resort
to the DMARL variant with the cross-agent communication
feature off, whose behavior has been analyzed in Section V-D.
Despite of some performance degradation, it still manages to
optimize SFCPs to a certain degree (cf. Figs. 7, 8, and 9).
To quantify the importance level of cross-agent commu-

nications, we evaluate our DMARL framework over lossy
inter-PoP links4 that exhibit non-zero packet loss rates l, (i.e.,
l > 0). That is, an agent α receives nothing from its neighbor
agent β ∈ N (α) with probability l (in this case, the respective
entries in oα

t are filled with 0s), while it receives the actual
condensed state of agent β with probability 1 − l. Here,

4We here focus on the loss of neighbors’ state information, rather than the
packet loss of VNF data traffic.

we experiment with three levels of loss rate, i.e., l = 0.5%,
l = 1%, and l = 2%, over the mesh topology (Fig. 4a).

In Fig. 10, to better identify their performance differences,
we plot the respective scores as moving averages across the
entire training period. The observations that can be drawn are
as follows. First, smaller loss rates come with better DMARL
performance, while even l = 2% loss rate leads to half unit
lower average score compared to the perfect communication
scheme (i.e., where l = 0%). Another interesting outcome
concerns the comparison of the imperfect communication
schemes with the communication off scheme. As per Fig. 10,
disabling cross-agent communication (i.e., com: off) results
in similar scores with the DMARL which operates over a
mesh topology with l = 1% loss rate, and even outperforms
the scenario with l = 2%. That is because in the commu-
nication off scheme, agents learn optimized policies without
ever expecting information from their neighbors. Conversely,
in the communication on schemes, agent policies rely on
cross-agent communications, and if the latter are faulty, this
has an adverse effect on action selection. Further, the obser-
vation dimensions in communication off schemes are always
less than the corresponding dimensions of communication on
schemes. In this sense, communication off is not equivalent
to communication on with l = 100%.

At first glance, the above results suggest that the proposed
DMARL scheme is sensitive to the loss of cross-agent com-
munications and would require ultra-reliable communica-
tions of neighbors’ states. However, this is not fully accurate.
In fact, a variant of the above experiment - where each agent
knows perfectly the location of its neighbors (i.e., v.loc,∀v ∈

N (u) for PoP u), and the loss rate is only applied to the
neighbors’ average available CPU (i.e., dS,t (v), ∀v ∈ N (u)
for PoP u) - is conducted and only marginal differences
are observed in terms of score compared to the case with
ideal cross-agent communication. In conclusion, it is crucial
for DMARL agents to be aware of the positions of their
neighbors, as this position awareness allows them to perceive
their own position within the topology more accurately and,
in extension, to develop appropriate action selection behav-
iors. This aspect, i.e., the significance of the content of the
exchanged information, opens up the opportunity to apply
different quality of service (QoS) requirements to different
information of neighbors’ states.

VI. RELATED WORK
This section includes a comprehensive discussion on recent
works that employ reinforcement learning techniques for
SFCP. In particular, we classify them into i) single-domain
SFCP, where all PoPs belong to the same provider, and
ii) multi-domain SFCP, where PoPs belong to multiple
providers.

A. RL IN SINGLE-DOMAIN SFCP
Most studies that tackle the SFCP problem in single-domain
settings opt for centralized solutions. In our context, these

VOLUME 11, 2023 40395

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

are centralized RL agents handling decision-making over the
entire set of PoPs across the domain.

In particular, Quang et al. [6] devise a deep determin-
istic policy gradient method based on the actor-critic RL
paradigm. In order to enhance the exploration capacity
of their method, authors adopt a multiple critic networks
approach. These networks are intended to evaluate multiple
noisy actions produced on the basis of the promo action
selected by the actor network. At each time step, the true
action to be selected is the one with the largest meanQ-value,
computed across all critic networks. However, the actual
updates on the actor network are driven by the critic network
that exhibited the lowest loss. It is worth noting that the above
RL scheme merely computes placement priorities, and not
actual VNF allocations. The latter are handled by a heuris-
tic termed as heuristic fitting algorithm, which maps VNFs
onto physical nodes in a greedy fashion based on rankings
and, subsequently, utilizes Dijkstra’s method to compute link
assignments.

Pei et al. [7] propose an SFCP framework which lever-
ages DDQL. Here, the decision-making process is subdivided
into three steps. First, given a network state, a preliminary
evaluation of each action is performed, i.e., computation of
respective Q-values. Out of all actions, all but the k best are
discarded. In the second step, these k actions are executed
in simulation-mode, and the actual reward and next states
are observed. Finally, the action with the highest reward is
performed on the physical infrastructure.

Zheng et al. [8] investigate the deployment of SFCs in the
context of cellular core. To this end, authors put both the
intra-datacenter and the intra-server placement problem into
the frame. Focusing our discussion on the intra-datacenter
placement, authors devise an approximation algorithm for
the optimized SFCP, under the assumption that the resource
requirements and the lifespan of each SFC are fully disclosed.
However, given the strictness of this hypothesis, authors
implement an SFCP scheme that can cope with demand
uncertainty, as well. In particular, the proposedmethod is con-
ventional Q-learning. Here, a state st is expressed as the SFC
type that needs to be deployed at time t , while an action xt
represents the selection of a server. Nonetheless, conventional
Q-learning is not a viable option when the state-action space
is vast.

Wang et al. [11] and Jia et al. [12] investigate SFCP
through the lens of fault-tolerance, essentially considering
the deployment of redundant VNFs or entire SFCs which
shall be engaged in the event of malfunction in the run-
ning SFC. In particular, Wang et al. [11] devise a DDQL
algorithm that is trained to compute an ordered pair (u, v)
where u is the index of the DC for proper deployment, and
v the backup DC where the standby SFC instance will be
deployed. Effectively, this implies that the entire SFCs will
be placed in a single PoP. Jia et al. [12] decompose the SFC
scheduling problem with reliability constraints into two sub-
problems. First, they use a heuristic to determine the number
of redundant VNF instances (per VNF). Then, they employ

an A3C algorithm which, in conjunction with a rule-based
node selection approach, facilitates the process of mapping
these instances onto compute nodes. In practice, the DRL
algorithm learns whether to defer or not the deployment of
a VNF, instead of learning where to map it. However, given
such a topology-independent action space, the proposed DRL
scheme is not sensitive to evolving topologies.

In contrast to the above, our work promotes single-domain
SFCP in a decentralized, yet coordinated fashion, addressing
various limitations of existing studies. First, the proposed
DMARL scheme empowers local controllers (i.e., VIMs)
with the ability to express their own resource utilization
intents based on detailed local observations (as opposed to
e.g., [4], [5], [6], [7], [8], [9], [10], [11], [12]). This is explic-
itly achieved by designating one DDQL agent per VIM, and
by utilizing action sets that express the degree of willingness
with respect to hosting VNFs. Second, our DMARL scheme
can indeed claim decision-making with complete informa-
tion, since, from the perspective of the team of agents, the
environment is fully observable. This is not the case with
many studies, which either define incomplete representations
of the true state or assume very detailed knowledge at the
orchestration layer (e.g., [4], [6], [7], [8], [10], [11]). Third,
the action spaces used by individual DDQL agents of the
DMARL framework are topology-agnostic (as opposed to
e.g., [4], [5], [6], [7], [8], [9], [10], [11]), which alleviates
scalability limitations and renders our framework a promising
candidate for dynamic topologies.

B. RL IN MULTI-DOMAIN SFCP
Multi-domain SFCP is commonly solved via distributed
methods [17]. This can be attributed to the limited informa-
tion sharing among different providers, which hinders the
possibility of solving SFCP in a centralized fashion.

In [15], authors assign a DDPG-based RL agent to each
domain. Further, the SFC request is encoded by the client
(i.e., the entity that wants to deploy the SFC) and conveyed to
each RL agent. The latter then treat the SFC encoding as state
and compute an action, which is effectively the bidding price
for renting out their resources to the SFC request. Prices are
accumulated by the client, who opts for the best combination
based on a cost-based first fit heuristic. The MARL setting
here is inherently competing, as agents do not have any
incentive to maximize the rewards of other agents.

Toumi et al. [16] propose a hierarchical MARL scheme
which employs a centralized agent (i.e.,multi-domain orches-
trator - MDO) on top of multiple local-domain agents, where
all agents are implemented with the DDQL architecture.
The MDO receives the SFC request, and decides which
local domain will host each constituent VNF. Afterwards,
the agents of local domains are responsible for placing the
sub-SFCs within their own nodes. Admittedly, the proposed
MDO is quite similar to our own DDQL implementation
for SFCP. If we assume that the partial observation of our
DDQL due to data aggregation is equivalent to the partial
observation of the MDO due to limited information sharing

40396 VOLUME 11, 2023

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

across multiple domains, then we can think of the comparison
in Section V-B as a comparison of DMARL with MDO.5

In [27], Zhu et al. devise a MARL scheme for SFCP over
IoT networks. Specifically, they propose a hybrid architecture
that employs both centralized training and distributed exe-
cution strategies. Here, the SFCP problem is modeled as a
multi-user competition game model (i.e., Markov game) to
account for users’ competitive behavior. In their implemen-
tation, the centralized controller performs global information
statistical learning, while each user deploys service chains in
a distributed manner, guided by a critic network.

While multi-domain SFCP is vertical to single-domain
SFCP on the grounds of information disclosure, the related
solutions exhibit some similarities to the proposed DMARL
scheme. In effect, agents voting on hosting VNFs can be par-
alleled to agents bidding for resources, while our coordination
module can be seen as a centralized broker which aggregates
votes and computes the best action. However, the intrinsic
competition that underlies multi-domain scenarios cannot be
overlooked. For example, notice how agents in multi-domain
SFCP strive to maximize their own rewards, disregarding the
rewards of others. As such, our DMARL algorithm cannot be
directly compared to any solution pertaining to the above.

VII. DISCUSSION
Our work exhibits certain shortcomings, which we deem
important to discuss and clarify. With respect to the under-
lying algorithmic framework we opted for, which is IQL,
we have already acknowledged its lack of convergence guar-
antees. The natural next step is to examine a DMARL
algorithm for SFCP based on centralized training - decen-
tralized execution schemes, such as the ones proposed in [24]
and [25], where finding the optimal joint policy is theo-
retically guaranteed (under certain assumptions). Additional
limitations which we identify mostly pertain to the analysis
of our method, rather on the method itself. In particular,
we evaluate DMARL over relatively small multi-PoP topolo-
gies. Yet, the intention of this work is to explore in-depth the
learning behavior that is developed by a team of independent
RL agents in order to cooperatively solve SFCP. To this end,
keeping the topologies small, not only allows us to delve eas-
ier into the behavior of individual agents, but to demonstrate
the respective findings as well (e.g., Fig. 6).

VIII. CONCLUSION
Irrespective of the above constraints, both IQL and our eval-
uation methodology enable us to obtain valuable knowledge.
Specifically, the comparison in Section V-B indicates that
DMARL outperforms a centralized state-of-the-art SFCP
method based onDDQL, which wemainly attribute to the full
observability of the former against the partial observability of
the latter. Concretely, DDQL fails to consolidate VNFs to the
extend DMARL does, given the fact that it is not aware of the

5We acknowledge that these two sources of partial observability are not
equivalent, hence a direct comparison of DMARL with MDO makes little
sense.

exact server capacities. We further corroborate that the team
of agents manages to recognize certain intuitive action selec-
tion rules in Section V-C. This is highly crucial, especially
considering efforts towards machine-learning explainability.
Moreover, we identify that disabling the exchange of concise
messages among neighboring agents limits their ability to
perceive their position within the multi-PoP system, which
has a negative effect on the developed action selection behav-
iors (Section V-D). Last, we quantify the performance drop
of DMARL over multi-PoP systems which exhibit non-zero
packet loss rates (Section V-E). The key takeaway here is that
it is highly important for DMARL agents to at least be aware
of the position of their neighbors, which implies that location
coordinates play an important role in the individual action
selection policies.

While this work sheds light on numerous fundamental
aspects of distributed resource allocation within NFV, at the
same time it paves the way for several new research direc-
tions. For instance, having established the perks of decentral-
ized SFCP, a natural next step is to examine a multi-agent RL
algorithm at which agents shall learn what, when, to whom
and how to communicate; in other words, agents shall learn
their own cross-agent communication protocol.

REFERENCES
[1] M. Rost and S. Schmid, ‘‘On the hardness and inapproximability of

virtual network embeddings,’’ IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 791–803, Apr. 2020.

[2] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider
service chain embedding with nestor,’’ IEEE Trans. Netw. Service Man-
age., vol. 14, no. 1, pp. 91–105, Mar. 2017.

[3] A. Pentelas, G. Papathanail, I. Fotoglou, and P. Papadimitriou, ‘‘Network
service embedding across multiple resource dimensions,’’ IEEE Trans.
Netw. Service Manage., vol. 18, no. 1, pp. 209–223, Mar. 2021.

[4] S. Haeri and L. Trajković, ‘‘Virtual network embedding via Monte Carlo
tree search,’’ IEEE Trans. Cybern., vol. 48, no. 2, pp. 510–521, Feb. 2018.

[5] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
‘‘NFVdeep: Adaptive online service function chain deployment with deep
reinforcement learning,’’ in Proc. Int. Symp. Quality Service, Jun. 2019,
pp. 1–10.

[6] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, ‘‘A deep reinforcement
learning approach for VNF forwarding graph embedding,’’ IEEE Trans.
Netw. Service Manage., vol. 16, no. 4, pp. 1318–1331, Dec. 2019.

[7] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, ‘‘Optimal VNF placement via
deep reinforcement learning in SDN/NFV-enabled networks,’’ IEEE J. Sel.
Areas Commun., vol. 38, no. 2, pp. 263–278, Feb. 2020.

[8] J. Zheng, C. Tian, H. Dai, Q. Ma, W. Zhang, G. Chen, and
G. Zhang, ‘‘Optimizing NFV chain deployment in software-defined cel-
lular core,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 248–262,
Feb. 2020.

[9] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, ‘‘Virtual network function placement optimization with deep
reinforcement learning,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, Dec. 2020.

[10] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, ‘‘Automatic virtual network embed-
ding: A deep reinforcement learning approach with graph convolutional
networks,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1040–1057,
Jun. 2020.

[11] L. Wang, W. Mao, J. Zhao, and Y. Xu, ‘‘DDQP: A double deep Q-learning
approach to online fault-tolerant SFC placement,’’ IEEE Trans. Netw.
Service Manage., vol. 18, no. 1, pp. 118–132, Mar. 2021.

[12] J. Jia, L. Yang, and J. Cao, ‘‘Reliability-aware dynamic service chain
scheduling in 5G networks based on reinforcement learning,’’ in Proc.
IEEE Conf. Comput. Commun., May 2021, pp. 1–10.

VOLUME 11, 2023 40397

A. Pentelas et al.: DMARL With Minimal Cross-Agent Communication for SFC Partitioning

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, pp. 529–533, 2015.

[14] D. Dietrich, A. Rizk, and P. Papadimitriou, ‘‘Multi-domain virtual network
embedding with limited information disclosure,’’ in Proc. IFIP Netw.
Conf., 2013, pp. 1–9.

[15] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, ‘‘Multi-
domain non-cooperative VNF-FG embedding: A deep reinforcement
learning approach,’’ in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2019, pp. 886–891.

[16] N. Toumi, M. Bagaa, and A. Ksentini, ‘‘Hierarchical multi-agent deep
reinforcement learning for SFC placement on multiple domains,’’ in Proc.
IEEE 46th Conf. Local Comput. Netw. (LCN), Oct. 2021, pp. 299–304.

[17] J. C. Cisneros, S. Yangui, S. E. P. Hernández, and K. Drira, ‘‘A sur-
vey on distributed NFV multi-domain orchestration from an algorithmic
functional perspective,’’ IEEE Commun. Mag., vol. 60, no. 8, pp. 60–65,
Aug. 2022.

[18] F. Carpio, S. Dhahri, and A. Jukan, ‘‘VNF placement with replication
for loac balancing in NFV networks,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

[19] A. Pentelas and P. Papadimitriou, ‘‘Network service embedding for cross-
service communication,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage. (IM), May 2021, pp. 424–430.

[20] A. Pentelas and P. Papadimitriou, ‘‘Service function chain graph trans-
formation for enhanced resource efficiency in NFV,’’ in Proc. IFIP Netw.
Conf. (IFIP Networking), Jun. 2021, pp. 1–9.

[21] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learn-
ing with double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[22] M. Tan, ‘‘Multi-agent reinforcement learning: Independent vs. cooperative
agents,’’ in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[23] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, ‘‘Independent reinforce-
ment learners in cooperative Markov games: A survey regarding coordina-
tion problems,’’ Knowl. Eng. Rev., vol. 27, no. 1, pp. 1–31, Feb. 2012.

[24] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning,’’ 2017, arXiv:1706.05296.

[25] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4295–4304.

[26] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli,
and S. Whiteson, ‘‘Stabilising experience replay for deep multi-agent
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1146–1155.

[27] Y. Zhu, H. Yao, T. Mai, W. He, N. Zhang, and M. Guizani, ‘‘Multiagent
reinforcement-learning-aided service function chain deployment for Inter-
net of Things,’’ IEEE Internet Things J., vol. 9, no. 17, pp. 15674–15684,
Sep. 2022.

ANGELOS PENTELAS (Student Member, IEEE)
received the B.Sc. degree in mathematics from
the Aristotle University of Thessaloniki, Greece,
and the M.Sc. degree in applied informatics from
the University of Macedonia, Greece, where he is
currently pursuing the Ph.D. degree. FromOctober
2021 to March 2022, he was with Nokia Bell Lab-
oratories, Belgium, as a Ph.D. Intern. His research
interest includes decision-makingmethods for net-
work orchestration.

DANNY DE VLEESCHAUWER (Member, IEEE)
received theM.Sc. degree in electrical engineering
and the Ph.D. degree in applied sciences from
Ghent University, Belgium, in 1985 and 1993,
respectively. He is currently a DMTS with the
Network Systems and Security Research Labo-
ratory, Network Automation Department, Nokia
Bell Laboratories, Antwerp, Belgium. Prior to
joining Nokia, he was a Researcher with Ghent
University. His early work was on image process-

ing and on the application of queuing theory in packet-based networks. His
current research interest includes the distributed control of applications over
packet-based networks.

CHIA-YU CHANG (Member, IEEE) is currently
a Senior Research Engineer with Nokia Bell
Laboratories, Belgium. As the Principal Inves-
tigator and a Technical/Research Lead, he has
participated in a number of national and inter-
national research and innovation projects, focus-
ing on B5G/6G communication systems, network
intelligence solutions, network applications proof-
of-concept among various vertical industries, and
recently on low-latency low-loss scalable through-

put (L4S) over a variety of access network, utility-based congestion control,
and 6G network-application interaction. He was a Best Paper Award Winner
of SDS’21 and MediaTek Innovation Award Winner, in 2013.

KOEN DE SCHEPPER (Associate Member,
IEEE) received the M.Sc. degree in industrial sci-
ences (electronics and software engineering) from
IHAM Antwerpen, Belgium. He joined Nokia
(then Alcatel), in 1990, where during the first
18 years, he was the PlatformDevelopment Leader
and a Systems Architect. He has been with Bell
Laboratories for the past 14 years. He is currently
with the Network Systems and Security Research
Laboratory. Before, he workedmainly on transport

layer protocols (L4) and their network support for scalable (SCAP) and
low latency (L4S) content delivery. His current research interests include
programmable data plane and traffic management, customizable network
slicing, and AI supported dynamic service and network control.

PANAGIOTIS PAPADIMITRIOU (Senior
Member, IEEE) received the B.Sc. degree in
computer science from the University of Crete,
Greece, in 2000, the M.Sc. degree in information
technology from the University of Nottingham,
U.K., in 2001, and the Ph.D. degree in electrical
and computer engineering from the Democritus
University of Thrace, Greece, in 2008. He is cur-
rently an Associate Professor with the Department
of Applied Informatics, University of Macedonia,

Greece. Before that, he was an Assistant Professor with the Communica-
tions Technology Institute, Leibniz Universität Hannover, Germany, and a
member of the L3S Research Center, Hanover. His research interests include
(next-generation) internet architectures, network processing, programmable
dataplanes, time-sensitive networking (TSN), and edge computing. He has
been a (co-)PI in several EU-funded (e.g., NEPHELE, T-NOVA, CONFINE,
and NECOS) and nationally-funded projects (e.g., G-Lab VirtuRAMA and
MESON). He was a recipient of the Best Paper Awards at IFIP WWIC
2012 and IFIP WWIC 2016, and the runner-up Poster Award at ACM
SIGCOMM 2009. He has co-chaired several international conferences
and workshops, such as IFIP/IEEE CNSM 2022, IFIP/IEEE Networking
TENSOR 2021–2020, IEEE NetSoft S4SI 2020, IEEE CNSM SR+SFC
2018–2019, IFIP WWIC 2017–2016, and INFOCOM SWFAN 2016. He is
also an Associate Editor of IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT.

40398 VOLUME 11, 2023

