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Abstract

Time-Sensitive Networks (TSN) aims at providing a solid underpinning for the sup-
port of application connectivity demands across a wide spectrum of use cases and
operational environments, such as industrial automation and automotive networks.
However, handling network updates in TSN entails additional challenges, stemming
from the need to perform both flow re-routing and TSN schedule reconfiguration.
To address this issue, we propose a Software-Defined Network (SDN)-based
approach for low-overhead TSN network updates, exploiting Segment Routing over
IPv6 (SRv6) for path control. To this end, we introduce the concept of TSN subgraphs
in order to quickly reschedule the flows traversing the problematic area and propose a
TSN-aware routing heuristic to minimize the convergence time. We further describe
the control plane implementation and its integration into Mininet, which empowers
us to conduct a wide range of performance tests. Our evaluation results indicate that
our approach yields faster recovery and reduces significantly the number of required
reconfigurations upon failures, at the expense of a small SRv6 encoding/decoding
overhead.
KEYWORDS:
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1 INTRODUCTION

Recent advances in the field of deterministic communications by IEEE 802.1 Time-Sensitive Networking (TSN) and IETF Det-
net are stimulating the adoption of Ethernet technology in several traditionally siloed environments, such as industrial automation
and automotive networks. Using amendments, such as 802.1Qbv (Time-Aware Shaper) and 802.1Qcr (Asynchronous Traffic
Shaping), performance guarantees can be achieved for multiple traffic classes, even under conditions of severe load. However, it
should be noted that routing decisions employed on traffic flows with different priority strongly influences the in-class interfer-
ence on the egress ports of the TSN bridges. Thus, flow priority agnostic routing techniques like shortest path leads to increased
in-class interference. This in turn increases the complexity of the scheduling algorithms as more interfering traffic flows are
required to be scheduled over the same link. As a result, the overall determinism of the network is dependent jointly on both the
scheduling mechanism and routing policy employed.

In principle, the network convergence problem is related to routing table convergence after network updates or network
failures. QoS handling is independently performed on each network device based on the priority identification in each packet.
In TSNs, however, depending on the protocol in effect, after network updates or failures, path selection and scheduling are

0Abbreviations: TSN, Time Sensitive Networking; SRv6, IPv6 based Segment Routing
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tightly coupled. Only after both routing and scheduling are decided and the appropriate configuration is applied at each device,
the network is able to satisfy the appropriate KPIs (e.g., delay and jitter guarantees). Although the joint routing and scheduling
problem for time-critical TSN flows has been investigated by studies (e.g.,1,2,3), poor research results exist when TSN flows are
routed using a converged Segment Routing plane.

Source Routing is used to empower the traffic originator to encode the path that each packet should traverse within its header4.
As such, forwarding operations are performed over a nearly stateless data plane, with a minimum forwarding table size, irre-
spective of the number of flows and end-points in the network. Segment routing (SR), developed by IETF, reassembles the basic
principles of Source Routing, extending it into a solution for steering traffic through a sequence of segments, along the network
path5,6. In this respect, a segment list is inserted into each packet (either by the packet source or by an intermediate network
node), prescribing certain processing and/or forwarding actions that should take place at each segment. Two schemes currently
exist for realizing Segment Routing, i.e., SR over IPv6 (SRv6) and SR over MPLS.

In our previous work7, we developed a framework for coupling IEEE TSN technology with Source Routing in order to
manage explicit TSN paths and cope with the relevant joint TSN routing and scheduling problem. In this work, we extend our
investigation and study the integration of SRv6 with IEEE TSN, as well as the relevant control and data plane aspects. Similarly
to7, in order to minimize the time required for re-routing and re-scheduling, we seek to isolate the area where the problem has
occurred by finding a minimum connected sub-graph, on which the scheduler can be invoked. With this proposed approach,
we locally solve the flow re-routing and scheduling problems for the affected part of the network. As opposed to7, TSN flow
re-routing is now performed using SRv6.

Our contributions are summarized as follows:
• We propose and evaluate a novel SDN-based approach for coupling Segment Routing IPv6 with IEEE TSN.
• We showcase how Segment Routing can be employed for explicit path control of TSN flows.
• We incorporate the concept of network subgraphs to alleviate the problem of TSN scheduling complexity.
• We describe how both Segment Routing and TSN Time-Aware Priority Shaper (TAPRIO) queuing can be integrated into

a Mininet environment.
• We conduct an evaluation study of both control- and data-plane performance.

In principle, segment routing relies on IGP protocols (IS-IS, OSPF) to distribute Segment Identifiers information (SIDs),
whereas the Segment Routing control plane may also consider centralized operations regarding the computation of paths, e.g.,
exploiting a centralized Path Computation Element (PCE). In this work, we follow a similar approach to PCE. More precisely,
we propose an enhanced path computation function and we investigate how the integration of a fully centralized TSN control
plane with Segment Routing can be realized. SDN assisted operations for Segment routing are also discussed in8.

For enhanced reliability of TSN flows, frame replication and elimination according to 802.1CB can be used. On one hand,
frame replication may increase the probability of successful reception, on the other hand it may lead to waste of bandwidth since
duplicated flows are traversing the network. Depending on the application domain, this bandwidth waste may not be acceptable.
Furthermore, in modern SDN-based networks the global knowledge of the network is taken advantage by the centralized network
controller in order to develop network recovery techniques with minimal recovery time. In the reactive approach the centralised
network controller is mainly responsible for the failure handling process. In case of a failure, the controller is informed of the
failure event either by polling or by event-based approach. The controller then decides for alternative paths and applies the
relevant configuration to the network devices. Using a proactive approach, the link recovery process is locally handled a-priori
before the failure event with a minimum intervention by the controller. The controller configures the forwarding table of the
switches with both main and backup paths. In the event of a failure, the switches automatically re-route the packets according
to the forwarding rules related to the backup path. See9 for our previous work on proactive SDN-based TSN failure handling.

The motivation for this work stems from the importance of Segment Routing, as a new routing strategy applicable in multiple
different application domains, where IEEE TSN is also considered. For example, in the mobile network recent studies are also
investigating the role of Segment Routing supporting Transport network functionality, where at the same time IEEE TSN is
already integrated as part of 3GP Release 16 and beyond. No solid framework or solution, however, exists when considering
control and dataplane aspects for the converged network in the light of failure events.

The remainder of the paper is organized as follows. Section 2 discusses related work, Section 3 presents the system model
and the problem statement, while in Section 4, we elaborate on the proposed solution. In Section 5, we present the evaluation
environment and the evaluation results. Finally, Section 6 highlights our conclusions and outlines directions for future work.
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2 RELATED WORK

Legacy techniques, such as Class-Based Weighted Fair Queueing (CBWFQ) and Deficit Round Robin10, can be applied to
preserve accurate throughput guarantees. However, providing delay/jitter guarantees in vanilla Ethernet is not possible, if such
techniques or strict priority scheduling are used together with 802.1p-based prioritization, because of the strong dependency on
the stochastic nature of traffic. IEEE TSN offers a rich set of tools and mechanisms to enable accurate stream prioritization in a
way to also provide delay and jitter guarantees. TSN is gaining momentum as the future key technology to enable deterministic
performance for a number of challenging applications, such as in industrial networks (IEC/IEEE 60802 profile), automotive
(P802.1DG profile) and service provider networks (P802.1DF).

In the following, we provide background information and discuss related work on TSN, DetNet, source routing and segment
routing.
TSN Technology. Techniques used to provide delay guarantees are Scheduled Traffic (IEEE 802.1Qbv), Frame Preemption
(IEEE 802.3br, IEEE 802.1Qbu), Asynchronous Traffic Shaping (802.1Qcr), and Cyclic Queuing and forwarding (802.1Qch).
These standards define how frames belonging to a particular traffic class or having a particular priority are handled by TSN-
enabled bridges. In this work, we focus on IEEE 802.1Qbv which introduces a transmission gate operation for each traffic class
queue. The transmission gates are in an open or closed state and are controlled by a Gate Control List (GCL). For each output port,
a GCL consists of multiple schedule entries. For the open gates, selected traffic is allowed to pass through to the transmission
selection block, which provides access to the medium. In terms of the TSN control plane, three models have been proposed in
the 802.1Qcc amendment. In the fully centralized case, which is the one we consider in this study, the flow requirements are
conveyed from a Centralized User Configurator (CUC) to a Centralized Network Configurator (CNC), using a User Network
Information (UNI) described in 802.1Qdj.
TSN Path control. In 802.1Qcc, several path control protocols are supported, such as STP, MSTP, RSTP, and SPB. An alter-
native approach to 802.1Qcc is 802.1Qca used for explicit path selection (Explicit Trees) and bandwidth reservation. 802.1Qca
relies on IS-IS routing protocol to carry control information and a Path Computation Element (PCE) to identify the optimal
path. However, the propagation of the control information is passed with IS-IS in a distributed manner, which leads to slow
convergence upon failures.
802.1Qbv scheduling. For a broad view on TSN, we refer interested readers to11. In12,13, the TSN 802.1Qbv scheduling problem
is addressed by exploiting techniques, such as Satisfiability Modulo Theory (SMT) and Optimization Modulo Theory (OMT).
Delay analysis for AVB traffic in 802.1Qbv is presented in14,15. More recently, Window-Based Schedule Synthesis16 has been
proposed for industrial IEEE 802.1Qbv TSN Networks with unscheduled end-systems. In17 the problem of computing the routes
for AVB flows over TSN-based networks is addressed. The authors use a K-shortest path heuristic to reduce the search space of
routes and a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic for optimizing the routing. Authors in18
explore how the routing of time-triggered flows affects their schedulability and propose Integer Linear Programming (ILP)-based
routing algorithms. Various ILP formulations for the combined routing and scheduling time-triggered traffic problem, while
following the SDN-based paradigm are presented in19. Authors in1 propose a joint routing and scheduling approach for both
Time-Triggered (TT) and Audio-Video-Bridging (AVB) traffic. An ILP scheduling and routing formulation to improve the TT
traffic schedulability is proposed in2. A List Scheduling-based heuristic scheduling and routing algorithm is proposed in3. The
work in20 has shown how to reconfigure the GCLs at runtime, e.g., as a reaction to network changes, potentially due to failures.
Network recovery. Routing-driven topology synthesis is addressed in21 for fault-tolerant TSN networks but non-scheduled
traffic. Reliable control and data planes for SDN have been investigated in22. A method of handling data packets through a
conditional state transition table for implementing at least one finite state machine is proposed by23. Fast fail-over has been
proposed in24 for OpenFlow environments. A similar approach has been employed by25, also managing congested links. In26,
a segment-based recovery has been proposed for OpenFlow. With these approaches, a node detecting the failure steers traffic
to a backup path. A different approach is taken by IEEE 802.1CB, which specifies the procedures for frame replication and
elimination (FRER).
Source Routing. Source routing enables the encoding of the forwarding path into the packet header4,27,28. More precisely,
upon path computation, the path is encapsulated into the packet as a sequence of labels, which may correspond to or match the
sequence of output ports that a packet needs to traverse in order to reach its destination. This obviates the need for maintaining a
forwarding state in switches for all the destinations in the network28,29. A port switching scheme for source routing is presented
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in30. In Source Routing various header fields can be utilized for path encoding, such as source/destination MAC and IP(v6)
addresses27,28, or MPLS31. In our previous work32,7, we investigate the coupling of source routing with TSN on the way explicit
paths can be managed for time-critical flows.
Segment Routing (SR). Based on the Source Routing paradigm, SR comprises an architecture for steering traffic through a
sequence of segments, i.e., way-points along the network path. A segment list is inserted into each packet (either by the packet
source or by an intermediate network node), prescribing certain processing and/or forwarding actions that should take place
in each segment. Segment routing has been realized on top of MPLS33 and IPv634,35. Segment routing has been considered
as a promising approach to traffic engineering, monitoring, and failure recovery6. In terms of traffic engineering, authors in36
deal with the problem of determining the optimal parameters for segment routing in offline and online cases. The paper focuses
on two-segment routing, by arguing that one intermediate node strikes a good balance between shortest path routing and the
extra transmission and processing overhead required for multiple segments. In37 SCMon leverages on segment routing for the
continuous monitoring of the data-plane and the ability of link failure and overload detection. SCMon pays particular attention
to the computation of probing cycles to reduce the monitoring overhead. Authors in38 stress on the need for the construction
of disjoint paths, which remain as such (i.e., disjoint) even after failures, with no external intervention. This can comprise a
value-added service for certain ISP clients. The computation of disjoint paths is performed using segment routing.
DetNet, Segment Routing and TSN. IETF Deterministic Networking (DetNet) Data Plane Framework is defined in RFC 8938,
whereas IP over IEEE 802.1 TSN is described within RFC 9023. In39 the SR Identifier (SID) is used to specify transmission
time (cycles) of a packet. The segment ID (SID) is used to carry and specify the sending time of a packet, and some mechanisms
can be used to ensure that the packet will be transmitted in that specified period of sending time, which is called Time-Aware
Segment Routing (TA-SR). Authors in40, in the light of Detnet activities, propose a solution where the TSN layer 2 header and
application payload carried by the TSN network are encapsulated in the IPv6 payload field. The underlying network between
the edge nodes needs to support IPv6 according to RFC8200, and can transform TSN data flow into SRv6 service. IPv6 Options
for DetNet are discussed in41 with a focus on IEEE 802.1CB (Frame Replication and Elimination for Reliability) and DetNet’s
Strict Path Option.

To summarize on the key aspects of our work, compared to the aforementioned previous work, to the best of our knowledge,
there has been no research for explicit path routing with minimizing the TSN convergence time. In this regard, we propose and
design a near stateless TSN data plane by moving the flow-specific routing information from the network nodes to the packets,
thereby, achieving explicit path routing in TSN with minimal overhead by reducing the number of interactions between the
network devices. In this respect, we develop a reactive SDN-based approach used to minimize the failure recovery time for TSNs
using the explicit path routing control plane architecture coupled with the concept of TSN subgraphs to simplify the scheduling
decision making. In more detail, to minimize re-routing and re-scheduling times, we seek to isolate the area where the problem
has occurred by finding a minimum connected subgraph on which the scheduler can be invoked without modifying the existing
schedules.

Similar to our previous work7, in order to minimize rerouting and rescheduling times, we find a minimum connected subgraph
on which the scheduler can be invoked. In this study, however, we extend our previous work in multiple directions. More specifi-
cally, instead of Source Routing we investigate Segment Routing technology operating on IPv6 (SRv6) on the way explicit paths
are established. We propose and evaluate a hybrid SDN-based control plane model, which relies on Netconf-based configura-
tion of SRv6 based aspects, a centralized TSN control plane, and distributed OSPF control plane operations for the distribution
of the SRv6 identifiers. In our previous work7, we exploited a fully centralized SDN control plane model used to control TSN
and Source Routing operations.

3 SYSTEM MODEL AND PROBLEM STATEMENT

TSN supports the convergence of multiple traffic types, such as critical real-time Time-Triggered traffic, Audio-Video Bridging
traffic with guaranteed bandwidth and constrained delay requirements, and Best Effort traffic with no timing guarantees. Based
on their timing requirements, these traffic types are identified by different priorities according to 802.1Q, also referred as flow
priorities throughout the rest of this work.

The network is modeled as a network graph G denoted by 𝐺 = {𝑉 ,𝐸}, where 𝑉 = {𝑣𝑖} indicates the set of vertices (end-
points plus network bridges) and 𝐸 = {𝑒𝑖,𝑗} corresponds to the set of directional edges, (source 𝑖 to destination 𝑗). Let 𝐹 = {𝑓 𝑝

𝑖 }
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denote the set of all flows in the network, where 𝑝 ∈ {0, 1, ...7} expresses the flow priority. Similar to1, we model the time-
triggered traffic as follows. Every flow is characterized by: 𝑇 Period in microseconds, 𝑘 frames sent every 𝑇 microseconds, 𝐷
Maximum end-to-end latency in microseconds, 𝑠 ∈ 𝐸 source node and 𝑑 ∈ 𝐸 destination node. Within the period 𝑇 , the last
frame in the 𝑘 sequence must be fully received within the deadline. For the GCL compilation, the network cycle equals the
Least Common Multiple (LCM) of all the flow periods. Regarding the queuing structure at each egress port of each switch, we
consider that 8 traffic classes are mapped to a corresponding queue based on the flow priority (802.1Qbv). We define a binary
variable 𝑥𝑓 𝑝

𝑘
𝑒𝑖,𝑗 to indicate whether edge 𝑒𝑖,𝑗 belongs to the path of flow 𝑘. If flow 𝑓 𝑝

𝑘 is routed via the edge 𝑒𝑖,𝑗 then 𝑥𝑓
𝑝
𝑘

𝑒𝑖,𝑗 = 1 or else
equals zero.
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FIGURE 1 Network subgraph example with flow rerouting after failure.

In the case of a failure event at time 𝑡, we define 𝐹𝑒𝑟𝑟(𝑡) ⊆ 𝐹 as the set of all flows that are directly affected by the failure. For
example, the network depicted in Fig. 1 is traversed by flows 𝐹 = {𝑓 7

1 , 𝑓
7
2 , 𝑓

5
3 }. At some point 𝑡, assuming that node 6 fails,

then the directly affected flows are 𝐹𝑒𝑟𝑟(𝑡) = {𝑓 7
2 , 𝑓

5
3 }.

We define TSN network convergence time, as the time required to have all flows in the network scheduled and all routing paths
configured in a way where all Talker-Listener pairs can exchange messages according to the TSN scheduling policy in effect.
Our technical objective in this work is related to minimizing TSN network convergence time after network updates or network
failures in case TSN flows are routed following SRv6.

Broadly speaking, network recovery is classified either as proactive or reactive. With the proactive methods, alternative paths
and actions are pre-computed before the failure , while in reactive methods either an SDN controller is notified and takes the
appropriate restoration action (i.e., installs new forwarding entries) or an STP-based distributed protocol provides the new loop-
free network topology. While each approach has its pros and cons in 802.1Qbv based TSN networks, additional challenges are
entailed, due to the fact that the policy in effect regarding traffic class scheduling is heavily dependent on the routing strategy and
the selection of the egress ports. In STP-, RSTP-, and MSTP-based networks, we cannot derive the optimal scheduling policy if
the system has not converged. In proactive methods, anticipating all possible failures and providing optimal scheduling, routing
decision making could be an option for small topologies; however, at a large scale, this is extremely challenging. In this study,
we focus on the fully centralized case and, in addition to minimizing TSN network convergence time, we also investigate the
overall communication overhead between the SDN controller and the network devices.

4 PROPOSED SOLUTION AND TECHNICAL APPROACH

In our design, the solution is described considering the fully centralized TSN control plane, as defined by 802.1Qcc. However,
the same principles could be applied when, for example, the Centralized Network / Distributed User Model are used. The system
design is depicted in Fig. 2 . For simplicity, we consider that the TSN Centralized Network Controller (CNC) is integrated
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into a centralized SDN controller with a network-wide view, which also supports legacy SDN functionalities, such as topology
information handling, network discovery, statistics, monitoring, etc. In our approach, TSN-related aspects are considered part
of the integrated SDN control plane. In our study, we do not devise a joint optimization TSN routing and scheduling problem.
Instead, the routing problem is solved by a Path Control Function hosted in the controller. After routing has been computed, the
TSN scheduling problem is solved by CNC. In further detail:

• Centralized Network Controller (CNC). The CNC is responsible for the computation of 802.1Qbv TSN schedules
and configuration of TSN features for all involved network devices (e.g., following 802.1Qcw). A CNC has complete
knowledge of the network topology and all the streams flowing through the network, based on its interaction with the
SDN and the CUC, respectively.

• Centralized User Configurator (CUC). CUC interacts with CNC to pass TSN stream related requirements. CUC is
responsible for discovery of end-stations, retrieval of end-station capabilities, and configuration of end-points. Further-
more, the CUC passes to CNC the flow specification from the end-devices for allocating network resources. The CUC
forwards the flow’s specification to the CNC via the User Network Interface (UNI) (e.g., 802.1Qdj).

• Path Control function (PCF). Inside PCF we consider the operation of a TSN Network subgraphs Function, which finds
the optimal subgraphs after a network update or a failure event and a Flow Priority Aware Routing (FPAR) function,
which executes a heuristic responsible for determining the optimal routing strategy. After the optimal strategy has been
identified, PCF signals CNC to compile the GCLs according to 802.1Qdj. For the actual path establishment, we rely on
SRv6. In Section 4.2.3, we describe both control-plane and data-plane aspects, when integrating SRv6 with IEEE TSN
802.1Qdj. Another option for path establishment is the use of Source Routing, which was investigated in7. Note that, as
defined, the Path Control function (PCF) reassembles properties of legacy Path Computation Function (PCF) belonging
to Path Computation Element (PCE), which in turn resides within a PCE controller. In our approach, all this functionality
is considered as a function of the SDN controller.

SDN Controller

CUC

CNC TSN Network 
Subgraphs

GCL 
scheduler

FPAR 
Heuristic

Path config (SRv6)

Network config 
(routing & TSN scheduling)

TSN Listener

Network 
Monitoring

Network 
Topology 

…

TSN Talker

Path Control Function

TSN Talker TSN Listener

SRv6 Routing

TSN domain

…

802.1Qbv

FIGURE 2 Network subgraph example with flow re-routing after failure.

4.1 Complexity Minimization through Network Subgraphs
In order to minimize rerouting and rescheduling times, we seek to isolate the area where the update or problem has occurred.
The scheme was originally presented in7 and we briefly summarize it to ease reading. The goal is to reroute and reschedule all
the flows in set 𝐹𝑒𝑟𝑟 without modifying the existing schedules for ports through which unaffected flows are traversing. In more
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detail, for the set 𝐹𝑒𝑟𝑟 with flows traversing the problematic area, we aim at finding a minimum connected subgraph that could be
used to reroute and reschedule these flows. For the creation of the subgraph, we devise a new variant of load balancing scheme
referred to as Flow Priority Aware Routing (FPAR) heuristic that considers both spatial locality and flow priorities. In more
detail, we derive the subgraph as a union of the links obtained by the computation of weighted k-shortest path algorithm.
Policy definition: For any given link 𝑒𝑖,𝑗 , we define the weight of the path between Source 𝑠 to Destination 𝑑, which characterizes
how loaded the link is:

𝑊 𝑝
𝑒𝑠,𝑑

= 1 + 𝛽
∑

∀𝑓 𝑞
𝑣∈𝐹 ,𝑞≥𝑝

𝑥𝑓
𝑞
𝑣

𝑒𝑖,𝑗
+ (1 − 𝛽)

∑

∀𝑓𝑣∈𝐹
𝑥𝑓

𝑝
𝑣

𝑒𝑖,𝑗
(1)

where 𝑝 ∈ {0, 1, ...7} denotes the priority set. This weight is used when searching the least loaded links with the weighted
shortest path algorithm. The second term of the equation describes how loaded the link is with traffic of priority equal or higher
than 𝑝, while the third term considers all load irrespective of priority. The value of 𝛽 is chosen such that the probability of a
flow being allocated a routing path that already has the same priority or higher priority traffic flowing through it is minimized.
For our experiments, we choose an arbitrary value of 𝛽 = 0.8. This algorithm ensures that the traffic flows are allocated in those
paths which offer minimal interference for the flow of time-critical traffic. This approach of routing helps reduce the scheduling
complexity and increases the flexibility of finding an optimal solution by reducing the number of flows to be scheduled on a
given link at any point in time.

Concrete steps: The various steps involved in the network recovery process are summarized as follows:
1. The network is continuously monitored for node and link failures.
2. In case of a failure, we mark the corresponding node/links with the error and identify the flows which are directly affected

by the failure.
3. We define𝐹𝑒𝑟𝑟 as the set of all the flows that are directly affected by the failure. In the next step, our aim is to find a subgraph

using routing paths calculated using FPAR to directly yield a non-overlapping path with existing unaffected flows.
4. We rank flows in 𝐹𝑒𝑟𝑟 by priority and run weighted k-shortest path (according to Eq. 5.1), in order to find paths and solve

the routing problem between the Talker and Listener. Two flows are marked as overlapping, if there exists at least one
trunk where these flows are statistically multiplexed. To investigate if such a non-overlapping path exists, we process the
flows in 𝐹𝑒𝑟𝑟 one-by-one starting by setting 𝑘 = 0, the following cases of overlapping are possible:

• Case 1: No overlapping exists between any flows in 𝐹 : The routing path computed for each of the flows is committed
without the necessity to invoke the scheduler as no interference exists between the flows (they get full capacity and
there is no resource sharing).

• Case 2: Overlapping exists between 𝐹𝑒𝑟𝑟 but not with flows in 𝐹 − 𝐹𝑒𝑟𝑟: We now derive the subgraph of the affected
area as a union of the routing paths identified. The union may derive a connected or non-connected subgraph
(example in Fig. 1 ). Over the derived subgraph, we then perform scheduling per-flow wise using the scheduling
heuristic described in1. For each flow, the GCL calculation derives the minimum window needed to minimize queu-
ing time and then is translated into a GCL configuration. This approach will also facilitate problem-solving for future
failures, since it seeks to minimize resource utilization. If a solution exists for all flows in the set, we admit the
schedule.

• Case 3: Overlapping exists between flows 𝐹𝑒𝑟𝑟 and 𝐹 − 𝐹𝑒𝑟𝑟: In this case, We derive the subgraph over all the
overlapping set of flows similar to case 2. However, the computation of schedules is now performed in an incremental
manner preserving the existing schedules of the unaffected flows 𝐹 −𝐹𝑒𝑟𝑟 using the scheduler implementation from1.
Thereby, minimizing the impact of GCL re-configuration on the other unaffected flows.

5. If for 𝑘 = 0, there is no feasible solution exists, we continue the investigation until we reach some arbitrarily chosen
value �̂�𝑚𝑎𝑥. In each case, commit operations are made per set, not per flow. If we reach �̂�𝑚𝑎𝑥 for all flows 𝐹𝑒𝑟𝑟 and there is
no feasible solution exists, we then apply the policy defined in1 over the entire network topology for all the flows in the
network. variation.

We highlight that our reactive failure approach can be even more efficient when assisted by the policy in effect during the
initialization phase. This is the case where the policy is operating in such a way that will be make easier to reroute/reschedule
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traffic in the case of failures during runtime. For example, our weighted k-shortest path based routing, other routing policies
tolerant to network failures policies can be employed in order to avoid over-utilizing specific links and creating single points of
failure. Due to space limitations, this aspect will be investigated in detail in future work.

4.2 SRv6 and IEEE TSN 802.1Qbv Integration
In our previous work32 and7, we showcased the coupling of IEEE TSN with source routing techniques. Following the source
routing principles, for each flow we encoded in the access switch where the talker is connected, the sequence of the ports that
need to be traversed in order to reach the destination node. In32 a raw encoding of the path information is inserted into the MAC
header, while in7 we extended this encapsulation following 802.1ah and developed a source routing encoding over Provider
Backbone Bridge (PBB) Ethernet tunnels in order to support TSN-based flows path establishment. In both cases, at each hop
every TSN switch only has to decode this information from the header of each receiving frame and perform the forwarding
decision accordingly, obviating the need for L2 forwarding.

As in this work, we plan to harness the benefits of segment routing, in the following we discuss the integration of SRv6 with
TSN based on IEEE 802.1Qbv.

4.2.1 SRv6 basic principles of operation
In SRv6, a Segment Routing Header (SRH) is used to insert a SR policy as an ordered list of IPv6 addresses, where each IPv6
address refers to a segment or an instruction to be processed. The current segment to be processed by a node is indicated by the
Segments Left field, which is decremented by a SR-enabled router after processing the corresponding Segment ID.

Fig. 3 illustrates the operation of SRv6 forwarding for a packet sent by H1 to H2. In an SRv6 architecture, the network
is divided into multiple segments, where each segment is associated with a Location and a Function to be carried out by any
associated router. In SRH, the first 64 bits of the IPv6 address indicate the location or forwarding information, while the remaining
64 bits indicate the functionality to be carried out by the network devices. In Fig. 3 , each node in the network consists of the
prefix SID which indicates the location of the node in the network. All nodes are assumed to be reachable by every other node
in the network with the help of Interior Gateway Protocol (IGP) or by static routes. The prefix SID forms the prefix for any
segment associated with a given node. For instance, consider Router R1 in this figure. The node is associated with two local
segment IDs, i.e., fdff:1::2 and fdff:1::3, which share the same prefix as its prefix SID, while having different suffix parts to map
to different functionalities. A function could be a simple forwarding operation or even a complex operation to be performed such
as network telemetry or SFC. The egress port of the host machine is responsible for encapsulating the IPv6 packet with the SRH
consisting of the list of segments to be traversed. For instance, to route packets from H1 to H2 via routers R2 and R3, the egress
port adds the segment list fdff:1::2, fdff:3::f to the SRH header and replaces the destination address with the first segment to be
reached. The routing between the segments takes place using normal IPv6 forwarding. On reaching node R1, it performs the
required functionality as indicated by the segment. In this case, the required functionality is to forward the node to R2. Hence,
R1 decrements the “Segments Left” field by 1 and replaces the IPv6 destination address with the next segment to be traversed
in the list. The packet is subsequently routed to R3 via normal IPv6 forwarding. When R3 has been reached, which is the last
segment in the list, the SRH is popped out from the packet, which is eventually delivered to the destination.

4.2.2 Proposed Solution
In the following, we describe a Linux-based TSN SRv6 architecture. On the node level, the solution is based on Linux
SRv6 implementations and TAPRIO Qdisc. The control plane architecture follows a hybrid SDN approach that relies on the
co-existence of a distributed IP routing protocol and a centralized TSN architecture. Distributed IP routing protocols and,
in particular OSPF, are responsible for the distribution of prefix SIDs across the network nodes. In our solution, we rely on
OSPFv3. Fig. 4 depicts the proposed architecture. Besides the generic functionalities of the basic components (i.e., CNC,
CUC, FPAR heuristic) as described in the previous section, the following operations are supported:

Control Plane:

• CNC configures TSN functionality in the router (e.g., the GCLs) via a NETCONF plugin residing in the SDN controller,
based on the 802.1Qcw YANG data model.



Gagan Nandha Kumar ET AL 9

R1
fdff:1::/64 
lo: fdff:1::f 

R2 
fdff:2::/64 
lo:fdff:2::f 

R3 
fdff:3::/64 
lo:fdff:3::f 

2000::1

2000::2

2000::3

fdff:0:1:3::/64

fdff:0:1:2::/64 fdff:0:2:3::/64

2002:1::/64 2002:3::/64

fdff:0:1:1::/64 fdff:0:3:3::/64

Local SID:  
Prefix SID:  fdff:1::/64

fdff:1::2 ---> Forward to R2
fdff:1::3 ---> Forward to R3

SL = 2; 
fdff:1:2, 

  fdff:3::f,  
2002:3::f

Payload

SRC: 2002:1::f; 
DST: fdff:1:2 IPv6

SRH

Payload

 SRC: 2002:1::f;  
DST: 2002:3::fIPv6

Payload

SRC: 2002:1::f;
DST: 2002:3::fIPv6

SL = 1; 
 fdff:1:2,  
fdff:3::f, 

 2002:3::f

Payload

 SRC: 2002:1::f;  
DST: fdff:3::f IPv6

SRH

SR Router

2000::ff Mgmt Interface

fdff:0:1:1::/64 Adjacency SID

fdff:2::/64 Prefix SID

Location Function

IPv6 Segment ID

H1 H2

FIGURE 3 SRv6 example.

• Topology management. Each OSPF-enabled network device has the same view of network topology as all other nodes
belonging to the same network domain. The initial topology is fetched by the SRv6-TSN application by reading the OSPF
database from any one of the routers in the network. The topology information is stored locally on the controller as a
network graph using the NetworkX42 python library. In the event of a network update or failure, in order to avoid the
OSPF large convergence time, any topology change such as link or node failure is tracked by the controller in the following
manner. All the nodes continuously keep track of the network status of all ports with the help of a network monitor daemon.
In the event of port state changes, the corresponding router notifies the SRv6-TSN control application via the management
interface. The SRv6-TSN control application updates accordingly its locally stored topology information and initiates the
recovery process.

• config SRv6. The SDN controller is responsible for the configuration of local segment IDs in the intermediate routers. In
addition, for each TSN talker, it encapsulates the Segment Routing Path to be followed in its access device. Note that in
our approach, we consider that all the network devices are 802.1Qbv TSN and SRv6 capable.

Path Control Function also includes a customized Python-based application, which serves as the link between the distributed
IP Routing protocol plane and the centralized TSN control plane. It is responsible for transforming the network topology into a
list of segments and assigning the node and the adjacency segment IDs. For each flow, after the routing path is selected accord-
ing to FPAR/Subgraphs operation, each flow is transformed to a list of segments to be traversed. The SRv6 Path config operation
considers that the routing paths are transformed to a sequence of edges (adjacency SIDs) instead of a sequence of nodes (node
SID/Prefix SID) to be traversed. This is because, during topology update events like link failure, if the SR policy is defined
as a sequence of nodes, the OSPF convergence takes precedence in finding the alternative paths, leading to packets flowing
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Fig. 1: TAPRIO in t.
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FIGURE 4 Generic controller architecture for the TSN SRv6 enabled network nodes. The same network node architecture is
used for both the endpoints (TSN Talkers/Listeners) and intermediate TSN devices. SRv6 tagging operation is only performed
at the TSN Talker nodes by the controller. From TSN perspective, the controller is providing both CNC and CUC functionality,
including also generic SDN related operations, such as topology management.

through the network without proper GCL configurations. However, in case the SR policy is defined as a sequence of edges to be
traversed, the OSPF convergence process will not be able to recover the stream as the corresponding adjacency SID becomes
invalid after the topology update. Thereby, the SDN controller can have complete control of the topology update process.

SRv6 and 802.1Qbv in a Linux Node:

• SRv6 Manager. We consider a Linux-based SRv6 enabled device according to43,8. The SRv6 manager is responsible
for parsing SRv6 configuration information sent to the NETCONF server. Configuration information encompasses (i)
path encapsulation in SRH according to YANG-based SRv6 models, translated into a suitable set of actions that tune the
forwarding logic at the access devices (srv6-explicit-path YANG model) and (ii) mapping of segment IDs to functions
(srv6-local-sid YANG model). In this work, both models are based on the ones presented in8. Our SRv6 Manager imple-
mentation internally relies on the iproute utility in order to apply the SIDs allocation (in all network devices), as well as
the routing policy configuration (at the access devices).

• TSN Manager is responsible for parsing GCL configuration sent over the NETCONF interface, based on 802.1Qcw
aligned YANG models, and for applying the corresponding set of actions that affect the queuing disc layer of the
Linux kernel (TAPRIO). The SRv6 and TSN Managers both reside in the userspace and communicate with the kernel
space via the Netlink Socket interface. Fig. 5 illustrates an example of taprio-schedule aligned with 802.1Qcw. In our
example, the taprio schedule configuration for any specified SRv6 enabled TSN router is stored as a list under the tag
<taprio-schedules>. Each value in the list specifies the per-port wise 802.1Qbv schedule configuration with the parame-
ter <device> indicating the port name, whereas <sched-entries> indicates the corresponding Gate Control List. The Gate
Control List consists of a list of schedule entries with <gatemask> specifying the traffic classes that are permitted for
transmission within the specified time <interval>.
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FIGURE 5 Example of TAPRIO schedule configuration in JSON.

• OSPF Manager. OSPFv3 sets up the stub areas of all the routers in the network and enables the exchange of Link
State Advertisements (LSA). OSPFv3 on the user space is also used to retrieve LSAs from the OSPF database by a
user space application. In this work, we enable the distribution of SRv6 SIDs between the nodes by distributing the
prefix SIDs between all the nodes belonging to the same Autonomous System (AS), using OSPFv3. The routing network
device implementation relies on Quagga stack to enable OSPF functionality. OSPF parametrization is made using simple
scripting.

• TAPRIO-based 802.1Qbv Queueing and Forwarding. The kernel space of the operating system houses the forwarding
and the queuing logic responsible for basic processing of incoming packets. Any packet arriving at the incoming port
of the router enters the Forwarding Logic, which is responsible for forwarding the packet to the corresponding output
port. The packet is then forwarded to the queuing layer at the output port. We make use of Time Aware Priority Shaper
(TAPRIO), as the queuing layer to emulate the TSN 802.1 Qbv behavior. The classifier in the queuing layer of each output
port is responsible for classification of packets to different traffic classes depending on the priority fields of the packet
header. The packets are then queued into the appropriate traffic classes, where each traffic class represents a First In First
Out (FIFO) queue. Each traffic class is associated with a gate. Packets in a traffic class are scheduled for transmission and
forwarded to the driver, only if the corresponding gate is open. The status of a gate (i.e., whether it is closed or open) at
any given time instance is decided by the Gate Control List (GCL), which defines the time interval for which any given
traffic classes are allowed for transmission.



12 Gagan Nandha Kumar ET AL

4.2.3 Mapping of Traffic Classes
According to IETF RFC 9023, mapping of a DetNet IP flow to a TSN stream is provided via the combination of a passive and
an active stream identification function, used to capture the 6-tuple of a DetNet IP flow; the active stream identification function
is employed to modify the Ethernet header according to the ID of the mapped TSN Stream.

QoS mapping determines how the different flow types are mapped onto the various traffic classes or hardware queues on
the output of a NIC interface. SRv6 packets are handled by the IPv6 layer, which uses the Differentiated Services Architecture
(DSA) for implementing QoS provisioning of flows. DSA comprises an approach where the relative priority and Type of Services
marking are derived from the QoS sensitive fields in the packet header for dynamic reservation of resources. Thus, DSA follows
a per-hop behavior in each router for providing QoS guarantees, instead of an end-to-end reservation strategy. In the case of
layer 2, the 3-bit VLAN priority field of the VLAN-tagged packets is utilized for determining the QoS requirements of the flow,
thus, allowing a maximum of 8 traffic class combinations. With respect to layer 3, the 8-bit traffic class field in the IPv6 packet
header is used to indicate the QoS requirements of the flow. The first 6 bits of the traffic class field, referred as DSCP, are used
for determining the QoS mapping by the packets, thereby, allowing a maximum of 64 different traffic classes. The Diffserv RFCs
recommend the following most commonly used Per-Hop Behaviors (PHB) for various DSCP combinations, as shown in Table
1 .

DSCP Name DS Field Value Traffic Class Mapping
CS0 0 0: Best Effort
LE 1 n/a

CS1, AF11-13 8, 10, 12, 14 1: Priority
CS2, AF21-23 16, 18, 20, 22 2: Immediate
CS3, AF31-33 24, 26, 28, 30 3: Flash - mainly used for voice signalling
CS4, AF41-43 32, 34, 36, 38 4: Flash Override

CS5, EF 40, 46 5: Critical - mainly used for voice RTP
CS6 48 6: Internetwork Control
CS7 56 7: Network Control

TABLE 1 DSCP traffic class mapping.

TAPRIO exploits the priority field of the socket buffer (sk_buff, SKB) used by the networking stack of the Linux kernel
(𝑠𝑘𝑏 → 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) in order to classify the packets to a particular traffic class. Thus, the 𝑠𝑘𝑏 → 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 field needs to be modified
based on the QoS fields in the packet header for mapping traffic classes to the packet priority information. Since the SKB is a
kernel structure, it cannot be directly set from userspace. In order to accomplish this, we follow the iptables1 approach to set the
priority field of SKB, before the Qdisc has been reached.

Chain POSTROUTING (policy ACCEPT)
target prot source destination match action

CLASSIFY all anywhere anywhere DSCP match 0xXX CLASSIFY set 0:Y
TABLE 2 IPv6 rule table for traffic mapping.

The mangle table in the IP layer is used to modify packets. The classifier rule is appended to the POSTROUTING chain,
which is invoked after the forwarding decision, just before the packet reaches the Qdisc so that the TAPRIO Qdisc can see the
priority field set by the iptables rule (classifier). Table. 2 shows the classifier rule for mapping the packets with DSCP value
XX onto a skb priority value of Y.

1Iptables is an IP layer packet filter tool used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel.



Gagan Nandha Kumar ET AL 13

5 EVALUATION

5.1 Evaluation Environment
In this section, we evaluate our technical approach in a modified Mininet emulator version 2.2. To this end, we extend the Linux
SRv6 data plane implementation from8 to support TSN 802.1Qbv based forwarding by integrating TAPRIO into this Mininet
environment. The SRv6 data plane in Mininet makes use of Linux SRv6 implementation for packet forwarding. The Linux
SRv6 implementation allows configuration of the Segment Routing Policies using the iproute utility. All SRv6-TSN enabled
routers and hosts are emulated using linux network namespaces. Each router consists of a loopback interface and a management
interface. The IPv6 address of the loopback interface forms the Node SID, while its prefix forms the Prefix SID of the node. All
local SIDs take the same prefix as the prefix SID. The prefix SIDs are distributed across all the nodes in the network with the help
of an OSPF implementation provided by the Quagga Routing Suite44. This ensures that all local SIDs are reachable across the
entire network. All the SRv6-TSN enabled routers communicate with the centralized controller via a Management Switch. The
controller communicates with the SRv6-TSN enabled routers via the python based NETCONF client-server implementation. We
define three types of YANG data models, namely srv6-explicit-path, srv6-local-sid and taprio-schedules for the configuration
of SR policy, mapping of segment IDs to function and configuration of GCL for TAPRIO, respectively. We have integrated
TAPRIO into the Mininet environment, as explained in our previous work in32,7. However, in this work, we map the traffic
classes of TAPRIO to the Differentiated Services Field of the IPv6 header, instead of VLAN priorities.

TAPRIO is a Linux queuing discipline that implements the IEEE 802.1Qbv Time-Aware Shaper. TAPRIO allows the con-
figuration of a sequence of gate states, where each gate state allows outgoing traffic for a subset of traffic classes based on the
notion of time slice. TAPRIO queuing discipline is supported only from Linux kernel version 5.X onwards. For this evaluation
setup, we use Linux kernel version 5.4.0 installed with the latest available version of iproute245 package.

The implementation of the software TSN within a virtualized Mininet environment (i.e., Mininet) requires the creation of
multi-queued NIC interfaces, as TAPRIO is supported only on a multi-queued NIC interface. In order to configure TAPRIO
inside a virtual machine, we need to create multi-queued NIC interfaces inside Mininet, instead of the default single queue
interfaces. Multi-queued NIC interfaces can be created by using Virtual Ethernet devices. They can act as tunnels between the
network namespaces to create a bridge to a network interface in another namespace, and also can be used as standalone network
devices. These devices are always created in interconnected pairs.

All experiments are conducted on an Intel NUC PC with Intel (R) Core (TM) i7-8559U CPU @ 2.70GHz, and 16 GB RAM
installed with Ubuntu 20.04.1 LTS based on Linux Kernel version 5.4.0-58-generic.

5.2 Evaluation results
The evaluation section is structured as follows. We first evaluate some of the Key Performance Indicators (KPI) of our SRv6
over TSN-based implementation, such as SRv6 provisioning times, average delay and performance overhead. Subsequently, we
proceed onto the evaluation of the overall convergence time. Note that in all emulations, all network services, the entire Mininet
network, and the SDN controller/ CNC (scheduler) are operating on a single PC, leading to degraded data plane performance
especially when increasing network scale and Talker/Listener pairs. The data plane performance is dependent on the packet
processing and monitoring operations across all the switches, similar to several other aspects such as the thread scheduling
policy in effect. The results presented are indicative and our future plans include the implementation of the solution using TSN
hardware prototypes.

5.2.1 TAPRIO Overhead
The objective of this experiment is to evaluate the overhead induced by the TAPRIO queuing layer under no congestion and
no interference. The experiment is performed on a linear network topology with varying network dimensions connected to a
pair of Talker-Listener. Fig.6 shows the plot of the average end-to-end latency experienced by traffic transmitted every 250𝜇𝑠
interval of packet size 512 bytes for the cases with and without TAPRIO. According to this plot, the average end-to-end latency
increases with the hop count. In addition, for any given hop count the latency experienced with TAPRIO is higher. This is due to
an additional queuing layer which has been added to implement the Time Aware Shaping functionality. However, the variation
in latency among the various hop counts is not high, i.e., 1.83𝜇𝑠∕ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (without TAPRIO) and 2.03𝜇𝑠∕ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (with
TAPRIO). The average additional overhead experienced by the TAPRIO queuing is around 13%, as measured in our setup.
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FIGURE 6 Overhead introduced by TAPRIO operation.

FIGURE 7 SRv6 TSN provisioning times.

5.2.2 Control plane-data plane interaction
In this experiment, we evaluate the time required by the SRv6 controller to convey the configuration information, such as
Segment Routing policies, Segment ID function mapping and GCL schedules for TAPRIO configuration.

Fig. 7 presents the average provisioning time required to send 5 configuration commands to any SRv6 enabled router via
NETCONF protocol. The figure shows two variants of the provisioning times. The Push Config corresponds to the time needed
for configuration information to be received and parsed by the target device; however, it does not take into consideration the
time to enforce (execute) the requested configuration on the target node. The latter is taken into account by the Push and Commit
Config. As expected, the provisioning time for all three types of configurations namely SRv6 Route, SRv6 Function, and TAPRIO
for Push Config is the same (i.e., around 2ms). With respect to Push and Commit Config, both SRv6 Route and the SRv6 Function
experience a provisioning time of around 5ms. Instead, this delay is increased in the case of TAPRIO. The additional overhead
for TAPRIO is due to the shell invocation for enforcing each of the GCL schedule configurations, unlike the case of configuring
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SRv6 Route and SRv6 Function, in which configurations are enforced using the Netlink socket API without the need for a shell
invocation.

TABLE 3 SRv6 operation overhead.
Normal IPv6
Forwarding SRv6 Encoding SRv6 Decoding

Delay
(𝜇𝑠) 1.7613 2.3188

(31.65 %)
2.0187

(14.06 %)

5.2.3 SRv6 Encoding and Decoding Overhead
The objective of this experiment is to evaluate the overhead of the Segment Routing encoding and decoding operations. The
topology under consideration is a linear network topology consisting of two TSN enabled SR routers. These routers are connected
to a pair of Talker and Listener via an edge router which is also SR enabled, while the Talker sends a 512-byte packet stream.
We measure the time required by the edge router to insert incoming IPv6 packets with SRH consisting of a list of segments to
be traversed, before reaching the destination node (termed as the SRv6 encoding operation). We further report the time needed
by the intermediate SRv6 enabled routers to identify the corresponding segment from the segments left field of the header and
forward the packet to the corresponding output port (termed as SRv6 decoding operation).

According to Table 3 , the SRv6 encoding incurs a higher overhead of around 31.65% (percentage overhead in relation to
normal IPv6 forwarding), since the encoding operation involves the insertion of new header information into the IPv6 packet.
Instead, the SR decoding operation experiences an overhead of 14.6%, due to the additional overhead involved in decoding the
forwarding information from the packet header.
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FIGURE 8 SRv6 forwarding overhead.

5.2.4 SRv6 Forwarding Overhead
The objective of this experiment is to evaluate SRv6 forwarding plane on our emulation environment. The topology under
consideration is a linear topology of varying hop counts. Fig. 8 shows the average delay for forwarding the packets of 512 bytes
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over normal IPv6 and SRv6 forwarding planes. We observe that the SRv6-based forwarding experiences a higher transmission
delay, due to the decoding of the forwarding information from the SRH of the packet header.

(a) (b)

FIGURE 9 (a) Controller configuration time. (b) CPU and memory utilisation of Controller.

5.2.5 Controller-to-Switch Configuration Overhead
In this experiment, we measure the time needed by the SDN controller for the configuration of multiple network nodes in
parallel via a NETCONF interface. Fig. 9 (a) shows the controller provisioning time (with Push Config) and the CPU/memory
utilization of the SDN controller. We quantify the configuration overhead for the insertion of 100 forwarding rules per ingress
node (which perform the actual path encapsulation). Fig. 9 (b) indicates that increasing the number of nodes managed by a
single controller yields increased provisioning time, as well as increased resource utilization by the centralized controller. For
fully centralized SDN-based solutions, this is a well-known issue. Especially for large network topologies, requirements such
as fast rerouting of time-critical flows are difficult to be satisfied. Instead, our SR-based hybrid scheme reduces the number of
controller-switch interactions, since forwarding rules need to be populated only onto the access switches.

5.2.6 Convergence Time
The objective of this experiment is to assess the convergence of OSPF and SRv6 (combined with OSPF). The topology under
consideration is a ring topology consisting of 5 SR-enabled TSN routers. Fig. 10 (a) shows the OSPF message sequence as
monitored from an arbitrary port in the topology. The blue lines correspond to the time sequence during normal operation. In
the normal case, each node sends an OSPF hello message at every 1-second interval (tunable from OSPF configuration files). In
our scenario, we observe two OSPF hello messages for every 1 sec, since each router is connected to 2 immediate neighbors. In
the event of a failure or topology change, a link-state update message is sent over an IPv6 multicast group to inform all routers
in the network of the topology change. Upon the notification of this topology change, each router updates its OSPF database
and sends a link-state acknowledgment message confirming the reception of the topology update event. It should be noted that
OSPF experiences a much lower convergence time compared to other routing protocols, such as the spanning-tree variants. This
is due to the fact that each node recovers from the failure individually by executing the shortest-path algorithms. However, the
network convergence time is high especially in the case of larger network topologies, since the topology change event has to be
conveyed to all nodes in the network.

This phenomenon can be observed in Fig. 10 (b), which shows the convergence time of Segment Routing for a diverse
range of network sizes. We measure the convergence time, which is defined as the time required to re-establish the flows in
the event of a link failure. We use the ring topology with a link latency of 5ms and varying network sizes in order to obtain
the plot of convergence time for OSPF and SRv6-OSPF, respectively. In the case of OSPF, packets are forwarded using the
routing paths determined by the OSPF algorithm. SRv6-OSPF, on the other hand, steers packets as a list of segments, with
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(a) (b)

FIGURE 10 (a) OSPF messaging. (b) Segment Routing convergence time.

OSPF used to distribute forwarding information to reach individual segments. According to Fig. 10 (b), OSPF experiences
a lower convergence time than SRv6 for smaller network sizes consisting of 4 SRv6-TSN devices. This stems from the fact
that the communication overhead for sending the configuration information from a centralized controller via NETCONF over
SSH connection is higher than the overhead for distributing the failure information over smaller topologies. With increasing
network sizes, it is evident that the SRv6-OSPF case experiences a lower convergence time. This is because, in the case of SRv6
during a topology update event, the controller needs to notify only the edge routers. Furthermore, it should be noted that in our
experiments, even though SRv6 forwarding uses OSPF to distribute the adjacency SIDs, the recovery time has less dependency
on OSPF convergence time. This is due to the fact that the routing information is now encoded as a list of adjacency segments
and packets are re-routed over those segments which are unaffected by the failure. We note, however, that in case SIDs map to
nodes different performance results are expected due to OSPF operations.

5.3 Convergence Time Investigation
All the experiments, throughout this section, are performed using three different types of traffic classes, namely Time-Triggered
traffic (Priority 7), Audio Video Bridging traffic (Priority 5), and Best-Effort traffic (Priority 0). For each flow, the traffic class
is randomly selected from the above set, originating from Talker-Listener pairs connected randomly to different nodes in the
network.

5.3.1 Flow Priority Aware Routing Heuristic
This experiment aims at evaluating our proposed routing heuristic (i.e., FPAR) in comparison to shortest path routing. The
evaluation is performed by simulating the scenario of allocating multiple flows for an 8-ary fat-tree data center network topology.
Maximum In-Class Interference is defined as the maximum number of traffic flows of same priority flowing through any given
link in the network and is used as a KPI for evaluating the benefit of our routing heuristic.

Fig. 11 shows the comparison of Maximum In-class interference for all three traffic classes while increasing the number of
flows for both FPAR and traditional shortest-path routing (denoted as SP).

From the plot, it is evident that the Maximum In-class Interference increases with the increasing number of flows for all the
traffic types. However, the Maximum In-class interference for any given number of flows with FPAR is significantly lower than
shortest path routing. A lower value of Maximum In-Class Interference leads to lower complexity when scheduling the time-
triggered flows. That is because a lower value of Maximum In-class interference leads to an increased probability of computing
a non-overlapping path for newly arriving time-critical flows with strict end-to-end deadlines.
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FIGURE 11 Max In-class interference for various routing schemes.

5.3.2 Network Recovery with TSN, FPAR and Source Routing
In this experiment, we evaluate the integrated FPAR and scheduling framework. The path configuration is based on Source
Routing, according to our previous work in7 and is depicted for comparison reasons. The experiments are conducted on a random
network topology with Talker and Listener pairs connected to the core TSN network in a random fashion with a packet size of
1,440 bytes. Under FPAR, the scheduler is only invoked over the minimal sub-graph required to identify the GCLs on those
paths that are affected by the failure, instead of the complete network topology graph. The normal scenario corresponds to the
case where the scheduler is applied over the entire topology and the entire set of flows.

Fig. 12 shows the average network recovery time and the GCL configurations, due to a random link failure for a varying
number of flows through 25 switches and 50 links on a random network topology for a randomly chosen link failure. According
to Fig. 12 (a), the average recovery time increases with the increasing number of flows, since the execution time of a scheduler
depends on the number of flows to be scheduled. The proposed FPAR technique allows to minimize the number of overlapping
flows, thereby, opening up the opportunities for running the scheduler only on a minimal subset of flows over a minimal connected
subgraph. This leads to a significant reduction of the recovery time, due to the reduced GCL re-configurations required, as shown
in Fig. 12 (b).

5.3.3 Network Recovery with TSN, FPAR and SRv6
In this experiment, we exploit SRv6 for generating explicit routing paths. Fig. 13 (a) depicts TSN recovery time for a diverse
number of Talker-Listener pairs. The topology under test is a random Erdos–Rényi network topology consisting of 5 nodes and 10
links. The plot shows a similar response, as that of Fig. 12 (a) with the proposed FPAR techniques showing reduced convergence
time compared to Normal Routing. It can be observed, however, that SRv6 experiences higher recovery time compared to the
Source Routing case. This increase in the recovery time is attributed to the increased stress on the Mininet environment, while
processing L3 SRv6 decoding and forwarding operations (plus TSN queuing), unlike the case of Source Routing, where all the
packets are processed at L2 of the protocol stack (plus TSN queuing).

Fig. 13 (b) shows the network recovery time for a diverse number of nodes. A fixed number of 3 pairs of Talkers and Listeners
are chosen to generate randomly selected traffic types. In the case of typical shortest path routing, the average number of GCL
configurations increases with the increase in the network size. In the case of FPAR, average GCL configurations decreases for
a fixed number of flows with increasing network sizes up to a certain range, since the probability of an overlapping allocation
of flows is minimized due to the presence of more alternative paths. The number of GCL re-configurations decreases, as the
scheduler is invoked only on the subgraph containing the problematic/overlapping flows.
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(a) (b)

FIGURE 12 Increasing the number of flows: (a) Recovery time; (b) Number of GCL re-configurations (Random network
topology with 25 nodes and 50 edges).

(a) (b)

FIGURE 13 SRv6 TSN recovery time vs (a) number of flows (5 nodes); (b) number of nodes (3 flows)

5.3.4 Network Recovery Under Large-Scale TSN
Recall that all the previous tests were conducted using the integrated Mininet solution. Note that beyond 25 (emulated) switches
the Mininet environment is not stable in our system. To mitigate this problem and assess issues of scale, we resort to python-
based simulations where we quantify the GCL re-configurations required in the case of a failure. Fig. 14 (a) illustrates the
average number of GCL configurations required to recover all the affected flows, due to a random link failure in an Erdos–Rényi
random network graph consisting of 10 TSN switches for a varying number of randomly selected flows. The red line in the plot
illustrates the maximum number of GCL configurations in the network, which can be deduced when all the ports used in the
network need to be reconfigured. As expected, the average number of required GCL configurations increases for normal routing,
when increasing the number of flows. Although an increase is also observed in the GCL configurations with FPAR (in relation
to the number of flows), FPAR overall requires significantly fewer GCL configurations compared to normal routing.

Fig. 14 (b) shows the average number of GCL configurations required during a TSN failure event on a network of diverse size
with a fixed number of flows. The topology under test is a random Erdos–Rényi network graph consisting of varying network
dimensions. A fixed number of 100 pairs of talkers and listeners chosen randomly are used to generate randomly selected traffic
types. In the case of normal routing, the average number of GCL configurations increases with the increase in the network size.
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However, in the case of FPAR, average GCL configurations decreases for a fixed number of flows with increasing topology sizes
as the scheduler is invoked only on the subgraph containing the problematic/overlapping flows.

(a) (b)

FIGURE 14 GCL re-configurations vs (a) number of flows (10 TSN nodes); (b) number of switches (100 flows)

5.4 Discussion Points
In our approach, we consider that all the network devices are IEEE TSN 802.1Qbv and SRv6 capable. More specifically, the
technical approach, which we rely upon, performs integration of SRv6 with 802.1Qbv TSN in the control plane, where inside
the SDN controller the control application is deciding about routing and scheduling. Although this approach has some direct
benefits, such as ease of implementation due to the fact that existing Linux tools can be used, there are a number of shortcomings
identified.

For example, we are not considering relevant synchronization issues for large-scale setups, which in practice may inhibit
802.1Qbv adoption for such scenarios. In our future work, we plan to investigate multi-domain TSN environments to tackle such
issues for large-scale networks. In the same context, we have also not investigated aspects related to DetNet Flow Aggregation,
as considered by IETF RFC 8939. Furthermore, although we are aligned with IETF RFC 9023 and we also consider a mapping
function between IP and Ethernet, our mapping function is only used to map the relevant QoS characteristics, and, as such, we
are not following 802.1CB related identifiers.

By means of comparison, other techniques such as P802.1Qch (Cyclic Queuing and Forwarding) and 802.1Qcr Asynchronous
Traffic Shaper (ATS) besides 802.1Qbv are left for future work. Regarding the operation of the FPAR policy our future plans
include performance and overhead analysis and comparison with other Fast Reroute solutions (e.g., Loop-Free Alternate (LFA)
(IETF RFC5286) and variations such as Topology-Independent Loop-Free Alternate (TI-LFA) which are applicable to segment
routing for constructing backup paths.

6 CONCLUSIONS

In this work, we elaborated on an SDN-based approach for low-overhead network updates over TSN, when coupled with IPv6
Segment Routing. In this respect, we exploited the concept of TSN subgraphs in order to quickly reschedule the flows traversing
the updated/problematic area and proposed a TSN-aware routing heuristic to minimize convergence time. The methodology and
mechanisms considered are applicable when dynamic network updates and/or failure event handling are required. We described
the TAPRIO (802.1Qbv) and SRv6 integration, as well as our implementation experience in Linux and how the environment
can be integrated into Mininet.

Besides addressing the issues explained in Section 5.4, our future work will further encompass tighter integration between
TSN and SRv6, following the latest IETF and IEEE principles of operation; enhancements of the proposed recovery algorithm
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in order to cope with multiple link/node failures occurring at different parts of large network topologies; and investigation of
better strategies for transforming the routing path to the segment list, such that explicit path routing can be defined with fewer
segments. In addition, the proposed control plane models can be extended for the needs of multi-domain TSNs with the border
gateway switches of each domain being responsible for encoding the path information within the respective domain. Finally,
our approach can be further enhanced with other algorithmic variants such as fault resilient routing and scheduling strategies
for better handling the case of dynamically changing operational requirements.
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