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Abstract: Reducing the size of the training set, which involves replacing it with a condensed set,
is a widely adopted practice to enhance the efficiency of instance-based classifiers while trying to
maintain high classification accuracy. This objective can be achieved through the use of data reduction
techniques, also known as prototype selection or generation algorithms. Although there are numerous
algorithms available in the literature that effectively address single-label classification problems,
most of them are not applicable to multilabel data, where an instance can belong to multiple classes.
Well-known transformation methods cannot be combined with a data reduction technique due to
different reasons. The Condensed Nearest Neighbor rule is a popular parameter-free single-label
prototype selection algorithm. The IB2 algorithm is the one-pass variation of the Condensed Nearest
Neighbor rule. This paper proposes variations of these algorithms for multilabel data. Through an
experimental study conducted on nine distinct datasets as well as statistical tests, we demonstrate
that the eight proposed approaches (four for each algorithm) offer significant reduction rates without
compromising the classification accuracy.

Keywords: data reduction techniques; instance reduction; multilabel classification; prototype
selection; instance-based classification; binary relevance; CNN; IB2; BRkNN

1. Introduction

Multilabel classification [1] involves predicting multiple potential classes or labels for
a single instance, while single-label classification focuses on assigning only one class to
each instance. Multilabel classification is commonly employed to classify diverse forms of
data, such as images, books, artists, music, videos and movies. For instance, a movie can
be classified as both “crime” and “adventure”, a text can cover many different topics and
a music track may encompass multiple genres or moods. Multilabel classification can be
characterized as a generalization of single-label classification, where a classifier is capable
of handling scenarios where multiple labels may be applicable to a single instance. This
extension allows for more versatile predictions as it accommodates cases where instances
can belong to multiple classes at the same time.

The k-Nearest Neighbors (k-NN) [2] classification algorithm serves as a typical illustra-
tion of a lazy or instance-based classifier. It operates by retrieving the k-nearest neighbors of
an unclassified instance and employing a majority voting approach to assign a classification.
In simpler terms, the unclassified instance is assigned to the most prevalent class among
the classes of the retrieved k-nearest neighbors. This classifier is renowned for its simplicity,
ease of implementation and robust classification performance, making it valuable for both
single-label and multilabel classification tasks. Nonetheless, it comes with a drawback of
high computational cost due to the need to calculate the distances between each unclassified
instance and all instances in the training set.
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Hence, the size of the training set plays a vital role in instance-based classification.
While a large training set yields higher classification accuracy, it also entails increased
computational costs. To expedite the k-NN classifier, it becomes necessary to mitigate
its memory and CPU requirements by reducing the training set’s size. In single-label
classification tasks, one approach is to employ a data reduction technique (DRT) capable of
reducing either the number of training instances or attributes [3]. This paper specifically
focuses on DRTs from the perspective of instance reduction. The objective of this paper is
to achieve efficient k-NN classification on multilabel data by decreasing the training set’s
size without compromising accuracy.

DRTs encompass two categories, namely prototype selection (PS) [4] and prototype
generation (PG) [5]. In practical terms, these techniques serve as data pre-processing
tasks aimed at replacing the original training dataset with a smaller subset known as
the “condensing set”. Utilizing the condensing set enables the k-NN classifier to achieve
comparable accuracy to using the full training dataset but with significantly reduced
computational costs. PS algorithms choose specific instances, or prototypes, from the
original training set, whereas PG algorithms generate prototypes by summarizing similar
training instances belonging to the same class. The fundamental concept underlying many
DRTs is that only training instances in close proximity to class decision boundaries, in terms
of a Euclidean metric space, are crucial for classification tasks. Those training instances
situated within the “internal” area of a class, far away from decision boundaries, can
be safely removed without compromising classification accuracy. Consequently, DRTs
aim to select or generate an adequate number of prototypes that reside near the decision
boundary areas for each class. The majority of DRTs primarily focus on single-label
classification problems.

It is worth mentioning that a subcategory of PS algorithms focuses on noise removal
and operates differently from other PS and PG algorithms. These algorithms are designed
to eliminate noise and smooth the decision boundaries between discrete classes. As a result,
they create an edited training set that leads to accuracy gains in the classification process.

The label powerset (LP) transformation technique [1] offers a straightforward solution
for employing a DRT in multilabel classification tasks. LP transforms a multilabel dataset
into a single-label dataset by considering each label combination, or labelset, as a separate
class. However, it is important to acknowledge that LP is suitable only when the number
of labels and potential labelsets is limited and there are ample instances available for
each labelset. In situations where the number of label combinations becomes excessively
large, the reduction rate may not be sufficient, resulting in inadequate representation of
certain combinations. Moreover, the total count of distinct label combinations can grow
exponentially, giving rise to scalability issues.

Binary relevance (BR) is a popular transformation technique that addresses multilabel
classification problems by transforming them into single-label classification problems. Es-
sentially, BR involves converting the original multilabel problem into multiple independent
binary classification problems. In order to predict the labels associated with an unclassified
instance, a separate classifier is required for each available label. When BR is combined
with the k-NN classifier, it is referred to as BRkNN [6]. This combination proves effective
because the k-NN classifier is a lazy classifier that does not construct a classification model.
During the classification of an instance x using BRkNN, the algorithm searches for the
k-nearest neighbors to x, just like in the case of single-label k-NN. Subsequently, the voting
procedure of the nearest neighbors is repeated individually for each label.

When a data reduction technique (DRT) is applied before utilizing the k-NN classifier,
the classifier transitions from being lazy to eager. In such scenarios, the condensing set
becomes the classification model. However, in the context of multilabel classification, the
application of BR (binary relevance) to construct a condensing set for each label undermines
the objective of data reduction. On one hand, the goal of data reduction is not achieved.
On the other hand, since the k-NN classifier must search for nearest neighbors within each
specific condensing set to make predictions for individual labels, the computational cost
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remains high. Hence, combining BR with a DRT becomes infeasible due to the presence
of multiple binary condensing sets. This highlights the necessity of modifying DRTs to
effectively handle multilabel datasets, which serves as the motivation for the current
research work.

The Condensed Nearest Neighbor (CNN) rule [7] stands as the oldest prototype
selection (PS) algorithm for single-label classification tasks. It operates by eliminating
training instances that reside far from the decision boundaries, and this is achieved by
running over the training data multiple times. Instance-Based Learning 2 (IB2) [8] is the
one-pass variation of CNN and has the same motivation with that of CNN. IB2 involves an
extremely low pre-processing computational cost to build the condensing set. Both CNN
and IB2 are popular parameter-free PS algorithms. However, they are inappropriate for
multilabel data.

The objective of the present paper is to extend the applicability of CNN and IB2 by
introducing variations suitable for multilabel classification problems. In [9], we proposed
three multilabel variations of CNN. Here, we extend the previous work by adding one
more variation of CNN, which is based on Levenshtein distance [10], and by introducing
the multilabel version of IB2 with the four variations. Thus, the contributions of the paper
are summarized as follows:

• We propose four variations of CNN and IB2 that are suitable for multilabel classifica-
tion problems.

• One of the variations uses a novel adaptation of Levenshtein distance for
multilabel instances.

• We conduct an experimental study using nine multilabel datasets and complement it
with corresponding statistical tests of significance. The study reveals that the proposed
variations offer significant reduction rates without compromising the
classification accuracy.

The rest of this paper is organized as follows. Section 2 presents the related work in
data reduction on multilabel datasets. Section 3 presents the CNN algorithm for single-label
classification problems. Section 4 presents the Instance-Based Two-Step (IB2) algorithm for
single-label classification problems. Section 5 describes the proposed variations of CNN
and IB2 for multilabel classification problems that use the BRkNN multilabel classifier.
Section 6 presents the experimental study that compares the proposed algorithms. Finally,
Section 7 concludes the paper.

2. Related Work

The majority of publications focused on multilabel problems tend to discuss classifica-
tion algorithms rather than approaches aimed at reducing computational costs associated
with large multilabel training sets. There are also many attempts to offer programming
APIs [11] and environments [12] specific for multilabel classification. Limited research is
available on data reduction techniques specifically tailored for such datasets. In this section,
we examine the scarce relevant literature.

In [13], the authors propose a PS algorithm designed for multilabel datasets. This
algorithm aims to eliminate noise during the editing process and achieve balanced class
decision boundaries. Inspired by the Edited Nearest Neighbor rule (ENN-rule) [14], the
authors suggest an under-sampling method for addressing imbalanced training sets.

Another article, [15], introduces a prototype selection editing algorithm based on ENN-
rule. The algorithm utilizes the Hamming loss metric to identify noisy training instances.
The concept is straightforward: instances with high Hamming loss are considered for
elimination due to their proximity to decision boundaries, similar to ENN-rule.

In [16], the authors make the first attempt to adapt PS algorithms to multilabel prob-
lems. Their proposed algorithms are based on local sets [17] and the LP transformation
technique [1]. In single-label problems, the local set of an instance refers to the largest set
of instances centered around it, all belonging to the same class. The authors argue that,
in multilabel datasets, a local set does not necessarily need to contain instances with the
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exact same labelsets; they may have slightly different labelsets. The authors calculate the
Hamming loss over the labelsets to measure the differences, and the distance between two
instances is determined using the Hamming loss of their labelsets. If the distance exceeds a
specified threshold, the instances are classified as belonging to different “classes”.

The multilabel prototype selection with Co-Occurrence and Generalized Condensed
Nearest Neighbor (CO-GCNN) was proposed in [18]. CO-GCNN captures label correlation
by computing the co-occurrence frequency of label pairs and subsequently segregating the
initial data into positive and negative categories. The single-label generalized CNN [19]
is performed in order to produce the condensing set. In effect, CO-GCNN transforms the
multilabel classification problem into a single-label classification problem. It leverages
the benefit of incorporating pairwise label correlations as a constraint during the data
transformation step. The authors state that the incorporation of pairwise label correlations
enables the chosen prototypes to more accurately represent the original dataset.

In Ref. [20], a simple multilabel prototype selection algorithm based on clustering is
proposed. The proposed methodology uses a clustering algorithm as a PS algorithm and
then the well-known Multilabel k-Nearest Neighbor algorithm (ML-KNN) [21] performs
the labels prediction.

The article [22] explores the use of single-label prototype selection algorithms along
with binary relevance (BR), label powerset (LP) and other transformation techniques. For
BR and its variants, the proposed strategy generates individual single-label training sets
for different label types. Each training set undergoes a PS algorithm to create a condensing
set specific to each label. Instances receive votes each time they are selected, and the
accumulated votes form a single vector. Instances with votes surpassing a predefined
threshold are selected, resulting in a complete condensing set.

The work presented in [23] does not introduce a DRT. However, the proposed method
uses a PS algorithm as an intermediate step. The authors argue that PS leads to accuracy
loss. Their method aims to combine the classification accuracy of retaining the original
training set with the time efficiency of a PS method. More specifically, the authors propose
a three-phase strategy for multilabel classification: initially, a PS algorithm is employed
on the complete training set, generating a single-label condensed set. This operation is
performed once as a pre-processing step. When an instance x is presented and must be
classified, the proposed method selects a reduced set of labels as potential hypotheses,
considering only the condensed set. In effect, the condensing set works as a recommender
system that recommends the labels where x belongs to. The authors suggest picking the c
nearest classes to input x, where c is a user-specified parameter. The final classification is
performed by k-NN, employing a dynamically formed subset of the original training set
limited to the c labels identified in the previous step.

In [24], a data pre-processing technique to improve label distribution learning (LDL) [25]
algorithms is proposed. LDL is a general learning framework that assigns an instance to a
distribution over a set of labels. Specifically, the proposed method is called ProLSFEO-LDL
and combines prototype selection and label-specific feature learning. The paper proposes
an evolutionary algorithm adapted to the specificities of LDL, aiming to optimize the initial
solution to meet desired expectations.

In [26], the authors introduce an attempt to reduce multilabel datasets using homoge-
neous clustering. The algorithm, known as Multilabel Reduction through Homogeneous
Clusters (MLRHC), is an adaptation of the single-label prototype generation algorithm RHC.
MLRHC applies K-means clustering iteratively to produce homogeneous clusters, which
are then replaced by their center. In MLRHC, a cluster is considered homogeneous if all
instances within the cluster share at least one common label. The initial dataset is clustered
using the existing labels as initial means, with the number of clusters matching the number
of existing labels. Homogeneous clusters are replaced by their center, which is assigned
the common label along with any label appearing in at least half of the cluster’s instances.
Similarly, in [27], the authors extend their previous work by proposing a variant called
Multilabel Reduction by Space Partitioning (MLRSP3), which also relies on the concept of
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homogeneity based on instances sharing at least one common label. MLRSP3 is based on
the RSP3 PG algorithm [28] and starts with a non-homogeneous cluster, selects the two
farthest instances and divides the training set into two clusters by assigning instances to
the closest farthest instance. This process continues until all clusters become homogeneous.
Like MLRHC, the center of each homogeneous cluster in MLRSP3 becomes a multilabel
prototype labeled with the common label and any label appearing in at least half of the
instances within the cluster.

Quite similar work is presented in [29]. More specifically, the authors propose adapta-
tions of the Chen and Jozwik multiclass PG algorithm [30] and of its descendants, RSP1,
RSP2 and RSP3 [28], to the multilabel case. The proposed adaptations are evaluated on
three multilabel NN-based classifiers using 12 datasets of varying domains and sizes, along
with artificially induced noise scenarios. The results show high efficiency and classification
performance, especially in noisy scenarios.

The paper presented in [31] does not introduce a PS or a PG algorithm. However,
it deals with the high computational cost in multilabel classification. Specifically, the
paper introduces a novel approach for multilabel classification by leveraging hypergraph
spectral learning. Hypergraphs, which generalize traditional graphs by allowing edges to
be arbitrary non-empty subsets of vertices, are employed to capture high-order relations
among labels. The proposed formulation leads to an eigenvalue problem, which may be
computationally expensive for large-scale datasets. To address this, the paper presents
an approximate formulation that reduces computational complexity while maintaining
competitive classification performance.

Figure 1 summarizes the presented works in a form of a hierarchy. More specifically,
the presented works can be categorized into three main categories. The first category
includes the paper related with the PS algorithms and the adaption of them. The works
related to adaptation of PG algorithms belong to the second category. The methods that
belong to the third category cannot be characterized as either PS or PG. However, they
are able to speed up the multilabel classification tasks, which is the goal of the PS and
PG algorithms.

Speed-up classifi-
cation methods for
Multilabel datasets

Adaptation of PS
algorithms and
Problem Trans-

formation for PS

ENN-based
algorithms (Charte
et al., 2014; Kanj

et al., 2015)

Condensing algorithms
(Álvar Arnaiz et al.,
2018; Li et al., 2023;

Suya et al., 2021;
González et al. 2020)

Adaptation of
PG algorithms

(Ougiaroglou et al.,
2021; Ougiaroglou
et al., 2023; Valero-

Mas et al., 2023)

Other speed-up methods
for multilabel classifica-
tion (Calvo-Zaragoza et
al. 2015; Sun et al. 2008)

Figure 1. Hierarchy of the presented algorithms and methods: Charte et al., 2014 [13]; Kanj et al.,
2015 [15]; Álvar Arnaiz et al., 2018 [16,22]; Li et al., 2023 [18]; Suya et al., 2021 [20]; González et al.,
2020 [24]; Ougiaroglou et al., 2021 [26]; Ougiaroglou et al., 2023 [27]; Valero-Mas et al., 2023 [29];
Calvo-Zaragoza et al., 2015 [23]; Sun et al., 2008 [31].
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3. The Single-Label Condensed Nearest Neighbor Rule

In Section 1, the Condensed Nearest Neighbor (CNN) rule [7] is discussed as the first
and most widely utilized PS algorithm. CNN is a parameter-free single-label PS algorithm
that constructs its condensing set by iteratively examining the training data.

CNN involves two storage areas, namely the Condensing Set (CS) and the Training
Set (TS). Initially, the TS contains the entire training set while the CS is empty. The process
begins by randomly selecting an instance from the TS and transferring it to the CS. Each
instance x ∈ TS is then compared to the instances currently stored in the CS.

Specifically, for each instance x ∈ TS, CNN identifies its nearest neighbor (1-NN)
within the current CS using the Euclidean distance. If x is correctly classified by its nearest
neighbor in the CS, it remains in the TS. However, if x is misclassified, it is removed from
the TS and added to the CS. This process continues until all instances x ∈ TS have been
considered. Subsequently, the algorithm proceeds to the next scan of the TS.

The algorithm terminates when, during a complete scan of the TS, no instances are
transferred from the TS to the CS, indicating that all instances in the TS are correctly classi-
fied based on the content of the CS. Algorithm 1 provides the pseudo-code representation
of the CNN algorithm.

It is worth mentioning that, during the first algorithm iteration, CS is not empty.
It contains a randomly selected instance (see line 2 in Algorithm 1). Therefore, for all
examined instances of TS, there is always a nearest neighbor in CS.

Algorithm 1 CNN
Input: TS
Output: CS

1: CS← ∅
2: randomly pick an instance of TS and move it to CS
3: repeat
4: stop← TRUE
5: for each x ∈ TS do
6: NN ← nearest neighbor of x in CS using Euclidean distance
7: if NNclass 6= xclass then
8: CS← CS ∪ {x}
9: TS← TS− {x}

10: stop← FALSE
11: end if
12: end for
13: until stop == TRUE {no move during a pass of TS}
14: discard TS
15: return CS

The fundamental principle of the CNN algorithm is to include incorrectly classified
instances in the Condensing Set (CS) since they are considered border instances located
near decision boundaries. CNN ensures that each removed instance from the Training Set
(TS) can be correctly classified using the information contained in the CS set. CNN’s lack of
parameters is a significant advantage. The condensing set is built without the need of any
user-specified input parameter. Thus, costly computational parameter tuning procedures
are avoided. On the other hand, there are some disadvantages to consider:

• Variability in Results: Running the CNN algorithm multiple times on the same TS
may produce different condensing sets due to variations in the randomly selected
initial instance (line 2 of Algorithm 1) or differences in the order in which TS instances
are examined (line 5 of Algorithm 1).

• Memory Requirements: CNN is a memory-based algorithm, meaning that all instances
need to reside in main memory during its execution.
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• Computational Cost: The CNN algorithm requires multiple passes over the train-
ing set.

In terms of quality, the CNN algorithm operates as follows: if the underlying densities
of different classes have minimal overlap, indicating a low Bayes risk, CNN tends to select
instances located close to the possibly fuzzy boundary between classes. Instances deeply
embedded within a class are unlikely to be transferred to the CS since they are correctly
classified. However, if the Bayes risk is high, the CS will essentially contain almost every
instance from the initial TS set, resulting in negligible sample size reduction.

4. The IB2 Algorithm

Aha et al. [8] introduced a set of instance-based learning algorithms. Among these al-
gorithms, IB1 (Instance-Based Learning) served as a baseline and was essentially equivalent
to the 1-NN algorithm.

The IB2 algorithm operates incrementally by initially having an empty set, CS, and
adding each instance from TS to CS if it is misclassified by the instances already present in
CS. Algorithm 2 provides the pseudo-code representation of the IB2 algorithm.

Algorithm 2 IB2
Input: TS
Output: CS

1: CS← ∅
2: randomly pick an instance of TS and move it to CS
3: for each x ∈ TS do
4: NN ← nearest neighbor of x in CS using Euclidean distance
5: if NNclass 6= xclass then
6: CS← CS ∪ {x}
7: TS← TS− {x}
8: end if
9: end for

10: discard TS
11: return CS

IB2 bears similarities to CNN-rule but it does not repeat the process after the first pass
through the training set. As a result, IB2 does not guarantee the correct classification of all
remaining instances in the TS. In effect, IB2 is a one-pass version of CNN.

Like CNN, IB2 aims to retain border instances in CS while eliminating internal in-
stances that are surrounded by instances belonging to the same class. Similar to the CNN
algorithm, IB2 is highly sensitive to noise because erroneous instances are often misclas-
sified, resulting in the preservation of noisy instances, while more reliable instances are
removed. The benefits and characteristics of IB2 algorithm are

• Since IB2 avoids multiple passes over training data, is quite faster than CNN.
• The condensing set obtained from IB2 is generally smaller than that of CNN, leading

to faster classification and reduced storage requirements.
• IB2 supports incremental learning, where new instances can be added to the condens-

ing set without requiring complete retraining of the algorithm.
• The decision boundary revision step allows IB2 to adapt to new instances and adjust

the reduced training set accordingly.

5. The Proposed Algorithms

As discussed in Section 1, traditional data reduction algorithms are not suitable for
use with the binary relevance transformation method in multilabel data. Applying data
reduction in conjunction with the binary relevance transformation would lead to the
creation of numerous condensing sets, one for each label.
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In this section, we introduce variations of the CNN and IB2 algorithms that are
designed for multilabel datasets. These proposed algorithms are named

• Multilabel CNN Hamming Distance and Multilabel IB2 Hamming Distance (MLCNN-H
and MLIB2-H);

• Multilabel CNN Jaccard Distance and Multilabel IB2 Jaccard Distance (MLCNN-J and
MLIB2-J);

• Multilabel CNN Levenshtein Distance and Multilabel IB2 Levenshtein Distance
(MLCNN-L and MLIB2-L) and

• Multilabel CNN Binary Relevance and Multilabel IB2 Binary Relevance (MLCNN-BR
and MLIB2-BR).

5.1. MLCNN-H and MLIB2-H

The MLCNN-H algorithm is based on a similar principle to CNN, with the idea that
an instance with a significantly different labelset compared to its nearest neighbor should
be included in the multilabel condensing set. To achieve this, MLCNN-H requires a method
to measure the distance or difference between multilabel instances and a mechanism to
determine when two instances are considered different or similar.

For that purpose, MLCNN-H uses Hamming distance. The Hamming distance be-
tween two labelsets is the number of positions at which the corresponding labels do
not match.

Definition 1 (Hamming Distance). Given two labelsets u and v, each of length n, their Hamming
distance is the total number of positions where their labels do not match:

HD(u, v) = Cardinality({i : ui 6= vi, i = 1, . . . , n})

In MLCNN-H, the labelset of an instance is represented as a sequence of binary values
(0 or 1), where 0 indicates that the instance does not belong to the corresponding label and 1
indicates that it does. To compute the Hamming distance (HD) between two instances, the
labelsets are compared using an XOR operation to count the number of differing labels. To
express HD in the [0,1] interval, this count is then divided by the length of a labelset, which
represents the total number of labels in the dataset. Consequently, when HD is zero, the
two instances have identical labelsets, while an HD of one indicates completely different
labelsets. For example:

• HD(110001, 110001) = 0/6 = 0
• HD(110001, 001110) = 6/6 = 1
• HD(110001, 000010) = 4/6 = 0.33
• HD(110001, 100010) = 3/6 = 0.5

MLCNN-H incorporates the concept of label density in the dataset. The label density
is calculated as the average number of labels per instance divided by the number of distinct
labels in the dataset [32]. MLCNN-H considers the labelsets of examined instances to be
significantly different if their HD is greater than the dataset density.

Similar to the single-label CNN algorithm, MLCNN-H utilizes two sets: the Condens-
ing Set (CS) and the Training Set (TS). Initially, TS contains the complete training set, while
CS is empty. MLCNN-H randomly selects an instance from TS and transfers it to CS. For
each instance x ∈ TS, the algorithm finds the nearest neighbor (e.g., y) within the CS. Then,
MLCNN-H calculates the Hamming distance (HD) metric between x and y, quantifying
the difference in their labelsets. If HD is greater than the dataset density, x is removed
from TS and added to CS; otherwise, it remains in TS. Once all instances x ∈ TS have been
examined, the process continues with subsequent scans of the remaining instances in TS.
MLCNN-H terminates when no transfers from TS to CS are made during a complete pass
over TS. In each next scan over the remaining instances in TS, more instances move from
TS to CS.
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Similar to MLCNN-H, the MLIB2-H algorithm follows exactly the same process as
the previous one, with the only difference being that the process stops after examining
all instances in TS in one pass. In effect, MLIB2-H is the one-pass version of MLCNN-H.
Therefore, MLIB2-H is quite faster and achieves higher reduction rates than MLCNN-H.

5.2. MLCNN-J and MLIB2-J

MLCNN-J and MLIB2-J employ the Jaccard distance for asymmetric binary attributes,
where the presence of a label is considered more important than its absence.

Definition 2 (Jaccard Distance for asymmetric binary attributes). Given two labelsets u and
v, each of length n, we define:

A = Cardinality({i : ui = vi = 1, i = 1, . . . , n})

B = Cardinality({i : ui = 1∧ vi = 0, i = 1, . . . , n})

C = Cardinality({i : ui = 0∧ vi = 1, i = 1, . . . , n})

D = Cardinality({i : ui = vi = 0, i = 1, . . . , n})

Then, their Jaccard distance for asymmetric binary attributes is the percentage of the number of
positions where their labels do not match over the total number of positions where at least one of the
labelsets has an appearing label. In other words, D is not taken into consideration:

JD(u, v) =
B + C

A + B + C

Thus, matching zeros (absent labels) are disregarded when calculating the distance
between two labelsets. For example:

• JD(110001, 110001) = 0/3 = 0
• JD(110001, 001110) = 6/6 = 1
• JD(110001, 000010) = 4/4 = 1
• JD(110001, 100010) = 3/4 = 0.75

MLCNN-J and MLIB2-J are variations of MLCNN-H and MLIB2-H, respectively. Both
are based on the idea of selecting instances with labelsets that significantly differ from their
nearest neighbors in the CS as prototypes. However, MLCNN-J and MLIB2-J differ from
MLCNN-H and MLIB2-H in two key aspects. Firstly, instead of using Hamming distance,
MLCNN-J and MLIB2-J employ Jaccard distance (JD) as the dissimilarity metric. Secondly,
MLCNN-J and MLIB2-J introduce a different JD threshold to determine the extent to which
two instances differ.

The JD threshold plays a crucial role in determining which instances are considered
different enough to be included in the CS. Initially, MLCNN-J and MLIB2-J consider
instances with fewer than half the labels in common (JD threshold of 0.5) as different. This
means that instances sharing at least half the labels are deemed similar and not added to
the CS. However, in order to increase the reduction rates, higher JD threshold values were
explored during experimentation. Ultimately, two JD threshold values were chosen for
testing: 0.5 and 0.75.

By employing Jaccard distance and adjusting the JD threshold, MLCNN-J and MLIB2-
J aim to identify instances that significantly differ from their nearest neighbors and include
them as prototypes in the CS. The choice of the JD threshold affects the reduction rates, with
higher thresholds potentially leading to greater reductions by considering more instances
as similar to their nearest neighbors and excluding them from the CS.

The MLIB2-J algorithm follows the exact same procedure as the MLCNN-J but with
a distinct difference: it conducts a single complete iteration on the training set and subse-
quently terminates. Thus, it achieves higher reduction rates than MLCNN-J.
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5.3. MLCNN-L and MLIB2-L

MLCNN-L and MLIB2-L are the third pair of multilabel variations of CNN. MLCNN-L
and MLIB2-L utilize the Levenshtein distance metric. The Levenshtein distance serves as a
quantification of dissimilarity between two sets.

The Levenshtein distance represents the minimum number of edit operations needed
to convert one string into another. These edit operations encompass insertions, deletions
and substitutions. Among the family of distance metrics known as edit distance, the
Levenshtein distance stands out as one of the most widely used and popular metrics.

For instance, for the transformation of the string “COVID” to the string “MOVING”,
three operations are required. Hence, the Levenshtein distance between these two strings
is three. More specifically, C is substituted by M, D is substituted by N and, finally, G
is inserted.

Properties of the Levenshtein distance include:

1. Non-Negativity: The Levenshtein distance is always non-negative.
2. Symmetry: The distance between “S” and “T” is the same as the distance between “T”

and “S”.
3. Identity: The distance between a string and itself is always zero.
4. Triangle Inequality: For any three strings “S”, “T” and “W”, the distance from “S” to

“W” is no greater than the sum of the distances from “S” to “T” and from “T” to “W”.
5. Substructure Optimality: The optimal solution for the overall Levenshtein distance

can be obtained by combining optimal solutions to the subproblems (i.e., the prefix
substrings) of “S” and “T” [33].

MLCNN-L and MLIB2-L are modified versions of MLCNN-J and MLIB2-J that focus
on selecting instances with labelsets that exhibit substantial differences from their nearest
neighbors in the CS as prototype examples. However, MLCNN-L and MLIB2-L distinguish
themselves from MLCNN-J and MLIB2-J in two ways. Firstly, they replace the use of
Jaccard distance with Levenshtein distance as the dissimilarity metric. Secondly, MLCNN-L
and MLIB2-L introduce a distinct Levenshtein distance threshold to determine the degree
of dissimilarity between two instances. In MLCNN-L and MLIB2-L, the concept of label
cardinality is incorporated. Label cardinality (LC) of a dataset refers to the average number
of labels per instance in the dataset.

In MLCNN-L and MLIB2-L, the labelsets of examined instances are considered sig-
nificantly different if the Levenshtein distance between them exceeds half of the label
cardinality (LC). Therefore, MLCNN-L and MLIB2-L utilize the Levenshtein distance (LV)
and consider instances for which LV > LC

2 to differ significantly. The goal is to include
these instances as prototypes in the CS.

Let us now illustrate how the Levenshtein distance is computed for two instances.
Using the binary representation of the labelsets of the instances, we perform an on-the-fly
mapping to an ASCII string. This is accomplished by mapping label positions to a fixed
sorted sequence of ASCII characters. For example, assuming that there are six labels in
total, Positions 1–6 are mapped to characters A through F. Hence, 011010 is mapped to
BCE, whereas 111001 is mapped to ABCF. The examples below demonstrate the use of
Levenshtein distance on the mapped labelsets:

• LEV(110001, 110001) = LEV(ABF, ABF) = 0
• LEV(110001, 001110) = LEV(ABF, CDE) = 3
• LEV(110001, 000010) = LEV(ABF, E) = 3
• LEV(110001, 100010) = LEV(ABF, AE) = 2

We can take advantage of the fact that, by design, the resulting strings are sorted
sequences of characters and compute Levenshtein distances directly on the binary labelsets,
i.e., without mapping them to strings.

Like in the case of Jaccard distance for asymmetric binary attributes, our method for
mapping binary labelsets to strings disregards non-appearing labels, i.e., 0 to 0 matches.
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We define a matching substring pair of two labelsets to consist of 1s only, whereas non-
matching substring pairs of two labelsets are all the remaining cases. For example, let
us take labelsets x = 11001001 and y = 11110001. We can express these two labelsets as
a sequence of matching and non-matching substring pairs as follows: (11, 11), (00100,
11000) and (1, 1). The first and third substring pairs are matching, whereas the second
substring pair is non-matching. It is obvious that matching substring pairs correspond to
identical strings, while non-matching substring pairs correspond to strings without a single
common character.

In our example, since mapped(x) = ABEH and mapped(y) = ABCDH, the correspond-
ing mapped substring pairs are (AB, AB), (E, CD) and (H, H). Observe that F and G are
missing from both mapped labelsets. By definition, the Levenshtein distance of identical
strings is zero and of strings without any common characters is the length of the longest
string. Thus, to calculate the Levenshtein distance of the mapped labelsets of our example,
we sum the Levenshtein distances of their non-matching substring pairs. In our example,
this is pair (E, CD) and the distance is 2. Using the original binary labelsets, the Levenshtein
distance of a non-matching substring pair is the maximum number of 1s among the two
substrings. In our example, the Levenshtein distance of (00100, 11000) is 2.

Like the previous presented variations, the MLIB2-L algorithm adheres to the same
procedure as MLCNN-L but with a distinction: it carries out a single full iteration on the
training set and then terminates.

5.4. MLCNN-BR and MLIB2-BR

MLCNN-BR and MLIB2-BR take a different approach compared to MLCNN-H and
MLIB2-H, MLCNN-J and MLIB2-J, MLCNN-L and MLIB2-L. Both MLCNN-BR and MLIB2-
BR begin by using the binary relevance transformation method to transform the multilabel
problem with |L| labels into |L| single-label problems. Each label of the training set
is processed separately using the CNN or IB2 algorithm. This results in the creation of
multiple CSs, with each set corresponding to a specific label. For example, if the initial
training set has ten labels, MLCNN-BR and MLIB2-BR generate ten CSs.

Each CS contains prototypes labeled as 1 (indicating that the instance belongs to the
corresponding label) or 0 (indicating that the instance does not belong to the corresponding
label). From each condensing set, MLCNN-BR and MLIB2-BR select only the prototypes
with a label value of 1, discarding the prototypes with a label value of 0. Finally, MLCNN-
BR and MLIB2-BR merge all the CS to create the final multilabel CS.

To illustrate how MLCNN-BR works, consider the example of running CNN or IB2
for each label on a two-dimensional training dataset with two labels. Suppose two CSs,
as shown in Tables 1 and 2, are derived. The first CS contains six prototypes labeled as
“1”, while the second CS contains four prototypes labeled as “1”. The final multilabel CS
constructed by MLCNN-BR or MLIB2-BR, as shown in Table 3, contains eight prototypes.

In the final multilabel CS, prototypes (1, 1), (1, 8), (4, 5) and (9, 1) originate exclusively
from the CS of the first label. Prototypes (5, 6) and (9, 9) originate exclusively from the CS
of the second label. Prototypes (3, 8) and (8, 4) are common in both CSs.

By applying the binary relevance transformation and utilizing CNN on each label
separately, MLCNN-BR constructs a final multilabel CS that includes prototypes with the
corresponding labels. The merging process ensures that the final CS captures relevant
prototypes from each label’s CS.
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Table 1. Condensing set for the first label.

Instances First Label

(1, 1) 1

(1, 8) 1

(2, 7) 0

(3, 8) 1

(4, 5) 1

(7, 1) 0

(8, 4) 1

(9, 1) 1

Table 2. Condensing set for the second label.

Instances Second Label

(1, 1) 0

(2, 7) 0

(3, 8) 1

(5, 6) 1

(7, 5) 0

(8, 4) 1

(9, 9) 1

Table 3. Final merged condensing set.

Instances First Label Second Label

(1, 1) 1 0

(1, 8) 1 0

(3, 8) 1 1

(4, 5) 1 0

(5, 6) 0 1

(8, 4) 1 1

(9, 1) 1 0

(9, 9) 0 1

The MLIB2-BR algorithm shares the same procedure as the MLCNN-BR algorithm,
with the only difference being that it performs a single complete iteration on the training
set before terminating.

6. Experimental Study
6.1. Experimental Setup

In our experimentation, we utilized nine multilabel datasets provided by Mulan
dataset repository [11]. These datasets consisted of numeric features and contained a
minimum of five hundred (500) instances. The key characteristics of the used datasets are
summarized in Table 4. The last two columns of the table present the dataset cardinality
and density. Cardinality represents the average number of labels per instance, while density
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is calculated by dividing the cardinality by the total number of labels. The domain of each
dataset is listed in the second column of Table 4.

Since the datasets encompass features with different value ranges, this can impact
the classification process as higher-valued features may dominate the distance calculation
between instances. To address this, we normalized the values of all features to the [0,1]
range. The normalization was performed using the MinMaxScaler from the scikit-learn
Python library [34].

Subsequently, the datasets were split into training and test sets using the stratified
5-fold cross-validation method [35]. This approach ensures that the estimates have reduced
variance and improves the generalization performance estimation of classification algo-
rithms. Stratified cross-validation guarantees that the proportion of the feature of interest
remains the same in the original data, training set and test set. This ensures that no values
are over- or under-represented in the training and test sets, providing a more accurate
evaluation of performance and error.

For the implementation of CNN and IB2 and the proposed variations of them, we used
Python 3.12.0 and employed Multiprocessing. The utilization of Multiprocessing allows
for the concurrent processing of multiple distinct parts of the same Python script by two
or more CPU threads. This not only improves processing speed but also enables handling
larger volumes of data.

Table 4. Dataset characteristics.

Datasets Domain Size Attributes Labels Cardinality Density

CAL500 (CAL) Music 502 68 174 26.044 0.150

Emotions (EMT) Music 593 72 6 1.869 0.311

Water quality (WQ) Chemistry 1060 16 14 5.073 0.362

Scene (SC) Image 2407 294 6 1.074 0.179

Yeast (YS) Biology 2417 103 14 4.237 0.303

Birds (BRD) Sounds 645 260 19 1.014 0.053

CHD49 (CHD) Medicine 555 49 6 2.580 0.430

Image (IMG) Image 2000 294 5 1.236 0.247

Mediamill (MDM) Video 43,907 120 101 4.376 0.043

The objective of data reduction is to selectively choose training instances to be used
as input for instance-based classifiers. This process involves identifying and potentially
eliminating redundant instances. The ultimate goal is to obtain smaller datasets that
effectively represent the original dataset. The aim is to simplify the dataset, improve
computational efficiency and potentially enhance classification performance [36]. It is
essential to ensure that the condensing set retains an acceptable amount of information
compared to the original dataset.

Therefore, we evaluate the performance of BRkNN when it runs over the initial training
set and over the condensing sets generated by the proposed algorithms. To measure
the effectiveness, we obtained the reduction rate and Hamming loss through a five-fold
stratified cross-validation framework. The reduction rate is calculated by comparing the
number of instances before and after the reduction process. Thus, a reduction rate of 90%
means that 90% of the original training set instances are discarded and the final condensing
set consists of 10% of the original instances.

The utilization of eager multilabel classifiers in the experimental study does not align
with the objective of the proposed variations, which aim to enhance the speed of instance-
based classifiers in multilabel domains. Thus, we do not include eager multilabel classifiers
in the experimental study.
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As the computational cost of the BRkNN classifier is dependent on the size of the
training set utilized, our study does not report the CPU time required for classification.
Essentially, a higher reduction rate corresponds to a lower computational cost for the
BRkNN classifier during the classification process. The effectiveness of the predictions
is evaluated by computing the Hamming loss, which measures the ratio of incorrectly
predicted labels to the total number of labels. The Hamming loss is computed as follows:

HL =
1
m

m

∑
i=1

|Yi∆Zi|
|L|

Yi represents the set of actual labels for each instance, while Zi represents the set of
predicted labels for each instance. The total number of instances in the dataset is denoted
as m, and |L| refers to the total number of labels. The symmetric difference between two
sets, denoted as ∆, can be visualized as the XOR operation. In other words, |Yi∆Zi| is the
number of non-matching labels between the labelsets of the two instances.

For instance, let us consider a multilabel dataset with five labels and a testing instance
x1 with an actual label set of 11001 and a predicted label set of 11010. In this case, the
Hamming loss is calculated as 2

5 = 0.4 because two of the labels do not match (these are
fourth and fifth labels). Similarly, if another testing instance x2 has an actual label set of
00001 and a predicted label set of 11010, the Hamming loss is 4

5 = 0.8 because all but the
third label do not match. To calculate the Hamming loss for a testing set comprising these
two instances, we compute the average as 1

2 × (0.4 + 0.8) = 0.6.
Lastly, it is worth mentioning that, in accordance with established conventions in the

relevant literature (e.g., [4,5]), all experiments were conducted using k = 1.

6.2. Experimental Results

Table 5 presents the measurements of the experimental study, reporting the Hamming
loss (HL) and reduction rates (RR) achieved by MLCNN-H, MLCNN-J, MLCNN-BR,
MLCNN-L, MLIB2-H, MLIB2-J, MLIB2-BR and MLIB2-L for each dataset.

MLCNN-H achieved reduction rates ranging from 8.28% to 55.70%, MLCNN-J (JD > 0.5)
from 0.75% to 51.93%, MLCNN-J (JD > 0.75) from 19.45% to 60.62%, MLCNN-BR from 0%
to 58.18% and MLCNN-L from 0.10% to 43.05%. MLIB2-H achieved reduction rates ranging
from 14.26% to 73.23%, MLIB2-J (JD > 0.5) from 1.20% to 73.23%, MLIB2-J (JD > 0.75) from
26.28% to 84.67%, MLIB2-BR from 0% to 75.69% and MLIB2-L from 0.35% to 58.85%.

Figure 2 illustrates the reduction rates achieved on each dataset by each algorithm.
Instead of the reduction rate, we report the percentage of retained instances for each dataset
(in other words, we report 1—reduction_rate.

On average, we observe that MLIB2-J (JD > 0.75) achieves the highest reduction rate,
followed by MLIB2-H, MLCNN-J (JD > 0.75) and MLIB2-J (JD > 0.75). It is important to
note that the distribution of instances within the dataset greatly influence the reduction rate.
As the data are complex and not uniformly distributed in space, we observe significant
fluctuations in the reduction rate across different datasets. However, in general, we notice
that MLCNN-BR and MLIB2-BR exhibit less stable behavior in terms of the reduction rate
achieved for each dataset compared to other algorithms.

Additionally, in Table 5, we observe only small differences in Hamming loss be-
tween the BRkNN classifier that utilizes the initial training set and the BRkNN classifier
that employs the multilabel condensing sets created by MLCNN-H, MLCNN-J (JD > 0.5),
MLCNN-J (JD > 0.75), MLCNN-BR, MLCNN-L, MLIB2-H, MLIB2-J (0.5), MLIB2-J (JD > 0.75),
MLIB2-BR and MLIB2-L. In the following section, we provide a statistical analysis to further
explore the performance of the algorithms.

Furthermore, as expected, the MLIB2 algorithm achieves higher reduction rates in all
its versions than the corresponding versions of MLCNN. This is because IB2 performs one
pass on the data compared to the multiple passes performed by CNN, which move more
instances in the CS.
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The proposed algorithms achieve instance reduction while maintaining high levels
of accuracy.

6.3. Statistical Comparisons

In line with the commonly employed approach in the domain of PS and PG algo-
rithms [4,5,37–41], we have supplemented the experimental study with a Wilcoxon signed
rank test [42]. This test serves to statistically validate the accuracy of the measurements pre-
sented in Table 5. By comparing all the algorithms in pairs based on their performance on
each dataset, the Wilcoxon signed rank test confirms their relative rankings. We performed
the Wilcoxon signed rank test using the PSPP 2.0.0 statistical software.

Figure 2. Percentage of retained instances per dataset (CAL, EMT, WQ, SC, YS, BRD, CHD, IMG,
MDM) and algorithm. Last figure reports the average percentage of retained instances over all
datasets and for each algorithm.
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Table 5. Comparison table of the reduction rate (RR (%)) and the Hamming loss (HL (%)).

Dataset BRkNN MLCNN-H MLCNN-J MLCNN-J MLCNN-BR MLCNN-L MLIB2-H MLIB2-J MLIB2-J MLIB2-BR MLIB2-L(JD > 0.5) (JD > 0.75) (JD > 0.5) (JD > 0.75)

CAL HL: 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.19
RR: - 8.28 0.75 19.45 0.0 0.10 14.26 1.20 32.92 0.0 0.35

EMT HL: 0.24 0.26 0.26 0.25 0.29 0.24 0.26 0.26 0.26 0.30 0.24
RR: - 39.88 40.26 60.62 26.64 14.67 51.05 51.64 69.06 39.97 21.67

WQ HL: 0.33 0.34 0.33 0.34 0.36 0.33 0.35 0.33 0.34 0.37 0.33
RR: - 45.71 18.99 54.65 5.33 12.74 58.16 26.68 66.20 10.85 17.73

SC HL: 0.11 0.12 0.12 0.12 0.13 0.12 0.14 0.14 0.14 0.17 0.14
RR: - 51.93 51.93 53.03 50.44 43.05 70.75 70.75 74.50 75.69 58.85

YS HL: 0.24 0.27 0.26 0.26 0.30 0.26 0.27 0.26 0.27 0.30 0.26
RR: - 48.26 31.27 54.72 16.61 33.95 59.09 39.80 65.07 24.90 43.61

BRD HL: 0.05 0.06 0.05 0.05 0.08 0.05 0.06 0.05 0.05 0.08 0.05
RR: - 55.70 15.50 22.71 58.18 34.81 61.59 18.80 26.28 62.87 40.62

CHD HL: 0.35 0.36 0.36 0.38 0.40 0.37 0.37 0.37 0.38 0.40 0.38
RR: - 42.18 32.20 58.64 14.74 30.98 57.20 44.97 70.82 24.89 45.33

IMG HL: 0.20 0.22 0.22 0.21 0.23 0.21 0.25 0.25 0.25 0.26 0.22
RR: - 42.11 42.11 44.82 38.43 26.61 73.23 73.23 84.67 63.43 40.47

MDM HL: 0.031 0.035 0.032 0.036 0.042 0.032 0.037 0.033 0.039 0.043 0.033
RR: - 48.70 33.19 54.58 21.76 31.30 57.08 39.90 63.43 30.06 37.61
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We have also utilized the non-parametric Friedman test to rank the algorithms in-
dividually for each dataset. This test assigned a rank to each algorithm, with the best
performer receiving rank 1, the second best receiving rank 2 and so on. The PSPP statistical
software was employed to conduct the Friedman test that was executed twice, once for
each measured criterion.

6.3.1. Wilcoxon Signed Rank Test Results

The results of the Wilcoxon signed rank test for the Hamming loss (ACC) and Reduc-
tion Rate (RR) measurements are shown in Table 6. The column labeled “w/l/t” presents
the number of wins, losses and ties for each comparison test. The last column, labeled
“Wilc.”, indicates a numerical value that quantifies the significance of the difference between
the two compared algorithms. If this value is less than 0.05, it can be concluded that the
difference is statistically significant. In Table 6, the Wilc. values that is less than 0.05 are in
bold face.

The results indicate that there is no statistical difference in accuracy between the
BRkNN classifier and the proposed MLCNN-L and MLIB2-L. Therefore, the test proves that
the BRkNN classifier that operates on the CS generated by the proposed MLCNN-L and
MLIB2-L algorithms achieves a comparable level of accuracy to the conventional BRkNN
classifier that operates on the original training set.

Moreover, the test shows that there is a significant statistical difference in accuracy
between BRkNN and the remaining multilabel variations in CNN. Nevertheless, in certain
datasets, MLCNN-J (JD > 0.5) and MLIB2-J (JD > 0.5) achieve a comparable level of
accuracy to the “conventional” BRkNN classifier that operates on the original training
set. Moreover, MLCNN-L achieved the best Hamming loss in comparison to all other
algorithms and close to the one of BRkNN.

Furthermore, the test affirms that there is statistical difference in terms of accuracy
between the pairs MLCNN-L versus MLIB2-BR, MLIB2-J (JD > 0.5), MLIB2-L, MLCNN-H,
MLCNN-BR, MLIB2-H, MLIB2-J (JD > 0.75) and MLCNN-J (JD > 0.75). The version of
MLCNN-J (JD > 0.5) presents discrepancy in statistical terms of accuracy with the versions
MLCNN-H, MLCNN-BR, MLIB2-H, MLIB2-J (JD > 0.75) and MLIB2-BR.

According to the Wilcoxon test, we have statistical difference in terms of reduction rate
between the pairs MLIB2-H and the versions MLCNN-BR, MLCNN-H, MLIB2-J (JD > 0.5),
MLIB2-BR, MLCNN-L, MLIB2-L and MLCNN-J (JD > 0.5). Moreover, the pairs between
MLIB2-J (JD > 0.75) and the versions MLIB2-J (JD > 0.5), MLIB2-BR, MLCNN-L and
MLIB2-L have statistical difference in terms of reduction rate.

Table 6. Results of Wilcoxon signed rank test on ACC and RR measurements.

Methods
Accuracy Reduction Rate

w/l/t Wilc. w/l/t Wilc.

BRkNN vs. MLCNN-H 8/0/1 0.012 - -

BRkNN vs. MLCNN-J (JD > 0.5) 6/0/3 0.027 - -

BRkNN vs. MLCNN-J (JD > 0.75) 7/0/2 0.018 - -

BRkNN vs. MLCNN-BR 8/0/1 0.012 - -

BRkNN vs. MLIB2-H 8/0/1 0.012 - -

BRkNN vs. MLIB2-J (JD > 0.5) 6/0/3 0.026 - -

BRkNN vs. MLIB2-J (JD > 0.75) 7/0/2 0.018 - -

BRkNN vs. MLIB2-BR 8/1/0 0.011 - -

BRkNN vs. MLCNN-L 5/1/3 0.046 - -

BRkNN vs. MLIB2-L 5/1/3 0.046 - -

MLCNN-H vs. MLCNN-J (JD > 0.5) 1/6/2 0.028 6/1/2 0.028

MLCNN-H vs. MLCNN-J (JD > 0.75) 3/6/0 0.260 1/8/0 0.110

MLCNN-H vs. MLCNN-BR 1/8/0 0.011 8/1/0 0.015
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Table 6. Cont.

Methods
Accuracy Reduction Rate

w/l/t Wilc. w/l/t Wilc.

MLCNN-H vs. MLIB2-H 8/1/0 0.011 0/9/0 0.008

MLCNN-H vs. MLIB2-J (JD > 0.5) 4/5/0 0.859 5/4/0 0.767

MLCNN-H vs. MLIB2-J (JD > 0.75) 7/2/0 0.066 1/8/0 0.086

MLCNN-H vs. MLIB2-BR 8/1/0 0.015 5/4/0 0.515

MLCNN-H vs. MLCNN-L 1/8/0 0.021 9/0/0 0.008

MLCNN-H vs. MLIB2-L 2/7/0 0.260 7/2/0 0.051

MLCNN-J (JD > 0.5) vs. MLCNN-J (JD > 0.75) 6/3/0 0.214 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLCNN-BR 8/1/0 0.011 8/1/0 0.110

MLCNN-J (JD > 0.5) vs. MLIB2-H 9/0/0 0.008 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-J (JD > 0.5) 8/1/0 0.011 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-J (JD > 0.75) 9/0/0 0.008 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-BR 8/1/0 0.011 6/3/0 0.859

MLCNN-J (JD > 0.5) vs. MLCNN-L 1/8/0 0.051 7/2/0 0.214

MLCNN-J (JD > 0.5) vs. MLIB2-L 3/6/0 0.678 4/5/0 0.314

MLCNN-J (JD > 0.75) vs. MLCNN-BR 8/1/0 0.011 8/1/0 0.051

MLCNN-J (JD > 0.75) vs. MLIB2-H 7/2/0 0.066 3/6/0 0.214

MLCNN-J (JD > 0.75) vs. MLIB2-J (JD > 0.5) 3/6/0 0.953 7/2/0 0.374

MLCNN-J (JD > 0.75) vs. MLIB2-J (JD > 0.75) 7/2/0 0.021 0/9/0 0.008

MLCNN-J (JD > 0.75) vs. MLIB2-BR 8/1/0 0.015 6/3/0 0.260

MLCNN-J (JD > 0.75) vs. MLCNN-L 0/9/0 0.008 8/1/0 0.015

MLCNN-J (JD > 0.75) vs. MLIB2-L 2/7/0 0.214 7/2/0 0.086

MLCNN-BR vs. MLIB2-H 3/6/0 0.139 0/9/0 0.008

MLCNN-BR vs. MLIB2-J (JD > 0.5) 3/6/0 0.066 1/8/0 0.110

MLCNN-BR vs. MLIB2-J (JD > 0.75) 3/6/0 0.173 1/8/0 0.015

MLCNN-BR vs. MLIB2-BR 8/1/0 0.038 0/8/1 0.012

MLCNN-BR vs. MLCNN-L 1/8/0 0.011 4/5/0 0.953

MLCNN-BR vs. MLIB2-L 2/7/0 0.021 2/7/0 0.139

MLIB2-H vs. MLIB2-J (JD > 0.5) 1/6/2 0.056 6/1/2 0.028

MLIB2-H vs. MLIB2-J (JD > 0.75) 5/4/0 1.000 1/8/0 0.110

MLIB2-H vs. MLIB2-BR 8/1/0 0.015 7/2/0 0.021

MLIB2-H vs. MLCNN-L 0/9/0 0.008 9/0/0 0.008

MLIB2-H vs. MLIB2-L 1/8/0 0.028 9/0/0 0.008

MLIB2-J (JD > 0.5) vs. MLIB2-J (JD > 0.75) 7/2/0 0.051 0/9/0 0.008

MLIB2-J (JD > 0.5) vs. MLIB2-BR 8/1/0 0.011 7/2/0 0.173

MLIB2-J (JD > 0.5) vs. MLCNN-L 1/8/0 0.011 8/1/0 0.051

MLIB2-J (JD > 0.5) vs. MLIB2-L 1/7/1 0.093 6/3/0 0.214

MLIB2-J (JD > 0.75) vs. MLIB2-BR 8/1/0 0.015 7/2/0 0.066

MLIB2-J (JD > 0.75) vs. MLCNN-L 0/9/0 0.008 8/1/0 0.011

MLIB2-J (JD > 0.75) vs. MLIB2-L 0/9/0 0.008 8/1/0 0.011

MLIB2-BR vs. MLCNN-L 1/8/0 0.011 4/5/0 0.374

MLIB2-BR vs. MLIB2-L 1/8/0 0.011 4/5/0 0.678

MLCNN-L vs. MLIB2-L 4/1/4 0.078 0/9/0 0.008

6.3.2. Friedman Test Results

The results of the Friedman test for the ACC and RR measurements are displayed in
Table 7. Notice that the RR ranks are inverted; i.e., the larger the number, the higher the
rank of the algorithm is. The Friedman test shows that
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Table 7. Results of Friedman test on ACC and RR measurements.

Algorithm
Mean Rank

ACC RR

MLCNN-H 6.00 5.78

MLCNN-J (JD > 0.5) 4.22 4.00

MLCNN-J (JD > 0.75) 5.17 7.22

MLCNN-BR 9.00 2.28

MLCNN-L 3.67 2.67

MLIB2-H 7.72 8.33

MLIB2-J (JD > 0.5) 5.72 6.11

MLIB2-J (JD > 0.75) 7.44 9.22

MLIB2-BR 9.72 4.61

MLIB2-L 5.06 4.78

BRkNN 2.28 -

• MLCNN-L is the most accurate approach. MLCNN-J (JD > 0.5), MLCNN-J (JD > 0.75)
and MLIB2-L are the runners up.

• MLIB2-J (JD > 0.75) and MLIB2-H achieve the highest reduction rates. MLCNN-J
(JD > 0.75) and MLIB2-J (JD > 0.5) are the runners up.

7. Conclusions

The main objective of this paper is to address the issue of data reduction techniques
specifically tailored for multilabel datasets. Here, the focus is on reducing instances rather
than features. This type of reduction is crucial in the context of instance-based classification
as it helps mitigate the computational burden associated with large datasets. However, it
is important to note that most existing data reduction techniques are primarily designed
for single-label classification problems and are not well-suited for multilabel classification.
Additionally, these techniques cannot seamlessly integrate with problem transformation
methods such as binary relevance or label powerset, which are commonly used in multilabel
classification scenarios.

This paper presents novel algorithms focused on accelerating the instance-based clas-
sifiers in the context of multilabel classification. The study introduces four variations of
the well-known CNN-rule and four variations of IB2 specifically designed for multilabel
classification. The proposed MLCNN-H, MLCNN-J, MLCNN-L and MLCNN-BR algo-
rithms and the corresponding MLIB2-H, MLIB2-J, MLIB2-L and MLIB2-BR algorithms can
be considered as the first prototype selection algorithms for multilabel data condensing.

The proposed algorithms do not require any specific parameters. MLCNN-H and
MLIB2-H consider two neighboring instances to be different if their Hamming distance
exceeds the dataset density. MLCNN-J and MLIB2-J identify two neighboring instances as
distinct if their Jaccard distance surpasses a predefined threshold. MLCNN-BR and MLIB2-
BR construct separate prototypes for each label using the conventional CNN method and
subsequently merge them by combining different labels to form the final condensing sets.
Finally, in MLCNN-L and MLIB2-L, if the Levenshtein distance between two neighboring
instances exceeds half the cardinality of the dataset, they are considered as different.

Consequently, the proposed algorithms generate a multilabel condensing set. This
condensing set can be utilized by BRkNN to conduct multilabel prediction.

The experimental study demonstrated that switching from the initial training set
to the condensing sets produced by the proposed algorithms did not greatly affect the
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accuracy achieved by BRkNN. However, it reduced the computational cost required for
the classification process. The new variations achieved a reduction of more than 50% in
computational costs.

Looking in more detail at the results of the experiments, it appears that, in terms of
the overall classification performance of the algorithms compared to BRkNN, the MLCNN-
L and MLCNN-J (JD > 0.5) outperformed the other variations. Further, regarding the
algorithms’ overall reduction rate performance, the MLIB2-J (JD > 0.75) and MLIB2-H
achieved superior results.

This study highlights the ongoing significance of data reduction in multilabel problems
within the domains of data mining and machine learning. Our goal is to extend popular data
reduction techniques, typically applied to single-label datasets, to the realm of multilabel
datasets. Additionally, our future work involves the development of novel parameter-free
data reduction methods, as well as scalable approaches for training set classification in the
context of multilabel problems.
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