
International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

1 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

XLCNN: A TRANSFORMER MODEL FOR
MALWARE DETECTION

Konstantinos Giapantzis
Centre of Research and Technology Hellas (CERTH)
Department of Applied Informatics, University of
Macedonia
Thessaloniki, Greece

Spyros T. Halkidis
Computational Methodologies and Operations Research
Laboratory, Department of Applied Informatics, University of
Macedonia
Thessaloniki, Greece

Abstract—The present research describes a Transformer-
based neural network model that was developed in order to
detect malicious software. We believe that the scientific
community should take advantage of the contribution of
Transformer models in the field of cybersecurity and go beyond
the limits set by the classic natural language processing. For this
purpose a new and more sophisticated algorithm was created
based on the methodology used by the XLNet neural network
which was proposed by the Google AI Brain Team. The proposed
XLCNN model detects malicious code with a higher success rate
than its predecessor. The method of detecting malware is based
on the extraction and analysis of metadata contained in Windows
executable files. From our carried out experiments, it was found
that the size and architecture of the feed-forward neural network
in combination with our proposed tokenizer, is one of the most
important factors of XLCNN for classification problems. To
justify the concept of XLCNN as an effective approach to
detecting malware, the effectiveness and efficiency of the
algorithm was measured for a finite number of epochs and
compared to other Transformer models such as XLNet, BERT
and Transformer-XL using exactly the same inputs. Using our
proposed network has proven to be not only a reliable way for
security researchers to detect malware, but also an effective and
highly accurate method that offers high accuracy rate of 98.88%.

Index Terms—malware detection, metadata, neural network,
Transformers, XLCNN

I. INTRODUCTION

Malware is a program developed with the intent of breaking
into a system to monitor, intercept personal information,
encrypt data or require ransom [1]. Due to the critical threat
posed by malware in cyberspace, many different methods and
analysis tools have been developed to detect it.

One of these methods computes the file of the under
condition signature and compares it to the ones stored in a
database containing signatures of known malware. The main
disadvantage of this method, which most antivirus tools use, is
that, if the code is modified through processing called
obfuscation, then it is impossible to detect the existence of
malware. One more disadvantage of this method is that, if a
new malware with unknown signature is used, then it is
practically impossible to detect it.

Another detection technique is based on malware behavior.
The detection process is particularly tedious as it requires
isolating the file and placing it in a secure environment, such
as sandbox, and then supervising its behaviour by qualified
personnel. Observing behavior requires a lot of dedication and
time while at the same time it may not be effective as
concealment techniques are improved and malware evolves to
avoid being detected.

Therefore, more complex, mathematically intelligent and
automated methods are required such as machine learning.
Machine learning, especially Deep Learning, is an excellent
technique that deals with data variants because not only can it
learn the given feature during the training process, but also
automatically extracts features from data to achieve the goal of
classification [2]. When an infected file is given as input to a
Deep Learning algorithm, according to the characteristics it
has learned from the training process, it can identify whether it
is either malicious or benign.

We consider the problem of detecting malware as a
classification problem that has two categories. One category is
benign software and the other is malicious. The extraction of
the metadata from the executable files, made possible the
analysis by natural language processing (NLP) models, as they
can be considered as sequence of words. Metadata are a set of
ASCII characters many of which are impossible to decode by
the human agent even with the help of specialized programs,
let alone capable of extracting those features that contribute to
its grouping.

After research, it was found that there is a set of algorithms
that is more accurate and less time consuming than all the
above methods. Initially, algorithms using attention
mechanisms [3] were introduced to solve machine translation
problems. Transformer models gradually replaced RNNs [4]
in mainstream NLP.

The Transformer model architecture takes a new approach
to machine learning as it completely eliminates repetition.
Transformers create attributes of each word using an attention
mechanism to understand how important all the other words in
the sentence are. Knowing these the renewed features of the
word are simply the sum of the number of linear
transformations of all the words’ features weighted by the
average number of linear transformations [3].

In the present research a set of Transformer models was
implemented for the classification problem and then a
completely new Transformer model named XLCNN was
proposed and developed. After comparing these algorithms, it
turned out that our proposed model is more accurate in
detecting new malware.

XLCNN uses a complex architecture in the feed forward
neural network and this is the main feature that distinguishes it

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

2 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

from other Transformer models. A new tokenizer was also
proposed exclusively to serve the purposes of the XLCNN
model we propose. This tokenizer was then applied to the rest
of the models in order to assess its effectiveness. The
contribution to the scientific community, both, at the
theoretical level as we propose a new model architecture and
at the level of implementation, is the provision of a pre-trained
Transformer model which will identify new malware using
their metadata.

Chapter II presents the structure followed by the XLCNN
and specifically the way in which the sequence transformation
is done, the Optimizer used, the Linear Schedule, how the
Dropout was used to prevent overfitting, the activation
function and the tokenizer we created. Chapter III presents the
XLCNN model and specifically the feed forward structure that
follows. Chapter IV provides information on how the dataset
was created, but also how the metadata was extracted. Chapter
V presents and analyzes the experimental results of the
proposed XLCNN model and compares it with the rest of
Transformer models. Finally, Chapter VI describes the final
conclusions of this research paper.

RELATED WORK

MALBERT [5] has used BERT [6] for Malware Detection
in Android Systems. They achieved an accuracy of 97.61%.
So we will elaborate on Malware Detection approaches based
on Deep Learning and present only representative examples.

Hardy et al. [7] in DL4MD, based on the Windows
Application Programming Interface (API) calls extracted from
the Portable Executable (PE) files study how the Stacked
Autoencoders (SAE) model can be designed for intelligent
malware detection. The SAEs model employs greedy
layerwise training operation for unsupervised learning,
followed by supervised parameter fine tuning. They achieve
an accuracy of 95.64% in the Testing phase.

In Rhode et al. [8] recurrent neural networks (RNNs) are
used to predict whether or not an executable is malicious.
They achieve 94% accuracy using 5 seconds of execution for
each executable file.

Pascanu et al. [9] also use RNNs for Malware
Classification. Echo State Networks (ESNs) and Recurrent
Neural Networks are used for the projection stage that extracts
the figures. Echo State Networks have been successfully used
for predicting chaotic systems. They achieve a true positive
rate of 98.3% and a false positive rate of 0.1%.

Kolosnjaji et al. [10] use Deep Learning for Classification
of System Call Sequences based on data extracted from
VirusTotal. They achieve an average of 85.6% on precision.

In [11] Malware Detection in Android is performed.
Efficient malware detection is performed using both textual
and visual features. The trained and texture features were
combined and balanced using the Synthetic Minority
Oversampling (SMOSE) method. Then a CNN network is
used to mine the deep features. Finally, an ensemble of
Gaussian Naive Bayes, Support Vector Machines, Decision
Trees and Random Forests is used. The precision achieved is
98%, while the recall is 99%. The F1-score ranges from 81%

to 99%. The accuracy, precision and recall range from 72% to
99% on the test data.

In [12] the SHERLOCK model, which is a self-supervision
based deep-learning model to detect malware based on the
Vision Transformer (ViT) architecture, is employed to identify
malware in Android. A standared transformer encoder is
employed. The precision achieved is 86.7% while the
associated recall is 89%.

In [13] the code is disassembled and an interpretable feed-
forward neural network is used. The “pefile” library to extract
numerical features from PE headers is used and the IDA Pro
disassembler is employed. The accuracy is up to 97.7% as
well as the F1-score. The precision achieved is 97.5% and the
recall 97.9%.

In [14] malware detection using the transformers based
model GPT-2 is used. The custom pretrained model achieves
85.4% accuracy, while the GPT-2 pretrained model achieves
78.3% accuracy.

In [15] the BIG2015 and the SubBODMAS malware
datasets where used. Malware images where used for
visualization and automatic classification. CNNs for malware
classification where used in grayscale, markov transition field
encoded images and bigram frequency images where used
(using the bigram occurrence count histogram). The accuracy
achieved ranges from 91.30% to 98.61% based on the image
used for the BIG2015 dataset, while the weighted-F1 score
ranges from 91.38% to 98.50%. On the SubBODMAS dataset
the accuracy achieved ranges from 89.22% to 95.98% while
the weighted-F1 score ranges from 88.27% to 95.98%.

II. BACKGROUND ARCHITECTURE

A. Sequence-to-Sequence
Typically, a neural network for sequence modeling of

classification problems consists of the following layers:
Εmbedding layer. In this layer the model receives a

sequence of words and tries to predict the probability of the
next word appearing [16]. Specifically the input array, which
is a loosely-encoded (e.g., hot-encoded) input token, is
mapped to a denser feature layer. This is necessary because a
high-dimensional feature vector is more capable of encoding
information about a particular token (the term for the text
corpus) than a simple hot-encoded vector. Ιnstead of a pre-
trained vector of words being used in this work, a state of the
art tokenizer was developed specially made for the
classification of malicious applications using their metadata.

Encoder Layer. After mapping the input multidimensional
token, the sequence passes through the encoder layer to
compress all the information from the input embedding layer
(the whole sequence) into a specific vector of a fixed length.
The encoder is made up of a stack of n = 24 equal layers. Each
level has two sublayers. The first is a multi-head self-focus
mechanism and the second is a simple feedforward network
that is fully connected according to position. A residual
attachment is used around each of the two sublayers followed
by normalization [17]. That is, the output of each sublayer is
called layer normalization (x + sublayer(x)), whereas
sublayer(x) is a function executed by the sublayer itself. To

https://doi.org/10.5281/zenodo.8246395
International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023

https://google.academia.edu/
JournalofComputerScience

3 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

facilitate these residual connections all sublayers of the model,
as well as the embedding layers, produce an output of
DimensionModel = 512.

Decoder layer. The decoder layer takes this encoded feature

warm-up program by replacing α with αt = α · ωt in the

algorithm’s update rule. A linear warm-up configured by a
“warm-up period” Τ was applied by XLCNN model :

ω(linear ,T)=min(1 ,
1
⋅t) (1)

vector and creates the output token sequence. The decoder t T
also has a set of equal levels n = 24. In addition to the two
sublayers in each encoder layer, the decoder inserts a third
sublayer that pays multiple attentions to the output of the
encoder stack [18]. Like the encoder, it uses residual
connections around each sublevel followed by level
normalization. The self-focus sublayer in the decoder stack is
also modified so that the position does not go into the
subsequent position [19]. This masking, combined with fact
that the outputed embeddings are offset by one position,
ensures that the predictions for the next position can only
depend on the known outputs in the previous positions.

Attention mechanism. The disadvantage of the encoder-
decoder structure is that the performance of the model
degrades as the length of the original sequence increases due
to the limitation on how much information an encoded feature
vector of a fixed length can contain. To address this problem,
Bahdanau, D. et al. [20] proposed an attention mechanism. In
the attention mechanism the decoder tries to find the point in
the encoder sequence where the most important information
can be found and uses that information and previously
decoded words to predict the next token in the sequence. A
function of attention is to map a query and arrange a set of key
value pairs in the output where query, keys, values and output
are all vectors. The output is calculated by the weighted
portion of the values, where the weight assigned to each key is
correlated with the query with the function matched with that
key [21].

B. AdamW Optimizer
The main contribution of AdamW [22] is to improve

regularization in Adam [23] by separating weight reduction
from gradient-based updating. The weight reduction of
AdamW optimizer makes the optimal settings for the learning
rate and weight reduction factor much more independent,
which simplifies hyperparameter optimization.

In XLCNN learning rate was set to 3 ⋅ 10−5, AdamW's
epsilon for numerical stability was set to 1 ⋅ 10−8, decoupled
weight decay was set to 0.01, while the bias should be
corrected in each epoch during training.

C. Linear Schedule with Warmup
Linear schedule with warmup creates a schedule with a

learning rate that decreases linearly from the initial learning
rate set in the optimizer to 0. In the XLCNN model the
AdamW optimization algorithm, which has been configured
with a learning rate α and a warm-up factor ω has been
implemented. The ω symbol is a sequence of “warm-up
factors” where ωt ∈ [0, 1], which are used to reduce the step
size of each iteration t. In particular, XLCNN implements a

In order to calculate the value for the number of warmup
steps, the following formula was used in XLCNN:

lt

st=0.25 ⋅∑ (it) (2)
i =0

where sn is the number of warmup steps, lt is the total size of
the training dataset and t ∈ Z is the iteration on each step.

D. Dropout
Dropout is a specific neural reduction strategy implemented

in the XLCNN’s feed forward neural network in order to
significantly optimize its architecture while maintaining
competitive performance. The result is the creation of a much
smaller and faster model due to the fact that some neurons
have been zeroed. It also shows that the model was trained
from the beginning without the use of a pre-trained model.

The application of Dropout in XLCNN has as a result the
prevention of excessive overfitting and provides a way to
effectively integrate multiple architectural neural networks.
The term "dropout" refers to those who enter the neural
network (hidden and visible). In the simplest case, each unit is
stored independently of the other units with a fixed probability
p [24]. In XLCNN the probability p was set to 0.1, which
seems according to the results described in Chapter V, to be
close to optimal for the feed forward neural networks.

E. Activation function
In XLCNN model it was applied the Gaussian Error Linear

Unit (GELU), a neural network activation function with high
performance. xΦ(x), is the GELU activation function where
Φ(x) is the standard Gaussian cumulative distribution function
[25]. XLCNN model used an “adaptive dropout network”
which was trained jointly with the GELU activation function
by approximately computing local expectations of binary
dropout variables, computing derivatives using back-
propagation and using stochastic gradient descent.

GELU activation function is a combination from ReLUs
[26], zoneout [27] and dropout. The ReLU deterministically
multiplies the input by zero or one and the dropout
stochastically multiplies the input by zero. In addition, a new
regularizer called zoneout multiplies the inputs by one. This
functionality was merged by multiplying the input by zero or
one, but the values of this zero-one mask are stochastically
determined depending on the input [25].

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

4 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

F. Tokenizer
In order to serve the purpose of classifying malware by

XLCNN, we propose a custom tokenizer. The purpose of the
tokenizer is to separate words into sub-words and encode them
into integers and vice versa. There are various tokenization
algorithms that can be used, such as Byte Pair Encoding
(BPE), Unigram, character and word. Our selection focuses on
Byte Pair Encoding (BPE) [28].

The Python library SentencePiece [29] was used to train it.
SentencePiece is an unsupervised tokenizer system used to
encode and decode words primarily for text processing
systems. It is an ideal choice, as it is used for neural networks
with a predefined dictionary size and provides an end-to-end
system that does not depend on language-specific
pre/postprocessing.

The procedure by which the XLCNN tokenizer was trained
included archiving all metadata from the training set
executables excluding those in the testing set. This created a
1GB file that contained only executable metadata regardless of
whether it came from benign or malicious files. The advantage
of this method is that it provides a tokenizer that is more
compact in terms of text and vocabulary size, while providing
stronger guarantees that every subword unit has appeared in
the metadata training text. It caried out from our experiments
that it offers faster execution time to the Transformer model
compared to the default tokenizers that are commonly used.
The training procedure of our proposed XLCNN tokenizer
took 5 minutes while the size of the dictionary was set to
4000.

III. THE PROPOSED XLCNN MODEL

The proposed XLCNN is a Transformer model having an
encoder-decoder structure. The main purpose of the encoding
layer is to achieve a mapping between a sequence of input
symbol representations (x1, ..., xn) and a sequence of
continuous representations z = (z1, ..., zn). The decoder having
the value of the representation z, outputs a sequence (y1, ...,
ym) of symbols one element at a time [19]. At each step, the
model is spontaneously accepting the input of the symbols
created in the previous step to create the next symbols.
XLCNN’s model architecture is a multilayer bidirectional
Transformer model based on the original implementation
described in Yang Z. et al. [30]. XLCNN uses a composite
self-attention layer and two fully connected layers inside the
feed forward network, as shown on the Fig. 1.

XLCNN uses convolutional neural networks (CNNs) [31] in
its core architecture. Specifically, it uses 24 layers of feed
forward neural networks, with each layer consisting of 2
CNNs having as input a matrix of dimensions [512 x 1 x 512]
and producing an output matrix of [512 x 1 x 2048]
dimensions, 2 Linear Transformation layers and 1
Normalization layer. Our experimental results have shown
that this neuron architecture is the most efficient in malware
classification, as it increases network performance, reduces
loss [32] and increases ultimate prediction accuracy.

Our feed forward architecture with CNNs can learn much
more complex invariants (e.g to recognize malicious code
only from the metadata it has), while consumes small
amount of

computing power. This results in faster training and easier
learning compared to the other Transformer models. Fig. 1.
shows the architecture of feed forward convolutional neural
network.

Fig. 1. Feed forward convolutional neural network architecture with input
matrix [512 x 1 x 512] and output matrix [512 x 1 x 2048].

The vocabulary size of the XLCNN model, which defines
the number of different tokens that can be represented by the
different input words, is set to 4⋅103 . The linear
transformation is the same in different positions but uses
different parameters for each layer. The additional
convolutions neural networks have kernel size of 1. The inner-
layer has dimensionality nx = 512 and the dimensionality of

output is nfS= 2048. We proposed 24 hidden layers in the

transformer encoder and 16 attention heads for each attention
layer. The Fig. 2 shows the graphical representation of the
fully connected feed forward neural network proposed for
XLCNN.

Fig. 2. XLCNN feed forward neural network structure.

The feed forward network accepts as input a vector of
dimensions [512 x 1 x 512], which is multiplied by the
learnable weight of dimensions [512 x 1 x 2048]. The [512 x 1
x 2048] dimension matrix is multiplied by a constant α value

∣

 2

2

2

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

5 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

and the result of the multiplication between the learnable bias
and the beta value is added. This convolutional equation is
represented as follows:

1− p ,if x=0
f(x, p) =  p , if x=1 (8)

C (x)= β⋅bm+ a (⋅ x⋅wm) (3)

where β and α were set to 1, bm is the bias, x ∈ Rd is the
input vector and wm is the learnable weight.

In the next step the error of the above function was
calculated using the Gaussian error function [33] which is
given by the completion of the Euler error [34] elevated to -x
in the square with limits from -x to x. The effect of completion
multiplied by 2 for the root π gives the possibility that a
normally distributed random variable having an average of 0
and a variation of 0.5 falls into the region [−x, x]. Τhe
Gaussian error function can be computed:

χ

erf (x)= e−x
2

dx (4)
√ π 0

where x is the result of the convolutional equation. Euler's
equation was used to calculate the Median Absolute Deviation
(MAD) [35] through the equation:

In the second iteration of the second sub-infrastructure the
result of the function f(x, p) is a matrix of size [512 x 1 x 512]
and was added with the tensors that were used as input before
they were introduced into the feed forward network. In order
to reduce the training time of the feed forward neural network,
but also to reduce the sensitivity in the final state, the
normalization function [39] was introduced which is given by
the following formula:

y=
 x− E [x]

⋅γ + β (9)
√Var [x]+ ε

where ε = 10-5 is the denominator for numerical stability, γ and
β are learnable affine transform parameters and x is the input
matrix. After this step the output matrix size remained [512 x
1 x 512], as shown in Fig. 1.

This repetitive structure but also the architecture itself
makes the XLCNN unique in its kind. The purpose of the
repeating structure is to develop more complex connections
between neurons without having to increase the size of the

MAD (x)=σ⋅ 2⋅erf (x −1
1

(5) matrix used as input, thus reducing the execution time of
) ⋅

mathematical operations.

where σ=1 is the standard deviation, erf(x) is the Gaussian
error function and x is the input vector.

The Cumulative Distribution Function (CDF) [36] was then
calculated, which shows the probability that a value of the
function is between zero and a value x, as shown in the
following mathematical form:

x −(x−μ)2

G (x)=MAD (x)⋅∫ e 2⋅σ dx (6)
0

where the parameter μ is the mean or expectation of the
distribution, σ is the standard deviation and x is the input
vector. The result of function G(x) was used as input for the
convolutional network, but also used as input for function
G(x). The result of the second iteration marks the end of the
first sub-infrastructure and the start of the second as described
below.

Initially, the linear transformation function accepts as input
the result of G(x) whose dimensions are [512 x 1 x 512] and
produces a dimension matrix [512 x 1 x 2048]. It is essentially
a mapping between the value G(x) and the weights that are
towards the learning process [37]. The mathematical
representation of the above sentence is described as:

y=G (x)⋅w T +b (7)

where w is the learnable weight of the function y, b the biases
and G(x) is the CDF.

Αfter the application of the GELU function which takes as
input the result of the y function, some elements of the matrix
with probability p=0.1 are zeroed according to the definition
of the Bernoulli distribution [38]. Those tensors that remained
intact and did not zero were multiplied by a factor equal to

IV.APPLICATION ON MALWARE DETECTION

A state of the art analysis was used to identify the malware
which results from the combination of XLCNN with the
metadata of the Windows executable files. Different sources
were used to create the data set and combined for the purpose
of model training. To create the tensors we developed a
tokenizer which is specially trained for the purpose of
detecting malware.

Initially, executable files consisting of 2 categories were
collected, the infected files and the benign ones. Malicious
archives come from two different sources, the Virus Total [40]
and the Das Malwerk [41]. The benign files were collected
from the 3 distributions of Windows 7, 8 and 10, which did
not contain infected files, as they came from clean
installations. A python script file was then created and the
pefile library [42] was used to export metadata from all
executable files collected, whether they were malware or
benign. They were then stored in a csv file and divided into
training data and testing data. The metadata became tensors
through our custom tokenizer and was used as input for the
XLCNN model. Αfter the training process the model
recognized the hostile executable files with a success rate of
98.88%. The following sections present in detail the steps
followed for dataset creation, metadata extraction and the
comparison results between XLCNN and other Transformer
models.

A. Source collection for malware detection
 1
1− p . The Bernoulli distribution is applied as: Two different data sets for malicious executable files were

used and created from scratch. The first one was created with
the help of VirusTotal [40]. VirusTotal is one of the most

√

https://doi.org/10.5281/zenodo.8246395
International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023

https://google.academia.edu/
JournalofComputerScience

6 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

popular and widely used scanning services by researchers and
industry professionals. VirusTotal provides file scanning
services (for malware analysis) and URL scanning services
(for detecting malware and phishing hosts). It works with
more than 70 security vendors to aggregate the results of their
analyses [43].

The second set of data was retrieved from Das Malwerk
[41] which has various types of malware on its website. To
retrieve the files, a python script was created from scratch
using its request [44] and beautifulsoup libraries [45].

The total number of malicious files retrieved from
VirusTotal and Das Malwerk was 3117 with no duplicates,
while the total number of benign data retrieved from the three
Windows distributions was 1794, also without duplicates. The
combination of the total data constitutes the final number
4911. Of these, 10% of the malicious data and 10% of the
benign data were used to verify the Transformer models.
Therefore, 4452 size of data were used for training and 446
size of data for testing.

B. Metadata Extraction
With the growing availability of malware resources the

quality of the learning process depends on the availability of
these resources as well as the amount and expression of
metadata used to explain them. The availability of malware
resources is largely provided by storing these objects or their
metadata in digital repositories. Reserves generally provide
malware resources for exploration, demonstration and
acquisition. Metadata is an important factor in the ability to
find learning objects as information provides additional details
of learning objects. These descriptions may relate to memory
calls, address allocations, product name, product version,
entropy and hash signature.

Metadata were divided into two categories [46]. The first
category consists of metadata that describes the properties of
the object that are not related to the domain to which the
object belongs. This metadata is general and can be applied to
all learning objects regardless of domain or discipline.
Examples of such metadata are file format, language and so
on.

The second category pertains to metadata that describes
learning objects with domain-specific information. Many
domains have developed classifications that classify content
within a particular domain. As an example of a domain-
specific metadata is the description of memory allocations in
executable files in the field of cyber security.

Note that no feature export algorithm was used, but all
available metadata was used as input for the Transformer
models. The metadata in this research project was extracted
from the executable Windows files using a python library
called “pefile” [42]. Pefile is a multi-platform Python module
to parse and work with Portable Executable (PE) files [47].
Most of the information contained in the PE file headers is

accessible as well as all the sections details and data. The
structures defined in the Windows header files are accessible
as attributes in the PE instance. The naming of fields/attributes
tries to adhere to the naming scheme in those headers. Some
of the tasks that Pefile library makes possible are [42]:

• Inspecting headers
• Analyzing of sections' data
• Retrieving embedded data
• Reading strings from the resources

• Warnings for suspicious and malformed values

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

Fig. 3 shows the process of training the XLCNN for a
period of 50 epochs while figure Fig. 4 shows the process
during which the neural network is tested on data which was
not in the training set to determine the progress of the model.
As shown in Fig. 3 the model has a linear increase in
performance until the 4th epoch while from the 5th to the 14th
there is no further increase and the performance remains
constant. From the 15th epoch until the last a logarithmic
increase is observed. The maximum accuracy value was
reached in the 43rd epoch with the percentage reaching
99.91% and the loss being 0.3%. The loss function used
during training is Cross Entropy Loss [32], as it is effective in
binary classification.

Fig. 3. XLCNN training process.

In Fig. 4 during the testing phase our model has a linear
increase from the first to the fourth epoch, while the value of
the accuracy varies from 96% to 98%. We notice that during
the test process local maxima and local minima appear. The
total maximum value is reached at the 23rd epoch and reaches
98.88% with a loss value of 0.08. Note that during the fine-
tune process, our model stores those weights that have the
highest accuracy during the testing process regardless of how
large the percentage is during training. XLCNN took just 23
epochs to achieve the maximum accuracy. The blue line
represents XLCNN’s accuracy and the red line represents the
loss.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

7 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

Fig. 4. XLCNN testing process.

Below are the results and comparisons between different
transformer models. The models that were compared are four
and they refer to our proposed XLCNN, XLNet [48], BERT
[49] and Transformer-XL [50]. In order for the comparison to
be objective, the same datasets were used in both training and
testing with the same number of epochs for all the models.

A. Testing phase with default tokenizers
We present the results obtained during the testing process

using the default tokenizers used by each model. For XLCNN
we used our own BPE tokenizer that we created, for XLNet
we used xlnet-base-cased [51] tokenizer, for BERT we used
bert-base-uncased [52] and for Transformer-XL we used
transfo-xl-wt103 [53].

Fig. 5. Comparison of models with default tokenizers.

As can be seen in Fig. 5, our proposed XLCNN and
Transformer-XL show a logarithmic increase with the
exception of XLNet which has many variations in its values.
XLCNN achieved the highest prediction accuracy of 98.88%
in the 23rd epoch, Transformer-XL had an accuracy rate of
92.38% in the 6th epoch and XLNet 89.24% in the 5th epoch.
Τhe BERT model shows that it has a weakness in learning
with the result that its prediction remains stable at 63.45%.
This fact is mainly due to the type of data on which the bert-
base-uncased tokenizer was trained. BERT’s tokenizer was
trained in common english vocabulary features and therefore
rejected many features that existed in executables metadata.

As we can see, the XLCNN model we propose had the best
prediction accuracy and the most stable trajectory without
large fluctuations compared to the rest of the models.

B. Testing phase with our custom XLCNN tokenizer
The second experimental procedure involves comparing all

models to which we applied our custom made tokenizer.

Fig. 6. Comparison of models with our proposed tokenizer.

In Fig. 6 the use of our proposed tokenizer shows that it
helped to increase the accuracy of XLNet and BERT. More
specifically, it increased the success rate of XLNet by 6.5%
with a prediction accuracy of 95.74% in the 10th epoch, while
for BERT there was an increase rate of 30.72% with a final
prediction accuracy of 94.17% in the 22nd epoch. In contrast,
the accuracy of the Transformer-XL measurement showed a
decrease of 28.93% with the accuracy rate reaching 63.45% in
the 1st epoch and remaining stable until the last. The XLCNN
also surpassed the rest of the models in this case as it
maintained its accuracy (98.88%) at higher percentages, not
only in the epoch when it achieved the maximum percentage
but also in all the other epochs. This fact indicates that the
architectural structure it follows is clearly superior to the rest
of the models, even if they use the same tokenizer as the one
of XLCNN.

C. Comparison of efficiency between models
Table 1 shows the results of the Τransformer models

compared. As we can see, the proposed XLCNN had the
greatest effectiveness in its predictions in relation to all the
other models. XLNet with the custom tokenizer follows with
high success rates but with 3.14% lower than XLCNN. In the
third place comes BERT with the custom tokenizer, in the
fourth place comes Transformer-XL with the default tokenizer
and in the last place comes the XLNet also with the default
tokenizer. In the last two positions remain BERT with the
default and Transformer-XL with the custom tokenizer
respectively. These two models predicted only the malicious
data without being able to identify any benign ones, with the
result that they could not calculate the recall, the precision and
f1-score.
Table 1. Transformer efficiency comparison

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

8 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

the metrics rate are kept at lower levels compared to XLCNN
and XLNet.

Table 3. Parameters of models and execution parameter
results

D. Comparison of speed during training phase
All the Transformer model experiments were carried out on

the same machine so that the comparison of time and
performance values is meritorious. Table 2 shows all the
information about the operating system, the harware, and the
framework we used.

Table 2. Experiment specifications

Distribution Arch Linux x86_64

Kernel 5.15.79-1-lts

CPU 11th Gen Intel i7-11800H

GPU Nvidia GeForce RTX 3080 Max-Q (16GB)

Cuda Cores 6144

Cuda version 11.8

Python version 3.10.8

Framework pytorch 1.11.0+cu113

Table 3 shows the speed of each model during the training
process for 50 epochs, the tensor length used as input, the
batch size and the memory capacity consumption of GPU. As
we can see, XLCNN uses 2.5% less GPU VRAM than XLNet
for the same batch size, while Transformer-XL, due to its
large size and memory limitation, used the maximum allowed
batch size equal to 1. Transformer-XL has the longest
execution time and one of the smallest prediction rates as
shown in Table 1, while it consumes a lot of computing
power. The execution time is 79.7% higher than the average of
the other models. In the opposite case, the proposed XLCNN
has one of the shortest execution times, the highest percentage
of accuracy and a small consumption of computing resources.
XLCNN is 49.8% faster than the average execution time of
the other Transfomer models. BERT uses the least resources
and has the fastest execution time of all the other models,
however

VI. CONCLUSION

In the present research, the creation of the state of the art
Transformer model XLCNN proved that the addition of CNNs
to the feedforward network in a combination with our
proposed Tokenizer, Linear Transformation, GELU, Dropout
and the Normalization layer offer a higher success rate of
98.88% compared to the other Transformer models. The
effectiveness and efficiency of four different Transformer
models, the proposed XLCNN, XLNet, BERT and
Transformer-XL, were compared. In the experimental study, it
was shown that the proposed XLCNN was clearly more
effective than the rest, while XLNet and Transformer-XL
achieved accuracy rates of 89.24% and 92.38%, respectively.
BERT intervened at a constant 63.45% of accuracy. In the 2nd

experimental procedure the same models were compared with
the addition of our own tokenizer previously used for
XLCNN. We observed that the execution speed of all models
was increased by reducing the execution time achieved in 50
epochs, while XLNet and BERT showed significant increases
in prediction by 6.5% and 30.72% respectively. In the
opposite case, the application of the proposed tokenizer in
Transformer- XL, although it increased the execution speed,
reduced the accuracy by 28.93%. In all cases the proposed
XLCNN maintained the highest accuracy rate at 98.88% while
the training speed over 50 epochs was 49.8% higher than the
average of the other models. This fact proves that we have
created a clearly superior architecture compared to the rest of
the Transformer models, that needs less computing power and
shorter execution time to achieve better results. The success of
the XLCNN was determined by its effective classification,
while it was trained with a small amount of data, limitation
that it cannot be ignored.

Models Accuracy
(%)

Recall (%) Precision
(%)

f1-score
(%)

ROC_AUC
(%)

Loss

Proposed
XLCNN

98.88 97.55 99.38 98.45 98.6 0.08

XLNet-base-
cased-

tokenizer

89.24 77.3 91.97 84.0 86.71 0.31

XLNet-
proposed-
tokenizer

95.74 88.96 99.32 93.85 94.3 0.17

BERT-base-
uncased-
tokenizer

63.45 - - - 50.0 0.71

BERT-
proposed-
tokenizer

94.17 89.57 94.19 91.82 93.2 0.24

Transformer
-XL-transfo-

xl-wt103-
tokenizer

92.38 93.25 86.86 89.94 92.56 0.22

Transformer
-XL-

proposed-
tokenizer

63.45 - - - 50.0 0.7

Model Input Length Batch size VRAM (MiB) Time
(hour:min:sec)

Proposed XLCNN 512 4 8997 10:01:17

XLNet-base-
cased-tokenizer

512 4 9201 10:27:59

XLNet-proposed-
tokenizer

512 4 9201 09:53:23

BERT-base-
uncased-tokenizer

512 4 6333 10:56:14

BERT-proposed-
tokenizer

512 4 6333 03:54:37

Transformer-XL-
transfo-xl-wt103-

tokenizer

512 1 9251 46:43:06

Transformer-XL-
proposed-
tokenizer

512 1 9251 40:33:31

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

9 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

REFERENCES

[1] Zeidanloo, H. R., Tabatabaei, F., Amoli, P. V., & Tajpour,
A. (2010, July). All About Malwares (Malicious Codes). In
Security and Management (pp. 342-348).

[2] Jha, S., Prashar, D., Long, H. V., & Taniar, D. (2020).
Recurrent neural network for detecting malware. computers
& security, 99, 102037.

[3] Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical
review of recurrent neural networks for sequence learning.
arXiv preprint arXiv:1506.00019.

[4] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.

[5] Rahali, A., & Akhloufi, M. A. (2021). MalBERT: Using
Transformers for Cybersecurity and Malicious Software
Detection. arXiv preprint arXiv:2103.03806.

[6] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019,
January). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT
(1).

[7] Hardy, W., Chen, L., Hou, S., Ye, Y., & Li, X. (2016).
DL4MD: A deep learning framework for intelligent malware
detection. In Proceedings of the International Conference on
Data Science (ICDATA) (p. 61). The Steering Committee of
The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp).

[8] Rhode, M., Burnap, P., & Jones, K. (2018). Early-stage
malware prediction using recurrent neural networks.
computers & security, 77, 578-594.

[9] Pascanu, R., Stokes, J. W., Sanossian, H., Marinescu, M., &
Thomas, A. (2015, April). Malware classification with
recurrent networks. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp.
1916-1920). IEEE.

[10] Bojan Kolosnjaji, Apostolis Zarras, George Webster and
Claudia Eckert. Deep Learning for Classification of Malware
System Call Sequences. In: Kang B., Bai Q. (eds) AI 2016:
Advances in Artificial Intelligence. AI 2016. Lecture Notes
in Computer Science, vol 9992. Springer Verlag

[11] Ullah, F., Alsirhani, A., Alshahrani, M. M., Alomari, A.,
Naeem, H., & Shah, S. A. (2022). Explainable malware
detection system using transformers-based transfer learning
and multi-model visual representation. Sensors, 22(18),
6766.

[12] Seneviratne, S., Shariffdeen, R., Rasnayaka, S., &
Kasthuriarachchi, N. (2022). Self-Supervised Vision
Transformers for Malware Detection.IEEE Access,10,
103121-103135.

[13] Li, M. Q., Fung, B. C., Charland, P., & Ding, S. H. (2021). I-
MAD: Interpretable malware detector using Galaxy
Transformer. Computers & Security, 108, 102371.

[14] Şahin, N. (2021). Malware Detection Using Transformers-
based Model GPT-2 (Master's thesis, Middle East Technical
University).

[15] Lu, Q. (2021). An Investigation on Self-Attentive Models for
Malware Classification. (Master's thesis, University of
Alberta)

[16] Almeida, F., & Xexéo, G. (2019). Word embeddings: A
survey. arXiv preprint arXiv:1901.09069.

[17] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., ... & Liu, T. (2020, November). On layer normalization
in the transformer architecture. In International Conference
on Machine Learning (pp. 10524-10533). PMLR.

[18] Jiang, Z., & Zhang, S. (2020, May). Research on Task-
oriented Dialogue Based on Modified Transformer. In
Journal of Physics: Conference Series (Vol. 1544, No. 1, p.
012188). IOP Publishing.

[19] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all
you need. In Advances in neural information processing
systems (pp. 5998-6008).

[20] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

[21] Yan, M. (2019). Adaptive learning knowledge networks for
few-shot learning. IEEE Access, 7, 119041-119051.

[22] Loshchilov, I., & Hutter, F. (2018, September). Decoupled
Weight Decay Regularization. In International Conference
on Learning Representations.

[23] Kingma, D. P., & Ba, J. (2015, January). Adam: A Method
for Stochastic Optimization. In ICLR (Poster).

[24] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1), 1929-1958.

[25] Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415.

[26] Maass, W., Natschläger, T., & Markram, H. (2002). Real-
time computing without stable states: A new framework for
neural computation based on perturbations. Neural
computation, 14(11), 2531-2560.

[27] Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas,
N., Ke, N. R. & Pal, C. J. (2017, January). Zoneout:
Regularizing RNNs by Randomly Preserving Hidden
Activations. In ICLR (Poster).

[28] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016.
Neural Machine Translation of Rare Words with Subword
Units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, Berlin, Germany. Association for
Computational Linguistics.

[29] Accessed on https://github.com/google/sentencepiece

[30] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.
R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive
Pretraining for Language Understanding. Advances in
Neural Information Processing Systems, 32, 5753-5763.

[31] Wu, J. (2017). Introduction to convolutional neural
networks. National Key Lab for Novel Software Technology.
Nanjing University. China, 5(23), 495.

[32] Zhang, Z., & Sabuncu, M. R. (2018, January). Generalized
cross entropy loss for training deep neural networks with
noisy labels. In 32nd Conference on Neural Information
Processing Systems (NeurIPS).

[33] Andrews, L. C. (1998). Special functions of mathematics for
engineers (Vol. 49). Spie Press.

[34] Butcher, J. C. (2016). Numerical methods for ordinary

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience

1 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

differential equations. John Wiley & Sons.

[35] Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the
median absolute deviation. Journal of the American
Statistical association, 88(424), 1273-1283.

[36] Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020).
Mathematics for machine learning. Cambridge University
Press.

[37] Li, C. K., Rodman, L., & Šemrl, P. (2002). Linear
transformations between matrix spaces that map one rank
specific set into another. Linear algebra and its applications,
357(1-3), 197-208.

[38] Grinstead, C. M., & Snell, J. L. (1997). Introduction to
probability. American Mathematical Soc..

[39] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer
Normalization. stat, 1050, 21

[40] Virustotal, accessed on https:// www.virustotal.com

[41] Das Malwerk, accessed on https://dasmalwerk.eu/

[42] Pefile, accessed on https://github.com/erocarrera/pefile

[43] Peng, P., Yang, L., Song, L., & Wang, G. (2019, October).
Opening the blackbox of virustotal: Analyzing online
phishing scan engines. In Proceedings of the Internet
Measurement Conference (pp. 478-485).

[44] Requests, accessed on https://github.com/psf/requests

[45] Beautiful Soup, accessed on
https:// www.crummy.com/software/BeautifulSoup/

[46] Alhaag, A. A., Savic, G., Milosavljevic, G., Segedinac, M.
T., & Filipovic, M. (2018). Executable platform for
managing customizable metadata of educational resources.
The Electronic Library.

[47] Pietrek, M. (2002). An in-depth look into the Win32 portable
executable file format, part 2. MSDN Magazine, March.

[48] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.
R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive
Pretraining for Language Understanding. Advances in
Neural Information Processing Systems, 32, 5753-5763.

[49] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019,
January). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT
(1).

[50] Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le,
Q. V., & Salakhutdinov, R. (2018). Transformer-xl:
Language modeling with longer-term dependency.

[51] Xlnet-base-cased tokenizer, accessed on
https://huggingface.co/xlnet-base-cased

[52] Bert-base-uncased tokenizer, accessed on
https://huggingface.co/bert-base-uncased

[53] Transfo-xl-wt103 tokenizer, accessed on
https://huggingface.co/transfo-xl-wt103

ACKNOWLEDGMENTS

We would like to thank the professor of Information Systems
Security at the University of Macedonia, Ioannis Mavridis, for
the constructive discussion we had on the research work.

Konstantinos Giapantzis holds a Diploma in Materials
Science and Engineering from the University of Ioannina,
Greece, since 2018. He obtained his M.Sc. Degree in Applied
Informatics from the University of Macedonia, Greece, in
2022. From March 2023 he is a PhD candidate at the
Department of Digital Systems of the University of Piraeus in
Athens Greece. He has been a researcher, a member of the
Centre of Research and Technology Hellas (CERTH) team
since 2020. He is involved in the development of artificial
intelligence tools related to cyber security topics in the
SHOW, SANCUS and ULTIMO projects which are funded by
the European Union’s Horizon 2020 Research and Innovation
Programme.

Spyros T. Halkidis was born in Thessaloniki, Macedonia
Greece. He received the BS and MS degrees from the
Department of Computer Science, University of Crete in 1996
and 1998 respectively. He also received an MBA from the
University of Macedonia in 2000. He worked as a Software
Engineer for Metropolis Informatics S.A. from December
2000 to September 2003. He worked towards a Ph.D. in
Applied Informatics at the Department of Applied Informatics,
University of Macedonia, Greece starting December 2003, and
he received it in March 2008. He also served as a school
teacher from 2004 until 2017. Since October 2017 he works as
Teaching and Research staff at the Computational Methods
and Operations Research Laboratory, Department of Applied
Informatics, University of Macedonia, Greece. His current
research interests include Cyber Security, Cryptography and
Digital Twins.

