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Abstract—The present research describes a Transformer- 
based neural network model that was developed in order to 
detect malicious software. We believe that the scientific 
community should take advantage of the contribution of 
Transformer models in the field of cybersecurity and go beyond 
the limits set by the classic natural language processing. For this 
purpose  a  new and  more  sophisticated  algorithm was  created 
based on the methodology used by the XLNet neural  network 
which was proposed by the Google AI Brain Team. The proposed 
XLCNN model detects malicious code with a higher success rate 
than its predecessor. The method of detecting malware is based 
on the extraction and analysis of metadata contained in Windows 
executable files. From our carried out experiments, it was found 
that the size and architecture of the feed-forward neural network 
in combination with our proposed tokenizer, is one of the most 
important factors of XLCNN for classification problems. To 
justify the concept of XLCNN as an effective approach to 
detecting malware, the effectiveness and efficiency of the 
algorithm was measured for a finite number of epochs and 
compared to other Transformer models such as XLNet, BERT 
and Transformer-XL using exactly the same inputs.  Using our 
proposed network has proven to be not only a reliable way for 
security researchers to detect malware, but also an effective and 
highly accurate method that offers high accuracy rate of 98.88%.

Index Terms—malware detection, metadata, neural network, 
Transformers, XLCNN

I. INTRODUCTION

Malware is a program developed with the intent of breaking 
into a system to monitor, intercept personal information, 
encrypt data or require ransom [1]. Due to the critical threat 
posed by malware in cyberspace, many different methods and 
analysis tools have been developed to detect it.

One of these methods computes the file of the under 
condition signature and compares it  to the ones stored in a 
database containing signatures of known malware. The main 
disadvantage of this method, which most antivirus tools use, is 
that, if the code is modified through processing called 
obfuscation,  then it  is  impossible  to  detect  the existence of 
malware. One more disadvantage of this method is that, if a 
new malware with unknown signature is used, then it is 
practically impossible to detect it.

Another detection technique is based on malware behavior. 
The detection process is particularly tedious as it requires 
isolating the file and placing it in a secure environment, such 
as sandbox, and then supervising its  behaviour by qualified 
personnel. Observing behavior requires a lot of dedication and 
time while at the same time it may not be effective as 
concealment techniques are improved and malware evolves to 
avoid being detected.

Therefore, more complex, mathematically intelligent and 
automated  methods  are  required  such  as  machine learning. 
Machine learning, especially Deep Learning, is an excellent 
technique that deals with data variants because not only can it 
learn the given feature during the training process,  but also 
automatically extracts features from data to achieve the goal of 
classification [2]. When an infected file is given as input to a 
Deep Learning algorithm, according to the characteristics it 
has learned from the training process, it can identify whether it 
is either malicious or benign.

We consider the problem of detecting malware as a 
classification problem that has two categories. One category is 
benign software and the other is malicious. The extraction of 
the metadata from the executable files, made possible the 
analysis by natural language processing (NLP) models, as they 
can be considered as sequence of words. Metadata are a set of 
ASCII characters many of which are impossible to decode by 
the human agent even with the help of specialized programs, 
let alone capable of extracting those features that contribute to 
its grouping.

After research, it was found that there is a set of algorithms 
that  is  more  accurate  and less  time consuming than all  the 
above methods. Initially, algorithms using attention 
mechanisms [3] were introduced to solve machine translation 
problems. Transformer models gradually replaced RNNs [4] 
in mainstream NLP.

The Transformer model architecture takes a new approach 
to machine learning as it completely eliminates repetition. 
Transformers create attributes of each word using an attention 
mechanism to understand how important all the other words in 
the sentence are. Knowing these the renewed features of the 
word are simply the sum of the number of linear 
transformations of all the words’ features weighted by the 
average number of linear transformations [3].

In  the  present  research a  set  of  Transformer  models  was 
implemented for the classification problem and then a 
completely new Transformer model named XLCNN was 
proposed and developed. After comparing these algorithms, it 
turned out that our proposed model is more accurate in 
detecting new malware.

XLCNN uses a  complex architecture  in  the feed forward 
neural network and this is the main feature that distinguishes it



International Journal of Computer Science and Information Security (IJCSIS), 
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience 

2 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

from other  Transformer  models.  A new tokenizer  was  also 
proposed  exclusively  to  serve  the  purposes  of  the XLCNN 
model we propose. This tokenizer was then applied to the rest 
of the models in order to assess its effectiveness. The 
contribution to the scientific community, both, at the 
theoretical level as we propose a new model architecture and 
at the level of implementation, is the provision of a pre-trained 
Transformer  model  which  will  identify  new malware  using 
their metadata.

Chapter II presents the structure followed by the XLCNN 
and specifically the way in which the sequence transformation 
is  done,  the  Optimizer  used,  the  Linear  Schedule,  how the 
Dropout was used to prevent overfitting, the activation 
function and the tokenizer we created. Chapter III presents the 
XLCNN model and specifically the feed forward structure that 
follows. Chapter IV provides information on how the dataset 
was created, but also how the metadata was extracted. Chapter 
V presents and analyzes the experimental results of the 
proposed  XLCNN model  and  compares  it  with  the  rest  of 
Transformer models. Finally, Chapter VI describes the final 
conclusions of this research paper.

RELATED WORK

MALBERT [5] has used BERT [6] for Malware Detection 
in Android Systems. They achieved an accuracy of 97.61%. 
So we will elaborate on Malware Detection approaches based 
on Deep Learning and present only representative examples.

Hardy et al. [7] in DL4MD, based on the Windows 
Application Programming Interface (API) calls extracted from 
the Portable Executable (PE) files study how the Stacked 
Autoencoders  (SAE)  model  can  be  designed  for  intelligent 
malware detection. The SAEs model employs greedy 
layerwise training operation for unsupervised learning, 
followed by supervised parameter fine tuning. They achieve 
an accuracy of 95.64% in the Testing phase.

In Rhode et al. [8] recurrent neural networks (RNNs) are 
used to predict whether or not an executable is malicious. 
They achieve 94% accuracy using 5 seconds of execution for 
each executable file.

Pascanu et al. [9] also use RNNs for Malware 
Classification. Echo State Networks (ESNs) and Recurrent 
Neural Networks are used for the projection stage that extracts 
the figures. Echo State Networks have been successfully used 
for predicting chaotic systems. They achieve a true positive 
rate of 98.3% and a false positive rate of 0.1%.

Kolosnjaji et al. [10] use Deep Learning for Classification 
of System Call Sequences based on data extracted from 
VirusTotal. They achieve an average of 85.6% on precision.

In [11] Malware Detection in Android is performed. 
Efficient  malware detection is  performed using both textual 
and visual features. The trained and texture features were 
combined and balanced using the Synthetic Minority 
Oversampling (SMOSE) method. Then a CNN network is 
used to mine the deep features. Finally, an ensemble of 
Gaussian  Naive  Bayes,  Support  Vector  Machines,  Decision 
Trees and Random Forests is used. The precision achieved is 
98%, while the recall is 99%. The F1-score ranges from 81%

to 99%. The accuracy, precision and recall range from 72% to 
99% on the test data.

In [12] the SHERLOCK model, which is a self-supervision 
based  deep-learning  model  to  detect  malware  based  on  the 
Vision Transformer (ViT) architecture, is employed to identify 
malware in Android. A standared transformer encoder is 
employed. The precision achieved is 86.7% while the 
associated recall is 89%.

In [13] the code is disassembled and an interpretable feed- 
forward neural network is used. The “pefile” library to extract 
numerical features from PE headers is used and the IDA Pro 
disassembler is employed. The accuracy is up to 97.7% as 
well as the F1-score. The precision achieved is 97.5% and the 
recall 97.9%.

In  [14]  malware  detection  using  the  transformers based 
model GPT-2 is used. The custom pretrained model achieves 
85.4% accuracy, while the GPT-2 pretrained model achieves 
78.3% accuracy.

In [15] the BIG2015 and the SubBODMAS malware 
datasets where used. Malware images where used for 
visualization and automatic classification. CNNs for malware 
classification where used in grayscale, markov transition field 
encoded images and bigram frequency images where used 
(using the bigram occurrence count histogram). The accuracy 
achieved ranges from 91.30% to 98.61% based on the image 
used for  the BIG2015 dataset,  while  the weighted-F1 score 
ranges from 91.38% to 98.50%. On the SubBODMAS dataset 
the accuracy achieved ranges from 89.22% to 95.98% while 
the weighted-F1 score ranges from 88.27% to 95.98%.

II. BACKGROUND ARCHITECTURE

A. Sequence-to-Sequence
Typically, a neural network for sequence modeling of 

classification problems consists of the following layers:
Εmbedding layer. In this layer the model receives a 

sequence of words and tries to predict the probability of the 
next word appearing [16]. Specifically the input array, which 
is a loosely-encoded (e.g., hot-encoded) input token, is 
mapped to a denser feature layer. This is necessary because a 
high-dimensional feature vector is more capable of encoding 
information  about  a  particular  token  (the  term for  the  text 
corpus) than a simple hot-encoded vector.  Ιnstead of a pre- 
trained vector of words being used in this work, a state of the 
art tokenizer was developed specially made for the 
classification of malicious applications using their metadata.

Encoder Layer. After mapping the input multidimensional 
token, the sequence passes through the encoder layer to 
compress all the information from the input embedding layer 
(the whole sequence) into a specific vector of a fixed length. 
The encoder is made up of a stack of n = 24 equal layers. Each 
level has two sublayers. The first  is a multi-head self-focus 
mechanism and the second is a simple feedforward network 
that is fully connected according to position. A residual 
attachment is used around each of the two sublayers followed 
by normalization [17]. That is, the output of each sublayer is 
called layer normalization (x + sublayer(x)), whereas 
sublayer(x) is a function executed by the sublayer itself. To
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facilitate these residual connections all sublayers of the model, 
as well as the embedding layers, produce an output of 
DimensionModel = 512.

Decoder layer. The decoder layer takes this encoded feature

warm-up program by replacing α with αt = α · ωt in the 

algorithm’s  update  rule.  A linear  warm-up configured by a 
“warm-up period” Τ was applied by XLCNN model :

ω(linear ,T )=min( 1 , 
1
⋅t ) (1)

vector and creates the output token sequence. The decoder t T
also has a set of equal levels n = 24. In addition to the two
sublayers  in  each encoder  layer,  the  decoder  inserts  a  third 
sublayer that pays multiple attentions to the output of the 
encoder stack [18]. Like the encoder, it uses residual 
connections around each sublevel followed by level 
normalization. The self-focus sublayer in the decoder stack is 
also modified so that the position does not go into the 
subsequent position [19]. This masking, combined with fact 
that the outputed embeddings are offset by one position, 
ensures that the predictions for the next position can only 
depend on the known outputs in the previous positions.

Attention mechanism.  The  disadvantage  of  the  encoder- 
decoder structure is that the performance of the model 
degrades as the length of the original sequence increases due 
to the limitation on how much information an encoded feature 
vector of a fixed length can contain. To address this problem, 
Bahdanau, D. et al. [20] proposed an attention mechanism. In 
the attention mechanism the decoder tries to find the point in 
the encoder sequence where the most important information 
can be found and uses that information and previously 
decoded words to predict the next token in the sequence. A 
function of attention is to map a query and arrange a set of key 
value pairs in the output where query, keys, values and output 
are all vectors. The output is calculated by the weighted 
portion of the values, where the weight assigned to each key is 
correlated with the query with the function matched with that 
key [21].

B. AdamW Optimizer
The main contribution of AdamW [22] is to improve 

regularization in  Adam [23]  by separating weight  reduction 
from gradient-based updating. The weight reduction of 
AdamW optimizer makes the optimal settings for the learning 
rate and weight reduction factor much more independent, 
which simplifies hyperparameter optimization.

In XLCNN learning rate was set to 3   ⋅ 10−5, AdamW's 
epsilon  for  numerical  stability  was  set  to 1   ⋅ 10−8, decoupled 
weight decay was set to 0.01, while the bias should be
corrected in each epoch during training.

C. Linear Schedule with Warmup
Linear schedule with warmup creates a schedule with a 

learning rate that decreases linearly from the initial learning 
rate set in the optimizer to 0. In the XLCNN model the 
AdamW optimization algorithm, which has been configured 
with a learning rate α and a warm-up factor ω has been 
implemented. The ω symbol is a sequence of “warm-up
factors” where ωt ∈ [0, 1], which are used to reduce the step 
size of each iteration t. In particular, XLCNN implements a

In order to calculate the value for the number of warmup
steps, the following formula was used in XLCNN:

lt

st=0.25 ⋅∑ (it ) (2)
i =0

where sn is the number of warmup steps, lt is the total size of 
the training dataset and t ∈ Z is the iteration on each step.

D. Dropout
Dropout is a specific neural reduction strategy implemented 

in the XLCNN’s feed forward neural network in order to 
significantly optimize its architecture while maintaining 
competitive performance. The result is the creation of a much 
smaller and faster model due to the fact  that  some neurons 
have been zeroed. It  also shows that the model was trained 
from the beginning without the use of a pre-trained model.

The application of Dropout in XLCNN has as a result the 
prevention of excessive overfitting and provides a way to 
effectively integrate multiple architectural neural networks. 
The term "dropout" refers to those who enter the neural 
network (hidden and visible). In the simplest case, each unit is 
stored independently of the other units with a fixed probability 
p [24].  In  XLCNN the probability  p was set  to  0.1,  which 
seems according to the results described in Chapter V, to be 
close to optimal for the feed forward neural networks.

E. Activation function
In XLCNN model it was applied the Gaussian Error Linear 

Unit (GELU), a neural network activation function with high 
performance. xΦ(x), is the GELU activation function where 
Φ(x) is the standard Gaussian cumulative distribution function 
[25]. XLCNN  model  used  an  “adaptive  dropout  network” 
which was trained jointly with the GELU activation function 
by approximately computing local expectations of binary 
dropout variables, computing derivatives using back- 
propagation and using stochastic gradient descent.

GELU activation  function  is  a  combination  from ReLUs 
[26], zoneout [27] and dropout. The ReLU deterministically 
multiplies the input by zero or one and the dropout 
stochastically multiplies the input by zero. In addition, a new 
regularizer called zoneout multiplies the inputs by one. This 
functionality was merged by multiplying the input by zero or 
one, but the values of this zero-one mask are stochastically 
determined depending on the input [25].



International Journal of Computer Science and Information Security (IJCSIS), 
Vol. 21, No. 7, July 2023https://doi.org/10.5281/zenodo.8246395

https://google.academia.edu/
JournalofComputerScience 

4 https://sites.google.com/site/
ijcsis/ ISSN 1947-5500

F. Tokenizer
In  order  to  serve  the  purpose  of  classifying  malware  by 

XLCNN, we propose a custom tokenizer. The purpose of the 
tokenizer is to separate words into sub-words and encode them 
into integers and vice versa.  There are various tokenization 
algorithms that can be used, such as Byte Pair Encoding 
(BPE), Unigram, character and word. Our selection focuses on 
Byte Pair Encoding (BPE) [28].

The Python library SentencePiece [29] was used to train it. 
SentencePiece  is  an  unsupervised  tokenizer  system used  to 
encode and decode words primarily for text processing 
systems. It is an ideal choice, as it is used for neural networks 
with a predefined dictionary size and provides an end-to-end 
system that does not depend on language-specific 
pre/postprocessing.

The procedure by which the XLCNN tokenizer was trained 
included archiving all metadata from the training set 
executables excluding those in the testing set. This created a 
1GB file that contained only executable metadata regardless of 
whether it came from benign or malicious files. The advantage 
of  this  method  is  that  it  provides  a  tokenizer  that  is  more 
compact in terms of text and vocabulary size, while providing 
stronger guarantees that every subword unit has appeared in 
the metadata training text. It caried out from our experiments 
that it offers faster execution time to the Transformer model 
compared to the default tokenizers that are commonly used. 
The training procedure of our proposed XLCNN tokenizer 
took 5 minutes while the size of the dictionary was set to 
4000.

III. THE PROPOSED XLCNN MODEL

The proposed XLCNN is a Transformer model having an 
encoder-decoder structure. The main purpose of the encoding 
layer is  to achieve a mapping between a sequence of input 
symbol representations (x1, ..., xn) and a sequence of 
continuous representations z = (z1, ..., zn). The decoder having 
the value of the representation z, outputs a sequence (y1, ..., 
ym) of symbols one element at a time [19]. At each step, the 
model  is  spontaneously  accepting  the  input  of  the  symbols 
created in the previous step to create the next symbols. 
XLCNN’s model architecture is a multilayer bidirectional 
Transformer model based on the original implementation 
described in Yang Z. et al.  [30]. XLCNN uses a composite 
self-attention layer and two fully connected layers inside the 
feed forward network, as shown on the Fig. 1.

XLCNN uses convolutional neural networks (CNNs) [31] in 
its  core  architecture.  Specifically,  it  uses  24  layers  of  feed 
forward neural networks, with each layer consisting of 2 
CNNs having as input a matrix of dimensions [512 x 1 x 512] 
and producing an output matrix of [512 x 1 x 2048] 
dimensions, 2 Linear Transformation layers and 1 
Normalization layer.   Our experimental results have shown 
that this neuron architecture is the most efficient in malware 
classification,  as  it  increases  network  performance,  reduces 
loss [32] and increases ultimate prediction accuracy.

Our feed forward architecture with CNNs can learn much 
more complex invariants (e.g to recognize malicious code 
only from the metadata it has), while consumes small 
amount of

computing  power.  This  results  in  faster  training  and  easier 
learning compared to the other Transformer models.  Fig.  1. 
shows the architecture of feed forward convolutional neural 
network.

Fig.  1.  Feed forward convolutional  neural  network architecture  with input 
matrix [512 x 1 x 512] and output matrix [512 x 1 x 2048].

The vocabulary size of the XLCNN model, which defines 
the number of different tokens that can be represented by the
different input words, is set to 4⋅103 . The linear 
transformation is the same in different positions but uses 
different    parameters    for    each    layer.    The    additional
convolutions neural networks have kernel size of 1. The inner- 
layer has dimensionality nx  = 512 and the dimensionality of 

output is nfS= 2048. We proposed 24 hidden layers in the 

transformer encoder and 16 attention heads for each attention 
layer. The Fig. 2 shows the graphical representation of the 
fully connected feed forward neural network proposed for 
XLCNN.

Fig. 2. XLCNN feed forward neural network structure.

The feed forward network accepts as input a vector of 
dimensions [512 x 1 x 512], which is multiplied by the 
learnable weight of dimensions [512 x 1 x 2048]. The [512 x 1 
x 2048] dimension matrix is multiplied by a constant α value
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and the result of the multiplication between the learnable bias 
and the beta value is  added.  This convolutional equation is 
represented as follows:

1− p ,if x=0
f(x, p) =  p , if x=1 (8)

C ( x )= β⋅bm+ a (⋅ x⋅wm) (3)

where   β and α were set to 1, bm is the bias, x ∈ Rd is the 
input vector and wm is the learnable weight.

In the next step the error of the above function was 
calculated using the Gaussian error function [33] which is 
given by the completion of the Euler error [34] elevated to -x 
in the square with limits from -x to x. The effect of completion 
multiplied by 2 for the root π gives the possibility that a 
normally distributed random variable having an average of 0 
and a variation of 0.5 falls into the region [−x, x]. Τhe 
Gaussian error function can be computed:

χ

erf ( x )= e−x
2 

dx (4)
√ π 0

where  x  is  the  result  of the  convolutional equation.  Euler's 
equation was used to calculate the Median Absolute Deviation 
(MAD) [35] through the equation:

In the second iteration of the second sub-infrastructure the 
result of the function f(x, p) is a matrix of size [512 x 1 x 512] 
and was added with the tensors that were used as input before 
they were introduced into the feed forward network. In order 
to reduce the training time of the feed forward neural network, 
but also to reduce the sensitivity in the final state, the 
normalization function [39] was introduced which is given by 
the following formula:

y=
   x− E [ x ]   

⋅γ + β (9)
√Var [ x ]+ ε

where ε = 10-5 is the denominator for numerical stability, γ and
β are learnable affine transform parameters and x is the input 
matrix. After this step the output matrix size remained [512 x 
1 x 512], as shown in Fig. 1.

This repetitive structure but also the architecture itself 
makes  the  XLCNN unique  in  its  kind.  The  purpose  of  the 
repeating structure is to develop more complex connections 
between neurons without having to increase the size of the

MAD (x )=σ⋅ 2⋅erf ( x −1 
1

(5) matrix used as input, thus reducing the execution time of
) ⋅

mathematical operations.

where σ=1 is  the standard deviation,  erf(x)  is  the Gaussian 
error function and x is the input vector.

The Cumulative Distribution Function (CDF) [36] was then 
calculated,  which shows the  probability  that  a  value  of  the 
function is between zero and a value x, as shown in the 
following mathematical form:

x      −( x−μ )2

G (x )=MAD ( x )⋅∫ e 2⋅σ  dx (6)
0

where the parameter μ is the mean or expectation of the 
distribution,  σ  is  the  standard  deviation  and  x  is  the  input 
vector. The result of function G(x) was used as input for the 
convolutional network, but also used as input for function 
G(x). The result of the second iteration marks the end of the 
first sub-infrastructure and the start of the second as described 
below.

Initially, the linear transformation function accepts as input 
the result of G(x) whose dimensions are [512 x 1 x 512] and 
produces a dimension matrix [512 x 1 x 2048]. It is essentially 
a mapping between the value G(x) and the weights that are 
towards the learning process [37]. The mathematical 
representation of the above sentence is described as:

y=G ( x )⋅w T +b (7)

where w is the learnable weight of the function y, b the biases 
and G(x) is the CDF.

Αfter the application of the GELU function which takes as 
input the result of the y function, some elements of the matrix 
with probability p=0.1 are zeroed according to the definition 
of the Bernoulli distribution [38]. Those tensors that remained 
intact and did not zero were multiplied by a factor equal to

IV.APPLICATION ON MALWARE DETECTION

A state of the art analysis was used to identify the malware 
which results from the combination of XLCNN with the 
metadata of the Windows executable files. Different sources 
were used to create the data set and combined for the purpose 
of model training. To create the tensors we developed a 
tokenizer which is specially trained for the purpose of 
detecting malware.

Initially,  executable  files  consisting  of  2  categories  were 
collected,  the  infected files  and the  benign ones. Malicious 
archives come from two different sources, the Virus Total [40] 
and the Das Malwerk [41].  The benign files were collected 
from the 3 distributions of Windows 7, 8 and 10, which did 
not contain infected files, as they came from clean 
installations.  A python script  file  was  then  created  and  the 
pefile library [42] was used to export metadata from all 
executable files collected, whether they were malware or 
benign. They were then stored in a csv file and divided into 
training data and testing data. The metadata became tensors 
through our custom tokenizer and was used as input for the 
XLCNN model. Αfter the training process the model 
recognized the hostile executable files with a success rate of 
98.88%. The following sections present in detail the steps 
followed for dataset creation, metadata extraction and the 
comparison results  between XLCNN and other Transformer 
models.

A. Source collection for malware detection
             1   
1− p . The Bernoulli distribution is applied as: Two different data sets for malicious executable files were 

used and created from scratch. The first one was created with 
the help of VirusTotal [40]. VirusTotal is one of the most

√
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popular and widely used scanning services by researchers and 
industry professionals. VirusTotal provides file scanning 
services (for malware analysis) and URL scanning services 
(for detecting malware and phishing hosts). It works with 
more than 70 security vendors to aggregate the results of their 
analyses [43].

The second set of data was retrieved from Das Malwerk
[41] which has various types of malware on its website. To 
retrieve  the  files, a  python script  was  created  from scratch 
using its request [44] and beautifulsoup libraries [45].

The total number of malicious files retrieved from 
VirusTotal  and Das Malwerk was 3117 with no duplicates, 
while the total number of benign data retrieved from the three 
Windows distributions was 1794, also without duplicates. The 
combination of the total data constitutes the final number 
4911. Of these,  10% of the malicious data and 10% of the 
benign data were used to verify the Transformer models. 
Therefore, 4452 size of data were used for training and 446 
size of data for testing.

B. Metadata Extraction
With the growing availability of malware resources the 

quality of the learning process depends on the availability of 
these resources as well as the amount and expression of 
metadata used to explain them. The availability of malware 
resources is largely provided by storing these objects or their 
metadata  in  digital  repositories.  Reserves  generally  provide 
malware resources for exploration, demonstration and 
acquisition. Metadata is an important factor in the ability to 
find learning objects as information provides additional details 
of learning objects. These descriptions may relate to memory 
calls, address allocations, product name, product version, 
entropy and hash signature.

Metadata were divided into two categories [46].  The first 
category consists of metadata that describes the properties of 
the object that are not related to the domain to which the 
object belongs. This metadata is general and can be applied to 
all learning objects regardless of domain or discipline. 
Examples of such metadata are file format, language and so 
on.

The second category pertains to metadata that describes 
learning objects with domain-specific information. Many 
domains have developed classifications that classify content 
within a particular domain. As an example of a domain- 
specific metadata is the description of memory allocations in 
executable files in the field of cyber security.

Note that no feature export algorithm was used, but all 
available metadata was used as input for the Transformer 
models. The metadata in this research project was extracted 
from the executable Windows files using a python library 
called “pefile” [42]. Pefile is a multi-platform Python module 
to parse and work with Portable Executable (PE) files [47]. 
Most of the information contained in the PE file headers is

accessible  as  well  as  all  the  sections  details  and  data.  The 
structures defined in the Windows header files are accessible 
as attributes in the PE instance. The naming of fields/attributes 
tries to adhere to the naming scheme in those headers. Some 
of the tasks that Pefile library makes possible are [42]:

• Inspecting headers
• Analyzing of sections' data
• Retrieving embedded data
• Reading strings from the resources

• Warnings for suspicious and malformed values

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

Fig. 3 shows the process of training the XLCNN for a 
period of  50 epochs  while  figure  Fig.  4  shows the  process 
during which the neural network is tested on data which was 
not in the training set to determine the progress of the model. 
As shown in Fig. 3 the model has a linear increase in 
performance until the 4th epoch while from the 5th to the 14th 
there is no further increase and the performance remains 
constant. From the 15th epoch until the last a logarithmic 
increase is observed. The maximum accuracy value was 
reached in the 43rd epoch with the percentage reaching 
99.91% and the loss being 0.3%. The loss function used 
during training is Cross Entropy Loss [32], as it is effective in 
binary classification.

Fig. 3. XLCNN training process.

In Fig.  4 during the testing phase our model has a linear 
increase from the first to the fourth epoch, while the value of 
the accuracy varies from 96% to 98%. We notice that during 
the test process local maxima and local minima appear. The 
total maximum value is reached at the 23rd epoch and reaches 
98.88% with a loss value of 0.08. Note that during the fine- 
tune  process,  our  model  stores  those  weights  that  have  the 
highest accuracy during the testing process regardless of how 
large the percentage is during training. XLCNN took just 23 
epochs to achieve the maximum accuracy. The blue line 
represents XLCNN’s accuracy and the red line represents the 
loss.
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Fig. 4. XLCNN testing process.

Below are  the  results  and  comparisons  between  different 
transformer models. The models that were compared are four 
and they refer to our proposed XLCNN, XLNet [48], BERT
[49] and Transformer-XL [50]. In order for the comparison to 
be objective, the same datasets were used in both training and 
testing with the same number of epochs for all the models.

A. Testing phase with default tokenizers
We present the results obtained during the testing process 

using the default tokenizers used by each model. For XLCNN 
we used our own BPE tokenizer that we created, for XLNet 
we used  xlnet-base-cased  [51] tokenizer, for BERT we used 
bert-base-uncased [52] and for Transformer-XL we used 
transfo-xl-wt103 [53].

Fig. 5. Comparison of models with default tokenizers.

As can be seen in Fig. 5, our proposed XLCNN and 
Transformer-XL show a logarithmic increase with the 
exception of XLNet which has many variations in its values. 
XLCNN achieved the highest prediction accuracy of 98.88% 
in the 23rd epoch, Transformer-XL had an accuracy rate of 
92.38% in the 6th epoch and XLNet 89.24% in the 5th epoch. 
Τhe BERT model shows that it has a weakness in learning 
with the result  that  its  prediction remains stable at  63.45%. 
This fact is mainly due to the type of data on which the bert- 
base-uncased  tokenizer  was  trained.  BERT’s  tokenizer  was 
trained in common english vocabulary features and therefore 
rejected many features that existed in executables metadata.

As we can see, the XLCNN model we propose had the best 
prediction accuracy and the most stable trajectory without 
large fluctuations compared to the rest of the models.

B. Testing phase with our custom XLCNN tokenizer
The second experimental procedure involves comparing all 

models to which we applied our custom made tokenizer.

Fig. 6. Comparison of models with our proposed tokenizer.

In Fig. 6 the use of our proposed tokenizer shows that it 
helped to increase the accuracy of XLNet and BERT. More 
specifically, it increased the success rate of XLNet by 6.5% 
with a prediction accuracy of 95.74% in the 10th epoch, while 
for BERT there was an increase rate of 30.72% with a final 
prediction accuracy of 94.17% in the 22nd epoch. In contrast, 
the accuracy of the Transformer-XL measurement showed a 
decrease of 28.93% with the accuracy rate reaching 63.45% in 
the 1st epoch and remaining stable until the last. The XLCNN 
also surpassed the rest of the models in this case as it 
maintained its accuracy (98.88%) at higher percentages, not 
only in the epoch when it achieved the maximum percentage 
but also in all  the other epochs. This fact indicates that the 
architectural structure it follows is clearly superior to the rest 
of the models, even if they use the same tokenizer as the one 
of XLCNN.

C. Comparison of efficiency between models
Table 1 shows the results of the Τransformer models 

compared. As we can see, the proposed XLCNN had the 
greatest  effectiveness in its  predictions in relation to all  the 
other models. XLNet with the custom tokenizer follows with 
high success rates but with 3.14% lower than XLCNN. In the 
third  place  comes  BERT with  the  custom tokenizer,  in  the 
fourth place comes Transformer-XL with the default tokenizer 
and in the last place comes the XLNet also with the default 
tokenizer.  In  the  last  two  positions  remain  BERT with  the 
default and Transformer-XL with the custom tokenizer 
respectively. These two models predicted only the malicious 
data without being able to identify any benign ones, with the 
result that they could not calculate the recall, the precision and 
f1-score.
Table 1. Transformer efficiency comparison
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the metrics rate are kept at lower levels compared to XLCNN 
and XLNet.

Table 3. Parameters of models and execution parameter 
results

D. Comparison of speed during training phase
All the Transformer model experiments were carried out on 

the same machine so that the comparison of time and 
performance values is meritorious. Table 2 shows all the 
information about the operating system, the harware, and the 
framework we used.

Table 2. Experiment specifications

Distribution Arch Linux x86_64

Kernel 5.15.79-1-lts

CPU 11th Gen Intel i7-11800H

GPU Nvidia GeForce RTX 3080 Max-Q (16GB)

Cuda Cores 6144

Cuda version 11.8

Python version 3.10.8

Framework pytorch 1.11.0+cu113

Table 3 shows the speed of each model during the training 
process  for  50 epochs,  the  tensor  length  used as  input,  the 
batch size and the memory capacity consumption of GPU. As 
we can see, XLCNN uses 2.5% less GPU VRAM than XLNet 
for the same batch size, while Transformer-XL, due to its 
large size and memory limitation, used the maximum allowed 
batch size equal to 1. Transformer-XL has the longest 
execution time and one of the smallest prediction rates as 
shown in Table 1, while it consumes a lot of computing 
power. The execution time is 79.7% higher than the average of 
the other models. In the opposite case, the proposed XLCNN 
has one of the shortest execution times, the highest percentage 
of accuracy and a small consumption of computing resources. 
XLCNN is 49.8% faster than the average execution time of 
the other Transfomer models. BERT uses the least resources 
and has  the fastest  execution time of all the  other models, 
however

VI. CONCLUSION

In  the  present  research,  the  creation  of  the  state  of  the  art 
Transformer model XLCNN proved that the addition of CNNs 
to the feedforward network in a combination with our 
proposed Tokenizer, Linear Transformation, GELU, Dropout 
and  the  Normalization layer  offer  a  higher  success  rate  of 
98.88% compared to the other Transformer models. The 
effectiveness and efficiency of four different Transformer 
models, the proposed XLCNN, XLNet, BERT and 
Transformer-XL, were compared. In the experimental study, it 
was shown that the proposed XLCNN was clearly more 
effective than the rest, while XLNet and Transformer-XL 
achieved accuracy rates of 89.24% and 92.38%, respectively. 
BERT intervened at a constant 63.45% of accuracy. In the 2nd 

experimental procedure the same models were compared with 
the addition of our own tokenizer previously used for 
XLCNN. We observed that the execution speed of all models 
was increased by reducing the execution time achieved in 50 
epochs, while XLNet and BERT showed significant increases 
in prediction by 6.5% and 30.72% respectively. In the 
opposite case,  the  application  of  the  proposed  tokenizer  in 
Transformer- XL, although it increased the execution speed, 
reduced the accuracy by 28.93%. In all cases the proposed 
XLCNN maintained the highest accuracy rate at 98.88% while 
the training speed over 50 epochs was 49.8% higher than the 
average of the other models.  This fact  proves that we have 
created a clearly superior architecture compared to the rest of 
the Transformer models, that needs less computing power and 
shorter execution time to achieve better results. The success of 
the  XLCNN was  determined  by  its  effective  classification, 
while it was trained with a small amount of data, limitation 
that it cannot be ignored.

Models Accuracy 
(%)

Recall (%) Precision 
(%)

f1-score 
(%)

ROC_AUC 
(%)

Loss

Proposed 
XLCNN

98.88 97.55 99.38 98.45 98.6 0.08

XLNet-base- 
cased- 

tokenizer

89.24 77.3 91.97 84.0 86.71 0.31

XLNet- 
proposed- 
tokenizer

95.74 88.96 99.32 93.85 94.3 0.17

BERT-base- 
uncased- 
tokenizer

63.45 - - - 50.0 0.71

BERT-
proposed- 
tokenizer

94.17 89.57 94.19 91.82 93.2 0.24

Transformer
-XL-transfo- 

xl-wt103- 
tokenizer

92.38 93.25 86.86 89.94 92.56 0.22

Transformer
-XL-

proposed- 
tokenizer

63.45 - - - 50.0 0.7

Model Input Length Batch size VRAM (MiB) Time 
(hour:min:sec)

Proposed XLCNN 512 4 8997 10:01:17

XLNet-base- 
cased-tokenizer

512 4 9201 10:27:59

XLNet-proposed- 
tokenizer

512 4 9201 09:53:23

BERT-base- 
uncased-tokenizer

512 4 6333 10:56:14

BERT-proposed- 
tokenizer

512 4 6333 03:54:37

Transformer-XL- 
transfo-xl-wt103- 

tokenizer

512 1 9251 46:43:06

Transformer-XL- 
proposed- 
tokenizer

512 1 9251 40:33:31
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