
Modelling the Development and Deployment of 
Decentralized Applications in Ethereum Blockchain: A 

BPMN-based approach 

Nikolaos Nousias1[0000-0002-6598-2098], George Tsakalidis1[0000-0002-0889-7946],  
Sophia Petridou1[0000-0002-2593-6150] and KostasVergidis1[0000-0002-2755-499X] 

1Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece. 
{nnousias, giorgos.tsakalidis, spetrido, kvergidis}@uom.edu.gr 

Abstract. Decentralized Applications (DApps) have emerged as a new model for 
building massively scalable and profitable applications. A DApp is a software 
application that runs on a peer-to-peer blockchain network offering censorship 
resistance, resilience, and transparency that overcome the challenges of typical 
centralized architectures. Developing and deploying a DApp in a blockchain net-
work is highly challenging. Developers need to initially decide if developing a 
DApp is justified, before considering different aspects of blockchain technology 
(e.g., cryptography, transactions, addresses, etc.). This adversity along with the 
plethora of previously published works highlight the need for new tools and 
methods for the development of blockchain-based applications. Throughout lit-
erature there is a lack of procedures that can guide practitioners on how to de-
velop and deploy their own applications. This paper aims to address this research 
gap, by standardizing and modelling such processes, through the employment of 
the BPMN modelling technique. Initially, a DMN decision model is presented 
that can facilitate developers to determine whether developing a DApp is justi-
fied. Consequently, two BPMN models are introduced, namely the DApp devel-
opment and the DApp deployment process models. The models can orchestrate 
new DApp initiatives and facilitate the developers’ communication and imple-
mentation transparency. We expect that they can serve as a roadmap for enhanc-
ing the decision-making in the act of developing a DApp and reducing the imple-
mentation time and cost. Finally, we further discuss how the models implement 
a DApp for the registration and verification of academic qualifications and how 
BPMN can constitute a powerful tool for the development of DApps. 

Keywords: Blockchain, Ethereum, DApp, DApp development, DApp deploy-
ment, BPMN, DMN, Modelling, Decision-making. 

1 Introduction 

Nowadays blockchain has attracted a lot of attention in both academia and industry. A 
blockchain is a digital immutable ledger of transaction data, shared across a network of 
untrusted users [1]. The ledger is replicated and synchronized across the nodes without 
the control of any third party [2]. As nodes broadcast transactions to the network, they 



2 

are validated and sealed into blocks using cryptographic primitives to maintain network 
integrity and avoid data tampering [3]. Once new blocks are appended, a chain of cryp-
tographically linked blocks is established, hence creating the blockchain.  

The most prominent application of blockchain is Bitcoin, introduced originally in 
2008 by Satoshi Nakamoto [4]. Τhe Bitcoin application constitutes the first generation 
of blockchains [5] and was initially delimited to the exchange of digital currencies. 
With the advent of Ethereum [6], the concept of smart contracts was introduced. As a 
result, the second generation of blockchains emerged, providing a deterministic and 
secure programming environment for building general-purpose DApps [7]. A DApp is 
a novel form of the blockchain-empowered software system [8] running on a decentral-
ized peer-to-peer network, such as a blockchain network, and its backend code is em-
ployed in smart contracts. The app logic is executed deterministically in the blockchain, 
while it is guaranteed to be transparent, verifiable, and immutable [9]. 

As the technology evolves further, more and more applications will be decentralized 
[7]. However, the development of blockchain-oriented applications poses a new set of 
challenges that require more sophisticated knowledge compared to the traditional ap-
plication development approaches [10]. Initially, a decision model is required to deter-
mine whether developing a DApp is justified over the development of conventional 
applications. Moreover, DApps require new ways of thinking about how to build, main-
tain, and deploy software [9]. Developer support in terms of blockchain applications is 
limited [11] and thus the development process is considered ambiguous [12] and chal-
lenging with a steep learning curve [13]. A plethora of previous works [14–17] high-
lights the need for specialized tools, techniques, modelling notations, and design pat-
terns for the development of blockchain-based applications. 

Traditional software development is enriched with software process models and de-
sign decision-making processes [18] that guide developers from the conception of an 
idea to the realization of the final product. However, to the best of our knowledge, there 
are no proposed processes and correlation approaches for DApp development and de-
ployment. As of yet, developing a DApp is a composition of decisions which reside in 
the designers’ reasoning and intuition. Hence, we consider the modelling of such pro-
cesses a novelty and a timely contribution that can serve as a roadmap in new DApp 
initiatives. By standardizing and modelling such concepts, transparency and communi-
cation can be facilitated, resulting in the reduction of the implementation cost and time. 
In addition, as decision paths are explicitly modeled and documented with model con-
structs, decision-making can be enhanced. Specifically, developers can decide and en-
act their following action on the basis of the model logic, circumventing a time-con-
suming decision of what should be performed next.  For this purpose, we employ 
BPMN as the state-of-the-art process modelling notation [19] and adopt Ethereum as 
the most popular, and mature blockchain for DApp development [20]. 

Overall, the purpose of this paper is twofold. Firstly, to propose two standardized 
processes of developing and deploying a DApp that can facilitate the process-thinking 
and decision-making of business analysts and software developers alike at their DApp 
initiatives. Secondly, to shift the discourse towards the applicability of BPMN for de-
signing blockchain-based applications. The rest of the paper is structured as follows. In 
Section 2 we provide the theoretical background of our study. In Section 3 and 4, we 
standardize the processes of developing and deploying a DApp utilizing the BPMN. In 



3 

Section 5, we communicate the advantages of the proposed models and discuss their 
applicability on real-world applications. Section 6 concludes the paper, while providing 
directions for future work. 

2 Background 

In this section, we define the key concepts that will be discussed through the rest of the 
paper. Initially, we introduce Ethereum as a blockchain platform that enables the au-
tonomous execution of smart contracts. Subsequently, we discuss what a smart contract 
is and how DApps treat them as first-class elements. Afterwards, we introduce BPMN 
as the standard process modelling technique that will be utilized to depict the processes 
of developing and deploying a DApp atop Ethereum. Finally, we present a DMN-based 
decision model for determining when the DApp development is justified, as a prereq-
uisite decision before the DApp development and deployment processes unfold. 
 
2.1 Ethereum 

Ethereum was conceived by Vitalik Buterin in 2013 [6] as a general-purpose blockchain 
with a built-in Turing-complete programming language and a native cryptocurrency 
called Ether. Ethereum’s vision was to allow anyone to write their own arbitrary rules 
in the so-called smart contracts, encoding rules for ownership, transaction formats, and 
state transition functions [6]. Loading and running the contracts in its distributed state 
machine (i.e., Ethereum Virtual Machine - EVM) results to state changes that are stored 
in its blockchain. Each node on the network runs a local copy of the EVM to validate 
the contract execution. To thwart a smart contact’s infinite execution when a node at-
tempts to validate it, Ethereum introduces the gas mechanism to limit the resources that 
any program can consume [7]. 

With its deterministic and secure programming environment, the Ethereum platform 
enables developers to build powerful DApps that constitute the culmination of the 
Ethereum vision [6]. Ethereum constitutes a protocol that is implemented by independ-
ent networks; multiple for testing and one for production. The transactions in a test 
network do not exchange real-value Ether, making it suitable for initial testing and ex-
perimentation. As the most mature Turing-complete programming blockchain, the vast 
majority of DΑpps are built atop Ethereum [20]. 
 
2.2 Smart Contracts 

The concept of smart contracts was introduced by Nick Szabo in 1994 [21], by defining 
a smart contract as “a computerized transaction protocol that executes the terms of a 
contract”. With the Ethereum foundation, this term was reinforced as “systems that can 
be autonomously executed and move digital assets according to arbitrary pre-specified 
rules” [6]. Smart contracts are deployed as data in a transaction and therefore are im-
mutable. Their code can be inspected by every network participant while their execu-
tion is deterministic. To trigger their enactment, a message is sent to their address. Their 



4 

code activation allows to read and write to their internal storage, send other messages 
or create contracts in turn. 

To deploy a smart contract in a blockchain network, developers encode initially their 
logic in a high-level programming language (e.g., Solidity). Subsequently, the code is 
translated into bytecode, before being deployed to the network. In case of Ethereum, 
the bytecode is executed on the EVM as part of the Ethereum network protocol. 

 
2.3 Decentralized Applications (DApps) 

The majority of web-based applications are centralized by design. They are based on 
client-server architecture, which entails that data processing mostly occurs on a single 
server hosting environment [1]. With the advent of the second generation of block-
chains, DApps have emerged. In their most fundamental format, DApps consist of a 
web user interface (frontend UI) and a distributed backend (smart contract), which are 
usually bundled via the web3.js Javascript library [7]. Their backend code is distributed 
to overcome the challenges that arise from having a centralized server [13], such as low 
transparency or single point of failure [10]. The on-chain nature of DApps allows eve-
ryone to audit their code and inspect their functionality. 

Blockchain has shown a great potential in enabling a wealth of DApps, related to 
games, finance, NFTs, health, energy, and supply chain, among others [20].  However, 
a major consideration remains the immutability of their smart contract code and their 
challenging development [13], thus necessitating more intricate and secure techniques 
in designing blockchain applications.  

 
2.4 Business Process Model & Notation (BPMN) 

The BPMN standard [22] is a contemporary notation for capturing business processes 
in a graphical and executable format. Introduced by OMG in 2006, BPMN has been 
widely adopted as the de facto process modelling notation in both academia and indus-
try. The primary goal is to provide an understandable notation for various business us-
ers (i.e., analysts, developers, managers, etc.) [23]. Previous works have employed 
BPMN for modelling IoT processes [24], RPA initiatives [25], and blockchain-based 
applications [26], among others. 

Beyond its primary goal of modelling business processes, BPMN models serve as 
inputs to software development projects [27]. Since modelling is an intrinsic part of 
designing a software [15], BPMN models are handed over to software developers. Sys-
tem requirements, process flow and decision paths, are specified in a graphical repre-
sentation before developers translate their logic to code execution.  

The application of standard BPMN diagrams for designing and developing DApps 
has evolved as an intriguing challenge in the aspect of existing blockchain limitations 
[28]. In particular, the usage of BPMN constructs may prove an efficient method in ad-
dressing blockchain usability and complexity issues, due to its well-defined steps and 
comprehensible notation for the communications between project stakeholders. Bear-
ing in mind the emerging interest of the blockchain community in BPMN, we employ 
BPMN for the modelling of the DApp development and deployment processes, intro-
duced in sections 3 and 4.  



5 

2.5.     A DMN-based decision model for DApp development 
 

Developing a DApp is a decision-making process towards committing to optimal deci-
sions in specific time frames. Importantly, an initial decision should be taken whether 
blockchain application is justified, before design decisions emerge during the DApp 
development and deployment phases. In this regard, a Decision Model and Notation 
(DMN) - based decision model (Fig.1) is introduced to guide developers determine 
whether developing a DApp is a correct decision. DMN [29], emerged as an OMG 
standard in 2015 for decision modelling, where its primary goal is to provide a common 
notation for the graphical representation of decisions. The most fundamental constructs 
are decision nodes, represented by rectangles, and input data, represented by ovals.  

In our context, an initial decision path [30] should be followed to justify the block-
chain applicability after reviewing the requirements (i.e., use case) and the blockchain 
peculiarities. Specifically, on the basis of a need for a shared database, the involvement 
of multiple untrustworthy participants, and the need for disintermediation, the block-
chain applicability should be decided. Subsequently, developers need to take design 
decisions in the act of developing and deploying their own applications. For this pur-
pose, the DApp development and deployment processes unfold in the following sec-
tions to standardize the process flow and facilitate the design decision-making. 
 

 
 

Fig. 1. A DMN-based decision model for DApp development 

3 Modelling the DApp development process 

This section discusses the DApp development process on the Ethereum blockchain and 
introduces the respective BPMN model. The aim is to model the flow and the decision 
paths that a developer should follow while developing a DApp, combining blockchain 
concepts (transactions, cryptocurrencies, public – private keys, addresses, etc.) in a vis-
ual and intuitive manner. Thus, the model can shed light on the process of developing 
a DApp, become a roadmap for DApp development initiatives, and facilitate the deci-
sion-making by explicitly determining a sequence of activities and flow paths.  



6 

 
 

Fig. 2. The DApp development process1 
 

Developing a DApp on top of the Ethereum can be regarded as a process with con-
crete boundaries, a distinct trigger event (e.g., conceptualization of a DApp) and a dis-
tinguishable output (e.g., successful DApp development). The DApp development pro-
cess is modelled in BPMN (Fig. 2) to better conceptualize and standardize the process. 
Embarking on the DApp development initiative, a developer needs to create an Exter-
nally Owned Account (EOA), develop a smart contract, and to configure the interface 
for the DApp. To communicate better the above three discrete phases, we compart-
mentalized the process model with BPMN group artifacts. In more detail: 

(i) The Externally Owned Account (EOA) configuration aims at the creation of an 
account to propagate a valid transaction to the blockchain; 

(ii) The Smart Contract configuration aims at the encapsulation and the deployment 
of the backend application to the Ethereum network; 

(iii) The User Interface (UI) configuration aims at the establishment of an interface, 
facilitating the interaction with a smart contract that is operating on the blockchain. 

 
3.1 Externally Owned Account (EOA) configuration 

Initializing the development process, a developer should primarily create their own test 
Ethereum account to be able to interact with the Ethereum blockchain and propagate 
valid transactions to every node. Specifically, a message (registration request) is prop-
agated to Ethereum, where an EOA is generated (rendered with an intermediate catch-
ing message event) and a relative key-pair: private and public (modelled using a data 
object), is received. Considering that even in a test network, transactions require fees 
calculated on Ether, a developer is subsequently requested to fund their account. How-
ever, due to the testing nature of such networks, developers can reach services (i.e., 
faucets) that dispense funds in the form of free Ether, instead of buying real-value Ether. 
 

 
1 For readability purposes, the DApp development process model has been uploaded to 

verde.uom.gr/dapp/development.html 

https://verde.uom.gr/dapp/development.html


7 

3.2 Smart contract configuration  

Once the EOA is generated and funded with test Ether, the Smart Contract configura-
tion phase unfolds. At this stage, the developer initially writes a smart contract, typi-
cally in Solidity, as the most frequently utilized language for Ethereum smart contracts. 
Solidity code needs to be further compiled into EVM bytecode to be executed by 
Ethereum’s execution environment, namely the EVM. In this regard, the developer 
should pass the Solidity code to a Solidity compiler, which in turn produces - as outputs 
- the EVM bytecode and a contract interface, namely the Application Binary Interface 
(ABI). Rendered with BPMN data objects, they are further manipulated as the devel-
opment process unfolds. Thereon, the developer is requested to deploy the previously 
generated bytecode to the network and approve the smart contract creation transaction. 
Utilizing their private key, they output a digital signature which verifies that they have 
the authorization to generate such a transaction. Once successfully created, a transac-
tion receipt is acquired (shown in the model with an intermediate catching message 
event), indicating the smart contract’s address (modelled using a data object) on the 
Ethereum test network.  

However, the propagation of the transaction to the Ethereum network might be in-
terrupted by a plethora of errors. Such errors are mapped with a BPMN error boundary 
interrupting event, attached to the border of the transaction approval task. The devel-
oper should identify the cause of failure and proceed fundamentally either with the code 
modification or with the gas limit increase.  
 
3.3 User Interface (UI) configuration 

Once the smart contract has been successfully deployed on the Ethereum test network, 
the configuration of the application's interface is the final step. The developer should 
establish (task: set-up DApp UI) its interface to the external users and configure its core 
functionality. Thereafter, the web3 JavaScript library and the previously generated con-
tract’s ABI (modelled as BPMN input data objects) should be integrated into the appli-
cation’s logic. Specifically, the former enables the programmatic interaction with the 
Ethereum blockchain, while the latter is a JSON-based description of the available 
smart contract’s functions. This description defines the methods that the application can 
invoke so as to interact with the deployed contract [7]. Once successfully integrated, 
the developer is further requested to formalize the interaction with the blockchain, com-
municating directly either with the deployed contract or with the blockchain itself.  
Hence, utilizing the formerly generated smart contract’s address, its functions can be 
invoked, while optionally JSON-RPCs (Remote Procedure Calls) can be conducted to 
query the blockchain-related information (e.g., current block, current gas price, etc.). 
For this purpose, an inclusive (OR) gateway is utilized. Importantly, the one sequence 
flow is always triggered (i.e., condition is always true, considering that the interaction 
with the smart contract is the developer’s ultimate aim), while the other one is an op-
tional flow, indicating the conditional invocation of Ethereum RPCs (i.e., condition is 
‘Ethereum RPCs’). Once the interaction is successfully established, the DApp devel-
opment process is completed, triggering at the same time the DApp deployment pro-
cess. The DApp deployment process unfolds subsequently in section 4. 



8 

4 Modelling the DApp deployment process 

This section introduces the DApp deployment process (Fig. 3), modelled in BPMN. 
Once the development process is completed, the next step is the DApp migration to the 
main Ethereum network. The process follows the same process compartmentalization 
(EOA, Smart Contract and UI configuration). The deployment process should maintain 
the application’s functionality with the minimum number of modifications. For this 
purpose, the introduced model aims to guide developers on identifying the required 
changes (e.g., fund account with real Ether, replace smart contract’s testnet address 
with the mainnet one, etc.) and taking consistent decisions, to make their DApps run 
on a real-value transactions environment. 

 
4.1 Externally Owned Account (EOA) configuration 

With the trigger of the DApp deployment process, the EOA configuration phase is ini-
tiated. An Ethereum account is applicable to different networks, maintaining the same 
address with a different balance. Considering that transactions on the main Ethereum 
network are executed with real-value Ether, the developer is requested to fund their 
precedently generated account with real Ether. 

 
Fig. 3. The DApp deployment process2 

 
4.2 Smart contract configuration  

Once the EOA is funded with real-value Ether, the developer is requested to deploy the 
smart contract on the main Ethereum network. At this phase, no code modification is 
needed given that the smart contract has been successfully developed during the DApp 

 
2 For readability purposes, the DApp deployment process model has been uploaded to 

verde.uom.gr/dapp/deployment.html 

https://verde.uom.gr/dapp/deployment.html


9 

development process. The developer should exclusively deploy the smart contract’s 
bytecode, generated during the development process, on the mainnet, and approve the 
contract’s creation transaction by signing it with the account private key. Intuitively, 
the transaction (through a BPMN message flow) is propagated to the main Ethereum 
network, where a contract account and a relative address is generated. At this stage, it 
is considered as best practice to verify and publish the contract’s Solidity source code, 
inciting the entire network to entrust its encapsulated process logic [7].  

In case of an error occurrence during the propagation of the transaction to the entire 
network, a recovery (i.e., error-handling) procedure is initialized. At this stage, any 
code-related errors are typically not expected as they are mitigated at the development 
process. Any transactional-based errors (e.g., out-of-gas, insufficient funds, etc.) are 
depicted with interrupting error events, attached to the boundary of the transaction ap-
proval task. This acts as a warning to modify the transaction details (e.g., increase the 
transaction’s gas limit) or increase the balance of their account, before redeploying the 
contract’s bytecode. 
 
4.3 User Interface (UI) configuration 

Once the smart contract configuration phase is successfully completed, the user inter-
face needs to interact with the contract that is deployed on the mainnet. The process 
guides the developer to update the smart contract address without modifying neither 
the application’s interface nor its core functionality. As a result, the DApp is able to 
operate on the main Ethereum network with minimum modifications. 

5 Discussion 

The process dimension of software engineering is well recognized by researchers and 
practitioners [18, 31], contrary to the decentralized application software that lacks this 
perspective. This paper presented the DApp development and deployment process uti-
lizing the BPMN technique. Considering the lack of competing approaches, the paper 
presents a novelty, offering four major advantages.  

First, modelling such processes in BPMN can mitigate any issues arising from their 
free-form textual description. This approach corroborates Nordsieck’s [32] statement 
that visual models can reveal the notion of a subject matter in a more comprehensive 
way than any other form of representation. Exploiting the cognitive effectiveness of 
BPMN [33], developers can intuitively follow the process flow of the models to orches-
trate their DApp initiatives. Second, standardizing their flow can make the models serve 
as an established point of reference, eliminating the necessity of designing, communi-
cating, and agreeing on the software process, each time the development and deploy-
ment of a DApp take place. As a result, it is expected that the implementation time and 
cost can be reduced, while developers’ communication and implementation transpar-
ency can be improved. Third, decision-making can be facilitated as time-consuming 
decisions are taken on the basis of the model logic. Being aware of the process control 
flow, developers identify the forthcoming steps on time, circumventing the need for 
pondering on their next step. Fourth, the lack of constraints or dependencies in a 



10 

particular Integrated Development Environment (IDE) (e.g., Remix, EthFiddle, etc.), 
or Ethereum client (e.g., Geth, Parity, MetaMask, etc.), enriches the applicability of the 
proposed processes to all DApp initiatives atop Ethereum. Developers can adhere to 
their process logic irrespective of the selected tools to implement their applications. 

To investigate the applicability of the proposed processes, the authors employed 
them for the prototype implementation of the VerDe (Verified Degrees) application; a 
proposed decentralized application for the registration and verification of academic 
qualifications. As initially presented in [34], VerDe is envisioned as a decentralized 
application that securely registers and verifies degrees atop Ethereum. The goal is to 
mitigate fraud and mobility issues inflicted by the current way in which degrees are 
circulated. Blockchain can serve as a technology enabler for such issues, since it is 
resistant to the modification of data it holds. Specifically, the VerDe architecture is 
conceived as a smart contract running on the Ethereum network, offering two distinct 
user interfaces for writing (i.e., degree registration) and reading (i.e., degree verifica-
tion) from it. From the conceptual design towards its actual implementation, we fol-
lowed the previously proposed models. Initially, adhering to the introduced DMN de-
cision model, we decided that developing a DApp is justified, considering that: (i) a 
shared single source of truth is needed, (ii) universities, students, and companies are 
involved, (iii) fake degrees are circulated, and (iv) disintermediation from bureaucratic 
nostrification agencies is required.  Subsequently, the introduced BPMN process com-
partmentalization facilitated the controlled development of the VerDe application in 
three discrete phases. In detail, we configured our own EOA, developed and deployed 
the VerDe smart contract, and configured its interfaces to the external world. This ap-
proach revealed that planning was promoted ahead of time, allowing the definition and 
evaluation of each phase's goals. Additionally, issues were detected and fixed quickly, 
as error-handling procedures were explicitly specified in the models. Thus, implemen-
tation time and cost were significantly reduced. Currently, a functional demo of the 
VerDe platform has been released3, while the DApp development1 and deployment2 
processes are publicly available under the same project directory.  

Overall, a distinct feature of our work is the employment of BPMN for blockchain 
modelling. The research conducted in this paper, proved that in contrary to the findings 
in [28], BPMN diagrams may constitute a useful and efficient method for both the de-
sign and development of DApps. What is highlighted is that the interpretation of dif-
ferent blockchain concepts can be achieved through the usage of sophisticated BPMN 
constructs. Among others, we employed BPMN message flows to model the propaga-
tion of transactions to a blockchain network. BPMN error events were introduced to 
model blockchain failures. Additionally, BPMN message events were utilized to model 
transaction receipts. The proposed approach can standardize the depiction of such 
blockchain concepts and inspire researchers to the modelling of their own blockchain-
based applications. However, considering that blockchain modelling is recognized as a 
nascent research domain [35], further research is needed to investigate the applicability 
of BPMN for the modelling of more complex blockchain concepts (e.g., consensus in 
the distributed network, mining, etc.). 

 
3 A functional demo of the VerDe application can be found on verde.uom.gr 

https://verde.uom.gr/Verde.uom.gr/


11 

6 Conclusion 

Blockchain opens an opportunity to create DApps that can benefit from its distributed 
and immutable nature. Compared to traditional software engineering, their develop-
ment poses new challenges with respect to different blockchain aspects. As DApp soft-
ware engineering is still a nascent area, new tools, methods, and design patterns are 
needed for their optimal development and deployment in a blockchain network. 
 The work presented in this paper allows developers to follow a systematic step-by-
step process for developing and deploying a DApp atop the Ethereum network. For this 
purpose, a DMN decision model was presented to help developers decide whether de-
veloping a DApp is justified. Moreover, two BPMN process models were introduced, 
the DApp development process model and the DApp deployment. By standardizing and 
modelling their flow, we expect that these models can serve as a roadmap for DApp 
developers, while eliminating the need to devise and decide on the process flow each 
time a new DApp initiative unfolds. To investigate the applicability of our proposed 
approach, we employed the introduced models for a prototype implementation of a 
DApp for the registration and verification of academic degrees. Our approach proved 
to facilitate decision-making and decrease implementation time and cost, advancing 
further the idea of bringing together process modelling and DApp development.  

As future work, we intend to further utilize the BPMN technique for DApp develop-
ment by exploring how BPMN message flows can define the functionality of smart 
contracts, as the most critical elements of a DApp. Modelling a smart contract with a 
BPMN pool, incoming and outgoing message flows can indicate the parameters to be 
passed and returned from a smart contract’s methods. As a result, we plan to investigate 
how the graphical message flows can be translated to Solidity code, thus establishing a 
sound communication between a DApp’s distributed backend and its external environ-
ment. 

References 

1. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An Overview of Blockchain Tech-
nology: Architecture, Consensus, and Future Trends. In: 2017 IEEE International 
Congress on Big Data (BigData Congress). pp. 557–564 (2017). 
https://doi.org/10.1109/BigDataCongress.2017.85. 

2. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: Economics, Technology, 
and Governance. Journal of Economic Perspectives. 29 (2), 213–238 (2015). 
https://doi.org/10.1257/jep.29.2.213. 

3. Zhang, K., Jacobsen, H.-A.: Towards Dependable, Scalable, and Pervasive Distrib-
uted Ledgers with Blockchains. In: 2018 IEEE 38th International Conference on 
Distributed Computing Systems (ICDCS), pp. 1337–1346 (2018). 

4. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008). 
http://bitcoin.org/bitcoin.pdf, last accessed 2022/01/22. 

5. Xu, M., Chen, X., Kou, G.: A systematic review of blockchain. Financ Innov. 5, 27 
(2019). https://doi.org/10.1186/s40854-019-0147-z. 



12 

6. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Ethereum White Paper (2014). https://ethereum.org/en/whitepaper/, last ac-
cessed 2022/01/22. 

7. Antonopoulos, AM., Wood, G.: Mastering Ethereum: building smart contracts and 
dapps. first Ed. O’Reilly Media. United States (2018). 

8. Cai, W., Wang, Z., Ernst, J.B., Hong, Z., Feng, C., Leung, V.C.M.: Decentralized 
Applications: The Blockchain-Empowered Software System. IEEE Access. 6, 
53019–53033 (2018). https://doi.org/10.1109/ACCESS.2018.2870644. 

9. Karger, E., Jagals, M., Ahlemann, F.: Blockchain for AI Data – State of the Art and 
Open Research. 18 (2021). 

10. Cai, C., Duan, H., Wang, C.: Tutorial: Building Secure and Trustworthy Blockchain 
Applications. In: 2018 IEEE Cybersecurity Development (SecDev). pp. 120–121 
(2018). https://doi.org/10.1109/SecDev.2018.00023. 

11. Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., Cabanillas, C., Daniel, F., … 
Zhu, L.: Blockchains for Business Process Management - Challenges and Opportu-
nities. ACM Trans. Manage. Inf. Syst. 9, 4:1-4:16 (2018). 
https://doi.org/10.1145/3183367. 

12. Antal, C., Cioara, T., Anghel, I., Antal, M., Salomie, I.: Distributed Ledger Tech-
nology Review and Decentralized Applications Development Guidelines. Future In-
ternet. 13, 62 (2021). https://doi.org/10.3390/fi13030062. 

13. Why Model-Driven Engineering Fits the Needs for Blockchain Application Devel-
opment - IEEE Blockchain Initiative, https://blockchain.ieee.org/technical-
briefs/september-2018/why-model-driven-engineering-fits-the-needs-for-block-
chain-application-development, last accessed 2022/02/18. 

14. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-Oriented Software En-
gineering: Challenges and New Directions. In: 2017 IEEE/ACM 39th International 
Conference on Software Engineering Companion (ICSE-C). pp. 169–171 (2017). 
https://doi.org/10.1109/ICSE-C.2017.142. 

15. Rocha, H., Ducasse, S.: Preliminary Steps Towards Modeling Blockchain Oriented 
Software. In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends in 
Software Engineering for Blockchain (WETSEB). pp. 52–57 (2018). 

16. AL-Ashmori, A., Basri, S., Dominic, P.D.D., Muneer, A., Al-Tashi, Q., Al-Ash-
mori, Y.: Blockchain-Oriented Software Development Issues: A Literature Review. 
In: Silhavy, R., Silhavy, P., and Prokopova, Z. (eds.) Software Engineering Appli-
cation in Informatics. pp. 48–57. Springer International Publishing, Cham (2021). 
https://doi.org/10.1007/978-3-030-90318-3_6. 

17. Koul, R.: Blockchain Oriented Software Testing - Challenges and Approaches. In: 
2018 3rd International Conference for Convergence in Technology (I2CT). pp. 1–6 
(2018). https://doi.org/10.1109/I2CT.2018.8529728. 

18. Sommerville, I.: Software process models. ACM Comput. Surv. 28, 269–271 
(1996). https://doi.org/10.1145/234313.234420. 

19. Kocbek, M., Jošt, G., Heričko, M., Polančič, G.: Business process model and nota-
tion: The current state of affairs. Computer Science and Information Systems. 12, 
509–539 (2015). 

20. State of the DApps, https://www.stateofthedapps.com/, last accessed 2022/02/01. 



13 

21. Szabo, N.: Smart Contracts. (1994). http://archive.is/X3lR2, last accessed 
2022/02/10. 

22. Business Process Model and Notation Specification Version 2.0.2, 
https://www.omg.org/spec/BPMN/About-BPMN/, last accessed 2022/02/01. 

23. Chinosi, M., Trombetta, A.: BPMN: An introduction to the standard. Computer 
Standards & Interfaces. 34, 124–134 (2012). 
https://doi.org/10.1016/j.csi.2011.06.002. 

24. Martins, F., Domingos, D.: Modelling IoT behaviour within BPMN Business Pro-
cesses. Procedia Computer Science. 121, 1014–1022 (2017). 
https://doi.org/10.1016/j.procs.2017.11.131. 

25. Friedrich-Alexander-University Erlangen-Nuremberg, Chair of Digital Industrial 
Service Systems, Nuremberg, Germany, Hindel, J., Cabrera, L.M., Stierle, M.: Ro-
botic Process Automation: Hype or Hope? In: WI2020 Zentrale Tracks. pp. 1750–
1762. GITO Verlag (2020). https://doi.org/10.30844/wi_2020_r6-hindel. 

26. Turkanović, M., Hölbl, M., Košič, K., Heričko, M., Kamišalić, A.: EduCTX: A 
Blockchain-Based Higher Education Credit Platform. IEEE Access. 6, 5112–5127 
(2018). https://doi.org/10.1109/ACCESS.2018.2789929. 

27. Ouyang, C., Dumas, M., Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Mendling, J.: 
From business process models to process-oriented software systems. ACM Trans. 
Softw. Eng. Methodol. 19, 2:1-2:37 (2009). 
https://doi.org/10.1145/1555392.1555395. 

28.Udokwu, C., Anyanka, H., Norta, A.: Evaluation of Approaches for Designing and 
Developing Decentralized Applications. In: Proceedings of the 2020 4th Interna-
tional Conference on Algorithms, Computing and Systems. pp. 55–62 (2020). 
https://doi.org/10.1145/3423390.3426724. 

29.Decision Model and Notation Specification Version 1.3, 
https://www.omg.org/spec/DMN, last accessed 2022/02/03. 

30.Pedersen, AB., Risius, M., Beck, R.: A ten-step decision path to determine when to 
use blockchain technologies. MIS Quarterly Executive, 18 (2), 99–115 (2019). 

31.Fuggetta, A.: Software process: a roadmap. In: Proceedings of the Conference on 
The Future of Software Engineering. pp. 25–34. Association for Computing Ma-
chinery, New York, NY, USA (2000). https://doi.org/10.1145/336512.336521. 

32. Nordsieck, F.: Die Schaubildliche Erfassung und Untersuchung der Betriebsorgan-
isation. Organisation - Eine Schriftenreihe. C. E. Poeschel Verlag, Stuttgart (1932). 

33. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness 
of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., and van den Brand, M. 
(eds.) Software Language Engineering. pp. 377–396. Springer, Berlin, Heidelberg 
(2011). https://doi.org/10.1007/978-3-642-19440-5_25. 

34. Michoulis, G., Petridou, S., Vergidis, K.: Verification of Academic Qualifications 
through Ethereum Blockchain: An Introduction to VerDe. XIV Balkan Conference 
on Operational Research (BALCOR 2020), 429–433. Thessaloniki, Greece (2020). 

35. Post, R., Kas, S., Smit, K.: The Role of Modeling in Blockchain Process Design. In: 
Asatiani, A., García, J.M., Helander, N., Jiménez-Ramírez, A., Koschmider, A., 
Mendling, J., Meroni, G., and Reijers, H.A. (eds.) Business Process Management: 
Blockchain and Robotic Process Automation Forum. pp. 52–66. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58779-6_4. 


	1 Introduction
	2 Background
	2.1 Ethereum
	2.2 Smart Contracts
	2.3 Decentralized Applications (DApps)
	2.4 Business Process Model & Notation (BPMN)

	3 Modelling the DApp development process
	3.1 Externally Owned Account (EOA) configuration
	3.2 Smart contract configuration
	3.3 User Interface (UI) configuration

	4 Modelling the DApp deployment process
	4.1 Externally Owned Account (EOA) configuration
	4.2 Smart contract configuration
	4.3 User Interface (UI) configuration

	5 Discussion
	6 Conclusion
	References

