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Abstract: Software security is a very important aspect for software development organizations1

who wish to provide high-quality and dependable software to their consumers. A crucial part2

of software security is the early detection of software vulnerabilities. Vulnerability prediction3

is a mechanism that facilitates the identification (and, in turn, the mitigation) of vulnerabilities4

early enough during the software development cycle. The scientific community has recently5

focused a lot of attention on developing Deep Learning models using text mining techniques6

for predicting the existence of vulnerabilities in software components. However, there are also7

studies that examine whether the utilization of statically extracted software metrics can lead to8

adequate Vulnerability Prediction Models. In this paper, both software metrics- and text mining-9

based Vulnerability Prediction Models are constructed and compared. A combination of software10

metrics and text tokens using deep-learning models is examined as well in order to investigate11

if a combined model can lead to more accurate vulnerability prediction. For the purposes of the12

present study, a vulnerability dataset containing vulnerabilities from real-world software products13

is utilized and extended. The results of our analysis indicate that text mining-based models14

outperform software metrics-based models with respect to their F2-score, whereas enriching the15

text mining-based models with software metrics was not found to provide any added value to16

their predictive performance.17

Keywords: vulnerability prediction; dataset extension; software metrics; text mining; machine18

learning; deep learning; ensemble learning19

1. Introduction20

Modern software programs are typically large, complicated, and interconnected. To21

design secure software, it is vital to follow secure and good programming methods. As22

a result, strategies and approaches that can offer developers with indicative information23

on how secure their software is are needed to help them improve their security level. Vul-24

nerability prediction techniques may provide reliable information regarding software’s25

vulnerable hotspots and assist developers in prioritizing testing and inspection efforts26

by assigning limited testing resources to potentially vulnerable areas. Vulnerability27

Prediction Models (VPMs) are often created using Machine Learning (ML) approaches28

that utilize software features as input to differentiate between vulnerable and clean (or29

neutral) software components. Several VPMs have been developed throughout the years,30

each of which uses a different set of software features as inputs to anticipate the presence31

of vulnerable components (e.g., software metrics [1–3], text features [4,5], static analysis32

alerts [6,7], etc.).33

More specifically, the initial attempts in the field of software vulnerability pre-34

diction investigated the ability of software metrics to indicate vulnerability existence35
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in software, paying more focus on cohesion, coupling, and complexity metrics [1–3].36

They utilized ML algorithms to classify software components as vulnerable or not. Text37

mining approaches, where researchers tried to extract text patterns from the source code38

utilizing Deep Learning (DL) models, were also examined [4,5,8,9], and demonstrated39

promising results in vulnerability prediction. Although both approaches have been40

studied individually, and there are several claims that text mining-based approaches41

lead to better vulnerability prediction models, to the best of our knowledge, apart from42

[10,11], there is a lack of studies that directly compare text mining-based with software43

metrics-based vulnerability models or studies that examine the combination of text44

features and software metrics as indicators of vulnerability.45

The aforementioned research challenges, which constitute the main focus of the46

present work, can be formally expressed in the following Research Questions (RQ):47

• RQ-1: Are text mining-based models better in vulnerability prediction than those48

utilizing software metrics?49

• RQ-2: Can the combination of text features and software metrics lead to more accurate50

vulnerability prediction models?51

More specifically, in the present paper, we investigate whether using text mining-52

extracted features can lead to adequate vulnerability prediction performance and we53

compare the resulting models to software metrics-based models. We also investigate54

whether combining software metrics with text features could result in more accurate55

vulnerability prediction models. To achieve this, we utilize a vulnerability dataset56

provided by Ferenc et al. [12] containing vulnerabilities from real-world open-source57

software applications, and extend it by adding additional features extracted through text58

mining (e.g., BoW and token sequences). Then, we replicate the work provided by Ferenc59

et al. [12] in which the authors used the aforementioned dataset and ML models in order60

to predict vulnerable functions, based on software metrics. Subsequently, we build our61

own DL models based on text mining and compare their predictive performance with62

the software metrics-based models. Finally, we attempt to combine these two kinds of63

inputs and train an Ensemble learning classifier [13], in order to examine whether the64

combination of text features and software metrics can lead to more accurate vulnerability65

prediction models.66

The rest of the paper is structured as follows. In Section 2, the necessary theoretical67

background is provided in order to familiarize the reader with the main concepts of68

the present work. In Section 3, the related work in the field of Vulnerability Prediction69

in software systems is presented. Section 4 provides information about the adopted70

methodology. Section 5 discusses the results of our analysis and Section 6 concludes the71

paper also providing a discussion of potential future research directions.72

2. Theoretical Background73

In this section, we present the theoretical background of vulnerability prediction74

in general and the specific technologies that we have used as part of the work that is75

described in the present paper. This information is critical for familiarizing the reader76

with the concepts of Vulnerability Prediction, both text mining-based and software77

metrics-based. The ensemble learning background is described as well.78

2.1. Vulnerability Prediction79

The purpose of Vulnerability Prediction is to identify software hotspots (i.e., soft-80

ware artefacts) that are more likely to contain software vulnerabilities. These hotspots are81

actually parts of the source code that require more attention by the software developers82

and engineers from a security viewpoint. Vulnerability Prediction Models (VPMs) are83

models able to detect software components that are likely to contain vulnerabilities.84

These models are normally built based on Machine Learning (ML) and are used in85

practice for prioritizing testing and inspection efforts, by allocating limited test resources86
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to potentially vulnerable parts. For better understanding, the general structure of a87

Vulnerability Prediction Model is depicted in Figure 1.88

Figure 1. The basic concept of vulnerability prediction

As can be seen by Figure 1, the core element of vulnerability prediction is a vulner-89

ability predictor, a model that is used to decide whether a given source code file (i.e.,90

software component) is potentially vulnerable or not. The first step of the process is the91

construction of the vulnerability predictor. In order to construct the vulnerability predic-92

tor, a repository of clean and vulnerable software components (e.g., classes, functions,93

etc.) is initially constructed. Subsequently, appropriate mechanisms are employed in94

order to extract attributes from the source code (e.g., software metrics, static analysis95

alerts, text features, etc.), which are collected in order to construct the dataset that will96

be used for training and evaluating vulnerability prediction models. Then several VPMs97

are generated and the one demonstrating the best predictive performance is selected as98

the final vulnerability predictor. During the execution of the model in practice, when a99

new source code file arrives to the system, its attributes are extracted and provided as100

input to the vulnerability predictor, which, in turn, evaluates whether it is vulnerable or101

not.102

The selection of the type of the attributes that will be provided as input to the103

generated VPMs is an important design decision in Vulnerability Prediction. The main104

VPMs that can be found in the literature are based on software attributes extracted from105

the source code either through static analysis (e.g., such as software metrics) [1–3] and106

text mining (e.g., bag of words, sequences of tokens, etc.) [4,5,9].107

Software metrics-based VPMs: When the VPMs utilize software metrics, they are108

trained on numerical features that describe some characteristics of the source code (e.g.,109

complexity, lines of code, etc.). These metrics are commonly extracted through static110

analysis and can provide quantitative information about quality attributes of the source111

code, such as the number of function calls and the number of linearly independent paths112

through a program’s source code. Popular metric suites that are used in practice are the113

Chidamber & Kemerer (CK) Metrics [14] and Quality Model for Object Oriented Design114

(QMOOD) [15] metric suites. Several open- and closed-source tools are available for115

their calculation, such as the (Chidamber & Kemerer Java Metrics) CKJM Extended1,116

and the Understand2 tools.117

Text mining-based VPMs: On the other hand, text mining-based VPMs are trained118

on datasets made up of text tokens retrieved from the source code. The simplest text119

mining approach is Bag of Words (BoW). The code in BoW is separated into text tokens,120

each of which has a count of how many times it appears in the source code. As a result,121

1 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
2 https://en.wikipedia.org/wiki/Understand_(software)
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each word represents a feature, and the frequency of that feature in a component equals122

the feature’s value in that component. Apart from BoW, a more complex text mining123

approach involves the transformation of the source code into a list of token sequences124

that can be fed into Deep Learning (DL) models that can parse sequential data (e.g.,125

recurrent neural networks). The token sequences are the input to the DL models, which126

try to capture the syntactic information in the source code during the training phase and127

anticipate the presence of vulnerabilities in software components during the execution128

phase. To extract semantic information from tokens, text mining-based methods also129

employ Natural Language Processing (NLP) techniques including token encoding with130

word2vec3 embedding vectors. Word embedding methods learn a real-valued vector131

representation for a predetermined fixed-sized vocabulary from a corpus of text [16]. On132

a given natural language processing task, such as document classification, an embedding133

layer is a word embedding trained in combination with a neural network. It needs134

cleaning and preparing the document text in order for each word to be encoded in a135

one-hot vector. The size of the vector space is determined by the model. Small random136

numbers are used to seed the vectors. The embedding layer is utilized at the front end of137

a neural network and is fitted using the Backpropagation method in a supervised way.138

2.2. Ensemble Learning139

The ensemble learning [13] is a machine learning meta method that aims to improve140

predictive performance by integrating predictions from various models. It is actually an141

ML technique that combines numerous base models to build a single best-predicting142

model. The core premise of ensemble learning is that by merging many models, the143

faults of a single model will most likely be compensated by other models, resulting in144

the ensemble’s total prediction performance being better than that of a single model.145

The most common ensemble methods are divided into three categories, namely bagging,146

boosting, and stacking.147

Bagging [17,18] is a technique used to reduce prediction variance by fitting each148

base classifier on a random subset of the original dataset and subsequently combining149

their individual predictions (either by voting or average) to generate a final prediction.150

Boosting [18] is an ensemble modeling strategy that aims to create a strong classifier151

out of a large number of weak ones. It is accomplished by constructing a model from152

a sequence of weak models. To begin, a model is created using the training data. The153

second model is then created, which attempts to correct the faults in the first model. This154

approach is repeated until either the entire training data set is properly predicted or the155

maximum number of models has been added.156

In this study, the stacking classifier is employed (see Section 4.3). Stacking4 is a157

technique for bringing together models. It is made up of two-layer estimators. The158

baseline models that are used to forecast the outcomes on the validation datasets make159

up the first layer, while the meta-classifier constitutes the second layer, which takes all of160

the baseline model predictions as input and generates new predictions, as can be seen in161

the Figure 2.162

3 https://radimrehurek.com/gensim/models/word2vec.html
4 https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840

https://radimrehurek.com/gensim/models/word2vec.html
https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840
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Figure 2. The architecture of the Stacking classifier

3. Related Work163

Vulnerability prediction is a relatively new research topic in software security that164

seeks to predict which software components are likely to have vulnerabilities. Its goal165

is to find algorithms that can be used as indicators of software security vulnerabilities,166

identifying components as either potentially vulnerable or neutral. Vulnerability predic-167

tion models (VPMs) are created for this purpose using machine learning techniques and168

software properties as input. Using static analysis metrics [1–3] and/or text mining [4,5]169

are widespread techniques to build VPMs.170

Software metrics-based Vulnerability Prediction: Shin and Williams [1,2] were the171

first researchers to look into the capacity of software metrics, particularly complexity172

metrics, to predict vulnerabilities in software products. To distinguish vulnerable from173

non-vulnerable functions, several regression models were created. According to their174

findings (which were based on the Mozilla JavaScript Engine), complexity measurements175

are only good indicators of software vulnerabilities. Chowdhury and Zulkernine [3]176

proposed a paradigm for predicting vulnerabilities based on CCC metrics (complexity,177

coupling, and cohesion). They compared the predictions of four distinct algorithms -178

Decision Tree, Random Forest (RF), Logistic Regression, and Naive-Bayes - using 52179

versions of Mozilla Firefox. They came to the conclusion that structural data from180

non-security domains such as CCC is valuable in vulnerability prediction.181

Kalouptsoglou et al. evaluated if combining artificial neural networks with software182

measurements could lead to more accurate cross-project vulnerability prediction [19]. On183

the basis of a dataset of well-known PHP products, several machine learning (including184

deep learning) models were built, assessed, and compared. Aiming to see if feature185

selection has an effect on cross-project prediction, feature selection is also used. They186

noticed that models that were constructed based on a certain set of software projects187

seem to deliver superior results when applied to new software projects that demon-188

strate similarities with respect to the significance of their features to the occurrence of189

vulnerabilities. Moshtari et al. [20] investigated the potential of software complexity190

to predict vulnerabilities across several software projects (i.e. cross-project prediction).191

They also compared the predictive value of complexity and coupling in cross-project192

prediction [21]. The results showed that complexity metrics had better discriminative193
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ability in cross-project prediction than coupling metrics, and that combining traditional194

complexity measurements with a newly proposed set of coupling metrics improved the195

recall of the best complexity-based VPM built in this study.196

Text mining-based Vulnerability Prediction: In text mining approaches, the source197

code of software components is parsed and represented as a set of code-tokens, which are198

then used to train predictors. Vulture [8], a VPM that predicted vulnerabilities based on199

import statements and function calls that are more common in vulnerable components,200

was the first framework to be suggested. Vulture was tested on Mozilla Firefox and201

Thunderbird code, and the findings were positive. Hovsepyan et al. [9] proposed a202

more comprehensive text mining-based prediction technique. They parsed the source203

code of software components to extract text items and their frequencies, which they204

used as predictive features (i.e., Bag of Words). An empirical study of their technique205

on 19 versions of a large-scale Android application found that it could be useful for206

vulnerability prediction, since the derived predictors had appropriate precision and207

recall.208

Instead of employing raw text features, Pang et al. [4] used N-Gram analysis5 to209

describe source code as continuous token sequences. They used a deep neural network to210

identify vulnerable software components and integrated N-gram analysis and statistical211

feature selection for building features, evaluating their findings on a number of Java212

Android programs. The results of the evaluation demonstrated that the approach can213

deliver high precision, accuracy, and recall ideas with high precision, accuracy, and recall.214

However, because the evaluation was based on a small dataset, additional analysis215

would be required to determine that the findings were generalizable. Li et al. introduced216

a deep learning model for vulnerability detection in their paper VulDeePecker [5]. They217

divided the original code into a number of semantically linked lines of code, which they218

subsequently converted into vectors using the word2vec program. They developed a219

Bidirectional LSTM (BLSTM) model to detect library/API function calls linked to known220

flaws.221

Vulnerability Prediction using both software metrics and text features: In terms of222

combining software metrics and text mining, no advanced models have been provided223

in the literature that can integrate text tokens with knowledge acquired from software224

metrics. Zhang et al. proposed VULPREDICTOR [11], an approach that investigates225

whether a combination of text and software metrics could lead to superior results. The226

evaluation results suggest that the combination of software metrics with text mining may227

be promising for vulnerability prediction, as they outperformed the results produced228

by Walden et al. [10], who used software metrics or text mining separately. In [22], the229

authors proposed an approach called HARMLESS, which employs a semi-supervised230

model to predict the remaining vulnerabilities in a code base using a Support Vector Ma-231

chine (SVM) prediction model with undersampled training data. HARMLESS identifies232

which source code files are most likely to have flaws. In their case study, they also used233

Mozilla’s code base, with three different feature sets; metrics, text, and a combination of234

text mining and crash features, which actually describe the number of times the source235

code file has crashed.236

Open Issues and Potential Contributions: As regards the comparison between text237

mining and software metrics as indicators for vulnerability existence, a limited number238

of attempts can be found in the literature. Walden et al. [10] compared text mining-based239

vulnerability prediction models to models that used software metrics as predictors. Their240

analysis was based on a dataset including 223 vulnerabilities discovered in three web241

applications for this purpose (i.e., Drupal, Moodle, and PHPMyAdmin). Random Forest242

models were trained to predict vulnerable and clean PHP files in their study. The findings243

revealed that text mining outperforms software metrics when it comes to project-specific244

vulnerability prediction, but it falls short in cross-project vulnerability prediction, where245

5 https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natural-language-processing-9d9eef0fa058

https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natural-language-processing-9d9eef0fa058
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software metrics perform better. The results of this analysis do not clearly indicate246

which approach is superior and also it is based on a limited number of vulnerabilities247

and programming languages. Furthermore, to the best of our knowledge, apart from248

VULPREDICTOR [11] and HARMLESS [22], there are no other studies examining the249

benefits of combining software metrics and text features. There is a need for further250

research in this direction in order to enhance the generalizability of the outcomes of251

these studies.252

In the present work, we attempt to address these open issues through an empirical253

analysis. In particular, we utilize text mining in order to build vulnerability prediction254

models and examine whether they indeed lead to highly accurate predictive perfor-255

mance using a real-world dataset constructed by Ferenc et al. [12], which we extended256

appropriately for the purposes of the present work. For the construction of the text257

mining-based models we utilize popular word embedding vector algorithms, namely258

word2vec and fastText, along with Deep Learning algorithms. Apart from text mining,259

we also investigate whether the utilization of software metrics could lead to sufficient260

vulnerability prediction performance, and we compare the produced models with text261

mining-based models. Finally, we examine whether the combination of software metrics262

with text features could lead to more accurate unified vulnerability prediction models,263

either by jointly building models that combine both types of features or by combining the264

outputs of independent software metrics-based and text mining-based models through265

a meta-classifier based on the voting and stacking ML paradigms.266

4. Materials and Methods267

In this section, the overall methodology that we adopted for building (i) the indi-268

vidual text mining-based and software metric-based models, and (ii) the combinatorial269

model that considers both text mining features and software metrics is described. More270

specifically, we initially provide a description of the vulnerability dataset that we uti-271

lized for the purposes of the present work. Then, we describe the generated VPMs,272

both software metrics-based and text mining-based ones, as well as some models that273

combine these two features.274

4.1. Dataset275

For the purposes of training and evaluating our models, we utilized a dataset pro-276

vided by Ferenc et al. [12] that consists of multiple source code files written in JavaScript277

programming language retrieved from real-world open-source software projects that278

are available on the GitHub repository. As already mentioned, this dataset was uti-279

lized in [12] in order to build software metrics-based vulnerability prediction models.280

The authors of [12] collected vulnerabilities from two publicly available vulnerability281

databases, the Node Security Platform (NSP)6 and the Snyk Vulnerability Database7.282

Both projects try to look for insecure third-party module usages in programs. They283

provide command-line and web-based interfaces that can scan any Node.js module for284

external dependencies that are known to be vulnerable. To do so, they use a list of known285

vulnerabilities to search for security flaws in the version of an external module that the286

programs rely on.287

Through this process, a list of files, which contain vulnerabilities, was obtained.288

For each file with vulnerabilities, they kept their GitHub Uniform Resource Locator289

(URL) and by traversing these URLs, they derived a set of fixing commits. Using these290

commits, they gathered all the code changes into a single patch file that comprised291

all the fixes from the repairing commits. They obtained this data with the help of the292

GitHub API8. Furthermore, they recognized the parent commit of the first commit in293

6 https://github.com/nodesecurity/nsp
7 https://security.snyk.io/
8 https://docs.github.com/en/rest

https://github.com/nodesecurity/nsp
https://security.snyk.io/
https://docs.github.com/en/rest
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time associated with each system’s vulnerability fix. All the functions of parent commit294

that were affected by the fixing modifications were considered as vulnerable, whereas the295

functions that were not included in the code changes were considered as non-vulnerable.296

Then they employed two static code analyzers, namely escomplex9 and OpenStatic-297

Analyzer10 in order to generate static software metrics. The list of the produced metrics298

can be seen in Table 1.299

Table 1. The statically extracted software metrics

Metric Description

CC Clone Coverage
CCL Clone Classes
CCO Clone Complexity
CI Clone Instances
CLC Clone Line Coverage
LDC Lines of Duplicated Code
McCC, CYCL Cyclomatic Complexity
NL Nesting Level
NLE Nesting Level without else-if
CD, TCD (Total) Comment Density
CLOC, TCLOC (Total) Comments Lines of Code
DLOC Documentation Lines of Code
LLOC, TLLOC (Total) Logical Lines of Code
LOC ,TLOC (Total) Lines of Code
NOS, TNOS (Total) Number of Statements
NUMPAR, PARAMS Number of Parameters
HOR_D NR. Of Distinct Halstead Operators
HOR_T Nr of Total Halstead Operators
HON_D NR. Of Distinct Halstead Operands
HON_T Nr of Total Halstead Operands
HLEN Halstead Length
HVOC Halstead Vocabulary Size
HDIFF Halstead Difficulty
HVOL Halstead Volume
HEFF Halstead Effort
BUGS Halstead Bugs
HTIME Halstead Time
CYCL_DENS Cyclomatic Density

The provided dataset11 is structured in the format of a Comma-Separated Values300

(CSV) file, where each line corresponds to a JavaScript function. The columns contain301

information about the function name, its full path, the GitHub URL of the file where it is302

included and there are also 35 columns with the values of the aforementioned software303

metrics. There is also one last column, which is the vulnerability class (equal to one for304

vulnerable methods, equal to zero for non-vulnerable ones).305

For the purposes of the present analysis apart from the computed software metrics,306

we also need the actual source code of the functions, in order to extract text features that307

are necessary for building the text mining-based models. Although the dataset contains308

the GitHub URLs of the source code files and the names of the analyzed functions along309

with their extracted metrics, the actual source code was not readily available. To this end,310

we processed this CSV file and making use of the GitHub URL of each file we fetched311

the corresponding source code from GitHub. Utilizing the information about the start312

and end lines of every method, we managed to detach the source code of the methods.313

9 https://github.com/escomplex/
10 https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
11 http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/

https://github.com/escomplex/
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/
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The overall process that we followed for extending the original dataset provided by314

Ferenc et al. [12] (i.e., for fetching the actual source code and extracting new text features)315

is illustrated in Figure 3. As can be seen by Figure 3, after downloading the dataset in316

CSV format provided by Ferenc et al. [12], the first step was to gather all the URLs of the317

function components. Then we fetched the JavaScript files’ source code from GitHub318

using these URLs. Subsequently, from each file we cut off the code of the functions319

included utilizing the start and end lines that are contained in the CSV. Every function320

was tokenized to construct a list of tokens per method (i.e., function). We employed two321

text mining techniques to extract text features, namely (i) the Bag of Words, and (ii) the322

Sequences of tokens. Hence, we came up with a repository of all methods’ source code,323

a CSV file containing the software metrics that Ferenc et al. [12] extracted, the sequences324

of tokens of each method and the BoW format of each method. It should be noted that325

all the comments were removed and also all the numbers and the strings were replaced326

by two unique identifiers, "<numId$>" and "<strId$>" respectively, in order to increase327

the generalizability of type-specific tokens [23,24]. The methods’ code along with the328

rest of the dataset columns of the CSV constitute our updated dataset, which consists of329

12,106 JavaScript functions, from which 1,493 are vulnerable.330

Figure 3. The process of constructing the overall dataset of the proposed approaches

The final extended vulnerability dataset that contains the actual source code of331

the analyzed functions, their software metrics, and their text mining-based features332

(i.e., BoW and sequences of tokens), is made publicly available on the website with the333

supporting material of the present work (https://sites.google.com/view/vulnerability-334

prediction-data/home), along with the scripts that were utilized for extending the335

dataset (i.e., for fetching the actual source code and extracting the text mining-features).336

This will enable the replication and additional evaluation of our work, while it is also337

expected to facilitate future research endeavors, as researchers interested in the field of338

vulnerability prediction could use the dataset for building other software metric-based339

and text mining-based models, or further extend the dataset by extracting new features340

from the source code.341

4.2. Model Construction342

4.2.1. Software Metrics-based Models343

As a first step in our analysis, we tried to replicate the analysis conducted by344

Ferenc et al. [12]. This would allow us to ensure that we are comparing against reliable345

results and will also allow us to utilize the dataset correctly. For this purpose, we used346

the dataset described in the Section 4.1, utilizing only the software metrics that were347

previously computed by Ferenc et al. [12] and not the textual features extracted by us.348

https://sites.google.com/view/vulnerability-prediction-data/home
https://sites.google.com/view/vulnerability-prediction-data/home
https://sites.google.com/view/vulnerability-prediction-data/home
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We utilized scikit-learn12 and TensorFlow13 in order to develop ML models in Python.349

We trained the models listed below.350

• Decision Trees: A decision tree is a decision-making algorithm that employs a351

tree-like model of decisions and their potential consequences, such as chance event352

outcomes, resource costs, and utility. It’s one approach to show an algorithm made353

up entirely of conditional control statements.354

• Random Forest (RF): Random Forest is a classification algorithm that is built from355

several decision trees. The new instance (i.e., input vector) is provided as input356

to each one of the decision trees, which predict its class. The Random Forest then357

gathers all of the predictions generated by each of the decision trees that belong358

to the Random Forest and offers a final classification. We used a 100-tree Random359

Forest for our studies.360

• Naïve Bayes: A probabilistic classifier, the Naive Bayes classification technique is361

used. It’s based on probability models with strong independence assumptions built362

in. In most cases, independence assumptions have no effect on reality. As a result,363

they are characterized as naive.364

• Support Vector Machine (SVM): SVM is a classifier that attempts to find the best N-365

dimensional hyperplane (i.e., support vectors) for maximizing the margin between366

data points and therefore distinguishing them. To accomplish this, it aims to learn a367

nonlinear function by linearly mapping data points into a high-dimensional feature368

space.369

• K-Nearest Neighbors (KNN): The outcome of k-NN classification is a class mem-370

bership. An object is categorized by a majority vote of its neighbors, with the object371

allocated to the most common class among its k closest neighbors. If k = 1, the372

object is simply assigned to that single nearest neighbor’s class.373

• Deep Neural Network (i.e., Multi-Layer Perceptron): A multilayer perceptron374

(MLP) is a type of feed-forward artificial neural network (ANN) that has multiple375

layers of perceptrons. MLPs are frequently used in deep learning, particularly in376

the construction of Deep Neural Networks (DNNs), which are ANNs with a large377

number of hidden layers between the input and output layers. The values of some378

specific variables called hyperparameters affect the entire training process of an379

ANN, and hence of a DNN.380

Hyper-parameter tuning was performed to determine the best hyper-parameters381

values for the construction of each model. We employed the Grid-search approach [25],382

which is often used to determine the best hyper-parameters for a model by conducting383

an exhaustive search through a set of hyper-parameter values for every estimator.384

As already stated in Section 4.1, the dataset contains 1,493 vulnerable functions385

in more than 12,000 functions. Hence, it is a highly imbalanced dataset, and this fact386

could be a barrier for the prediction task. To eliminate the risk of bias to the majority387

class, we examined sampling approaches to make the training set balanced. It is worth388

noting that sampling is only used on the training set, because re-sampling on test data389

introduces bias into the results. We repeated the training and the evaluation of our390

models implementing random over-sampling until the percentage of the minority class391

instances was equal to the 50 % of the majority class samples (similarly with Ferenc et al.392

[12]). We also performed random under-sampling until the percentage of the samples of393

the majority class was equal with the ones of the 50 % of the minority class.394

The choice of independent input variables (i.e., features) is often crucial in the395

development of ML algorithms. Each extra feature adds a new dimension to the model,396

making it more complex. The "curse of dimensionality" [26], a phenomenon in which the397

model’s efficiency suffers as the number of input variables grows, can be triggered by a398

large number of input variables. Feature selection is a powerful tool for dealing with399

12 https://scikit-learn.org/stable/
13 https://www.tensorflow.org/

https://scikit-learn.org/stable/
https://www.tensorflow.org/
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the curse of dimensionality, as it minimizes both the computational cost of modeling400

and the time it takes to train. In many circumstances, feature selection can even increase401

the model’s efficacy, as irrelevant features can have a negative impact on the model’s402

performance.403

We used a method called Point-BiSerial Correlation (PBSC) [27,28] to investigate404

the statistical significance of each function-level software metric over the occurrence of405

vulnerabilities. PBSC measures the strength and direction of the relation between each406

feature and one dichotomous (i.e., binary) variable, which in this case is the existence of407

vulnerabilities. We applied the PBSC method on the feature set of our dataset, and then408

we ranked the 35 features described in Section 4.1, in accordance with their correlation.409

Subsequently we filtered out the features that had a p-value greater than 0.05, as they410

do not have a statistically significant correlation within the 95 % confidence interval411

[28]. Only six out of the 35 software metrics of the dataset were not observed to have a412

statistically significant correlation with the class attribute, and therefore they have been413

eliminated from the produced models. These six software metrics are Clone Instances,414

Lines of Duplicated Code, Comment Density, Documentation Lines of Code, Halstead Effort,415

and Halstead Time. It should be noted that during the training procedure, we gradually416

evaluated our models with fewer features without succeeding any improvement in417

the evaluation metrics, so we decided to use all the 29 features approved by the PBSC418

method.419

4.2.2. Text Mining-based Models420

In this section, we present a text mining-based approach. For this purpose, we421

used the dataset described in the Section 4.1, utilizing only the source code retrieved by422

GitHub and not the software metrics. We developed ML and DL models following two423

approaches:424

• Bag of Words (BoW)425

• Sequences of text tokens426

Bag of Words427

In the BoW approach, a set of all the words found in the source code are considered428

as features used by our predictors. Each evaluated software function is represented429

by a list of code tokens and their associated number of occurrences in the source code.430

Furthermore, prediction is performed via ML models. We applied the Random Forest431

(RF) algorithm, which appears to be the most suitable one based on the bibliography432

[10,11,29], and also a DL method called Multi-Layer Perceptron (MLP) for reasons of433

completeness. In our BoW approach, the features that will constitute the input of the434

RF and MLP models are the tokens (i.e., words) that appear in the source code. More435

specifically, firstly, we create the vocabulary of our analysis, which actually is a list of436

all the tokens found in our dataset. Subsequently, we assign to each function of the437

dataset the number of occurrences of each token in the specific function. Hence, a table is438

formatted, having as lines the functions and as columns the vocabulary list. Every token439

that does not appear in a function gets the zero value for the specific function. A subset440

of a BoW dataset can be seen in Table 2. The columns of Table 2 represent some tokens441

of our vocabulary, while lines of Table 2 represent the name of the files in the dataset.442

For instance, the file initFileServer contains seventeen instances of the token ‘null’, zero443

instances of the token ‘this’, nine instances of the token ‘function’, and four instances of444

the token ‘push’.445
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Table 2. A BoW subset of the dataset

Function Name null this function push

initFileServer 17 0 9 4
api.sendFile 0 0 1 0

<anonymous>.followFileToServe 2 0 3 0
<anonymous>.sendFile 6 0 3 3

The dataset consists of 12,942 unique tokens (i.e, a vocabulary of 12,942 tokens).446

The average occurrence of a token is about 1,023 times. The most common term is447

’a’, with 1,159,023 occurrences, while there are several terms, such as ’userConfig’ and448

’invalidJson’, which appear only once.449

Sequences of Text Tokens450

In the approach of sequential text tokens, each software function represents a token451

sequence. Each sequence includes the token in the order they appear in the source code.452

We feed the ML model with these sequences of tokens representing each token with453

a vector, which is called embedding. These embedding vector representations can be454

generated by several ways (see Section 2.1). In this case, the dataset’s sequences serve as455

the corpus for the training of the embedding vectors. We examined two sophisticated456

algorithms, namely word2vec and fastText, which are capable of capturing syntactic and457

semantic relationships between code tokens and placing these tokens in the vector space458

by considering their syntactic and semantic similarity. After training these embedding459

vectors for the vocabulary words, they can be saved for future usage, which saves time460

throughout the training process.461

For each dataset’s function, we define a sequence of tokens and then these tokens462

correspond to a unique integer. Each integer is transformed to an embedding vector463

using a sophisticated algorithm such as word2vec. Hence, the dataset is transformed to464

a list of sequences of embeddings and these embeddings serve as the numerical input to465

the ML model. The embedding vectors are fed into the Embedding Layer of the neural466

network (CNN) and finally the output layer classifies the functions as vulnerable or not,467

providing also the sigmoid output that indicates the confidence of the model for every468

prediction. An overview of the whole process is illustrated in Figure 4.469

Figure 4. The overview of the sequences of text tokens approach

As regards to the designing of the model, a DL model was preferred and specifically470

the Convolutional Neural Network (CNN) that according with the experiments in [30]471

proved to be the most efficient and the least time intensive among the DL algorithms472

that can manage sequential data (i.e., LSTMs, GRUs, BiLSTMs). The CNN’s hyper-473

parameters were selected through extensive tuning using the Grid-search method [25]474

and can be found in Table 3.475
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Table 3. The chosen Hyper-parameters of the CNN model

Hyper-parameter Name Hyper-parameter Value

Number of Layers 3 (Embedding - Convolutional - Dense)
Number of Convolutional Layers 1 (1D CNN)
Embedding Size 300
Number of Filters 128
Kernel Size 5
Pooling Global Max Pooling
Weight Initialization Technique Glorot Uniform (Xavier)
Learning Rate 0.01
Gradient Descent Optimizer Adam
Batch Size 64
Activation Function Relu
Output Activation Function Sigmoid
Loss Function Binary cross entropy
Maximum Epochs 100
Early Stopping Patience 10
Monitoring Metric Recall

4.3. Combination of Software Metrics and Text Mining-based Models476

As already said, one interesting research question to examine is whether the combi-477

nation of software metrics and text features can lead to vulnerability prediction models478

with better predictive performance compared to models that focus solely on software479

metrics or text features (RQ2). To this end, in this section, we present the methodology480

of combining software metrics and text features in order to predict vulnerable software481

components. We attempted to design combined models by four different ways:482

1. Combine software metrics with BoW features. In this approach, the occurrences483

of each token in any function are considered as additional features to the code484

metrics of the corresponding function.485

2. Combine software metrics with token sequences. For this purpose, we utilized486

the Keras functional API14, which allows us to combine different kinds of input in487

different layers.488

3. Apply a Majority Voting approach. For each instance, the output of the text489

mining-based model (either BoW or sequences) was compared with the output of490

the software metrics-based model, and the output with the biggest probability was491

qualified.492

4. Apply a Stacking ensemble method. The predicted probabilities of both the493

software metrics-based models and the two text mining-based models were used494

as input for another estimator called meta-classifier, as can be seen in Figure 8 that495

is described in the section 5.2.2.496

5. Results & Discussion497

The results of our analysis and the results of the experiments are presented in this
section. All the experiments with neural networks were carried out on an NVIDIA
GeForce GTX 1660 GPU running on the CUDA platform15. For the ML models training,
we used an i5-9600K CPU at 3.70 GHz with 16 GB RAM. For the evaluation of the models,
10-fold Cross-Validation (CV) was performed. During a 10-fold CV, the overall training
dataset is divided into 10 parts, from which the 9 constitute the training set and the left
one constitutes the validation test. At the end of each training process, we evaluated our
models based on the prediction on the validation set. In VP, the most important goal is
to identify as many vulnerable software components as possible, so the Recall should be
as high as possible. On the other hand, it is essential to reduce the number of FP and

14 https://keras.io/guides/functional_api/
15 https://developer.nvidia.com/cuda-toolkit

https://keras.io/guides/functional_api/
https://developer.nvidia.com/cuda-toolkit
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consequently to increase the Precision in order to make the model usable in practice. The
F2-score is a weighted average of Precision and Recall, with Recall being more important
than Precision. Hence, we have put particular focus on the F2-score. F2-score is equal to:

F2 =
5 × precision × recall
4 × precision + recall

(1)

5.1. Comparison between Text Mining-based and Software Metrics-based Vulnerability498

Prediction Models499

In this section, we focus on the first Research Question (RQ1) and we compare the500

utilization of software metrics and text features in Vulnerability Prediction. We present501

the results of our analysis and we discuss the results of each approach.502

5.1.1. Software Metrics Evaluation503

As already stated, the first step of our experimental analysis is the replication of504

the work provided by Ferenc et al.[12]. Table 4 reports the evaluation results of the ML505

models that were built based on the software metrics that Ferenc et al.[12] statically506

extracted from the source code. This table sums up the results of six different algorithms507

regarding their accuracy, precision, recall, F1-score and F2-score with the latest to be the508

most critical for the vulnerability prediction case.509

Table 4. Evaluation results of software metrics based models

Evaluation Metric KNN RF Decision Trees SVM Naive Bayes ANN

Accuracy (%) 93.10 95.16 93.19 94.34 84.40 91.72
Precision (%) 72.85 90.42 73.10 94.62 23.75 73.65
Recall (%) 70.60 68.05 71.07 57.40 12.06 54.06
F1-score (%) 71.66 77.62 72.04 71.43 15.92 61.24
F2-score (%) 71.01 71.58 71.45 62.29 13.35 56.62

Table 5 presents the results produced by Ferenc et al [12] as regarding the F1-score.510

Table 5. Evaluation results of software metrics-based models according to Ferenc et al.

Evaluation Metric KNN RF Decision Trees SVM Naive Bayes ANN

F1-score (%) 76 71 72 67 15 71

By comparing the results reported in Table 4 and Table 5, one can identify the511

convergence in the F1-score between our analysis and Ferenc et al. evaluation. In both512

cases, F-measures of Decision Trees are 72 %, SVMs are close to 70 %, both Naïve Bayes513

scores are 15 %, and although Neural Network, KNN, and RF approaches have slight514

differences, they are close enough and most importantly, the best model produced F1-515

score close is equal to 77.62 % in our case and 76 % in their case. Hence, we can conclude516

that the software metrics-based approach using different ML models catches maximum517

value close to 78 % with this dataset. It should be noted that none of the over/under518

sampling techniques that we attempted managed to provide any benefit.519

The above analysis indicates that the adoption of software metrics may be a promis-520

ing solution for conducting vulnerability prediction, as in all cases the F2-score was521

found to be above 70 %. In our analysis, it seems that the Random Forest with 100 trees is522

the best approach, as apart from the relatively high F1 and F2 scores it also demonstrates523

high Precision (above 90 %). This indicates that the model treats the problem of the524

many False Positives sufficiently, dealing with a well-known problem in the literature525

that hinders the practicality of the produced models. More specifically, low values of526

precision indicate that the model produces a large number of False Positives, which527

means that the developer would have to focus on components (e.g., functions) that are528
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marked as vulnerable by the model but are in fact clean. In addition to this, the developer529

would also have to triage a large number of actually clean functions in order to spot530

a vulnerable one. This obviously leads to a waste of valuable resources, expressed in531

terms of time and effort required to spend in order to spot a vulnerability.532

5.1.2. Text Mining Evaluation533

Subsequently, we trained and evaluated through 10-fold CV our proposed text534

mining based models. As regard the BoW method, the results both the prevailing535

Random Forest (RF) with 100 trees and the Multi-Layer Perceptron (MLP) models are536

reported in the Table 6:537

Table 6. Evaluation results of BoW models

Evaluation Metric RF MLP

Accuracy (%) 96.64 94.13
Precision (%) 93.16 77.82
Recall (%) 78.57 82.65
F1-score (%) 85.20 79.03
F2-score (%) 81.08 80.76

From Table 4 and Table 6, it is clear that text mining is very beneficial to the538

VP task. Best BoW model succeeds almost 8 % and 10 % higher F1-score and F2-539

score respectively, in contrast with the software metrics approach, which constitutes a540

significant improvement. Moreover, the RF model seems to be a slightly better option541

than the MLP, since it overcomes MLP in both F1 and F2 scores. This is in line with the542

majority of the research work in the field of vulnerability prediction utilizing BoW, in543

which also Random Forest was found to be the best model [10,29].544

In Table 7, the evaluation metrics of the sequences of tokens-based models are545

presented:546

Table 7. Evaluation results of models that are based on sequences of tokens

Evaluation Metric CNN with Word2Vec Embeddings CNN with FastText Embeddings

Accuracy (%) 96.48 92.94
Precision (%) 86.12 66.64
Recall (%) 85.60 88.08
F1-score (%) 85.73 75.66
F2-score (%) 85.62 82.58

Based on Table 7, we could argue that the employment of DL to predict vulner-547

abilities, specifically using Convolutional Neural Networks (CNN), can constitute a548

promising method. We examined two different embedding methods, namely word2vec549

and FastText16 algorithms. The results obtained show that the model built utilizing550

embedding vectors trained with word2vec are better in vulnerability prediction with551

respect to their F1-score and F2-score, compared to the model built utilizing embedding552

vectors that were trained with the FastText algorithm.553

In comparison with the software metrics approach, it can be seen that the sequence-554

based CNN models outperform the software metrics-based models. In particular, the555

best CNN model (as can be seen by Table 7) achieves an F1-score of 85.73 % and an556

F2-score of 85.62 %, which is 8 % and 14 % higher than the F1-score and F2-score re-557

spectively of the best software metrics-based model reported in Table 4. In comparison558

with the BoW approach (see Table 6), the sequence-based models still demonstrate better559

16 https://radimrehurek.com/gensim/models/fasttext.html

https://radimrehurek.com/gensim/models/fasttext.html
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predictive performance; however, the difference in the performance is much smaller com-560

pared to the metrics-based models, at least with respect to their F1-score and F2-score.561

This could be expected by the fact that those approaches are similar in nature (i.e., they562

are both text mining approaches), and their difference lies in the way how the text tokens563

are represented. In fact, the improvement that the sequence-based models introduce is564

that instead of taking as input the occurrences of the tokens in the code, they take as565

input their sequence inside the source code, potentially allowing them to detect more566

complex code patterns, and, thus, this improvement in the predictive performance could567

be attributed to those complex patterns. In general, from the above analysis one can568

notice that text mining-based models (either based on BoW or on the sequences of tokens)569

provide better results in vulnerability prediction than the software metrics-based models.570

571

Answer for RQ1: Text mining-based and software metrics-based models
demonstrate sufficient performance in predicting the existence of vulnera-
bilities in software functions. However, text mining-based models outperform
software metrics-based models in vulnerability prediction.

572

5.2. Combination of Text Mining and Software Metrics in Vulnerability Prediction573

In this section we focus on the second Research Question (RQ2) and we examine574

whether the combination of software metrics and text features in a unified model could575

lead to better predictive performance compared to the individual models focusing on a576

certain type of features that we have examined so far. A positive answer to this question577

would indicate that existing text mining-based vulnerability prediction models could578

benefit from the complementary utilization of selected software metrics. As already579

stated, we follow two broader approaches: (i) we attempt to combine text features and580

software metrics into a unified model, and (ii) we attempt to combine individual text581

mining-based and software metrics-based models through ensemble learning.582

5.2.1. Combining Text Mining Features and Software Metrics into a Unified Model583

In this section, we attempt to combine the two aforementioned vulnerability indica-584

tors (i.e., code metrics and text features) into a unified model. Firstly, we combined the585

software metrics and the text mining technique called BoW, in order to build a model that586

combines both types of features to generate its decision. This process requires a simple587

concatenation of the software metrics with the BoW’s text tokens for each function of588

the dataset, and utilization of the concatenated set of features to build the model. We589

used the RF algorithm as predictor for the combined model, as it proved to be the most590

trusted one for each one of the individual approaches. An overview of this approach591

can be found in Figure 5.592

Figure 5. The overview of the approach combining BoW and software metrics

Subsequently, we attempted to combine the software metrics with our second text593

mining technique that uses sequences of tokens. For this purpose, we utilized the Keras594
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Functional API17, which provides the capability of designing models with different595

inputs and outputs. Using this API, we managed to use a CNN layer along with an596

embedding layer in order to extract features from the sequences of tokens, then to597

concatenate the extracted features with the software metrics, and finally to add one598

feed-forward layer to receive the concatenated set of features. An overview of this599

method is illustrated in Figure 6. Table 8 reports the related results.600

Figure 6. The overview of the approach combining sequences of tokens and software metrics

Table 8. Combination of text mining and software metrics

Evaluation Metric Software Metrics and BoW Software Metrics and Token Sequences

Accuracy (%) 96.32 72.88
Precision (%) 93.55 30.57
Recall (%) 75.35 68.68
F1-score (%) 83.43 40.84
F2-score (%) 78.38 52.85

As can be seen in Table 8, no improvement in the predictive performance (compared601

to the performance of the best model presented in Section 5.1.2) is observed from the602

combination of these features. Actually, in the case of software metrics and token603

sequences combined, the performance is very poor, and this is why we resorted to the604

approach of ensemble learning (see Section 2.2).605

5.2.2. Combining Different Models with Ensemble Learning606

As already stated in Section 4.3, we also applied two ensemble learning techniques,607

namely the voting and the stacking. By employing ensemble classifiers, we aim to608

reduce the error of the individual classifiers by counterbalancing their predictions. As609

regards the voting, we adopted the soft voting18 technique. In a soft voting ensemble,610

the predicted probabilities for class labels are added up and the class label with the611

highest sum probability is predicted. Hence, for each function, from the two applied612

models’ (i.e., text mining and software metrics-based) predictions the one with the higher613

probability is qualified (see Figure 7). Table 9 summarizes the outcome of this approach.614

17 https://keras.io/guides/functional_api/
18 https://machinelearningmastery.com/voting-ensembles-with-python/

https://keras.io/guides/functional_api/
https://machinelearningmastery.com/voting-ensembles-with-python/
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Figure 7. The overview of the voting approach between text mining and software metrics

Table 9. Voting classification between text mining and software metrics based models

Evaluation Metric Voting - Soft. Metrics and BoW Voting - Soft. Metrics and Tokens

Accuracy (%) 96.23 95.93
Precision (%) 94.54 88.42
Recall (%) 73.75 77.09
F1-score (%) 82.81 82.32
F2-score (%) 77.11 79.09

However, similarly to the previous experiment, voting does not improve the evalu-615

ation metrics. It seems that, in this specific dataset, the software metrics-based classifier616

cannot identify a relevant number of vulnerabilities which are not specified by the text617

mining model. We reached the same conclusion after applying the stacking classifier.618

We repeatedly trained four classifiers in nine folds of the dataset, two of them619

are based on software metrics (SVM, RF), and two are based on text mining (i.e., BoW,620

sequences of tokens). Then we made predictions with each classifier, and we saved the621

predicted probabilities. These probabilities constituted the input of the meta-classifier.622

We selected RF as a meta-classifier algorithm, based on experiments. This meta-classifier623

was trained on the output of the first ones, and it was evaluated in a second CV loop.624

Figure 8 illustrates the overview of this approach, while Table 10 presents the produced625

results.626

Figure 8. The overview of the stacking approach between text mining and software metrics
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Table 10. Stacking classifier evaluation

Evaluation Metric Stacking - Software Metrics and Text Mining

Accuracy (%) 96.78
Precision (%) 90.75
Recall (%) 82.31
F1-score (%) 86.29
F2-score (%) 83.86

Although this approach provided better results compared to the combination of627

features and the voting that are presented in Table 8 and Table 9 respectively, it still628

reaches 2 % lower F2-score than the higher F2-score reached when using text-mining629

based CNN with word2vec embeddings (i.e., 85.62 %). In simple words, the combination630

of statically extracted code metrics and text features (either BoW or sequences of tokens)631

did not manage to surpass the text mining approach, at least on this specific dataset.632

The fact that the ensemble learning classifiers did not produce better results leads to the633

conclusion that almost all the right predictions of the software metrics-based models634

are included in the right decisions of the text mining-based model and so, there are no635

errors to be compensated.636

637

Answer for RQ2: The combination of software metrics and text features led
to vulnerability prediction models with sufficient predictive performance.
However, the produced models did not provide better results than the models
that are based solely on text features. This suggests that, at least for the
given dataset, text mining-based models, and especially those built using
word embedding vectors, constitute the most accurate approach, compared to
software metrics-based models and models that combine software metrics and
text features.

638

6. Conclusions639

In the present paper, we evaluated the predictive performance of text mining-640

based and software metric-based vulnerability prediction models. We also examined641

whether the combination of software metrics and text features could lead to better642

vulnerability prediction models, as opposed to models built solely on text mining643

features or software metrics. More specifically, for the purposes of the present study, we644

utilized and extended a vulnerability dataset constructed by Ferenc et al [12], labeled645

with vulnerabilities in function level, in order to investigate mainly, whether the adoption646

of text mining surpasses the software metrics approach (adopted by Ferenc et al. [12])647

and subsequently, whether the combination of these kinds of features could be proved648

beneficial. We evaluated our approach using 10-fold cross validation focusing chiefly on649

the F2-score. Our analysis led to the conclusion that text mining is an effective solution650

for vulnerability prediction, while it is superior to software metrics utilization. More651

specifically, both Bag of Words and token sequences approaches provided better results652

than the software metrics-based models. Another interesting observation that was made653

by our analysis is that the combination of software metrics with text features did not lead654

to more accurate vulnerability prediction models. Although their predictive performance655

was found to be sufficient, it did not manage to surpass the predictive performance of the656

already strong text mining-based vulnerability prediction models. In particular, neither657

the simple concatenation nor the more sophisticated ensemble learning techniques (i.e.,658

voting, stacking) managed to surpass the text mining-based models, and especially those659

built using sequences of word embedding vectors.660

Several directions for future work can be identified. Firstly, since there is always the661

threat of generalizability, the present analysis needs to be repeated in the future, utilizing662

different datasets preferably of different programming languages, in order to investigate663

whether this observation is general or holds only for a specific language or dataset.664
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Different DL architectures may also prove to be beneficial to our attempt to capture665

patterns in the source code that are indicative of vulnerability existence. Additional666

software metrics or textual features could be also examined.667
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