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Abstract—During software maintenance, it is often costlier to identify and understand the artifacts that need to
be changed, rather than to actually apply the change. In addition to identifying the artifacts related to the change
per se, one needs also to identify the artifacts that are changed due to ripple effects. In this paper, we focus on
ripple effects and propose a metric for assessing the probability of one requirement to be affected by a change in
another requirement (i.e., requirements ripple effect). We focus on the requirements level, since most mainte-
nance tickets (that stem from the customer) are captured in natural language and therefore are more naturally
mapped to requirements, rather than source code. The proposed metric—the Requirements Ripple Effect Meas-
ure (R2EM)—is calculated by considering the conceptual overlap between the involved requirements (through
their past co-change), the parts of the code in which they are implemented (i.e., their overlapping implementa-
tions), and the underlying dependencies of the source code (i.e., ripple effects between classes). We note that
despite the involvement of source code artifacts in the calculation of R2EM, this metric is considered as a re-
quirements’ level one, since the unit of analysis is pairs of software requirements. To validate the proposed met-
ric, we conducted an industrial case study, on two enterprise applications of an SME. The study design involved
both quantitative and qualitative data, and input was given by 9 practitioners. The results suggested that R2EM
is able to identify ripple effects between requirements at a satisfactory level, and those effects are mostly caused
by overlapping implementations and source code ripple effects of these implementations.
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1. Introduction

During software maintenance, one of the most challenging activities, is to identify the software artifacts (e.g.,
requirements, design, source code, etc.) that need to be maintained (Queille et al. 1994). This identification pro-
cess typically involves two steps:

o Identifying directly affected artifacts. The maintenance ticket (e.g., a bug report, a feature request, etc.) is
examined, in order to infer the affected artifacts, such as the requirement, the design artifact, and eventually
the source code modules that need to be updated.

o Identifying indirectly affected artifacts. Due to structural or conceptual reasons, a change in a software
artifact might emit changes to other (seemingly disconnected) artifacts, in a form of ripple effect. Such rip-
ple effects are typically studied through Change Impact Analysis (CIA) (Kretsou et al., 2021). The im-
portance of the ripple effect phenomenon, as a factor that increases maintenance costs is highlighted by Ga-
lorath (2008) and Chen and Huang (2009), who suggest that maintenance costs increase by up to 75% if the
software has a high risk of ripple effects.

In this paper we focus on ripple effects (and the corresponding change impact analysis) at the requirements lev-
el, so that we can identify which requirements might be affected by a maintenance ticket pertaining to another
requirement. According to Antoniol et al. (2000), maintenance activities, which are initiated by end-users are
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usually specified in natural language. Therefore, it is easier to map these maintenance tickets to requirements,
rather than other artifacts (Antoniol et al. 2000).

Our goal is to propose a metric (see Section 3) termed Requirements Ripple Effect Metric (R2ZEM) for as-
sessing the probability of requirements ripple effects—i.e., the probability of one requirement to change, due to
a change in another requirement. Calculating R2EM for all pairs of requirements can be useful in practice, since
it can save maintenance time: practitioners will need less time to identify which source code artifacts will po-
tentially need to be updated, re-tested, and re-deployed, due to their relation to the affected requirements. More
specifically, when a certain requirement is updated, R2EM can be consulted to identify requirements that might
need to be updated as well. Next, following traces from requirements-to-code, a list of source code artifacts can
be identified that might need to be changed as well. This results in a more precise maintenance activity rather
than intuitively looking for potentially affected artifacts, which could be assisted by regression testing—
identifying parts of the code “that break”.

The validity of the proposed metric is evaluated in an industrial setting, involving two medium-size systems, by
considering expert opinions (i.e., quality managers and developers). In the case study, we first analyse the two
systems and calculate R2EM for all pairs of requirements. At the same time, we ask practitioners to rank the
requirements that are prone to be affected by a change in another requirement. Subsequently, we explore if the
ranking based on R2EM and the participants’ expert opinion are consistent. The organization of the rest of the
paper is as follows: In Section 2 we present related work, whereas in Section 3 we present in detail the proposed
metric. In Section 4, we discuss the industrial case study design, whereas in Section 5 we present the results of
the study. Next, in Section 6 we discuss the main findings, and in Section 7 the threats to validity. Finally, in
Section 8 we conclude the paper.

2. Related Work

In this section, we present studies related to change impact analysis at the requirements levels. We note that de-
spite the fact that the proposed approach relies on requirements-to-code traceability, the proposed approach is
not itself a traceability approach. Therefore, in this section we do not discuss studies related to software artifact
traceability. The interested reader can refer to secondary studies on software artifact traceability (Charalampidou
et al., 2020).

Nejati et al. (2016) presented an approach to automatically identify the impact of requirements changes on sys-
tem design using Systems Modelling Language (SysML) models. The approach has two main steps: for a given
change, the method gets a set of estimated impacted model elements, by identifying the design elements (inter-
block structural relations) that are reachable from the changed requirement, and then, they rank the resulting set
of elements according to a quantitative measure obtained using Natural Language Processing (NLP) techniques.
Moreover, the measure is computed, by applying NLP to the textual information of the elements. To validate the
approach, the authors have performed an industrial case study for evaluation purposes. The results suggest that
(by using the approach) software engineers need to inspect on average only 4.8% of the entire design to identify
the actually-impacted elements. The main difference of this work compared to our study is that this work focus-
es on the identification of the impact of requirements changes to system design, whereas in our study we per-
form change impact analysis from the requirements to the source-code level.

Goknil et al. (2014) proposed an approach for change impact analysis in requirements models. The approach
uses formal semantics of requirements relations (e.g., requires, refines, etc.) and requirements change types
(e.g., add, update, delete, etc.). The basis of this work was provided in a previous study, by the same group
(Goknil et al. 2008). For example, when comes a request to “delete the R1”, there are 4 cases: (a) R1 contains
R2 and R3; (b) R1 refines R2; (¢) R1 requires R2; and (d) R1 conflicts R2. Additionally, the authors extended
their tool namely TRIC with features for change impact analysis at requirements level (i.e., proposing and prop-



agating changes, displaying inconsistent proposed changes, implementing proposed changes in the requirements
model, and predicting the impact of proposed changes). More specifically, the tool automatically determines the
change propagation paths, checks the consistency of the changes, and suggests alternatives for implementing the
changes. The authors illustrated their approach and their tool with a Course Management System example. The
results of the study suggest that none of the industrial requirements management tools support change impact
alternatives and consistency checking of changes. Additionally, Goknil et al. (2014) determined some of the
false positive impacts that usually occur in the industrial tools, by providing change alternatives with impact
prediction. The main differences compared to our study is that this work focuses only at the requirements level
using formal semantics, without taking into account the change history of the requirement and other elements,
such as source code or design elements.

Conejero et al. (2012) investigated the relations between crosscutting concerns and requirements maintainabil-
ity. In particular, the authors studied the correlation between crosscutting properties and requirements changea-
bility and stability; stability is defined as the quality attribute that refers to the extent to which a software system
is resistant to change (ISO/IEC 9126-1 2001). As a proxy of requirements stability, the authors have used the
number of times, in which a requirement has changed along the history of the system. The authors performed an
empirical study in order to identify the relation between modularity properties (namely tangling, scattering and
crosscutting) and maintainability quality attributes at the requirements level using three software product lines.
The results of the study suggest that the presence of crosscutting properties negatively affects to changeability
and stability at requirements level. Although the proposed metric is able to measure change proneness of a re-
quirement, it is considered an after-the-fact measurement.

Arora et al. (2015) suggested an approach based on NLP for analysing the impact of change in Natural Lan-
guage requirements. More specifically, the approach detects the phrases in the requirements statements, extracts
the tokens of these phrases, and computes similarity scores for the extracted tokens. To enable phrase-level
analysis of changes, they cast these change operations as additions and deletions of phrases. Next, they calculate
for every requirements statement, a normalized matching score given a propagation condition. The matching
score is computed bottom-up, from atomic to composite expressions. The authors have implemented their ap-
proach in a prototype tool, namely NARCIA (NAtural language Requirements Change Impact Analyser). The
evaluation of this approach has performed in two industrial case studies using 14 change scenarios. The results
of this study suggest that across the change scenarios in their case studies, the author could detect 99% (105 /
106) of the impacted requirements through phrasal analysis. The difference of this study, compared to ours, is
that this study focuses only on CIA in natural language requirements specifications.

Furthermore, Rahman et al. (2014), investigated the reasons (risk factors as mentioned in the paper), that can
lead to requirements change. In order to identify the risk factors, the authors performed both theoretical and
practical approaches. Regarding theoretical, the authors reviewed of previous studies in the literature, whereas
regarding empirical, they performed a focus group interview with 7 practitioners from software industry. The
results of the study suggested that changes can arise due to people, processes, product internal changes, and
hardware infrastructure. The difference of this study to ours is that in our work, we go one step further than
Rahman et al., since we do not only explore the factors that can lead to changes, but also quantify them.

Hassine et al. (2005) provided a change impact analysis approach for requirements using use case (UC) maps.
Use Case Maps (UCMs) (Dahlstedt and Persson 2005) have been introduced to capture and integrate functional
requirements in terms of causal scenarios representing behavioral aspects at a higher level of abstraction,
providing stakeholders with guidance and reasoning about the system-wide functionalities and behaviour. The
aim of this study is to present an approach that applies both scenario and component-based dependency analysis
techniques and the UCM forward slicing approach to identify change impacts at the requirement level. Depend-
encies between UC scenarios are used to identify the impacted scenarios. The authors performed a case study on



a telephony system to illustrate the applicability of their approach. The main difference of this approach to ours
is that Hassine et al. (2005) focuses only on requirements (ignoring relations at other levels), as well as, it as-
sumes the existence of UCMSs in existing software systems.

Compared to the related work presented in this section, the current study is the first one which: (a) quantifies
ripple effects among requirements, and assesses the probability of those effects to occur through a metric that
relies on both source code and requirements history; (b) receives a simple input that is usually existent in prac-
tice (i.e., Git repository and commit comments), without relying on sparse inputs (such as UCMs); and (c) uses
industrial experts’ opinion for validating the results.

3. Requirements Ripple Effect Metric (R2EM)
3.1 Requirements Ripple Effect Metric (R2EM)

In our earlier work (Ampatzoglou et al. 2015; Arvanitou et al. 2015; Arvanitou et al. 2017a; Arvanitou et al.
2017b) we proposed a common high-level approach for performing CIA, by calculating the probability of an
artifact to change due to ripple effects. To calculate the probability of one artifact to change due to a ripple ef-
fect, we use the joint probability formula, since two events need to co-occur: (2) the artifact that emits the ripple
effect needs to change; and (b) the change actually ripples to the affected artifact, since the ripple effect is a
probabilistic event itself. Next, we describe how the probability of the two aforementioned events to occur can
be calculated at the requirements level.

Probability of a Requirement to Change (i.e., Trigger for a possible ripple effect). To make this assessment,
we exploit the version control history of the project. In particular, we reuse the metric proposed by Conejero et
al. (2012), which calculates the Percentage of Commits in which a specific Requirement has Changed (PCRC).
We calculate the metric at commit level, i.e., we compute the percentage of commits, in which a specific re-
quirement has changed. To be able to calculate this metric, a detailed commit message is required that allows
tracking the requirement(s) that are being affected. We note, that for this mapping we are not using the commit-
ted code, but we only rely on the commit message. Thus, we assume that the process of the organization that
uses the metric, imposes that developers commit a message that explicitly states the affected requirements or the
issue (e.g., when using an issue tracking system) that has initiated the commit. Commit messages have been
widely used in research as accurate descriptors of changes occurred in the software: according to Spinellis et al.
(2009) in FreeBSD, all commit messages provide a reference to the id of the change request, whereas Buse and
Weimer (2010) suggested that approximately 66% of commit messages are informative enough to understand
the change in the requirement.

Probability of the Ripple Effect to Occur. The assessment of probability to change due to ripple effect depends
on the strength of the dependency between the requirements. Therefore, the first step for assessing this probabil-
ity is to build a catalogue (although not exhaustive) of the kinds of dependencies between requirements that are
able to emit ripple effects’. Along with the presentation of each kind of dependency, we also describe the metric
for assessing the probability that this dependency will generate a ripple effect P(Y|X), through an exemplar sys-
tem that is visually represented in Figure 1. The example system concerns the management of students and
courses in a university. For simplicity, we consider that the system is object-oriented (in a different case, classes
could have been substituted with files), and that high-level requirements are formed based on groups of re-
quirements that work on the same entity. Also, we consider two main entities, namely Student and Course, while
the course grade is considered as an attribute of a student for a specific course.

Conceptual Dependencies between Requirements. According to Dahlstedt and Persson (2005) two requirements
are related in situations where one requirement is similar to or overlapping with another in terms of how it is

1 We note that we cannot claim that this list is exhaustive. However, we have not identified any other type of dependency from the case
study. Nevertheless, other types of dependencies may exist, so we have added a relevant threat to validity.
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expressed or in terms of a similar underlying idea of what the system should be able to perform. Additionally,
Zhang et al. (2014) suggest that requirements dealing with the same data, are highly prone to ripple effects. In
particular, Zhang et al. (2014) validated with industrial stakeholders that if the data is to be changed, all similar
functions may be changed too. In our example, the requirements Create Student and Edit Student,
are highly likely to produce a ripple effect, since they are both related to the Student entity. Therefore, if the
email address of the Student needs to be validated (e.g., includes the ‘@’ symbol and a dot) in a future ver-
sion of the system, the implementation of both requirements will need to be co-maintained, so as to ensure the
correctness of the validation. The probability of this dependency to produce a ripple effect is assessed through
the Probability to change due to Conceptually Overlapping requirements (PCO) metric. PCOy-»x is assessed
by using the percentage of past commits, in which the two requirements (Y and X) have co-changed.
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Figure 1. Example System for the External Probability to Change

Dependencies between Implementations of Requirements. This category emerged based on several approaches
that link requirements and implementation (Ali et al. 2013). For example, Kagdi et al. (2009) suggest that if two
or more source code artifacts (e.g., files) tend to co-change for a long time in the history of the project, they are
highly probable to be conceptually related, e.g., they belong to the same requirement. This category is decom-
posed into two sub-categories:

o Dependencies due to Overlap in Requirements Implementations. The source code implementation of two or
more requirements includes a set of common artifacts (e.g., classes, files, etc.). For example, considering
Class—Responsibility—Collaboration (CRC) cards (Beck and Cunningham 1989; Fowler 2003), all pairs of
responsibilities that are noted in the same CRC have an overlapping implementation in the specific class. By
focusing on the example, even though the requirements Add Grade and Assigning Professor to
a Course, are part of different high-level requirements (Student and Course Management, respec-
tively) they are probably sharing at least one common implementation (e.g., the Course class). Thus, when
changing the Course class, the implementation of both requirements might have to be maintained. The
probability of this dependency to produce ripple effect is assessed through the Probability to change due to



Overlapping requirements Implementations (POI) metric. This probability (POly-x) is assessed by the per-
centage of shared classes in the implementation of Y and X requirements. To guarantee the independence of
PCO and POI, we omit from this calculation the commits that two or more requirements are co-changing.

Dependencies due to Source Code Ripple Effects of Requirements Implementations. The classes that implement
a specific requirement might emit changes, due to structural dependencies to classes implementing other re-
quirements. Based on the example of Figure 1, although some requirements might not have overlapping imple-
mentations, the classes in which they are implemented, might be structurally dependent (e.g., class Course
holds an array of Student objects, so as to be aware of which students are enrolled in it). In this case, a change
in class student can potentially emit changes to Course, for example if the signature of the method that
fetches the list of students that have to re-sit the course exam. Therefore, if the implementation of any of the
Student Management requirements changes, then also the implementations of the Course Manage-
ment requirements need re-maintaining. The probability of ripple effect based on this dependency is assessed
through the Probability to change due to Ripple Effects at the source code level (PRE). This probability
(PREy->x) is assessed by using the union probability of all classes implementing Y to ripple changes to classes
that are involved in the implementation of X, through source code dependencies. For assessing the probabil-
ity of a single dependency to produce a source-code ripple effect, we use the Ripple Effect Metric (REM)
(Arvanitou et al. 2017a). In particular, we examine all pairs of classes that are not considered in the PCO calcu-
lation (guaranteeing the independence of PCO and PRE), and investigate if they are structurally dependent. The
calculation of REM is as follows:

NDMC(A~B)+NOP(B)+NPTA(B) 4 PCCC(A)

REM@-s) = NOM(B)+NA(B)

NDMC: Number of distinct methods’ calls from class A to class B
NOP: Number of polymorphic methods in class B

NPrA: Number of protected attributes in class B

NOM: Number of methods in class B

NA: Number of attributes in class B

PCCC: Percentage of commits in which class a has changed?

Upon the calculation of the aforementioned probabilities, R2ZEM can be calculated as described below:

R2EM = Joint Probability {PCRC, Union Probability {PCO, POI, PRE}}

3.2 llustrative Example

To illustrate the calculation of R2EM, we consider a system with 3 requirements (R1, R2, and R3) that are im-
plemented in 10 classes, throughout a version history of 10 commits (as presented in Table 1). We illustrate the
calculation of R2EM for the pair R1->R2, i.e., the probability of R2 to change, due to changes in R1. The PCRC
for R1 equals 20% (i.e., the possible trigger for a ripple effect), since R1 changes in 2 (out of 10) commits.

Table 1. llustrative Example Commit History

Changed
Commit Requirements Classes
1 R1 C1,C2,C3
2 R2 C3,C4,C6
3 R3 C6, C7
4 R2, R3 C3,C8

2 We note that for REM, we refer to the frequency of past changes through PCCC, whereas for R2EM through PCRC
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Changed

Commit Requirements Classes
5 R3 C6, C8, C9
6 R1, R2 C1,C3
7 R2 C3,C5
8 R3 C6, C8, C10
9 R2, R3 C4, C5, C10
10 R3 C10

Based on the above, the probability of R2 to change due to conceptual overlap with R1 (PCOr1»r2) is 10%—1
out of 10 commits. From Table 1, we can observe that the two requirements co-change only in commit #6 (i.e.,
they exist in the same row in the second column).

To calculate the probability of R2 to change due to overlapping implementation with R1 (POlr1»r2), first each
requirement should be mapped to the classes in which it is implemented: ImplementationSetr1 = {C1, C2, C3}
and ImplementationSetrz = {C3, C4, C5, C6}. Thus, POlri>rz is 33% since the implementation set has one
common class (C3), and the requirement R1 that emits the change is implemented in three classes.

To calculate the probability of R2 to change due to ripple effects at classes implementing R1 (PRERr1»rz2), We
first need to calculate REM (Arvanitou et al. 2017a) at the class level. The illustrative (they cannot be deducted
from the class diagram—see Figure 2) metrics for each class are presented in Table 2. Each row of the table
represents one class (the one that emits the change), whereas the columns represent the quality metrics that are
synthesized in the REM metric. The internal probability to change for every class is presented in the column
named PCCC (Percentage of Commits in which a Class has Changed)—based on Table 1. Also, let us suppose
that the only inheritance relationships are between class C4 and C5 from C1. The value in the parenthesis in the
NDMC column refers to the number of distinct methods’ calls from one class to the other.

_____________________ Class |PCCC |[NOP [NPrA|NOM| NA |  NDMC

! cL| 02 |2 | 1| 4 | 4] c22c32
c2|lo1 |0 | 0| 5 |2 C4(6)
c3| o5 |0 | 0| 3|3 C4(2)
ca |02 | o] o | 6 | 3| cC2)C2
cs| 02|00 | 4|2 C1(1)
c6 | 04 | 0| 0| 2 | 1]cLce

Figure 2. Class Diagram for the illustrative example Table 2. lllustrative Class Metrics

To calculate PREri1»r2 We need to calculate PREciscs, PREc2scs, PREciscs, PREc2scs, PREciscs, and
PREc2>cs. The pairs are created by making pairs from ImplementationSetr: to ImplementationSetr2. We note
that C3 is not considered in this process, since it is common for both requirements.

0+2+1 1+0+0 1+2+1

PREci>cs = *0.2=75% PREc2>ca = *0.1=14% PREci>s=—-*0.2=10.0%
444 542 4+4

PREco>cs = 52%%%0.1=0.0%  PREciscs = —2%0.2=50% PREczo>c6 = —22%0.1 = 2.8%
542 444 542

PRERr1sr2=Union Probability {PREcisc4,PREc25cs,PREc1>cs, PREc2scs, PREciscs, PREc2>cs } = 26%

R2EMRi1-»r2= Joint Probability {PCRC, Union Probability {PCOr1->r2, POIr1>r2, PRER1>R2}} =

Joint Probability {20%, Union Probability {10%, 33%, 26%}} = Joint Probability {20%, 69%} ~ 75%




3.3 Proposed Tool-Chain

To automate the calculation of all the aforementioned probabilities, we have extended a sequence of tools during
our earlier work (see Figure 3) that calculate the probabilities for each pair of requirements of the projects. First,
we use the git Repository and two commands (clone and log) in order to: (a) clone the repository and export the
source code, and (b) produce the log documenting the commit history. Next, the commit history is used as an
input for calculating PCCC (Arvanitou et al. 2017a). The produced document along with the source code is pro-
vided as an input to the REM Calculator tool (Arvanitou et al. 2015). REM Calculator produces a file that rec-
ords the ripple effect probability at the class level. As a final step of the process and for the purposes of this
study, we also developed the R2EM Calculator tool. The tool is command line and receives as input: (a) the
commit history and (b) the REM document. The tool is available online along with all the other tools that com-
prise the aforementioned tool-chain®.

git gitlog

Repository S Commitog
S #
| |
# A

git clone PCCC Calculator R2EM Calculator R2EM

| |

.
source cod\ / pCcC Legend
, N .
SQ % o
5 ———  produce
REM Calculator REM

Figure 3. Used Tool-chain for Calculating R2EM

4. Case Study Design

In this section we present the design of the industrial case study that we conducted to validate R2EM, within a
Small-Medium Enterprise (SME). The study is designed and reported according to Runeson et al. (2009).

4.1 Research Questions

In this section, we present the research questions of our case study. RQ: is exploratory, aiming at providing
some insights on the phenomenon, whereas RQ. corresponds to the validation of R2ZEM. To answer the RQs, we
used a quantitative approach complemented with quotes and explanations provided by the practitioners. We note
that due to the lack of an automated, generic-enough tool (i.e., a tool that uses as input artifacts that exist in the
industrial partner), we were not able to perform a comparative study to demonstrate the effectiveness of R2EM.
To this end, we have performed a user study that is able to identify the agreement of R2EM to expert opinion.

RQ:1: What types of dependencies are more prone to generate ripple effects?

Through this research question we explore the three kinds of dependencies among requirements that can lead to
ripple effects (i.e., conceptually overlapping requirements, overlapping implementations, ripple effects at the
source code level), so as to explore their occurrence in practice (i.e., their average probability to occur). The
nature of RQ is exploratory, since answering it can provide an insight on the ripple effects phenomenon at the
requirements level. As an outcome of this research question, we provided a ranked list of these three types of

3https://users.uom.qr/~a.ampatzoqIou/aux material/RCPM_Calculator.rar
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requirements dependencies in terms of importance, and a discussion on the statistical significance of the differ-
ences. This outcome can help to improve the proposed metric: if for example one of the dependency types yields
similar probabilities to the other, then it can be considered redundant and removed from the calculation of
R2EM. Furthermore, the outcome can unveil which kind of dependency is more probable to generate more rip-
ple effects; thus, deserve further investigation as well as more attention from practitioners.

RQ:2: Is R2EM able to identify which requirements are affected by ripple effects?

This research question will explore the effectiveness of the proposed metric in identifying ripple effects between
requirements. R2EM should be able to prioritize the requirements to be maintained, in a similar way to the intui-
tion of the practitioners. To investigate this, we considered the probability of various requirements to be affect-
ed, given a change in a selected number of other requirements®. This probability was obtained through the
R2EM metric and the potentially affected requirements were ranked accordingly. Finally, we contrasted the
ranking provided by R2EM to the ranking provided by practitioners. The ability of the metric to accurately pre-
dict the expert opinion of practitioners can be useful for two reasons: (a) if there is a large number of require-
ments, an automatically calculated metric, such as the proposed one can scale much better than the one relying
purely on expert opinion; and (b) the metric can guide inexperienced developers, who are not able to reach the
level of understanding of experts in the field.

4.2 Case Selection

This study is a holistic multiple case study that has been conducted in an SME in Greece. As cases and corre-

sponding units of analysis of the study, we consider the requirements of the systems under investigation. As case

study participants we selected 9 software engineers that are currently working on the maintenance and evolution
of the two systems under investigation, which are briefly described below:

e YDATA deals with customer management and billing of the national water supplier. It consists of 651 clas-
ses (45K lines of code) that have been developed and maintained with 384 commits between 03/03/2015
and 03/03/2017. The system can be decomposed into 6 main sub-systems, each one managing the following
entities: (a) Hydrometers, (b) Bills, (c) Users, (d) Consumption Statements, (e) Payments, and (f) Alerts to
Users.

o CREGAPI deals with managing the register office of cities. It consists of 1,473 classes (100K lines of
code) that have been developed and maintained for 851 commits. The system can be decomposed into 8
main sub-systems, each one managing the following entities: (a) Birth, (b) Death, (c) Marriage, (d)
Namegiving, (e) Partnership, (f) Citizen, (g) Reports, and (h) Temporal Triggers.

In traditional information systems (such as our two cases), a large proportion of requirements relies on Create /
Read / Update / Delete (CRUD) operations on the entities that the information system handles (Gonzéalez-
Aparicio et al. 2016; Kaur and Rani 2015; Truica et al. 2015; Basso et al. 2016). We therefore focus on require-
ments related to CRUD operations. For YDATA we investigated a sample of 24 requirements, corresponding to
the 4 CRUD actions for each of the aforementioned 6 entities (hydrometers, bills, etc.). Similarly, for CREGAPI
we considered a sample of 32 requirements for the 8 mentioned entities. The requirements are coded using the
name of the system, the first letter of the entity and the first letter of the CRUD action. For example, the re-
quirement that “Reads a Bill” in the YDATA is named as: YDATA-BR (see Table 3).

4.3 Data Collection

To answer the research questions mentioned in Section 4.1, we executed the tool-chain described in Section 3.3,
and obtained change impact data of all studied requirements for both systems. In Table 3, we present the per-
centage of commits, in which each requirement has changed (PCRC). From the studied samples, we have omit-
ted requirements that have not changed in the commit history.

4 The way the requirements are selected is discussed in Section 4.2
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Table 3. Requirements Change Frequency

Requirements Requirements

System 1D Name PCRC | System ID Name PCRC
CR-CR | Citizen Read 6,23% YDATA-BR | Bill Read 26,11%
CR-CU Citizen Update 5,99% YDATA-HR | Hydrometer Read 15,67%
CR-CcC | Citizen Create 5,88% YDATA-LC | Alert Create 13,06%
CR-MC Marriage Create 2,94% YDATA-SC | Statement Create 11,23%
CR-BC | Birth Create 2,12% YDATA-UU | User Update 11,23%
CR-DC | Death Create 2,12% YDATA-UR | User Read 10,44%
CR-MU | Marriage Update | 1,65% YDATA-PC | Payment Create 9,92%
CR-PC Political Create 1,65% YDATA-BC | Bill Create 7.31%
CR-MR | Marriage Read 1,29% YDATA-HC | Hydrometer Read 6,01%
_ CR-PU Political Update 1,18% |<£ YDATA-UC | User Create 6,01%
% CR-NC | Naming Create | 0,71% é YDATA-BU | Bill Update 4,18%
'h':J CR-BR Birth Read 0,59% YDATA-SR | Statement Read 3,39%
© CR-BU Birth Update 0,59% YDATA-SU | Statement Update 3,39%
CR-PD Political Delete 0,59% YDATA-HU | Hydrometer Update | 2 35%
CR-CD | Citizen Delete 0,47% YDATA-SD | Statement Delete 2,09%
CR-DU | Death Update 0,35% YDATA-PR | Payment Read 2,09%
CR-DR | Death Read 0,24% YDATA-HD | Hydrometer Delete 0,78%
CR-MD | Marriage Delete | 0,24% YDATA-PU | Payment Update 0,52%
CR-NR | Naming Read 0,24% YDATA-LR | Alert Read 0,52%
CR-NU | Naming Update 0,24% YDATA-CC | Connection Create 0,26%

CR-PR Political Read 0,24%

CR-BD | Birth Delete 0,12%

Our dataset consists of 421 rows (190: YDATA and 231: CREGAPI) that represent all pairs of requirements in
Table 3. For each pair, we have recorded the following information:

From / To Req: The 1D of the requirement that triggers / receives the ripple effect;

PCO / POI / PRE: The probability of ToReq (requirement affected by ripple effect) to change due to
changes in the FromReq (originating requirement)—a variable for each type of requirements dependency;
R2EM: The assessed total probability of ToReq to change, due to changes occurring in FromRegq.

Additionally, since based on the study design, we needed to contrast R2EM to the expert opinions of practition-
ers in OTS, we conducted a workshop with 9 industrial practitioners. The participants have been involved in the
original construction and/or maintenance of the two projects. The workshop comprised two parts:

Structured interviews. According to Runeson et al. (Runeson et al. 2009) structured interviews consist of a
number of open and/or closed questions and can be similar to questionnaire-based surveys. For the needs of
our study, we asked a set of closed questions (in some cases followed by an open question for explanation
purposes). The questions were of the following form: “Please denote how probable you believe it is to
change requirements X if you perform a change to the Y requirement, due to a ripple effect [Likert Scale:
Very Low — Very High]”. Due to the technical nature of the questions, the participants received the ques-
tions on paper and they were asked to write down their answers after working on the respective tasks. The
first and the second authors were present during the whole process, so the method can be compared to a su-
pervised questionnaire-based survey (Kitchenham and Pfleeger 1996). The presence of authors in the room
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aimed at eliminating the disadvantages of simply distributing a questionnaire, such as the ability for partici-
pants to ask for clarifications.

e Focus group. During the focus group the answers provided during the structured interviews were discussed,
giving the opportunity to clarify potential differences of opinion or disagreements between the participants.
The focus group was conducted after the participants had submitted their completed questionnaire, so that
they would not be biased when filling in the questionnaires. Additionally, during the focus group, we dis-
cussed with the participants the reasoning behind their choices and the role of types of requirements in their
change impact (i.e., same entities different actions vs. same actions on different entities).

The workshop organization and the questions used in the interviews and focus group are presented in Appendix
A. Due to the limited time that participants were available, it was not possible to validate all pairs of require-
ments; therefore, we had to make a selection of pairs. To do this, we first calculated R2EM for the two projects
YDATA and CREGAPI. Using the calculated metrics (R2EM), we selected a set of ranked pairs of require-
ments per project (ordered by the probability of the ripple effect to occur). Specifically, we selected four re-
quirements from each project (based on their change frequency, see Table 3)—two frequently changing, one
with medium and one with low frequency of change. Selecting requirements from different levels of change
frequency, allows our results to be more representative. We preferred to select two frequently changing re-
quirements, since we deem them important starting points for CIA: requirements that are rarely modified are
probably not easy to remember since they are not used regularly. The selected requirements are presented in
Table 4. For each one of these requirements, we listed all other requirements and asked participants to evaluate
how probable they believe they are to change the latter because of maintenance request related to the former
(1=min-5=max). In total, 76 questions were asked for YDATA (4 requirements paired with 19 others—the re-
maining ones from Table 3) and 84 for CREGAPI (4 requirements paired with 21 others—the remaining ones
from Table 3). To assess the evaluators’ agreement, we used two-way mixed inter-ratter reliability calculated
through the intra-class correlation coefficient (ICC) (Field 2013). ICC is a descriptive statistic that can be used
as a reliability measure, in the sense that it describes how strongly units (in our case: evaluations from different
experts) in the same group (in our case: for the same pairs of requirements) resemble each other (in our case:
share a common opinion on the ripple effect proneness). The reliability for the YDATA project has been calcu-
lated as 80.0% and as 77.4% for CREGAPI. The ICC for each requirement is presented in Table 4. It can be
observed that, in most of the cases, the participants were consistent with their answers (sig. <0.01)—the out-
come for ICC is statistically significant; the only exception is Statement Create, which we discuss separately
while interpreting the results.

Table 4. Intra-Class Correlation

From Requirement
System ID Name ICC sig.
YDATA-BR Bill Read 87.4% .00
YDATA YDATA-LC Alert Create 51.1% A1
YDATA-SC Statement Create 57.9% .01
YDATA-PC Payment Create 90.9% .00
CR-CC Citizen Create 81.5% .00
CREGAFI CR-BC Bir-th Create 72.9% .00
CR-MU Marriage Update 80.3% .00
CR-NC Name-giving Create | 72.9% .00
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The compiled dataset on the end of the process is summarized in Table 5. The first column represents the 8
selected FromReqs, whereas the second column the corresponding ToRegs. The third column contains the
calculated R2EM score for the pairs (e.g., for the first row the R2EM probability for a change in YDATA-BR to
ripple to YDATA-HR). Finally, the fourth column lists the prevalent perception of practitioners on the
probability of the ToReq to change due to a ripple effect, because of a change in the FromReq (e.g., for the first
row the experts’ opinion in the probability for a change in YDATA-BR to ripple to YDATA-HR); this column
is calculated as the Mode value of all participants, regarding the corresponding pair of requirements.

Table 5. Dataset for validating R2EM (RQz2)

Experts’

From To R2EM Opinion
YDATA-BR YDATA-HR XL, 1 | YIL 1]
YDATA-BR YDATA-LC X[1, 2] Y[1, 2]
YDATA-BR YDATA-CC | xq1,19] | YIL 19]
CR-CC CRCR X[20,1] | X[20, 1]
CR-CC CR-CU X[20,2] | X[20, 2]

CR-CC CR-BD ‘ X[20, 21] ‘ Y[20, 21]

4.4 Data Analysis

To answer the two RQs posed in Section 4.1, we analysed the data as follows. To answer RQ1 on the types of
dependencies prone to generate ripple effects, we first created Descriptive Statistics for the Dataset. Specifi-
cally, we provided the list of the most change-prone requirements, due to ripple effects from both projects. Sub-
sequently we performed a Comparison among the three Types of Requirements Dependencies (i.e., conceptual
overlapping, overlapping implementations, and source code ripple effects). To this end, we presented descriptive
statistics (i.e., mean, mix, max, and standard deviation) for the probability of the three kinds of requirements
dependencies to produce ripple effects. Next, we performed hypothesis testing to check the existence of statisti-
cally significant differences among them (Field 2013). To provide even more insights in which requirements
tend to be affected by ripple effects, we performed a second level analysis, considering the CRUD operations on
the main entities for each system (Bills, Accounts, etc. for YDATA, and Births, Deaths, etc. for CREGAPI ).
Specifically, we considered two types of conceptual relations: relations due to working on the same entity (same
first letter in requirements ID), and relations due to performing the same (CRUD) action on different entities
(same second letter in requirements ID).

To answer RQ2 on the validation of the R2ZEM Metric, we performed a consistency analysis by investigating
the ability of the metric to accurately rank a set of components, based on their levels of quality. Note that we
consider the notion of consistency as defined in the IEEE-1061 standard (2009). To assess consistency validity
of R2EM, we calculate the Spearman correlation between the expert assessment and R2EM scores, as presented
in Table 5 organized by FromReq. The reported correlation coefficient stands for the ability of R2EM to accu-
rately (based on experts’ opinion) rank the ToReq, with respect to their probability to change due to a ripple
effect, cause by the FromReq.

5. Results

In this section we present the results of our study organized by research question. In addition to the actual re-
sults, we provide some initial interpretations of the results, whereas an overall discussion of the results is pro-
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vided in Section 6.1. First, we present some descriptive statistics. In particular, in Tables 6 and 7, we present the
top-10 ripple effects in each of the examined systems. For example, regarding the YDATA system, we can ob-
serve that a change in the way that a Payment is created (YD-PC) has a probability of approximately 48% to
ripple to the way that a Bill is read (YD-BR); this is mostly because of their conceptual (PCO) and implementa-
tion (POI) overlap. One of the practitioners confirmed this finding: “it is obvious that whenever we receive a
change in the way that a payment is created, we will need to check the way that we read the bill statement”.

Table 6. Intra-Class Correlation for YDATA Table 7. Intra-Class Correlation for CregAPI
To From R2EM PCO POI PRE To From R2EM PCO POI PRE
YD-BR | YD-PC | 47.98% |29.89% | 39.06% | 26.84% CR-CC | CR-CU | 31.78% | 2.65% | 19.04% | 13.33%
YD-BR | YD-HR | 47.61% | 14.80% | 39.00% | 34.25% CR-CU | CR-CR | 29.15% | 1.36% | 15.05% | 15.23%
YD-HR | YD-UR | 47.61% | 8.03% | 41.81% | 32.55% CR-CC | CRCR | 25.03% | 1.11% | 13.91% | 11.72%
YD-HR | YD-SC | 47.56% | 11.29% | 41.90% | 30.50% CR-CU | CR-CD | 22.16% | 0.00% | 11.17% | 12.38%
YD-HR | YD-UU | 47.14% | 5.80% | 39.45% | 34.54% CR-CC | CR-CD | 21.25% | 0.00% | 12.39% | 10.11%
YD-SC | YD-HR | 47.19% | 0.91% | 39.44% | 33.83% CR-CR | CR-CD | 17.37% | 0.00% | 9.33% | 8.87%
YD-BR | YD-SC | 46.60% | 13.97% | 38.44% | 29.47% CR-CC | CR-MC | 14.87% | 0.00% | 10.09% | 5.30%
YD-BR | YD-UR | 46.26% | 3.57% | 37.88% | 33.23% CR-CC | CR-DC | 14.72% | 0.65% | 10.42% | 4.18%
YD-UR | YD-HR | 46.46% | 13.71% | 38.07% | 29.53% CR-MC | CR-PC | 1464% | 2.31% | 9.00% | 3.98%
YD-BR | YD-BU | 46.07% | 5.19% | 38.97% | 30.09% CR-CC | CR-BC | 12.89% | 0.00% | 8.28% | 5.02%

For the case of CREGAPI, we observe that the Citizen entity is dominant among the ripple-effect prone re-
quirements. The centrality of the role of Citizen has been vividly explained by one participant as follows: “all
transactions are based on the citizen entity; citizens are born, given a name, getting married, and eventually die.
All the certificates issued for these actions are related to the citizen. Thus, any change on the citizen affects the
whole of the system”.

5.1 Proneness to Ripple Effects for each Kind of Requirements Dependencies (RQ1)

In this section, we present the results on the comparison of the three kinds of requirements dependencies that
can trigger ripple effects. From Table 8 we can observe that Overlapping Implementations (POI) is the kind of
dependency that is mostly responsible for the emission of ripple effects (denoted with grey cell shading), fol-
lowed by Code Ripple Effects (PRE) and then Conceptual Overlapping (PCO). An interesting observation that
can be made by comparing the results between the two projects (Table 8), is that this ranking is consistent in
both projects. Additionally, the YDATA system presents on average a higher ripple-effect proneness, compared
to CREGAPI. This is probably due to the smaller size of the system, but with a similar number of requirements.

Table 8. Descriptive Statistics on the R2EM for each kind of Requirements Dependency

CREGAPI YDATA

Metrics Min Max Mean SDev Min Max Mean | SDev
PCO | 0.00% |20.59% | 0.212% | 1.178% | 0.00% | 29.89% | 1.547% | 3.350%
POl | 0.00% |43.35% | 2.603% | 5.179% | 0.00% | 41.90% |14.262%|11.307%
PRE | 0.00% |32.42% | 1.487% | 3.352% | 0.00% | 34.54% | 8.353% | 8.315%

To investigate if the aforementioned mean values are representing significant differences, we analysed the vari-
ance of the variables through ANOVA. For both systems, ANOVA indicated that the three kinds of require-
ments dependencies lead to different probabilities of ripple effect scores. To bilaterally compare the kind of de-
pendencies, we have performed a Wilcoxon Rank test. The results are presented in Table 9. The first column of
Table 9 presents the compared kind of dependencies, the second, the third, and the seventh columns demonstrate
in how many cases each kind of dependency is higher (Neg. Ranks suggest that the 2" kind is higher, etc.). Col-
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umns 5, 6, 9 and 10 represent the results of the Wilcoxon Rank test (Z and sig.). Similarly, the results are con-
sistent among projects, and all differences have proven to be statistically significant.

Table 9. Hypothesis Testing for CREGAPI (N=506) and YDATA (N=418)

CREGAPI YDATA
N Rank z Sig. N Rank Z Sig.
Neg. Ranks 4 158.75 0 .00
POI-PCO | Pos.Ranks | 460 | 233.14 | -18.452 .00 412 206.50 | -18.452 .00
Ties 42 6
Neg. Ranks 16 | 209.94 15 173.10
PRE—-PCO | Pos.Ranks | 375 | 19541 | -15.633 .00 390 204.15 | -15.633 .00
Ties 115 13
Neg. Ranks | 387 | 250.35 408 209.43
PRE - POI Pos. Ranks 76 | 138.57 | -14.989 .00 5 9.10 -14.989 .00
Ties 43 5

Next, we focus on the conceptual relations among requirements, based on the CRUD categorization (as dis-
cussed in Section 4.4). In Table 10, we present descriptive statistics on the kind of requirements dependencies
and the R2EM metric, for the aforementioned relations: working on the same entity and performing the same
action (CRUD) on different entities. We note that in this analysis, we treat the complete dataset as a whole. The
relation with the most intense ripple effects is denoted with grey cell shading.

Table 10. Requirements Relations—Descriptive Statistics

Metric Relation Min Max Mean SDev
R2EM Same Entity 0.12% 46.19% 13.18% 13.91%
Same Action 0.00% 47.61% 10.96% 13.41%
PCO Same Entity 0.00% 19.58% 1.14% 2.95%
Same Action 0.00% 17.07% 0.85% 2.46%
POI Same Entity 0.12% 38.64% 9.36% 10.57%
Same Action 0.00% 41.81% 8.10% 10.60%
PRE Same Entity 0.00% 31.76% 5.58% 7.14%
Same Action 0.00% 34.25% 4.85% 7.49%

Based on the findings of Table 10, requirements working on the same entity are more probable to trigger ripple
effects. However, the hypothesis testing suggested that this result is not statistically significant. This observation
was discussed by one practitioner as follows: “On the one hand, working on the same entity inevitably creates
ripple effects, since a change in the number of fields in an entity affects all CRUD actions. On the other hand,
activity-related requirements are also prone to ripple effect, since in many cases there is a sequence in the ac-
tions: the birth of a person leads to the creation of a citizen and the creation of a birth certificate. These two
Create actions are almost always maintained in the same time or under a common transaction”.

The ranking of the kind of requirements dependencies from more to less frequent is as follows (the ranking is
statistically significant): (a) Dependencies due to Overlap in Requirements Implementations (assessed through
POI); (b) Dependencies due to code ripple effects of Requirements Implementations (assessed through PRE);
and (c) Conceptual Dependencies between Requirements (assessed through PCO).

5.2 Validation of the R2EM Metric (RQ>)

In this section, we present the results on evaluating the efficiency of the proposed metric in assessing pairs of
requirements, with respect to their probability to emit a ripple effect. In Table 11, we present the correlation for
the complete dataset as a whole, and per project. Based on the results we can observe that for both projects, the
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ranking of the metric is strongly correlated (coeff. > 0.6 (Marg et al. 2014)) to the opinions of practitioners.
Therefore, adequate correlation is achieved. Regarding reliability at the project level (i.e., if the two projects
have similar results), the results on the CREGAPI project are better, compared to YDATA, an observation that
can be explained due to the smaller size of the YDATA project. Nevertheless, the fact that the difference is
small suggests that the metric is scalable, since doubling up the number of requirements and classes, costs less
than 1% correlation strength. Thus, the consistency assessments can be considered reliable at the project level.

Table 11. Consistency and Reliability of R2EM

Spearman
Requirements Coeff. Sig.
Complete Dataset 60.6% 0.000
CREGAPI 63.4% 0.000
YDATA 62.6% 0.000

In Table 12, we present the correlation of R2ZEM with the priority that practitioners assigned to the pairs of re-
quirements (we remind that only a subset of requirements has been explored as part of RQ3, due to time limita-
tions—see Section 4.3). We further observe that requirements can be divided into two main categories, denoted
with grey- and white-cell shading (using the 0.7 threshold for strong correlations (Marg et al. 2014)). On the one
hand, the pairs of requirements with the grey-cell shading are those for which R2EM proves to be the most ac-
curate. This efficiency can be explained by the fact that practitioners consider the specific pairs of requirements
to have straightforward (or highly probable) ripple effects. For example, consider the following statements about
pairs of requirements that have been ranked very high from R2EM and deemed as having almost certain ripple
effects by practitioners:

o (From: Hydrometer Read, TO: Statement Create). “To automatically create a statement, the
system has to read the data from a smart hydrometer. Therefore, any change in the way that input is re-
ceived from the device, may emit changes in the way that a statement is initialized”.

e (From:Bill Read, To:Bill Update). “The relation here, is due to the use of the common entity. In
particular, if the fields that characterize a bill change, then both requirements, will need to be updated.
This is more or less a bi-directional relation”.

o (From:Birth Create, TO: Citizen Create). “The two requirements are heavily coupled, in the
sense that a citizen is created upon his/her birth. Therefore, any change that is made on the fields that we
use to declare a birth is automatically transferred to the newly created citizen”.

Table 12. Validation of R2EM per Requirement

From Requirement Spearman
System of the Pair Coeff. Sig.
Bill Read 78.7% 0.012
0,
YDATA Alert Create 61.3% 0.015
Statement Create 69.4% 0.003
Payment Create 76.8% 0.017
Citizen Create 78.4% 0.000
1 0,
CREGAPI Blrth_Create 58.0% 0.019
Marriage Update 66.4% 0.000
Namegiving Create 54.5% 0.044

On the other hand, the pairs of requirements exhibiting a lower correlation with R2EM (55% - 69%) are those
for which the practitioners had contradictory opinions between themselves as well. For example, regarding
YDATA the agreement of practitioners on the requirements affected by a change in the way alerts are created is
51.1% (see Table 4) while the correlation of R2EM to the average expert opinion is 61.3%. A possible explana-
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tion for the deviation is the way that practitioners perceive requirements ripple effects: “Different people per-
ceive each case in a different way, either because they have in mind different parts of the system (not all of us
work on all parts of the system, although we have a generic idea of what each requirement has to do with), or
because we consider different extension scenarios, based on our most recent experiences”.

The ranking that R2EM provides, with respect to the proneness of a pair of requirements to emit / receive a rip-
ple effect, is strongly correlated (62%-63%) to the expert opinion of practitioners. The difference between the
two studied systems indicates potential for R2EM to scale, since the system that was half the size of the other (in
terms of requirements and source code size) had only 1% less correlation strength.

6. Discussion

Interpretation of Results. The case study reported in this paper had two main goals: (g1) assessing the kind of
requirements dependencies that are more probable to produce ripple effects; and (g2) the validation of the pro-
posed metric. Regarding (g1) two types of analysis were performed: (a) based on the kind of requirements de-
pendencies (i.e., conceptual overlapping, overlapping implementations, and ripple effects of these implementa-
tions), and (b) based on the requirements relations (e.g., are ripple effects more common among requirements
working on the same entity?). Based on our results, we observe the following:

e Requirements implementations vs. conceptual relevance. The implementation of requirements appears to
be more important with respect to ripple effects compared to the requirement contract. In particular, the
probability to change due to a ripple effect, because of overlapping implementations (POI) has the highest
probability to produce ripple effects, followed by PRE (probability due to ripple effects at implementation
level). On the other hand, ripple effects between requirements due to their conceptual overlap (PCO) has
proven to be rarer (1.1% - 3.3%), compared to POI (5.1% — 11.3%) and PRE (3.3% — 8.3%). These findings
can be considered reasonable in the sense that conceptual overlap among requirements is a more abstract
type of dependency compared to dependencies in the actual source code. This is good news in terms of pre-
venting ripple effects: excessive dependencies among requirement implementations can be potentially
avoided adhering to the Single Responsibility Principle, whereas conceptually related requirements are often
imposed by the problem domain and cannot be avoided.

e Central entities. In both examined systems, we have observed that some central entities (e.g., the Citizen in
the municipality application) have been identified, and any change in requirements related to such entities, is
highly probable to affect many parts of the system. We argue that high coupling poses a big risk for require-
ments specification as well, in the sense that requirements associated with many other requirements or with
key elements of the architecture, are highly probable to be the cause of ripple effects. Breaking down ‘god’
requirements to finer-grained and less coupled ones, can in theory contribute to less change propagation
among them.

e Entity- vs. action-related requirements. Requirements affecting the same entity are more probable to pro-
duce a ripple effect (PCO) compared to requirements performing the same action. However, both require-
ments relation types seem to have a similar probability to experience ripple effects, due to implementation
issues (POl and PRE). Nevertheless, both types have been validated as important by the practitioners.

Regarding (g2) the results of the empirical validation suggested that the proposed metric R2EM is a valid asses-
sor of requirements ripple effect, and can serve as a means for predicting requirements ripple effects. In particu-
lar, R2EM exhibited a strong correlation with experts’ opinion (approx. 60%). Also, statistically significant dis-
criminative power can be achieved by using this metric. In principle, the aforementioned correlation is stronger
for pairs of requirements whose relation is stronger according to practitioners (i.e., a high-level of agreement on
high values between practitioners). The validity of the R2EM metric suggests that both the probability of a re-
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quirement change happening and the propagation of changes among requirements are factors that practitioners
deem as important for the criticality of requirements.

Implications for Researchers and Practitioners. Based on the above, we can derive some advice for practition-
ers. First, for cases in which the proposed tool-chain is applicable, we encourage them to use the suggested tool-
set so as to guide them along software maintenance. To ease the adoption of R2EM, based on the suggestions of
our case study participants, we encourage the integration of the tool or any similar approach in the IDE that each
company is using. Second, in case the proposed tool-chain is not applicable (e.g., not Java, or no Git for version
control), we are still able to guide software maintenance, based on the findings of the empirical analysis on the
proneness of each kind of requirements dependencies on ripple effect. In particular, we advise practitioners to
inspect for co-maintenance, based on entity- and then activity-similarity. Additionally, we encourage practition-
ers to identify the central entities in the systems that they maintain, since for them, high maintenance effort
would be required, due to massive ripple effects.

On the other hand, some interesting future work opportunities have been identified for researchers. First, the
ability of R2EM to successfully guide maintenance activities through a longitudinal case study is required. For
such a case, researchers working with an industry partner could use the suggestions of the tool for a long period
and evaluate: (a) the required maintenance effort; (b) the maintenance efficiency (e.g., number of bugs identi-
fied, effort needed for new features, etc.) when serving maintenance tickets, (c) the effectiveness of R2EM (i.e.,
if the correct artifacts that need to be changed are identified) based on the proposed suggestions.

Additional validation could be performed by exploring the applicability of R2EM in terms of intuitiveness and
usefulness. Second, there is a need to assess the predictive power and the tracking ability of the proposed met-
rics, since we were not able to validate them in the proposed setting. Third, replications with different program-
ming languages, and version control systems would be required. Finally, an interesting extension scenario would
be to tailor the proposed metric to non-object-oriented paradigms, for example, by considering files or folders as
units of analysis.

7. Threats to Validity

In this section, we present and discuss potential threats to the validity of our case study (Runeson et al. 2009).
Internal validity is not considered, since we have not dealt with causal relations.

Construct Validity. A possible threat to construct validity is related to the accuracy of the proposed metric and
the developed tool-chain to assess requirements ripple effect. Such a threat is classified as construct validity in
the sense that inaccurate results might lead to measuring a different phenomenon than the one originally intend-
ed to investigate. Concerning the rationale of the metric’s calculation, we note that its definition is clear and
well-documented (see Section 3), whereas the used tools have been thoroughly tested, before deployment, in a
large number of open-source projects (see Section 3.3). Regarding the metric, we consider this threat mitigated
in the sense that the provided empirical validation suggested that the proposed measure is an accurate assessor
of requirement ripple effects (see Section 5). By further focusing on each probability, we acknowledge as a
threat the fact that for POI, we only consider part of the requirements evolution (i.e., those in which only one
requirement is changing). This decision might lead in losing traces between requirements and source code.
However, we note again that this decision has been made so as to guarantee the independence of PCO and POI.
We believe that threatening the independence of two parameters would be more severe for the validity of
R2EM, and therefore, we opted to omit commits in which more than one requirement have changed due to rip-
ple effects. Another threat to construct validity stems from the need to calculate the Percentage of Commits in
which a specific Requirement has Changed (PCRC) based on commit messages in order to track the require-
ment(s) that are being affected. Lack of proper messages implies that PCRC will not be accurately calculated.
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Nevertheless, an experienced developer would be able to identify the associated requirements even from the
commit files if he wishes to apply the proposed methodology.

Moreover, the case study participants may have a different background and experience on specific requirements
and thus influence the ranking that they performed. To avoid this threat, we involved four and five employees
respectively for each project, who were all familiar with a large portion of the system. However, it is possible
that participants have a different perspective of ripple effects, due to the different parts of the code-base that
they maintain. To mitigate this risk, we calculated their agreement rate (see Table 4). Specifically, we observed
that for both systems high agreement between participants occurs. A detailed discussion on this issue is present-
ed in Section 4.3, focusing on specific pairs of requirements with lower levels of agreement.

Reliability. With regard to reliability, we consider any possible researchers’ bias, during the data collection and
data analysis process. The design of the study concerning data collection does not contain threats, since the ma-
terial provided to the participants included the source code of the company and rankings of requirement-pairs, as
they have been created automatically by a tool. Additionally, the researchers themselves were not required to
interpret the results at any point, since the participants were answering the tasks on paper. Moreover, with re-
spect to the data analysis process: (a) although the quantitative part is not subject to bias, in the sense that statis-
tical analysis has performed; the analysis has been independently performed by the first two authors and the
results have been cross-checked (b) with respect to qualitative analysis, potential threats to reliability have been
to some extent mitigated since two researchers were involved in the process, aiming at double checking the
work performed and thus reducing the chances of reliability threats.

External Validity. Concerning external validity, a potential threat to generalization is the possibility that per-
forming the study on different requirements of different companies might affect results of the assessment. Thus,
results cannot be generalized to large-scale systems and domains other than enterprise applications. Additional-
ly, in this study we investigated projects written in Java due to the corresponding tool limitations. Therefore, the
results cannot be generalized to other languages, e.g., C++. Moreover, we note that our results are not applicable
to non-object-oriented systems, since our definition of ripple effects at source code level applies only in this
programming paradigm. Furthermore, our metric is not applicable for projects that are not hosted in version con-
trol management systems, since the calculation of PCCC requires access to the complete development history of
the project. Finally, with the respect to the provided toolchain, we need to note that its applicability cannot be
guaranteed to all systems, in the sense that it considers a specific type of annotating the link between require-
ments and code artifacts, through commit messages. However, this does not threaten the applicability of the
method, in the sense that given any kind of traceability between requirements and code, the first step of the tool-
chain can be replaced, with an adequate tool support.

8. Conclusions

Change impact analysis at the requirements level can prove extremely useful during software maintenance, in
the sense that the artifacts that need to be changed, due to a maintenance ticket, are not only those associated
with updated requirements, but also those that have been potentially affected due to ripple effects. Despite the
existence of some metrics at the design and source code level on the quantification of the ripple effect, existing
literature lacks such metrics at the level of requirements. In this paper, we introduce such a metric (namely
R2EM) by considering several scenarios that can lead to ripple effects between requirements, such as conceptual
overlapping and structural dependencies between their implementations. The metric has been validated in an
industrial setting, based on the guidelines for metric validation provided by the 1061-1998 IEEE Standard. In
particular, we analysed the source code and the commit history of two industrial products, recorded the strength
of relations between requirements, and contrasted them with experts’ opinion. The results of the study suggested
that the proposed metric is capable of assessing requirements ripple effects at a satisfactory level, and that the
most common reason for ripple effects between requirements lies at the implementation level. The results of the
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study, including both the metric per se (and accompanying tool), and the empirical findings on the kinds of re-
quirements dependencies that can lead to requirements ripple effects are expected to be useful in both academia
and software development industry, since many useful implications to researchers and practitioners have been
extracted.
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