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Abstract—Technical Debt (TD) is a successful metaphor in conveying the consequences of software inefficiencies and their
elimination to both technical and non-technical stakeholders, primarily due to its monetary nature. The identification and quantification
of TD rely heavily on the use of a small handful of sophisticated tools that check for violations of certain predefined rules, usually
through static analysis. Different tools result in divergent TD estimates calling into question the reliability of findings derived by a single
tool. To alleviate this issue we use 18 metrics pertaining to source code, repository activity, issue tracking, refactorings, duplication and
commenting rates of each class as features for statistical and Machine Learning models, so as to classify them as High-TD or not. As a

benchmark we exploit 18,857 classes obtained from 25 Java projects, whose high levels of TD has been confirmed by three leading
tools. The findings indicate that it is feasible to identify TD issues with sufficient accuracy and reasonable effort: a subset of superior
classifiers achieved an F2-measure score of approximately 0.79 with an associated Module Inspection ratio of approximately 0.10.
Based on the results a tool prototype for automatically assessing the TD of Java projects has been implemented.

Index Terms—Machine learning, Metrics/Measurement, Quality analysis and evaluation, Software maintenance

1 INTRODUCTION

ECHNICAL DEBT (TD) is a metaphor facilitating the

discussion among technical and non-technical stake-
holders when it comes to investments on improving soft-
ware quality [1]. As with financial debt, TD that is accu-
mulated due to problematic design and implementation
choices needs to be repaid early enough in the software
development life cycle. If not done so, then it can generate
interest payments in the form of increased future costs
that would be difficult to be paid off. In this context,
the development of software projects can be significantly
impeded by the presence of TD: wasted effort due to TD
in software companies can reach up to 23% of total devel-
opers’ time [2] and in extreme situations may even lead to
an unmaintainable software product and thus, to technical
bankruptcy [3]. As a result, proper TD Management should
be applied so as to identify, quantify, prioritize and repay TD
issues. However, managing TD across the entire software
development lifecycle is a challenging task that calls for
appropriate tooling. A recent study [4] revealed 26 tools
that can help towards the identification, quantification and
repayment of TD. The strategies employed to identify TD
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issues differ, but the most frequently used approach relies
on predefined rules that can be asserted by static source
code analysis: any rule violation yields a TD issue while the
estimated time to address the problem contributes to the
overall TD principal. Due to their different rulesets, none of
these tools results can be considered as an ultimate oracle
[5], while using multiple tools to aggregate their results is
not a feasible solution, since: (a) executing multiple tools for
the same reason can be considered as a waste of resources;
(b) there is no clear synthesis method; (c) acquiring multiple
proprietary tools is not cost-effective.

The aforementioned shortcoming leads to important
problems: On the one hand, academic endeavours face seri-
ous construct validity issues, because regardless of the tool
used to identify Technical Debt Items (TDIs), there is always
a doubt on if the results would be the same if a different
tool infrastructure was used. On the other hand, regarding
industry, usually the list of identified issues is very long,
and the practitioners get lost in the numerous suggestions.
On top of that, they face a decision-making problem: “which
tool shall I trust for TD identification/quantification?”. As a first
step to alleviate the aforementioned problems, in a previous
study [5], we analyzed the TD assessment by three widely-
adopted tools, namely SonarQube [6], CAST [7] and Squore
[8] with the goal of evaluating the degree of agreement
among them and building an empirical benchmark (TD
Benchmarker!) of classes/files sharing similar levels of TD.
The outcome of that study (apart from the benchmark
per se) confirmed that different tools end-up in diverse
assessments of TD, but to some extent they converge on
the identification of classes that exhibit high-levels of TD.

Given the aforementioned result, in this paper, we pro-
pose the use of statistical and Machine Learning (ML) models

1. http://195.251.210.147:3838 /
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for classifying TD classes (High/Not-High TD). As ground
truth for the proposed classification framework, we use
the dataset obtained from applying the TD-Benchmarker
on 25 OSS Java projects, and we classify as high-TD the
classes that all tools identify as TDIs. Then, supposing that
the use of multiple sources of information will result in
more accurate models, we built a set of independent vari-
ables based on a wide spectrum of software characteristics
spanning from code-related metrics to metrics that capture
aspects of the development process, retrieved by open-
source tools. Finally, we apply various statistical and ML
algorithms, so as to select the most fitting one for the given
problem. Ultimately, the derived models subsume the col-
lective knowledge that would be extracted by combining the
results of three TD tools, exploiting a ‘commonly agreed TD
knowledge base’ [5]. To facilitate their adoption in practice,
the models have been implemented as a tool prototype that
relies on other open-source tools to automatically retrieve
all independent variables and identify high-TD classes for
any software project.

The main contributions of this paper are summarized
as follows: i) An empirical evaluation of various statistical
and Machine Learning algorithms on their ability to detect
high-TD software classes; ii) A set of factors to be con-
sidered while performing the classification, spanning from
code metrics to repository activity, retrieved by open-source
tools; iii) A tool prototype that yields the identified high-TD
classes for any arbitrary Java project by pointing to its git
repository.

2 RELATED WORK

TD is an indicator of software quality with an emphasis on
maintainability. During the past years, a plethora of stud-
ies have dealt with the aspect of software maintainability
prediction, usually by employing ML regression techniques
[9], [10], [11]. However, through our search in the related
literature, we were unable to identify concrete contributions
regarding the applicability of ML towards classifying a soft-
ware module as high-TD or not. On the other hand, a mul-
titude of studies have employed classification techniques to
predict various quality aspects directly or indirectly related
to the TD concept, such as code smells, change proneness,
defect proneness, and software refactorings.

Code smells are considered one of the key indicators of
TD [12]. Recently, a plethora of work related to code smell
detection has been proposed in the literature [13], [14], [15],
[16]. Most of these studies evaluate different ML classifiers
on the task of detecting various types of code smells and
conclude that with the right optimization, ML algorithms
can achieve good performance. However, there is still room
for improvement with respect to the selection of indepen-
dent variables, ML algorithms, or training strategies [17].
Besides code smells, software change proneness and defect
proneness are also popular TD indicators; a change-prone
module tends to produce more defects and accumulate more
TD [18]. To date, various studies have investigated the appli-
cability of ML classifiers for the identification of change- and
defect-prone modules [18], [19], [20], [21]. However, as these
contributions are limited and suffer from external validity
threats [22], further exploration should be performed by
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researchers towards these directions. Finally, TD is closely
related to software refactoring, since the later constitutes
the only effective way to reduce it on existing source code.
However, researchers have only recently begun to explore
how ML can be used to help in identifying refactoring
opportunities [23].

From the above literature analysis, it is clear that ML
classification methods, while not yet examined for their
ability to identify the presence of TD per se, have been
widely used in an attempt to accurately model various TD-
related problems. More importantly, these studies present
many similarities in terms of the classification frameworks
that they adopt. To highlight these similarities, Table 1
presents an overview of the key decisions made in these
studies, regarding their experimental setup. Regarding the
employed classification algorithms, it can be seen that Lo-
gistic Regression (LR), Naive Bayes (NB), and Random
Forest (RF) are by far the most widely used classifiers,
followed by Support Vector Machines (SVM) and Decision
Trees (DT). Other studies also use J48, eXtreme Gradient
Boosting (XGB), and K-Nearest Neighbor (KNN), among
others. In terms of performance (highlighted in bold), Ran-
dom Forest seems to be one of the most effective algorithms.
With respect to the model train-and-validation strategy, 10-
fold cross-validation is the de facto method used in every
reported study. It is worth mentioning that, besides cross-
validation, only one study [14] uses a hold-out set to test the
produced models on completely unseen data. As regards
the model parameter optimization, Grid Search is the most
common method, followed by Random Search. Finally, as
far as performance evaluation is concerned, Precision and
Recall are used in almost every reported study, while F-
Measure and ROC Curve are also very popular.

To design the experimental study presented within the
context of this work, we adopted some of the most common
practices regarding model selection, model configuration
and performance evaluation. More details can be found in
Section 3.3.

3 METHODOLOGY

In this section, we present the methodology followed
throughout the study. The approach consists of three phases:
(i) data collection, (ii) data preparation (pre-processing and ex-
ploratory analysis), and (iii) model building. We note that
throughout the rest of this document we will use the term
"modules” for referring to software classes, to avoid confus-
ing the reader by mixing software with classification classes.

3.1 Data Collection
3.1.1 Project Selection and Dependent Variable

The dataset of this study is based on an empirical bench-
mark that was constructed within the context of a study
by Amanatidis et al. [5]. The aim of that study was to
evaluate the degree of agreement among leading TD as-
sessment tools by proposing a framework to capture the
diversity of the examined tools and thus, to identify profiles
representing characteristic cases of modules with respect to
their level of TD. For this purpose, they have constructed a
benchmark dataset by using three popular TD assessment
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TABLE 1
Related Studies and their Adopted Classification Framework

Study | Classification Algorithms Model Train and Validation | Evaluation metrics
Optimization Strategy
[13] SVM, NB, REF, J48, JRip Grid-search 10-fold cross-validation Accuracy, F-Measure, ROC Curve
[14] LR, NB, KNN, DT, RF, XGB, | Random-search 10-fold cross-validation, | Precision, Recall, F-Measure
MLP Hold-out set
[15] LR, SVM, NB, RF, MLP Grid-search 10-fold cross-validation Precision, Recall, F-Measure, ROC Curve
[16] SVM, NB, REF, J48, JRip Grid-search 10-fold cross-validation Precision, Recall, F-Measure, ROC Curve
[19] LR, NB, DT, RF, MLP - 10-fold cross-validation Precision, Recall
[18] LR, NB, DT, RF, J48, MLP - 10-fold cross-validation Accuracy, Precision, Recall, F-Measure, ROC Curve
[20] LR, DT, RE, XGB, ExtraTrees Grid-search 10-fold cross-validation Precision, Recall, F-Measure, ROC Curve
23] LR, SVM, NB, DT, RF, MLP Random Search 10-fold cross-validation Accuracy, Precision, Recall,

tools, i.e., SonarQube (v7.9, 2019), CAST (v8.3, 2018), and
Squore (v19.0, 2019), to analyse 25 Java and 25 JavaScript
projects and subsequently extract sets of modules exhibiting
similarity to a selected profile (e.g., that of high TD levels in
all employed tools).

The primary goal of this study is to train effective statis-
tical and ML techniques to identify high-TD level modules,
that is, to produce models that predict modules belonging
to the Max-Ruler class profile. The Max-Ruler class profile,
as defined by Amanatidis et al. [5], refers to modules whose
reference assessment type indicates a high amount of TD
based on the results of the tree applied tools. We focus
exclusively on projects developed using Java, since most
of the tools that we used to extend the dataset can be
applied only for Java applications. As in the case of the
work by Amanatidis et al. [5], we have analyzed the same
25 projects, considering their modules as units of analysis.
These projects are presented in detail in Table 2. According
to the authors [5], the criteria for selecting them were the
programming language (i.e., Java), their public accessibility
in GitHub, their popularity (more than 3 K stars) and finally,
their active maintenance till the time of the study.

The dataset containing TD assessment of the three tools
for each module of the 25 Java projects is publicly available
at Zenodo? as an Excel file. The Max-Ruler (i.e., high-TD)
modules of each project can be obtained in the form of csv
files from the TD Benchmarker®. To begin the construction of
the dataset used throughout this study, we initially down-
loaded the Excel file containing all the modules of the 25
Java projects under examination and then, for each project,
we downloaded the csv file containing only the high-TD
modules. Subsequently, we merged high-TD module in-
stances with the initial Excel file (containing all modules)
and we labeled high-TD modules with “1”. The rest of
the modules were labeled as “0”. This process resulted in
a dataset containing 18,857 modules; out of which 1,283
belong to the Max-Ruler profile (i.e., high-TD modules).

3.1.2 Analysis Tools and Independent Variables

For building efficient classification models, we need to
investigate the ability of various metrics, ranging from
refactoring operations to process metrics and from code
issues to source code metrics, to effectively discriminate
between high-and not-high-TD module instances. There-
fore, to construct our dataset we have employed a set of

2. https:/ /zenodo.org/record /3951041#.X5ApmND7SUk
3. http://195.251.210.147:3838 /

TABLE 2
Selected Projects

Project Description LoC
arduino Physical computing platform 27K
arthas Java Diagnostic tool 28 K
azkaban Workflow manager 79K
cayenne Java object to relational mapping framework | 348 K
deltaspike | CDI management 146 K
exoplayer | Android media player 155 K
fop Print formatter using XSL objects 292K
gson Java library to convert Java Objects to JSON 25K
javacv Wrappers of commonly used libraries 23K
jclouds Toolkit for java cloud applications 482 K
joda-time Date and time handling 86 K
libgdx Game development framework 280 K
maven Software project management tool 106 K
mina Network application framework 35K
nacos Cloud application microservices build and 60 K

management
opennlp Natural Language Processing toolkit 93 K
openrefine | Data management 69 K
pdfbox Library of processing pdf documents 213K
redisson Java Redis client and Netty framework 133 K
RxJava Composing asynchronous and event-based | 310 K
programs with observable sequences
testng Testing framework 85K
vassonic Performance framework for mobile websites 7K
wssdj Java implementation for security standards | 136 K
in web applications
xxl-job Distributed task scheduling framework 9K
Zaproxy Security tool 187 K

tools that can be classified into two broad categories: those
that compute evolutionary properties (i.e., across the whole
project evolution) and those that compute metrics related to
a single (i.e., the latest) commit.

Initially, evolutionary metrics for each module of the 25
selected Java projects were computed by employing two
widely used OSS tools, namely PyDriller [24] and Refac-
toringMiner [25]. More specifically, PyDriller (v1.15.5, 2021),
i.e., a Python framework meant for mining Git repositories,
was used to compute module-level Git-related metrics, such
as commits count, code churn, and contributors experience
across the whole evolution of the projects. Subsequently,
RefactoringMiner (v2.0.3. 2020), a Java-based tool able to
detect 55 different types of refactorings, was employed to
compute the total number of refactorings for each module
across their whole evolution. Apart from the two aforemen-
tioned tools, Jira and GitHub issue tracker APIs (depending
on the project) were also used to fetch the total number of
issues related to each module of the selected projects, across
its entire evolution.
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Besides the tools used to compute evolutionary metrics,
three additional tools, namely CK [26], PMD’s Copy/Paste
Detector (CPD)*, and cloc®, were considered for computing
metrics related to the latest commit of each module. More
specifically, CK (v0.6.3, 2020), a tool that calculates class-
level metrics in Java projects by means of static analysis was
used to compute various OO metrics, such as CBO, DIT, and
LCOM for each module. Subsequently, CPD (v6.30.0, 2020),
a tool able to locate duplicate code in various programming
languages, including Java, was employed to compute the
total number of duplicated lines for each module. Finally,
cloc (v1.88, 2020), an open-source tool able to count com-
ment lines and source code lines in many programming
languages, was used to compute the total number of code
and comment lines for each module.

To train effective classification models able to identify
high-TD modules, we need to investigate what kind of
metrics (or sets of metrics) are closely related to whether
a module is of high-TD or not. However, as stated in many
studies [27], the growth of TD in a software system is related
to the growth of the system itself in such a way that the
larger a system is in size, the larger its TD value will be.
Therefore, to exclude the possibility that the TD level of a
module is correlated with a metric only because of the size
of the module, we normalized two of the metrics to control
for the effect of size. The first metric that went through
this transformation is duplicated_lines, which after a division
by the ncloc metric of each module, was renamed to du-
plicated_lines_density. In addition, the comment_lines metric
was also normalised but instead of dividing by the lines of
code, we divided by the sum of code and comment lines
(ncloc + comment_lines) of each module. Subsequently,
comment_lines metric was renamed to comment_lines_density.

It should be noted that considering the number of de-
tected refactoring operations individually for each of the 55
different refactoring types (identified by RefactoringMiner)
could lead to an unnecessary increase in the number of
variables and therefore to an increase in complexity in later
stages (i.e., during model training). In addition, by inspect-
ing the RefactoringMiner results we identified that for most
of the modules, the number of refactoring operations for
the majority of refactoring types were zeros and therefore
could result in the addition of a relatively large sparse
matrix into the dataset. Therefore, we decided to aggregate
the number of refactoring operations per module into a
new metric called fotal_refactorings. This metric counts the
total number of refactoring operations (for all 55 refactoring
types) performed in a module during the evolution period.

In Table 3, we present the metrics that were evaluated
during the data collection step for each module of the 25
Java projects, along with a short description.

Therefore, the final dataset comprises a table with 18,857
rows (the number of analyzed modules) and 19 columns,
where each one of the first 18 columns holds the value of
a specific metric, while an extra column at the end of the
table holds the value (class) of the Max-Ruler (i.e., whether
a module is of high-TD or not). Since the goal of this study
is to investigate the relationship of various metrics (code,

4. https:/ /pmd.github.io/latest/pmd_userdocs_cpd.html
5. https:/ / github.com/ AlDanial/ cloc#quick-start-
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people or processes-related) to whether a module is of high-
TD or not and subsequently train effective ML models to
identify high-TD modules, the columns that refer to metrics
will play the role of independent variables, while the last
column that refers to Max-Ruler class will play the role of
the dependent variable, i.e., the module TD level that we try
to predict. This format helped us during the classification
model building phase described in Section 3.3.

3.2 Data Preparation
3.2.1 Data Pre-processing

After extracting the module-level metrics of each project (us-
ing the six tools) and merging them into a common dataset
as described in Section 3.1, we proceed with appropriate
data pre-processing tasks, which include missing values
handling and outlier detection techniques.

Starting with missing values handling, we observed that
there were some cases where the CK tool failed to run
and therefore was unable to compute metrics for specific
modules. More specifically, out of the total 18,857 modules,
the CK tool had generated results for 18,609, meaning that
248 modules were skipped. Since this number is relatively
small (1.3% of the dataset), we decided not to proceed with
data imputation in order to substitute missing values but
instead to remove the instances that contain missing values.
This resulted in a new dataset containing 18,609 modules, a
slightly smaller but equally representative dataset size.

By quickly inspecting our data, we noticed that all in-
dependent variables presented skewed distributions, with
a number of extreme values. Therefore, after performing
missing values removal, we proceeded with outlier detec-
tion. Outliers are extreme values that may often lead to
measurement error during the data exploration process or
to poor predictive performance during ML model training.
ML modeling and model skill in general can be improved by
understanding and even removing these outlier values [28],
[29]. In cases where the distribution of values in the sample
is Gaussian (or Gaussian-like), the standard deviation of the
sample can be used as a cut-off for identifying outliers.
In our case however, the distributions of the metrics are
skewed, meaning that none of the metrics follows a normal
(Gaussian) distribution. Therefore, we used an automatic
outlier detection technique known as the Local Outlier Factor
(LOF) [30]. LOF is a technique that attempts to harness the
idea of nearest neighbors for outlier detection. Each sample
is assigned a scoring of how isolated it is or how likely it is to
be an outlier based on the size of its local neighborhood. The
samples with the largest score are more likely to be outliers.
Applying LOF to the dataset resulted in a new dataset
containing 17,797 modules, meaning that 812 modules were
removed as the algorithm labeled them as outliers.

The descriptive statistics of the variables of the final
dataset are presented in Table 3. It should be noted at
this point that the performance evaluation of the selected
classifiers, as will be presented later in Section 4, was also
investigated without applying the aforementioned outlier
detection and removal step. As expected, however, the non-
removal of extreme values resulted in worse performance
metrics and, therefore, we proceeded with the outlier re-
moval step as described in this section.
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TABLE 3
Selected Metrics and Descriptive Statistics
Metrics [ Description M SD [ min Q: [ Mdn Qs max
PyDriller

comimits_count Total number of commits made to a file in the | 11.11 15.92 1 3 7 13 317
evolution period.

code_churn_avg Average size of a code churn of a file in the evolu- | 27.31 44.89 -2 9 16 30 1543
tion period.

contributors_count Total number of contributors who modified a file 3.50 2.70 1 2 3 4 45
in the evolution period.

contributors_experience Percentage of the lines authored by the highest | 77.91 2099 | 1764 | 60.49 | 8295 | 98.32 100
contributor of a file in the evolution period.

hunks_count Median number of hunks made to a file in the 1.76 1.27 0 1 1.50 2 26.50
evolution period. A hunk is a continuous block
of changes in a diff. This number assesses how
fragmented the commit file is (i.e., lots of changes
all over the file versus one big change).

Jira/GitHub Issue Tracker

issue_tracker_issues Total number of times a file name has been re- | 10.08 53.05 0 0 0 3 1187
ported in the project’s Jira or GitHub issue tracker
(mentioned within either the title or the body of the
registered issue) in the evolution period.

CK

cbo Coupling between objects. This metric counts the 7.44 791 0 2 5 10 109
number of dependencies a file has.

wmc Weight Method Class or McCabe’s complexity. This | 17.50 28.96 0 3 8 19 453
metric counts the number of branch instructions in
a file.

dit Depth Inheritance Tree. This metric counts the 2.04 1.84 1 1 1 2 52
number of “fathers” a file has. All classes have DIT
at least 1.

rfc Response for a Class. This metric counts the num- | 14.15 22.58 0 1 7 17 293
ber of unique method invocations in a file.

Icom Lack of Cohesion in Methods. This metric counts | 63.58 | 331.96 0 0 2 16 7503
the sets of methods in a file that are not related
through the sharing of some of the file’s fields.

max_nested_blocks Highest number of code blocks nested together in 1.31 1.49 0 0 1 2 21
a file.

total_methods Total number of methods in a file. 8.68 12.04 0 2 5 10 256

total_variables Total number of declared variables in a file. 9.54 18.30 0 1 4 10 305

RefactoringMiner

total_refactorings Total number of refactorings for a file in the evolu- | 15.66 52.23 0 1 1 9 1024

tion period.
Copy-Paste Detector (PMD-CPD)

duplicated_lines_density | Percentage of lines in a file involved in duplications 0.05 0.20 0 0 0 0 0.98
(100 * duplicated_lines / lines of code). The mini-
mum token length which should be reported as a
duplicate is set to 100.

cloc

comment_lines_density Percentage of lines in a file containing either com- 0.39 0.22 0 0.22 0.36 0.54 0.94
ment or commented-out code (100 * comment_lines
/ total number of physical lines).

ncloc Total number of lines of code in a file, ignoring | 97.53 | 142.38 2 23 51 110 1903
empty lines and comments.

Note: M, SD, min, @1, Mdn, @3, max represent the mean, standard deviation, minimum, first quartile, median, third quartile, maximum values

3.2.2 Exploratory Analysis

An important step during exploratory analysis is to examine
whether observable relationships exist between the selected
metrics and the existence of high-TD and not-high-TD mod-
ules of the constructed dataset. For this purpose, we in-
vestigated both the discriminative and predictive power of
the selected metrics using hypothesis testing and univariate
logistic regression analysis, which are described in detail in
the rest of this section.

To determine the ability of the selected 18 metrics to
discriminate between high-TD and not-high-TD modules,
we tested the null hypothesis that the distributions of each
metric for high-TD and not-high-TD modules are equal.
Since the metrics are skewed and have unequal variances

(see Table 3), we used the non-parametric Mann-Whitney U
test [31] and tested our hypothesis at the 95% confidence
level (¢ = 0.05). In the first part of Table 4, we report the
p — values of the individual Mann-Whitney U tests. As can
be seen, the p — values of all metrics were found to be lower
than the alpha level. Hence, in all cases the null hypoth-
esis is rejected. This suggests that a statistically significant
difference is observed between the values of the metrics of
high-TD and not-high-TD modules, which indicates that all
of these metrics can discriminate and potentially be used as
predictors of high-TD software modules.

To complement the Mann-Whitney U test results, Table
4 also presents the median values of the computed metrics
both for the high-TD and for the not-high-TD modules of
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the dataset. We chose to present the medians instead of
the mean values since normal distributions of the metrics
cannot be assumed. As can be seen, the median values
tend to be different in each metric. In all the cases, the
metrics seem to receive a higher value at high-TD modules,
with the only exception of the contributors_experience and
comment_lines_density metrics.

By examining the discriminative power of the studied
metrics we observed that their values demonstrate a statis-
tically significant difference between high-TD and not-high-
TD modules. In order to reach safer conclusions regarding
the relationships between the selected metrics and the TD
class of a module (high-TD / not-high-TD), we applied uni-
variate logistic regression analysis. Univariate logistic regres-
sion focuses on determining the relationship between one
independent variable (i.e., each metric) and the dependent
variable (i.e., high-TD class) and has been widely used in
software engineering studies to examine the effect of each
metric separately [32], [33]. Thus, we used this method to
help us with the process of identifying if underlying rela-
tionships between high-TD class and the selected metrics
are statistically significant and in what magnitude.

Table 4 summarizes the results of the univariate logistic
regression analysis for each metric, applied on our dataset.
Column “Pseudo R?” gives goodness-of-fit index pseudo
R-squared (McFadden’s R? index [34]), which measures
improvement in model likelihood over the null model.
Columns "p — value” and "SE” show the statistical signif-
icance and the standard error for the independent variables
respectively. We set the significance level at a = 0.05.
Metrics with p — values lower than 0.05 are considered
statistically significant to high-TD class. On the contrary,
metrics with p — values greater than 0.05 can be removed
from further analysis, since they are not considered statisti-
cally significant. In our case, all 18 metrics are significantly
related to the probability of high TD (p — value < 0.05).

In the last column of Table 4, we present the Odds Ratio
(OR) of each metric. In short, the OR is the ratio of the
probability of an event occurring to the event not occurring.
Mathematically, it can be computed by taking the exponent
of the estimated coefficients, as derived by applying Logistic
Regression. The reason for considering the exponent of the
coefficients is that, since the model is Logit, we cannot
directly draw useful conclusions by inspecting the initial
coefficient values (the effect will be exponential). Thus,
converting to OR is more intuitive in the interpretation, as
follows: OR = 1 means same odds, OR < 1 means fewer
odds, and OR > 1 means greater odds. For example, by
inspecting the "OR” column in Table 4 we observe that
the metric contributors_count has an OR of 1.31, suggesting
that for one unit increase in the number of contributors (i.e.,
an additional contributor) we expect the odds of a module
being labeled as high-TD to be increased by a factor of
1.31 (i.e., a 31% increase). On the other hand, the metric
comment_lines_density has an OR of 0.92 suggesting that for
one unit increase in the percentage of the lines containing
a comment we expect about 0.08 times decrease (i.e., a 8%
decrease) in the odds of a module being labeled as high-TD.

To conclude the exploratory analysis, the Mann-Whitney
U test revealed that all metrics can discriminate and poten-
tially be used as predictors of high-TD software modules.
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Furthermore, the univariate logistic regression analysis sug-
gested that all of the metrics were found to be significantly
related to the probability of high TD (p — value < 0.05).
Therefore, the entire set of metrics presented in Table 3 will
be considered as input during the construction of the models
described in Section 3.3. After all, some of the ML models
used in this study are known to eliminate variables that
they consider insignificant along their iterations based on
embedded feature selection methods.

3.3 Model Building

This section provides details regarding the model building
process that involves specific steps that are (i) model selec-
tion, (ii) model configuration and (iii) performance evaluation.
Generally speaking, the design of our experimental study
involves a candidate set of classification learning algorithms
A = Ay, ..., Ak, where the objective of each candidate A
is to learn a mapping function from input variables (or
predictors) x; to output variable (or response) y;, where
y; € {0,1} given a set of n input-output observations of the
form D = {(z;,y; }( p In our case, the output variable
is the characterization ot) TD into not-High-TD (denoted by
0) and high-TD (denoted by 1) and the output variables that
are derived through the process described in Section 3.1.

3.3.1 Model Selection

Having in mind that there is a plethora of prediction
candidates that can be used for classification purposes,
we decided to explore a specific set of well-established
statistical and ML algorithms that have been extensively
applied in other similar experimental studies for code smell
or bug prediction [17], [20]. More specifically, we used seven
different classifiers that are summarized in Table 5: two are
simple statistical/probabilistic models (Logistic Regression
(LR), Naive Bayes (NB)), and five are more sophisticated sin-
gle (Decision Trees (DT), K-Nearest Neighbor (KNN), Support
Vector Machines (SVM)) or ensemble (Random Forest (RF) and
eXtreme Gradient Boosting (XGBoost)) ML models.

Although the candidate classifiers have shown to be
effective in many application domains, their performances
are significantly affected by the class imbalance problem [35].
This challenging issue occurs in classification tasks, when
the class distributions of the response variable are highly
imbalanced, which practically means that the one class is
underrepresented (minority class) compared to the other
(majority class). In this study, the response variable suffers
from intrinsic imbalance [35] (ratio ~1:15), due to the na-
ture of the problem and thus, it presents a highly-skewed
class distribution. This fact causes problems to the learning
process, which leads to poor generalization ability of classi-
fiers, since most of these algorithms assume balanced class
distributions. Moreover, the majority of these learners aims
to maximize the overall accuracy (or total error rate) of the
fitted model, which results in turn, to classifiers that tend
to be biased with models presenting an excellent prediction
performance for the majority class but at the same time,
extremely poor performance for the minority class.

The class imbalance problem is usually addressed by em-
ploying two widely-known techniques, namely oversampling
and undersampling [36]. Oversampling achieves the desired
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TABLE 4
Discriminative Power and Univariate Logistic Regression Results

Discriminative Power Univariate logistic regression
Metrics Median Mann-Whitne o
not-high-TD | high-TD | U test (p-value}; Pseudo R? | p-value SE OR (95% CI)
commits_count 6 21 <0.001 0.167 <0.001 | 0.002 | 1.056 (1.053 - 1.060)
code_churn_avg 15 24 <0.001 0.038 <0.001 | 0.001 | 1.010 (1.009 - 1.011)
contributors_count 3 5 <0.001 0.120 <0.001 | 0.009 | 1.315(1.293 - 1.339)
contributors_experience 84 72 <0.001 0.016 <0.001 | 0.001 | 0.984 (0.981 - 0.987)
hunks_count 1 2 <0.001 0.035 <0.001 | 0.017 | 1.358 (1.313 - 1.405)
issue_tracker_issues 0 5 <0.001 0.006 <0.001 | 0.000 | 1.003 (1.002 - 1.003)
cbo 5 15 <0.001 0.201 <0.001 | 0.003 | 1.130 (1.123 - 1.137)
wmc 7 64 <0.001 0.389 <0.001 | 0.001 | 1.055 (1.053 - 1.058)
dit 1 2 <0.001 0.018 <0.001 | 0.012 | 1.168 (1.141 - 1.196)
rfc 6 49 <0.001 0.324 <0.001 | 0.001 | 1.059 (1.056 - 1.062)
lcom 1 92 <0.001 0.064 <0.001 | 0.001 | 1.002 (1.001 - 1.002)
max_nested_blocks 1 3 <0.001 0.233 <0.001 | 0.020 | 2.224 (2.139 - 2.312)
total_methods 4 21 <0.001 0.175 <0.001 | 0.002 | 1.073 (1.069 - 1.077)
total_variables 3 38 <0.001 0.371 <0.001 | 0.002 | 1.085 (1.081 - 1.089)
total_refactorings 1 22 <0.001 0.124 <0.001 | 0.000 | 1.014 (1.013 - 1.015)
duplicated_lines_density 5 14 <0.001 0.022 <0.001 | 0.001 | 1.016 (1.014 - 1.018)
comment_lines_density 38 17 <0.001 0.169 <0.001 | 0.002 | 0.929 (0.926 - 0.935)
ncloc 47 366 <0.001 0.531 <0.001 | 0.000 | 1.014 (1.014 - 1.015)
TABLE 5

Classification Models of the Experimental Setup

Classification Model

General Idea

Best Tuning Parameters

Logistic Regression (LR)

Employs a logit function to predict the probability of a categorical target
variable belonging to a certain class.

penalty="none’,
solver="Ibfgs’

Naive Bayes Classifier (NB)

Applies Bayes” theorem to construct a probabilistic classifier based on the
independence assumption between variables.

N/A

Decision Tree (DT)

Constructs hierarchical models composed of decision nodes and leaves to
predict the class of the target variable.

criterion="gini’,
max_depth="none’

k-Nearest Neighbor (kNN)

Uses a distance function to predict the class of a new data point based on
the majority label of the k data points closest to it.

n_neighbors=8

Support Vector Machine (SVM)

Tries to find the optimal N-dimensional hyperplane that maximises the
margin between the data points to classify them into predefined classes.

kernel="rbf’, C=1

Random Forest (RF)

A decision-tree-based ensemble algorithm that collects all the votes that
are produced by its decision trees and provides a final classification result.

n_estimators=100,
criterion="gini’,
max_depth="none’

XGBoost (XGB)

A decision-tree-based ensemble algorithm that uses multiple decision trees
to predict an outcome based on a gradient boosting framework.

n_estimators=>50,
booster ="gbtree’

balance between classes by duplicating the minority class
data, while undersampling does so by removing randomly
chosen data from the majority class. There are cases where a
combination of over-and under-sampling works better [36],
i.e., by using specific ratios of both techniques until the
desired trade-off between precision and recall is achieved.

In the current study, we opted for oversampling rather
than undersampling, as we wanted to avoid removing valu-
able data from our dataset (and therefore avoid a possible
drop in the models” performance). Furthermore, as regards
the oversampling ratio, we chose to augment the minority
class until its data instances become equal to those of
the majority class (ratio 1:1). The reasoning behind this
decision is twofold. First, a 1:1 class ratio guarantees the
best possible representation of the minority class, which in
this study we consider more important than the majority
class. Second, during the evaluation process of ML models
(described in Section 3.3.2), we noticed that having a 1:1
class ratio resulted in better performance metrics compared
to the classifiers’” performance when trying different ratios
of oversampling, undersampling, or combinations of both.

To overcome this inherent limitation of classification

learners to provide accurate predictions for both minority
and majority classes in the presence of class imbalanced
input variable, we made use of a well-known synthetic sam-
pling method, namely the Synthetic Minority Oversampling
Technique (SMOTE) [36]. SMOTE performs oversampling of
the minority class by generating new synthetic instances
based on the nearest neighbours belonging to that class.
More details on where and how we integrated SMOTE into
our experimental setup are presented in Section 3.3.2.

3.3.2 Model Configuration

To evaluate each classifier, we followed a training-validation-
test approach. More specifically, the dataset was partitioned
into two parts: 80% (14,238 samples) for training/validation
and 20% (3,559 samples) for test. The first part was em-
ployed for model training, tuning and validation (using
cross-validation), while the second one was used as a
holdout set for the “final exam”, i.e., the final evaluation
of the models on completely unseen data. Data splitting
was performed in a stratified fashion, meaning that we
preserved the percentage of samples for each class (i.e., the
initial high-TD — not-high-TD class ratio ~1:15) among the
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two parts. The latter is considered an important step, as
it is of utmost necessity that the test set retains the initial
class ratio, thus creating realistic conditions for final model
evaluation.

Starting with the validation phase, we performed 3 x 10
repeated stratified cross-validation [37]. The dataset was ran-
domly split into 10 folds, from which nine participate in
training and the remaining one participates in testing, ro-
tating each time the test fold until every fold serves as
a test set. Moreover, each fold was initially stratified to
properly preserve the initial high-TD — not-high-TD class
ratio. Subsequently, oversampling (using SMOTE) was in-
tegrated into the cross-validation process. Despite the fact
that the training folds undergo oversampling, the test fold
always retains the initial class ratio for a proper model
validation. The entire 10-fold cross-validation process was
then repeated 3 times to account for possible sampling bias
in random splits. Hence, the computed performance met-
rics of each classifier produced during the cross-validation
are the averaged values of 30 (3210) models trained and
evaluated on the same dataset. In that way, we reduce the
possibility of having bias introduced by the selection of non-
representative subsets of the broader dataset.

As a common practice during the validation phase, we
employed hyper-parameter tuning to determine the opti-
mal parameters for each classifier and therefore increase
its predictive power. To do so, we used the Grid-search
method [38], which is commonly used to find the opti-
mal hyper-parameters, by performing an exhaustive search
over specified parameter values for an estimator. We chose
the Fh-measure as the objective function of the estimator
to evaluate a parameter setting (further details regarding
the selection of Fy-measure are presented in Section 3.3.3).
Hyper-parameter selection was performed using the strat-
ified 3 x 10-fold cross-validation to avoid overfitting and
ensure that the fine-tuned classifiers have a good degree of
generalization before assessing their performance on the test
set. In Table 5, we report the optimal hyper-parameters as
they were adjusted during the tuning process.

During the validation phase we also performed a Min-
Max data transformation by scaling each feature individu-
ally in the range between zero and one. The reason behind
this choice is that if a feature has a variance that is orders
of magnitude larger than others, it might dominate during
the learning process and thus make a classifier unable to
learn from other features correctly. By applying the MinMax
transformation we noticed that the predictive performance
(and execution time) of most classifiers was improved, while
for others there was no significant difference. Again, Min-
Max transformation was integrated into the stratified 3 x 10-
fold cross-validation process where, during each iteration,
it was fitted only to the training folds (to create realistic
conditions) and then, used to transform both the training
and test folds.

Finally, after fine-tuning and evaluating our classi-
fiers through the validation phase described above, we
proceeded with the final test phase. More specifically,
we re-trained the fine-tuned classifiers using the train-
ing/validation set and applied them on the test set. Over-
sampling (using SMOTE) and MinMax transformation were
used again, but only on the training/validation set, which
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TABLE 6
Confusion Matrix
Predicted Class
Positive Negative

Positi TP FN
Actual Class ositive (True Positives) | (False Negatives)

Negati FP TN
egative (False Positives) | (True Negatives)

at this point is used solely for model training. The data
samples comprising the test set were never seen by the
models during the previous phase (training/validation).
Our goal was to create a hypothetical, but practical situation,
where a new system or a set of systems is available, and
the proposed classification framework must be applied to
predict the presence of high-TD modules in the new (set
of) system(s). In contrast to the cross-validation process
where the performance metrics are averaged among the
30 (3z10) iterations, in this case, the computed metrics of
each classifier comprise a single value, since each model was
executed on the entire test set once. For our experiments, we
used the Python language and more specifically the scikit-
learn® ML library.

3.3.3 Performance Evaluation

In practice, the performance evaluation of a binary classifier
is usually assessed through alternative metrics based on
the construction of a confusion matrix (Table 6). Typically,
in a class-imbalanced learning process, the minority and
majority classes are considered to represent the positive (+)
and negative (—) outputs, respectively [39].

Furthermore, the de facto evaluation metrics (accuracy
and error rate) do not consider the cost and side effects of
misclassifying cases that belong to the minority class. This
is also the case in our study, since predicting accurately
the modules belonging to the minority class, i.e., modules
exhibiting high levels of TD, is of great importance from the
practitioners” perspective. The rationale for the preference
of lowering F'N compared to F'P stems from the belief that
the effects of ignoring a high-TD module can be considered
more risky and detrimental to software maintenance com-
pared to the wasting of effort to examine a falsely reported
low-TD module.

Based on the previous considerations, we made use of
appropriate evaluation metrics that have been proposed
for dealing with the class imbalanced problem [35]. The
F-measure is a widely used metric combining precision and
recall, which are defined as follows:

TP

Precision = TP FP €))]
TP
ReC(lll = m (2)

Precision x Recall
(82 % Precision) + Recall

F —measure = (1 + (%) « 3)

where /3 is a coefficient for adjusting the relative importance
of precision with respect to recall. Each of the above met-
rics represents different aspects of prediction performance

6. https:/ /scikit-learn.org/stable/
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providing straightforward directions about the quality of a
classifier. Both precision and recall focus on the minority
(positive) class, while the former is known a measure of
exactness and the latter as a measure of completeness [39].
These two metrics are combined in order to provide an
overall evaluation metric related to the effectiveness of a
classifier on predicting correctly the minority cases, that
is, the class of great importance in our experimental setup.
More importantly, the F-measure provides a straightforward
manner to place more importance to F'N compared to F'P
misclassified cases by setting / = 2 leading to a special
case of F-measure, known as Fy-measure. In other words,
we consider it more risky for a development team to ignore
modules that might have high TD (i.e., to suffer from the
presence of many F'N's which might lead to inappropriate
decisions with respect to maintenance) than to go through
many modules which are marked as problematic whereas
they aren’t (i.e., F'Ps). Therefore, for evaluating the selected
set of binary classification models, we chose the Fy-measure
as one of our main performance indicators.

It should be noted that unlike other fields, such as
vulnerability prediction, where the minimization of F'Ns is
considered of utmost importance and therefore the absolute
emphasis is given on recall, we also value the number
of F'Ps as their presence increases the effort required to
study the reported problematic modules. Therefore, the F»-
measure is ideal in our case, since it considers both recall and
precision, while giving more emphasis on the former.

As already mentioned, apart from the ability of the
produced models to accurately detect as many high-TD
modules as possible, it is important to take into account
the volume of the produced F'Ps. A large number of F'Ps
is associated to the increased manual effort required by the
developers to inspect a non-trivial number of modules, in
order to detect an actual high-TD module. Therefore, even
though we use the Fy-measure as the criterion to test the
models’ performance, we further investigate their practical-
ity by measuring the required inspection effort.

Following a similar approach to other studies [33], [40],
[41], we use the number of modules to inspect as an estima-
tor of the inspection effort. We define the Module Inspection
(MI) ratio as the ratio of modules (software classes) pre-
dicted as high-TD to the total number of modules:

MI= (TP +FP)/(TP+TN+FP+FN) (4

This performance metric essentially describes the per-
centage of modules that the developers have to inspect
in order to find the T'Ps identified by the model. As an
example, let’s consider a model with recall equal to 80%.
In practice, this means that the model is able to identify
correctly the 80% of high-TD modules. Let’s consider also
that this model has MI ratio equal to 10%. This means that
by using the model, we expect to find the 80% of true high-
TD modules (I'Ps) by manually inspecting only the 10% of
the total modules, i.e., only the modules that were predicted
as high-TD by the model (T'Ps + F Ps). Obviously, using
such a model is unarguably far more cost-effective than
randomly choosing modules to inspect, since identifying the
80% of high-TD modules without using the model would
require us to inspect the 80% of total modules.
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To conclude, the F5-measure and MI performance metrics
are used as the basis for the comparison and selection of
the best model(s), as their combination provides a complete
picture of the model performance in predicting high-TD
modules. In fact, Fy-measure indicates how effectively the
produced models detect T'Ps but without ignoring F'Ps
(i.e., by weighting recall higher than precision), whereas
the MI indicates how efficient the models are in predicting
TPs, based on how many I'Ps have to be triaged by the
developers until a T'P is detected. For completeness, in the
experimental results presented in Section 4 we report other
indicators like precision, recall and Precision-Recall curves.

4 EXPERIMENTAL RESULTS
4.1 Quantitative Analysis

Table 7 summarizes the performance metrics for the set
of examined classifiers validated and tested through the
training-validation-test approach introduced in Section 3.3.2.
More specifically, “Validation” column presents the results
obtained for each classifier through the repeated stratified
cross-validation process (validation phase). To this regard,
the results present an overall indicator computed by aver-
aging the performance metrics of k& = 10 folds over three
repeated executions. Additionally, the standard deviation is
also reported. On the other hand, “Test” column presents
the performance metrics of each examined classifier on the
test (holdout) set, i.e., the 20% of the dataset that has not
been used during training/validation. In both cases, the best
classifier in terms of each performance measure is denoted
in bold font. As mentioned in Section 3.3.3, we considered
Fy-measure and MI ratio as the main performance indica-
tors, since they cover both accuracy and practicality of the
produced models.

The findings of Table 7 indicate that there is a subset
of superior classifiers presenting small divergences in terms
of Fy-measure. More specifically, as regards the validation
phase, LR achieves the highest F5-measure score with a value
of 0.764. However, XGB, RF and SVM classifiers are follow-
ing closely with Fy-measure scores ranging between 0.758
and 0.761. On the other hand, KNN, NB and DT seem to
have noticeably lower F-measure scores. In terms of results
in the test (holdout) set, we notice that the performance
of the classifiers is not only preserved compared to the
validation phase results, but is also slightly higher. More
specifically, RF achieves the highest F5-measure score with a
value of 0.790, followed closely by XGB, LR and SVM with
Fy-measure scores ranging between 0.781 and 0.788. Cer-
tainly, the overall performance evaluation is totally based
on statistical measures evaluated from samples and for this
reason, they contain significant variability that could lead
to erroneous decision-making regarding the superiority of
a subset of classifiers against competing ones. Thus, iden-
tifying a subset of superior models should be based on
statistical hypothesis testing [42].

To this regard, within the context of evaluating the exam-
ined classifiers through the validation phase, we made use
of a multiple hypothesis testing procedure, namely the Scott-
Knott (SK) algorithm [43] that takes into account the error
inflation problem caused by the simultaneous comparison
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TABLE 7
Evaluation Results for All Classifiers
F2 Precision Recall MI Cluster
Validation Test Validation Test Validation Test Validation Test
RF 0.760 (0.025) | 0.790 | 0.586 (0.022) | 0.601 | 0.822 (0.035) | 0.858 | 0.090 (0.007) | 0.092 A
XGB | 0.761 (0.021) | 0.788 | 0.458 (0.018) | 0.477 | 0.914 (0.03T) | 0.941 | 0.134 (0.006) | 0.133 A
LR 0.764 (0.020) | 0.787 | 0.462 (0.022) | 0.479 | 0.914 (0.026) | 0.937 | 0.133 (0.007) | 0.131 A
SVM 0.758 (0.019) | 0.781 0.441 (0.020) | 0.452 | 0.925 (0.027) | 0.954 | 0.141 (0.007) | 0.142 A
KNN | 0.731 (0.024) | 0.743 | 0.456 (0.023) | 0.464 | 0.861 (0.031) | 0.874 | 0.127 (0.007) | 0.126 B
NB 0.684 (0.027) | 0.712 | 0.449 (0.021) | 0.471 | 0.788 (0.038) | 0.816 | 0.118 (0.007) | 0.116 C
DT 0.663 (0.042) | 0.694 | 0.527 (0.031) | 0.546 | 0.709 (0.054) [ 0.745 | 0.094 (0.005) [ 0.096 D

of multiple prediction models [44]. A major advantage com-
pared to other traditional hypothesis procedures is the fact
that the algorithm results into mutually exclusive clusters
of classifiers with similar performance and thus, the inter-
pretation and decision-making is a straightforward process.
Finally, the algorithm is totally based on well-established
statistical concepts of Design of Experiments (DoE) taking
into account both treatment and blocking factors. In our case,
the validation phase consists of 30 repeated performance
measurements (i.e., Fs-measure) evaluated from each classi-
fier (treatment effect) on k = 10 folds after three repeated
executions (blocking effect). Describing briefly, the treatment
effect takes into account the differences between the set
of candidate classifiers, whereas the blocking effect is an
additional factor that should be taken into account but we
are not directly interested in and it is related to the splitting
of dataset into different test sets on each execution of the
stratified cross-validation process.

The findings of the SK algorithm indicated a statisti-
cally significant treatment effect (p < 0.001) on Fy-measure,
which means that the observed differences among the seven
classifiers cannot have occurred just by chance and there
is indeed, a subset of superior classifiers in terms of F»-
measure. To this regard, the SK algorithm resulted into four
homogenous clusters of classifiers that can be found in the
last column of Table 7. The classifiers are ranked starting
from the best (denoted by A) to the worst (denoted by D)
clusters, whereas classifiers that do not present statistically
significant differences are grouped into the same cluster. The
best cluster encompasses four classifiers (RF, XGB, LR, and
SVM) that present similar prediction performances. On the
other hand, DT can be considered as the worst choice for
identifying if a module is a high-TD or not, based on metrics.

Even though we considered F»-measure as one of the
main performance indicators, the classifiers belonging to the
best cluster (Cluster A) present similar prediction capabili-
ties. Therefore, it is worth inspecting also other aspects of
performance as expressed by alternative measures in order
to decide upon the best choice. As regards the additional
reported performance metrics, namely precision and recall,
the SVM classifier shows the higher recall during validation
phase, with a value of 0.925, followed by XGB and LR with a
value of 0.914. SVM also shows the higher recall on the test
phase, with a value of 0.954. These three classifiers however
have a precision score lower than 0.5 in both validation and
test settings, which may dramatically increase the number
of predicted F'Ps. More specifically, a precision score lower
than 0.5 would result in the number of predicted F'Ps
being greater than the number of predicted T'Ps. On the

other hand, we notice that while RF (the classifier with
the higher Fy-measure testing score) has achieved a recall
score of 0.822 during validation and 0.858 during the test
phase, its precision score is approximately 0.6 in both cases,
which can be considered satisfactory given that our training
configuration places more emphasis on identifying F'Ns
rather than F'Ps.

While we consider it riskier for a development team to
ignore actual high-TD modules than inspect many modules
which have been falsely reported as high-TD, a statement
that a model showing high recall and low precision is better
than a model showing high precision and low recall is bold
and arguable. Developers may prefer to inspect a large
amount of potentially problematic modules because they
can afford a lot of resources for refactoring activities. On the
other hand, another development team may prefer a model
that reduces the waste of effort even at the cost of missing
some cases of high-TD modules. After all, TD management
is about reducing the wasted effort during development [2].
We can argue that the RF classifier strikes a balance between
these two cases, since it provides a quite satisfactory recall
score, while at the same it preserves a lower (but signifi-
cantly higher compared to the other models) precision score.

To complement the comparison of classification perfor-
mance metrics presented above, we also present Precision-
Recall curves [45] of each classifier, averaging the results over
each fold of the 3 x 10 repeated stratified cross-validation
process followed within the validation phase. A Precision-
Recall curve is a plot that shows the tradeoff between
precision (y — axis) and recall (z — axis) for different proba-
bility cutoffs, thus providing a graphical representation of
a classifier’s performance across many thresholds, rather
than a single value (e.g., F»-measure). In contrast to the ROC
curves that plot the F'P vs T'P rate, Precision-Recall curves
are a better choice for imbalanced datasets, since the number
of TNs is not taken into account [45]. We also provide
values for the area under curve (AUC) for each classifier,
summarizing their skill across different thresholds. A high
AUC represents both high recall and high precision. As
can be seen by inspecting Fig. 1, the curve of RF classifier
is closer to the optimal top-right corner, which practically
means that it can achieve similar recall scores by sacrificing
less precision compared to the other classifiers. In addition,
RF presents the highest AUC, with a value of 0.77, followed
by LR (AUC = 0.75) and XGB (AUC' = 0.74). The dashed
horizontal line depicts a “no-skill” classifier, i.e., a classifier
that predicts that all instances belong to the positive class.
Its y — value is 0.067, equal to the ratio of positive cases in
the dataset.
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Cross-Validated Precision-Recall Curves

—— Logistic Regression (AUC = 0.75)
Naive Bayes (AUC = 0.56)

—— Decision Tree (AUC = 0.39)

= K:-NN [AUC = 0.57)
SVM [AUC = 0.68)

—— Random Forest (AUC = 0.77)

XGBoost (AUC = 0.74)
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Fig. 1. Cross-validated Precision-Recall Curves

Regarding the second main performance indicator, i.e.,
the MI ratio, by inspecting the test phase metrics in Table
7 we can see that RF has the best (i.e., lowest) score with
a value of 0.092. This can be seen as a logical outcome
considering that RF achieved by far the best precision score
among the examined classifiers. Possible tradeoffs between
high recall and low precision have also implications in
terms of cost effectiveness. As an example, let’s consider
a project coming from our dataset. The JClouds application
has around 5,000 modules, among which 126 are labeled
as high-TD. The SVM classifier provided the highest recall
score (0.954) with a 14% MI ratio. This means that a devel-
opment team would have to inspect 5,000 x 14% = 700
potentially high-TD modules in order to identify the 95% of
real high-TD cases, that is, 120 modules (and miss 6 high-
TD modules). On the other hand, the RF classifier provided
a recall score of 0.858 with a 9% MI ratio. This means that a
development team would have to inspect 5,000 x 9% = 450
potentially high-TD modules to identify the 86% of real
high-TD cases, that is, 108 modules (and miss 18 high-TD
modules). Similarly, if the additional 250 modules that need
inspection if adopting the SVM over the RF model are worth
the additional 12 high-TD modules identified by the SVM
model is a company-specific decision. However, we believe
that pursuing moderate precision and high recall might be a
more cost-effective approach than pursing the highest recall
at the cost of a very low precision.

4.2 Sensitivity Analysis

To investigate potential variations and ranking instabili-
ties concerning the prediction capabilities of the examined
classifiers per project, we decided to perform sensitivity
analysis. Regarding the experimental setup, we performed
a 3 x 10 repeated stratified cross-validation process twenty
one times, using at each of the 21 iterations a single project
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as the dataset for both training and testing each examined
classifier. To evaluate the classifiers’” performance we con-
sidered again the Fy-measure. We have to clarify that we
were not able to conduct the above analysis for four projects
(i.e., gson, javacv, vassonic and xxl-job), due to the limited
number of modules (min=64, max=112) that made the cross-
validation process impossible to execute. The results of the
sensitivity analysis are summarized in the Table 8.

Each row of the table presents the findings derived from
the analysis conducted on each single dataset accompanied
by the results of the SK algorithm regarding the statistical
hypothesis testing procedure based on Fy-measure. Clas-
sifiers belonging to the best cluster are denoted in bold,
whereas the last row provides an overview of classifiers’
performance, that is, the percentage of experiments in which
the classifiers were categorized into the set of superior
models (denoted by the letter A). A first interesting find-
ing concerns the ranking stability of classifiers character-
ized as superiors based on our previous cross-validation
experimentation on the merged dataset (see Section 4.1),
depicted also in the first row of Table 8. More specifically,
XGB presents consistently outstanding prediction capabili-
ties, since this classifier was grouped into the best cluster
in 22 out of 23 experiments (95.45%). Furthermore, XGB
exhibits even better Fy-measure scores on 13 datasets com-
pared to the corresponding metric evaluated on the merged
set of projects. RF and SVM can be also considered as a
good alternative choice with noteworthy performances in
the majority of the datasets. On the other hand, there is
a strong indication of classifiers that consistently present
moderate (KNN and NB) and poor (DT) predictive power,
a finding that is aligned to the results obtained from the
experimentation on the set of all projects.

Based on the results of both Section 4.1 and Section 4.2,
it is of no surprise that more sophisticated algorithms, such
as RF, XGB, and SVM, are performing better than other,
more simple algorithms, such as DT or NB. This is a general
remark, often encountered in various classification, or even
regression tasks. In our case, the finding that XGB, RF and
SVM are demonstrating a significantly higher performance
compared to the rest of the examined classifiers might be
attributed to the fact that these three algorithms stand out
when non-linear underlying relationships exist in the data,
which also applies in our case. Furthermore, the fact that
XGB and RE, that is, two ensemble decision-tree-based algo-
rithms, are ranked as the top 2 best-performing algorithms is
also in line with the findings of similar studies (as presented
in Section 2), where tree-based ensemble algorithms (e.g.,
RF) have been proved to be among the most popular and
effective classifiers in related empirical SE studies.

4.3 lllustrative Examples of
Classes

Identifying High-TD

To complement the quantitative analysis, we also include
indicative qualitative results. More specifically, in what fol-
lows, we present three distinct cases of modules from the
dataset where not only there is an agreement between the
three TD tools regarding their TD level (i.e., high/not-high
TD), but the latter is also correctly predicted by the subset
of our superior classifiers.
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TABLE 8
Sensitivity Analysis Results

Dataset #modules RF LR SVM XGB KNN NB DT
merged 17797 A (0.760) | A (0.764) | A (0.758) | A (0.761) | B (0.731) | C(0.684) | D (0.663)
arduino 231 A (0.680) | A (0.702) | A (0.641) | A (0.728) | A (0.770) | A (0.774) | A (0.635)
arthas 279 A (0.641) | B(0.554) | B(0.522) | A (0.666) | A (0.707) | A (0.623) | B (0.536)
azkaban 510 A (0.793) | B(0.697) | B(0.682) | A (0.847) | B (0.722) | A (0.775) | B (0.748)
cayenne 1508 A (0.751) | A(0.758) | B(0.699) | A(0.768) | B (0.710) | B(0.730) | C (0.623)
deltaspike | 668 B (0.561) | A(0.659) | A (0.672) | A (0.612) | A (0.743) | A (0.688) | C (0.433)
exoplayer | 636 A (0.878) | B(0.813) | A(0.857) | B (0.812) | B (0.824) | B (0.819) | B (0.780)
fop 1535 A (0.792) | A(0.816) | A (0.824) | A (0.797) | A (0.821) | A (0.802) | B (0.664)
jclouds 2889 A (0.769) | A(0.791) | A(0.762) | A (0.805) | B(0.699) | B(0.668) | B (0.692)
joda-time 165 B (0.640) | B(0.527) | B(0.557) | A (0.840) | B(0.674) | B(0.581) | A (0.823)
libgdx 1855 A (0.805) | A(0.814) | A(0.812) | A(0.795) | A(0.772) | A (0.785) | B (0.712)
maven 621 A (0.716) | A (0.736) | A(0.723) | A(0.769) | A (0.777) | A (0.699) | A (0.670)
mina 436 B (0.504) | A (0.633) | A (0.545) | A (0.627) | A (0.576) | A (0.638) | C (0.375)
nacos 390 A (0.804) | B(0.663) | A(0.759) | A (0.758) | A (0.781) | A (0.747) | B (0.667)
opennlp 670 A (0.846) | A (0.826) | A (0.867) | A (0.829) | A (0.806) | A (0.844) | A (0.855)
openrefine | 593 A (0.812) | A(0.784) | A(0.763) | A (0.818) | B(0.734) | A (0.805) | B (0.674)
pdfbox 983 A (0.662) | A(0.715 | A(0.692) | A(0.703) | A (0.711) | A (0.751) | B (0.508)
redisson 823 A(0.843) | A(0.830) | A(0.828) | A (0.835) | A (0.852) | A(0.817) | A (0.784)
RxJava 771 A (0.833) | A(0.850) | A(0.859) | A (0.864) | B(0.787) | B(0.805) | B (0.782)
testng 343 A (0.665) | A (0.653) | A (0.710) | A (0.700) | A (0.750) | A (0.670) | A (0.619)
wss4j 486 A (0.729) | A(0.757) | A(0.801) | A(0.721) | A (0.744) | A (0.752) | B (0.653)
Zaproxy 1121 A (0.776) | A (0.776) | A(0.773) | A (0.809) | A (0.799) | A (0.769) | B (0.701)
% of experiments belonging to best cluster A 86.36% 77.27% 81.82% 95.45% 63.64% 72.73% 27.27%

As a first example, the module SslSocketFactory.java of
the Mina project, a module that belongs to the Max-Ruler
profile (i.e., high-TD based on the results of all the three
tools) of the TD Benchmarker, was identified as high-TD
also by the subset of our superior classifiers. To understand
why this module was labeled as high-TD in the first place,
we need to take a closer look at the analysis results produced
by the three TD assessment tools (i.e., SonarQube, CAST,
and Squore). Regarding SonarQube, the tool has identified
four code smell issues (among which one critical and one
major), a low comment line density (3.9%), and a relatively
high cyclomatic complexity (15), despite the module’s small
size (i.e., 73 ncloc). Regarding CAST, the tool has identified
various issues, such as high coupling and low cohesion (i.e.,
“class with high lack of Cohesion”, “class with high Cou-
pling between objects”), which it marks as high-severity is-
sues. In addition, similarly to SonarQube, CAST also points
out the lack of comments (i.e., "Methods with a very low
comment/code ratio”) as a medium-severity issue. Finally,
regarding Squore, the tool has identified eight medium-
severity maintainability issues (e.g., "Multiple function exits
are not allowed”) and, similarly to the other tools, it points
out the lack of comments (i.e., “The artifact is not docu-
mented or commented properly”).

In another example, the module IoUtils.java of the Na-
cos project, also belonging to the Max-Ruler profile, was
correctly identified as high-TD by our superior classifiers
subset. SonarQube has identified 17 code smell issues and
three bugs (among which two critical and eight major), a
very low comment line density (0.7%), and a high cyclo-
matic complexity (36), despite the module’s small size (i.e.,
152 ncloc). SonarQube has also identified a 30% duplicate
line density. Regarding CAST, the tool has identified various
issues, such as high coupling and low cohesion (i.e., “class
with high lack of Cohesion”, “class with high Coupling be-
tween objects”), and a couple of bug occurrences (i.e., “Close

the outermost stream ASAP”, ” Avoid method invocation in
a loop termination expression”, etc.), all of which it marks
as high-severity issues. Similarly to SonarQube, CAST also
points out the high cyclomatic complexity (i.e., ”Artifacts
with High Cyclomatic Complexity”), lack of comments (i.e.,
“"Methods with a very low comment/code ratio”), as well as
code duplication issues (i.e., “"Too Many Copy Pasted Arti-
facts”). Finally, Squore has also identified various maintain-
ability issues (e.g., “Consider class refactorization”, "Multi-
ple function exits are not allowed”, etc.), among which three
are labelled as major. Similarly to the previous tools, Squore
also highlights the high cyclomatic complexity (i.e., "Cyclo-
matic Complexity shall not be too high”), the low comment
ratio (i.e., “The artifact is not documented or commented
properly”), and finally the code duplication (i.e., “Cloned
Functions: There shall be no duplicated functions”).

In a third example, the module CharMirror.java of the Fop
project, a module that belongs to the Min-Ruler profile (i.e.,
not-high-TD based on the results of all the three tools) of the
TD Benchmarker, was correctly classified as not-high-TD by
the subset of our superior classifiers. Regarding SonarQube,
the tool has identified no bugs, code smells, or other issues,
while its cyclomatic complexity is very low (8) compared
to its large size (732 ncloc). Regarding CAST, the tool
has identified only one high-severity issue (i.e., “Numeri-
cal data corruption during incompatible mutation”), while
there were no high coupling and low cohesion problems.
Finally, Squore identified only three minor-severity issues
(e.g., "Multiple function exits are not allowed”) and no
further problems.

5 IMPLICATIONS TO RESEARCHERS AND PRACTI-
TIONERS
In this study we made an attempt to leverage the knowl-

edge acquired by the application of leading TD assessment
tools in the form of a benchmark of high-TD modules.
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Considering 18 metrics as features, the benchmark allowed
the construction of ML models that can accurately classify
modules as high-TD or not. The relatively high performance
of the best classifiers enables practitioners to identify candi-
date TD items in their own systems with a high degree of
certainty that these items are indeed problematic. The same
models provide the opportunity to researchers for further
experimentation and analysis of high-TD modules, without
having to resort to a multitude of commercial and open-
source tools for establishing the ground truth. A prototype
tool that is able to classify software modules as high/not-
high TD for any arbitrary Java project is available online’.

It is widely argued that ML models operate as black
boxes limiting their interpretability. To address this limita-
tion we attempted to shed light into the predictive power
of the selected features. While all 18 examined metrics
were found to be significantly related to the probability of
high TD, the provided statistical results can drive further
research into the factors which are more strongly associated
to the presence of TD thereby leading to the specification of
guidelines for its prevention.

6 THREATS TO VALIDITY

Threats to external validity concern the generalizability of re-
sults. Such threats are inherently present in the study, since
the applicability of ML models to classify a software module
as high-TD/not-high-TD is examined on a sample set of
25 projects. While it is always possible that another set of
projects might exhibit different phenomena, the fact that the
selected projects are quite diverse with respect to application
domains, size, etc. partially mitigates such threats. Another
threat stems from the fact that the examined dataset consists
of Java projects, thus limiting the ability to generalize the
conclusions to software systems of a different programming
language. However, the process of building classification
models described in this paper primarily builds upon the
output of the tools used to compute software-related metrics
that can act as predictors for classifying TD modules (high-
TD/not-high-TD). This means that the proposed models
can be easily adapted to classify the modules of projects
that are coded in a different OO programming language, as
long as there are tools that support the extraction of such
metrics. Finally, since the dataset does not include industry
applications, we cannot make any speculation on closed-
source applications. Commercial systems as well as other
OO programming languages can be a topic of future work.

Threats to internal validity concern unanticipated rela-
tionships or external factors that could affect the variables
being investigated. Regarding the selection of the indepen-
dent variables, it is reasonable to assume that numerous
other software-related metrics that affect TD might have
not been taken into account. However, the fact that we
constructed our TD predictor set based on metrics that
have been widely used in the literature, limits this threat.
Regarding our decision not to perform feature selection and
consider the entire set of metrics (presented in Table 3) as in-
put to the classification models, we avoided selection bias by
using hypothesis testing and univariate logistic regression

7. https:/ /sites.google.com/view /ml-td-identification /home
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analysis to investigate their discriminative and predictive
power. Subsequently, all metrics were found to be significant
towards predicting high-TD software modules. Finally, as
explained in Section 3.3, we employed oversampling to
increase classifiers’ effectiveness in predicting the minor-
ity class. Nevertheless, we acknowledge that balancing a
dataset may lead to distributions far different from those
expected in real life and may therefore result in less accurate
models in practice. Investigating whether it is feasible to
create equally accurate models trained on data reflecting
real distributions will be the subject of future work.

Threats to construct validity concern the relation between
the theory and the observation. In this work, construct
validity threats mainly stem from possible inaccuracies in
the measurements performed for collecting the software-
related metrics (i.e., the independent variables), but also
from inaccuracies in the measurements performed for the
construction of the TD Benchmarker [5] (i.e., the dependent
variable). To mitigate the risks related to the data collection
process, we decided to use five well-known tools, which
have been widely used in similar software engineering
studies to extract software-related metrics [14], [15], [23],
[46], [47]. As regards the dependent variable, i.e., the TD
Benchmarker created within the context of Amanatidis et
al. [5], construct validity threats are mainly due to possible
inaccuracies in the static analysis measurements performed
by the three employed tools, namely SonarQube, CAST and
Squore. However, all three platforms are major TD tools,
widely adopted by software industries and researchers [4].
Regarding our decision to consider as high-TD only the
modules that have been identified as such by all three TD
tools (i.e., belonging to the Max-Ruler profile), we believe
that while modules recognized as high-TD by multiple
tools warrant more attention by the development team,
ML models can be trained on any provided dataset. If
a development team wishes to tag as high-TD modules
even the ones identified as such by only a fraction of the
three tools (e.g., two out of three), a different archetype can
be selected (e.g., the Partner profile [5]) for extracting the
training dataset. In an industrial context, the training dataset
could also result from actual labeling of problematic classes
so as to reflect the developers’ perception of high TD. As
for the experimented classification models, we exploited the
ML algorithms implementation provided by the scikit-learn
library, which is widely considered as a reliable tool.

Reliability validity threats concern the possibility of repli-
cating this study. To facilitate replication, we provide an
experimental package containing the dataset that was con-
structed, as well as the scripts used for data collection,
data preparation and classification model construction. This
material can be found online®. Moreover, the source code of
the 25 examined projects is publicly available on GitHub to
obtain the same data. Finally, as a means of practically vali-
dating our approach, we provide in the supporting material
a prototype tool able to classify software modules as high-
TD/not-high-TD for any arbitrary Java project. We believe
that this tool will enable further feature experimentation
through its use in academic or industrial setting and will
pave the way for more data-driven TD management tools.

8. https:/ /sites.google.com/view /ml-td-identification/home
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7 CONCLUSION AND FUTURE WORK

In this study we investigated the ability of well-known
Machine Learning algorithms to classify software modules
as high-TD or not. As ground truth we considered a bench-
mark of high-TD classes extracted from the application of
three leading TD tools on 25 Java open-source projects. As
model features we considered 18 metrics covering a wide
spectrum of software characteristics, spanning from code
metrics to refactorings and repository activity.

The findings revealed that a subset of superior classifiers
can effectively identify high-TD software classes, achiev-
ing an Fy-measure score of approximately 0.79 on the test
set. The associated Module Inspection ratio was found to
be approximately 0.10 while the recall is close to 0.86,
implying that one tenth of the system classes would have
to be inspected by the development team for identifying
86% of all true high-TD classes. Through the application
of the Scott-Knott algorithm it was found that Random
Forest, Logistic Regression, Support Vector Machines and
XGBoost presented similar prediction performance. Such
models encompass the aggregate knowledge of multiple
TD identification tools thereby increasing the certainty that
the identified classes suffer indeed from high-TD. Further
research can focus on the common characteristics shared
by the problematic classes aiming at the establishment of
efficient TD prevention guidelines.
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