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ABSTRACT Load balancing techniques in cloud computing can be applied at three different levels: Virtual
machine load balancing, task load balancing, and resource load balancing. At all levels, load balancing should
also be implemented in an efficient manner, to increase system performance. In this paper, we propose a fair,
in terms of added workload per VM, task load balancing strategy, that aims to improve the average response
time and the makespan of the system in the cloud environment. The problem is formulated as an irreducible
finite state Markov process, which is known to have a balance equation for each state. From the balance state
probabilities we derive the expected utilizations for the virtual machines (VM), which play a vital role in our
task allocation approach. In our model, the Load Balancer (LBer) acts as a central server, which uses our
proposed fair task allocation scheme to distribute the incoming tasks in a fair, balanced manner among the
virtual machines, taking into account their current state as well as their processing capabilities. Our scheme
has been compared to recent algorithms that use the particle swarm optimization and the Honey bee foraging
scheme to achieve load balancing. Our experimental results show that our proposed scheme outperforms
other state of the art schemes in terms of makespan, average response time, and resource utilization and
provides lower degree of imbalance.

INDEX TERMS Load balancing, cloud computing, scheduling, Markov modeling, distributed environment,
expected utilization, expected processing capacity.

I. INTRODUCTION
Cloud computing is a very popular internet-based technology,
which provides resources and computer services on demand
to customers with different needs [1], [2]. The provision of all
the services are divided into three categories: Infrastructure as
a service (IaaS), Software as a service (SaaS) and Platform as
a servicePaaS [3]. Load balancing (LB) refers to the alloca-
tion of the workload in a distributed system like the cloud,
in such a manner that the system resources almost equally
loaded, that is, no resource is over- or under-loaded. In this
manner, the overall system performance, which is determined
by parameters like the makespan, the average response time,
or the total execution time, improves dramatically.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

The load balancing schemes can be broadly classified
as proactive and reactive: the proactive approaches act in
advance in order to prevent overloads, while the reac-
tive approaches act after the overload problem appears.
A narrower classification then divides the LB schemes in
the following categories: Virtual machine load balancing
(VMLB) schemes, which distribute the VMs from overloaded
nodes to less loaded nodes [4], [5], task load balancing
(TLB) schemes, which evenly distribute the tasks among the
VMs [6], [7], and resource load balancing (RLB) schemes,
which focus on the management of the available resources
like servers, network links [8], CPU, memory and band-
width [10]. The LB strategies are further divided in static
and dynamic: the static strategies set up pre-specified work-
load distributions that remain unaltered during runtime, while
the dynamic strategies have the capability of adapting to
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system changes and distribute the workload during runtime.
Apparently, the static LB strategies fail to respond to system
changes, thus resulting in overall poor system performance.
This fact turns the spotlight on the dynamic LB strategies.
Dynamic load balancing is one of the most important aspects
of scheduling in cloud systems. The workloads between
several VMs must be distributed in such a manner that the
response times andmakespan values are reduced. An efficient
load balancing algorithm, prevents over-utilization or even
exhaustion of the available resources.

Quite often, large numbers of arriving tasks can cause
resource exhaustion. In such a scenario, the VM is unable to
handle a percentage of these tasks, which remain unprocessed
and unaccomplished. Thus, proper VM selection is required
during task distribution, which is usually based on the current
workload. However, the current workload alone may not be
a good criterion. This is because the workload on different
machines may vary because of differences in their computing
capacities [1] and because they handle tasks of different sizes
and processing requirements [9].

In this work, we introduce a new dynamic task load balanc-
ing scheme, to efficiently distribute the tasks among the sys-
tem’s VMs. The novel idea introduced in our scheme is that
it considers fairness as the main criterion of task distribution
among the available VMs. A fair task distribution scheme:
(1) assigns the new workload to each VM proportionally
to its current processing capacity and (2) this assignment is
implemented in such a manner that all the VMs are expected
to be equally utilized after the distribution of the new tasks.

Our fair task distribution scheme is based on employing
a queuing network model, where the LBer acts as a central
server that feeds the VMs. Each VM is modeled as a queue
where the assigned tasks are inserted. We employ a closed
network model and we work on a time slot basis. For a
short period of a time slot, we can assume that the system
performance is not affected by external factors like the rate at
which the users submit their tasks. The main contributions of
our fair task distribution policy are summarized as follows:

• Weuse a closed networkmodel and thus, our LB strategy
is independent of the task arrival rates produced by the
users community.

• The time-slot by time-slot system monitoring can help
in fixing imbalances on time.

• The Markov process model is easy to apply and it is
computationally efficient.

• The proposed scheme can be applied to heterogeneous
clouds with different configurations (task sizes, service
rates, and utilizations).

• The need for taskmigrations is present only in case when
a VM is found to be performing unreliably.

The remaining of this article is organized as follows:
Section 2 presents a review of the related work. In Section 3,
we describe the system model and provide two motivating
examples to expose the difficulties of balancing the load in
a fair way. In Section 4 we present our approach to task

distribution by incorporating our fair distribution strategy into
aMarkov process model. Section 5 presents our experimental
results and Section 6 concludes this paper and gives future
work directions.

II. RELATED WORK
Load balancing is one of the most important topics in cloud
computing and many papers have focused on it. There is a
large number of surveys that present different taxonomies
of LB schemes [2], [11]–[19], among many others. In this
section, we discuss papers that belong to the categories of
virtual machine LB, resource LB and task LB.

VMLB distributes the VMs from overloaded to less
loaded nodes. A number of VMLB strategies have been
proposed; in [4], the authors propose a system for dynamic
well-organized load balancing using VMware workstation
and a genetic algorithm to implement migrations by exam-
ining each VM’s fitness (overloaded VMs have low fitness).
Machine learning algorithms have also been used to group the
VMs based on resource (like RAM or CPU) utilization [20]–
[23]. Other VMLB strategies are based on active monitor-
ing to locate the least loaded virtual machine among all
the virtual machines. The dynamic resource reconfiguration
is performed according to the real time requirements [24],
[25]. The aforementioned strategies, just like the majority
of LB strategies, are reactive [2]. An interesting proactive,
predictive VMLB approach can be found in [5], where the
ant colony optimization is combined with the particle swarm
optimization to achieve VMLB. Another predictive strategy
introduces a rule-based load-balancing algorithm based on
the predictions of an end-to-end system called Cicada [26].

The RLB strategies focus on the management of the avail-
able resources. Some strategies employ game theoretical
approaches to RLB. For example, [1], [27], and [28]–[30]
formulate the problem into a non-cooperative game among
the multiple servers, where each server is informed with
information for the other servers. Tang et al. [8] propose an
approach for OpenFlow network models, which is imple-
mented on a time slot basis. Chen et al. [31] consider the prob-
lem of LB in a multi-objective framework, where initially
the problem of resource allocation for emergent demands is
resolved. In [32] the authors present a load-balancing frame-
work with the objective of minimizing the operational cost
of data centers using a genetic algorithm for resource alloca-
tion. Weight factors have also been employed for resources
like physical memory, bandwidth, number of processors, and
processor speed [10]. The aforementioned strategies are reac-
tive. Also, proactive methods can be found in the literature
[33]–[35]. More specifically, Singh et al. [33] base their
proactive approach on autonomous agents, and whenever the
load of a VM approaches a threshold, the agent looks for an
alternative VM in another data center; Xiao et al. [34] employ
a non-cooperative game theoretical approach for RLB, while
in [35], a predictive strategy, which efficiently predicts the
future need of resources is proposed.

26150 VOLUME 10, 2022



S. Souravlas et al.: Fair, Dynamic LB Task Distribution Strategy for Heterogeneous Cloud Platforms

TABLE 1. Reactive TLB approaches.

Task LB has been widely studied over the past years.
As with the VMLB and RBL schemes, the reactive
approaches are far more widely used. The proactive TLB
approaches try to detect task overloads before they actually
happen [7], [36]–[38]; The main drawback of the proactive
task load balancing approaches that have been proposed is
that they are used in a rather traditional way and they intro-
duce no novel concepts [2].

The reactive TLB approaches respond to a load unbal-
ancing situation. A variety of reactive LB techniques
have been proposed [39]–[48], the majority of which are
multi-objective, in the sense that they aim at enhancing
many metrics like makespan, response time, execution time,
throughput, etc. A few single objective schemes have been
proposed: More specifically, in [39], the authors imple-
ment a honey bee inspired TLB scheme; the basic idea is
taken from the food finding behavior of the honey bees.
The algorithm tries to optimize the makespan (overall task
completion time). A similar heuristic approach is taken by
Gupta et al. [40] to adjust the scheduling load. In [41], a Sim-
ulated Annealing (SA) approach is taken to balance the
load of the cloud infrastructure and reduce the response
time.

The multi-objective LB strategies are implemented in such
a way, that more than one factors that characterize LB are
improved. More specifically, Pradhan et al. [42] propose a
particle swarm optimization (PSO) load balancing technique,
which aims at minimizing the makespan. The same objective
can be found in [43], where a heuristic-based load-balancing
algorithm (HBLBA) is proposed. The TLB is expressed
as an optimization problem, which aims at minimizing the
makespan while maximize the resource utilization. In [44],
the proposed algorithm is an extension to theMin-Min sched-
ule using a genetic optimization algorithm, which employs
the computerized search based on natural selection and genet-
ics. The result is an improvement on the makespan and
resource utilization. In [45], the authors base their strategy
onmonitoring possible violations of the SLA requirements by
examining if the task completion time is higher than a defined
deadline.

An agent based strategy is proposed in [46]; the agents
assigned to resources learn to select the best sequence of the
tasks that can optimize the total makespan of the workflow,
enhance utilization of resources, and improve load balancing
between resources. In [47], the notion of fair distribution of
the workload among the VMs is considered. In contrast to the
single honey bee foraging behavior (which first uses round
robin to assign tasks to virtual machines and then balance
their workload), this scheme first makes the VM selection
by checking its load. Then, for an incoming task, it checks
how the VM status changes if this task is assigned. In this
way, the under-loaded VMs are selected to accommodate the
incoming tasks, in order to reduce the makespan and increase
the degree of load balancing. In [48], the Adaptive Dragonfly
algorithm (ADA) combines the dragonfly and the firefly algo-
rithms. ADA uses a multi-objective function to optimize the
makespan, the processing costs and load. Table 1 summarizes
the techniques being used by reactive TLB state-of-the-art
strategies, their objectives and the system information they
take into account.

Another interesting approach to task distribution is the so-
called cooperative strategy. In this approach, communica-
tion and cooperation between the participants is required to
accomplish a complex task, which is divided into smaller and
simpler sub-tasks. Such tasks may require specific amount of
users, with specific machine characteristics [49]–[56]. Most
of the aforementioned strategies focus on a trade-off between
quality and cost and first they try to find the appropriate users
that will cooperate to accomplish the task, before distributing
the tasks. The issue of trust among the cooperative parts is
taken into account, so that the cooperation produces better
results. However, these schemes do not take into account the
task allocation problem in a large-scale scenario ( [54] is an
exception) and they miss explicit fairness mechanisms.

The proposed scheme is a novel dynamic, reactive TLB
scheme, which employs a Markov model to the problem of
load balancing. A time slot-by-time slot approach is taken to
monitor the current load it’s novelty is that the task distri-
bution is based on considering fairness as the basis for the
task distribution strategy. Our scheme is multi-objective and
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FIGURE 1. The system model.

tries to enhance 4 metrics: makespan, average response time,
degree of imbalance, and resource utilization.

III. PRELIMINARIES
In this section, we first present the framework of our work and
then a number of motivation examples that illustrate the dif-
ficulties of load balanced task allocation and the advantages
of our work.

A. THE SYSTEM MODEL
Fig. 7 shows the system model of the proposed LB scheme.
The user community generates tasks, which are assigned
among theVMs of the cloud data center. TheVMs are respon-
sible for processing the user tasks. Each user submits different
numbers and sizes of tasks, which have to be distributed
among the VMs in such a way that their load remains as
balanced as possible, in order to achieve good performance.

1) MARKOV PROCESS MODEL
From Fig.1, it is clear that each VM is modeled as a queue
system; the user tasks to be processed by a VM enter its
queue, so each VM can be considered as a single-server
model. A central server, the load balancer (LBer) is the
input to the VMs. We let s represent the overall number
of VMs plus the LBer. Particularly, throughout this work,
we use the index value of 1 for the LBer and the remaining
s − 1 index values for the VMs. The state of our network
with s elements (the LBer and the VMs) is given by a vector
N = (N1,N2, . . .Ns), where Nk is the number of tasks being
processed in an element i andN is the overall number of tasks,
that is

∑s
i=1 Nk = N . For k = 1 (the LBer), processing refers

to the allocation of tasks, while for k = 2, . . . , s (the VMs) it
refers to task accomplishment.

The Markov proposes model is irreducible, that is, each
state can be reached from any other state with non-zero proba-
bility. Therefore, the equilibrium state probability distribution
can be derived. If µk is the expected processing capacity
for VMk (the processing capacity under a certain load), the
equilibrium state probability is

P(N) = xN1
1 xN2

2 · · · x
Ns
s P(N , 0, . . . , 0) (1)

where P(N , 0, . . . , 0) is the probability that all the tasks are
still located in the LBer (all the tasks are unallocated),P(N) =
p(N1,N2, . . . ,Ns), x = µ1/µi, µ1 is the expected processing
capacity in the LBer, and∑

all N

p(N) = 1 (2)

In [57], the authors have proven that, the equilibrium state
probability for a server unit is given by

p(N) =
1

F(N )

s∏
k=2

yNsk (3)

where

yk =
µ1

µk
b1k , k = 2, . . . , s, (4)

is the distribution factor between the LBer and VMk , b1k
is the probability of distributing one task to VMk under the
current system configuration, and F(N ) expresses all the
possible combinations of task placements within each server
unit:

F(N ) =
∑

for all N

s∏
k=2

yNkk , (5)

The exponent terms Nk in Eq. 5 are all the possible numbers
of tasks that may be allocated in VMk . This number can vary
from 0 toN (in which case VMk hasN tasks and all the others
are empty). If we consider only the states where N1 > 0, that
is, at least one task remains undistributed by the load balancer
we obtain F(N − 1):

F(N − 1) =
∑

for all N,
N1>0

s∏
k=2

yNkk , (6)

and the expected utilization for the LBer can be computed by
dividing F(N − 1) by F(N ), where F(N ) includes also the
states where N1 may be reduced to 0:

p1 =
F(N − 1)
F(N )

. (7)
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This value shows the percentage of time the LBer is expected
to be busy in distributing the N tasks and increases with N
until reaching 1. When p1 is known, the expected utilizations
of the VMs for all the possible task placements can be com-
puted as [57]:

pk = p1yk . (8)

while the expected utilization pk for VMk is the percentage
of time the VM is expected to be busy in processing a portion
of the N tasks.

2) SERVER AVAILABILITY
In this work, we use a variation of the VM availability model
proposed in [1]:

µk = µk − `k , k = 2, . . . , s (9)

where µk is the expected processing capacity (in number of
tasks) of a VMk ,µk is its maximum processing capacity, `k is
the current workload, andµk > `k . Themaximumprocessing
capacity refers to the processing capacity without considering
the load impact, while the expected processing capacity is the
capacity affected by the current load. A fair assumption that
holds throughout the model is that the maximum processing
capacity of each VM is independent of the corresponding
rate of the other VMs. This independence assumption is nec-
essary, since clouds are usually heterogeneous and integrate
different components.

3) MODEL PARAMETERS
This section describes some of the model parameters, which
will be used to evaluate our strategy and make comparisons.

The computing power (CP) of each VM, is expressed in
Millions of Instructions Per Second (MIPS), is given by

CPk =
∑

all cores

core cp. (10)

that is, the total computing power of all the cores assigned to
VMk . The execution time of a task N is given by

ETk =
task_size
CPk

, k = 2, . . . , s (11)

that is, the size of the task divided by the CP of the executing
VM k . The makespan is the maximum of the completion
times (CT) of all the N tasks assigned to the VMs:

MS = max(CTi), i = 1, . . . ,N (12)

Finally, the response time of a task i within a VM’s queue is
the time elapsed from the task submission up to the time it
starts its execution. The execution starts after the completion
of i− 1 tasks, which are ahead of task i in the queue:

RTi =
i−1∑
j=1

(CTi−1)− ATi, i = 1, . . . ,N (13)

Table 2 summarizes the notations used in this work.

TABLE 2. Notations used in this paper.

TABLE 3. Parameters for the motivating examples.

B. MOTIVATING EXAMPLES
Consider a small set of four VMs, as shown in Fig. 7 The user
community generates a number of tasks, which are assigned
among the VMs of the cloud data center. Each user submits
different numbers and sizes of tasks, which are queued in each
VM. The parameters for the examples that follow are given
in Table 2.
EXAMPLE 1: Consider an example with an heteroge-

neous system of 4 virtual machines, VM1-VM4 with comput-
ing power of 2000, 1800, 1100, and 500 MIPS, respectively.
Assume that in the beginning of a slot, 20 tasks have remained
unprocessed, 5 in each VM. For simplicity, assume that these
tasks arrive at time t = 0. In the new slot, another 40 tasks
have been produced and need to be distributed. The new slot
starts at time t = 20. A simple active monitoring scheduler
would keep information about each VM and the number of
tasks currently assigned on each VM. Upon the arrival of new
tasks, it would select the VMs with the fewer tasks. In our
example, such a scheme would distribute these tasks equally
among the VMs, that is, 10 tasks per VM. The execution
time of each task would be 10000

2000 = 5 sec for tasks in VM1,
10000
1800 = 5.55 sec for tasks in VM2, 10000

1100 = 9.09 sec for
tasks in VM3, and 10000

500 = 20 sec for tasks in VM4. The
makespan will be the completion time of the last task running
in the slowest VM4, 15 × 20 = 300 sec. By applying Eq.
13, we get each task’s response time, for the simple active
monitoring scheduler. These values are given in Table 4. The
average response time for all the tasks is 49.43. The total
execution time is the sum of the execution times for each task
(as computed by Eq.11): (15×20000)2000 +

(15×20000)
1800 +

(15×20000)
1100 +

(15×20.000)
500 = 594.7. Thus, the average execution time is

594.7/60 = 9.91.
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TABLE 4. Response times for the tasks of Example 1.

TABLE 5. Task sizes for Example 2.

Our fair task distribution scheme considers the maximum
processing capacity and the current load A`i of each VM.
In such a scheme (the details are given in the next section),
the 40 tasks are distributed as follows:

- VM1:17 tasks, 22 in total
- VM2:15 tasks, 20 in total
- VM3: 8 tasks, 13 in total
- VM4: 0 tasks, 5 in total
Then, the task execution per VM will be completed at:

(17 + 5) × 5 = 110 for VM1, (15 + 5) × 5.55 = 111 for
VM2, (8 + 5) × 9.09 = 118.7 for VM3, and (5) × 20 =
100 for VM4. The makespan is 118.5, so there is a reduction
of (300 − 118.5)/300 = 60%. The response times for the
tasks are given in Table 4, for the fair scheduler. The average
response time for all the tasks is 34.62, a reduction of about
30% compared to the simple activemonitoring scheduler. The
total execution time is: (22×20000)

2000 +
(20×20000)

1800 +
(13×20000)

1100 +
(7×20000)

500 = 479.29. Thus, the average execution time is
479.29/60 = 7.98. The reduction of the average execution
time compared to the simple active monitoring task scheduler
is about 19%.
EXAMPLE 2: In the second example, the VMs have dif-

ferent computation power and the task sizes differ, as shown
in Table 3. Table 5 shows the size of the 40 tasks to be
distributed. As in Example 1, 20 tasks have remained unpro-
cessed, 5 in each VM. These tasks arrived at t = 0. Also, the
batch of these 40 tasks arrive at t = 20.
Again, a simple active monitoring scheduler would dis-

tribute the incoming tasks equally (10 per VM) and assign
the tasks according to their computational intensity and the
processing capacity of the VMs. Thus, the most intensive
tasks will be assigned to the fastest VM, the next most inten-

TABLE 6. Simple active monitoring scheduler for Example 2.

TABLE 7. Response times for the tasks of Example 2.

sive tasks will be assigned to the next fastest VM, and so on.
Table 6 shows this distribution, while Table 7 provides the
response times for each task in this schedule.

Thus, VM1 will be assigned 8 tasks with size 20000 plus
two tasks of 16000. The execution time required for these
tasks will be: (20000×8)+(16000×2)

2000 = 96 sec. Also, the unpro-
cessed 5 tasks require another 25 sec. So, the total execution
time for the fastest VM will be 121 sec. The execution times
for the remaining VMs are given in the bottom of Table 6.
The average execution time is 121+107.7+132.7+196

60 = 9.29.
Our fair distribution scheme, which considers each VM’s

processing capacity will produce the schedule shown in
Table 8. Themakespan is 129.09 sec, an improvement of 34%
compared to the simple active monitoring scheme. The right
side of Table 7 shows the response times for all the tasks.
The average response time is 44.74, an improvement of 10%
compared to the simple active monitoring schedule. The exe-
cution times for the VMs are given in the bottom of Table 8.
The average execution time is 129+127.77+129.09+100

60 = 8.09,
an improvement of about 12% compared to the average
execution time of the simple active monitoring strategy.

IV. OUR APPROACH TO TASK DISTRIBUTION
A. PROBLEM FORMULATION
Objective: The main objective of our approach is to fairly

distribute the N incoming tasks submitted to the cloud within
a time slot, so that all the VMs would work for the same
percentage of time to process the incoming load, based on
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TABLE 8. Fair task distribution for Example 2.

the current system configuration, that is, current VM load
and VM processing capacity. This strategy guarantees of load
balancing, as we will prove later in this section.

Let us consider an source task distribution R, which is
defined as a set of values:

R = {µk , µk , `k , pk}, k = 2, . . . , s (14)

Our objective can be described as a transition from R
to a target distribution R∗ such that the resulting expected
utilizations are equal among all the VMs

R→ R∗ =

{
{µk , µk , `k , pk , b1k} → {µ

∗
k , µ
∗
k , `
∗
k , p
∗
k , b
∗

1k}

all p∗k values are equal, k = 2, . . . , s

(15)

In a new time slot, the LBer has N new tasks to distribute
to the VMs, with an expected processing capacity µ1 and
expected utilization p1. In the target distribution, the N tasks
would be distributed to (k − 1) VMs, resulting in lower max-
imum processing capacities µ∗k , lower expected processing
capacities µ∗k , larger current loads `∗k and equal expected
utilizations p∗k for the system’s VMs. The probability b1k may
increase or decrease, depending on the workload assigned to
VMk .

From Equations 4 and 10, we see that the expected utiliza-
tions of the VMs, pk are:

pk = p1
µ1

µk
b1k (16)

In this regard, the expected utilizations are a function of
the LBer’s utilization p1, and its expected processing capacity
over a time slot, µ1. In the following, we will assume that
µ1 = N over a period of a time slot, that is, the balancer can
distribute N incoming tasks over a period of a time slot. The
expected processing capacity of the VMs, µk , is computed as
µk − `k (Eq.9), where the maximum processing capacity µk
depends on the computing power of each VM. Finally, b1k is
equal for all the VMs in the source distribution, but it changes
to reflect the different loads that will be assigned to each VM
after the task distribution. In the remaining paragraphs of this
section, we present how our fair task distribution scheme
can be embedded in the Markov process model and we prove
that it leads to equal expected utilizations and finally to load
balancing.

B. OUR FAIR TASK DISTRIBUTION STRATEGY
The key idea for our task distribution strategy is fairness.
By fairness, we mean that the new workload of N tasks must
be distributed in such a way that (i) each VM takes on an
added workload proportional to its current processing capac-
ity and (ii) the expected utilization of all the VMs becomes
equal after the distribution, that is, the percentage of time
during which the VMs will be busy with processing these
newly assigned tasks will be equal. To embed fairness in the
Markov process model, we take the following steps:
STEP 1: Initially, we compute the uk term, k = 2, . . . s,

for each VM, which is the ratio of its expected processing
capacity and the total number of tasks to be distributed during
a time slot, µ1.

uk =
µk

µ1
, k = 2, . . . , s (17)

The larger the uk values, the larger the workload a VM is able
to take over.
STEP 2: The loading balancing factor, f , can simply be

computed as the fraction of µ1 and the sum of the uk terms:

f =
µ1∑s
k=2 uk

, (18)

STEP 3: The workload per VM is computed as

`∗k = f × uk , k = 2, . . . , s (19)

STEP 4: The expected processing capacity after distribu-
tion is µ∗k will be

µ∗k = µk − `
∗
k , k = 2, . . . , s (20)

that is, the current processing capacity minus the newly
assigned load `∗.
STEP 5: The probability of distributing tasks to VMk

changes to b∗1k = `∗k/µ1; this quantity is the percentage of
the total workload that has been assigned to the VMk during
this time slot.

In the following propositions, we prove that if we embed
these steps to the Markov process model, we can obtain a
well-balanced task distribution.
Proposition 1: The distribution of `∗k load to each VM,

as computed by our fair policy reduces proportionally the
expected processing capacities µk of the VMs.

Proof: Let us consider the expected processing capac-
ities of two randomly taken VMs, µk1 and µk2. From Eq.
18 and 19, we get that

`∗k =
µ1∑s
k=2 uk

× uk =
µ1uk

(u2 + · · · + uk )
(17)
=

µk

(u2 + · · · + uk )
(21)

From Eq. 9 we are aware that the expected processing
capacity of each VM decreases as more load is added. Let us
consider µk1 and µk2: We know that µk1 will be reduced by
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a factor of d(µk1) and will become µ∗k1 = µk1 − µk1d(µk1)
and µ∗k2 = µk2 − µk2d(µk2). Therefore,

d(µk1) =
µk1 − µ

∗

k1

µk1
, d(µk2) =

µk2 − µ
∗

k2

µk2
(22)

The numerators of Eq. 22 are equal to `∗k1 and `
∗

k2. Thus, Eq.
22 becomes:

d(µk1) =
`∗k1

µk1
, d(µk2) =

`∗k2

µk2
(23)

The two ratios d(µk1), d(µk2) are equal if

µk2`
∗

k1 = µk1`
∗

k2
(21)
⇒

µk2
µk1

(u2 + · · · + uk )
= µk1

µk2

(u2 + · · · + uk )

which is always true and this completes the proof. �
Proposition 2: Our fair task distribution policy produces

equal expected utilizations p∗k among all the VMs.
Proof: We set all the equal d(µk ) values that we com-

puted in Proposition 1 as ω. Now, let us consider the expected
utilizations of two randomly selected VMs k1 and k2. Let us
rewrite Eq.16 for the target distribution, for a VM k1:

p∗k1 = p1
µ1

µ∗k
b∗1k1

We know that b∗1k = `
∗
k/µ1 and, in the end of Proposition 1,

we have shown that µk2`∗k1 = µk1`
∗

k2. Also, from Eq. 22 it
follows that µ∗k1 = (1− ω)µk1. Thus,

p∗k1 = p1
µ1

µ∗k1
b∗1k1

= p1
µ1

(1− ω)µk1

`∗k1

µ1

=

(
`∗k1

µk1

)
p1µ1

(1− ω)µ1

Similarly

p∗k2 =
(
`∗k2

µk2

)
p1µ1

(1− ω)µ1

As µk2`∗k1 = µk1`
∗

k2 and p1µ1
(1−ω)µ1

is the same for both
expected utilizations, it follows that p∗k1 = p∗k2, to complete
the proof. �

C. LOAD BALANCING ANALYSIS
To prove that our scheme provides load balancing, we use the
load imbalance factor, which is defined as follows:

δ(t) =

∑k
s=2

[
δ(t)− pk (t)

]2
s

(24)

where s is the number of processing elements and δ(t) is the
average expected utilization over a time slot t , given by:

δ(t) =

∑k
s=2 pk
s

(25)

The load imbalance factor δ(t) measures the variance between
the average expected utilization and the expected utilization

at each time slot. Our scheme is reactive, that is, it divides the
time into slots and reacts after the first slot, t0 that imbalances
occur. In [8], the authors provided a definition for a load
balanced network:
Definition 1: If δ(t) < 1, where1 is a threshold value, the

network is balanced.
We will use this definition to prove that our scheme guar-

antees load balancing.
Proposition 3: Our fair task distribution strategy guaran-

tees load balancing on a slot-by-slot basis.
Proof: To prove this proposition, we need to prove that,

for every time slot t , δ(t) is bounded by a predefined thresh-
old. Let us start with a time slot t0 (source distribution), where
an imbalance situation is spotted. The load imbalance factor
is δ(t0) and it is computed by Eq. 24. By the end of the next
slot t1, when the task distribution is completed, the average
expected utilization is

δ(t1)∗ =

∑k
s=2 p

∗
k

s
=

p
∗
k , all pk < 1
(s− α)p∗k

s
, for α VMs: pk ≥ 1

(26)

Case 1: If all the pk values are < 1, the VMs can
be assigned extra workload. In this case, because we have
already proved that the expected utilizations will be equal,
the average expected utilization will be p∗k and thus,

δ(t1) =

∑k
s=2

[
p∗k (t)− p

∗
k (t)

]2
s

= 0

Case 2: If α VMs are already overloaded (pk ≥ 1), they
take no extra workload and their pk values will be 0 in this
time slot. The remaining s−α VMswill have equal p∗k values.

Thus the average expected utilization will be
(s−a)p∗k

s . Let us
consider the numerator of Eq. 24:

• If p∗k = 0, then the term produced will be δ(t) =
(s−a)p∗k

s
• If p∗k > 0, the term produced will be < δ(t).

Thus, the largest term that can be produced is δ(t) and because
there can be (worst case) at most α = s−1 zero p∗k = 0 terms,

δ(t) ≤ (s− 1)
(δ(t))2

s
(27)

Thus, we set 1 = (α − 1) (δ(t))
2

s as our threshold value
immediately after an imbalance is spotted. We have proved
that δ(t) will never exceed1, thus our scheme guarantees load
balancing. �

D. TIME ANALYSIS
To analyze the complexity of our strategy, we need to analyze
the complexity of the computations required for the transition
from R → R∗. It is known that the computations for F(N ),
which are required to find the p values are recursive:

Fk (N ) =

{
1, N = 0
Fk−1(N )+ ykFk−1(N − 1), N > 0

(28)
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FIGURE 2. Simulator workflow.

and they are clearlyO(N ). The computations of Equations 17-
20 are clearly O(s). That is, our scheme is computationally
efficient as the computations grow linearly with the number
of incoming tasks N and the number of processing elements
s. By making the fair assumption that N > s, the complexity
is O(N ).

E. BACK TO THE MOTIVATING EXAMPLES
In this subsection, we briefly show how our strategy applies
in the motivating examples of Section 3.

1) EXAMPLE 1
In slot t0, µ1 = 40, `k = 5 tasks, and b1k = 1

4 = 0.25
(equal probabilities for all the VMs. The maximum process-
ing capacity for each VMk has been computed as

µk =
µ1

Mk
, whereMk =

CPmax

CPk
TheMk term is a factor that expresses the processing capacity
of each VM proportionally to the maximum CP that exists
among the VMs. In this example, M2 = 2000/2000 = 1,
M3 = 2000/1800 = 1.11, M4 = 2000/1100 = 1.82,
and M5 = 2000/500 = 4. Thus, the maximum processing
capacity for each VM is: µ2 = 40/1 = 40, µ3 = 40/1.11 =
36, µ4 = 40/1.82 = 22 and µ5 = 40/4 = 10 MIPS. The

µk values are computed by Eq. 9, so µ2 = 40 − 5 = 35,
µ3 = 36−5 = 31, µ4 = 22−5 = 17, and µ5 = 10−5 = 5.

The y values are computed by Eq. 4: y2 = 40
35 × 0.25 =

0.29, y3 = 40
31 × 0.25 = 0.32, y4 = 40

17 × 0.59 = 0.29, and
y4 = 40

5 × 0.25 = 2.0. For these y values and by applying
Eq.7, we find that p1 = 0.5 and from Eq.8, we find the
expected utilizations for the VMs: p2 = 0.5 × 0.29 = 0.14,
p3 = 0.5 × 0.32 = 0.16, p4 = 0.5 × 0.59 = 0.29, and
p5 = 0.5 × 2 = 1. Because p5 = 1, VM5 is already
overloaded and no load will be assigned to it.

Now, we show the 5 steps of our fair distribution scheme:
By applying theµk values to Eq. 17, we get the other u values:
u2 = 35

40 = 0.875, u3 = 31
40 = 0.775, u4 = 17

40 = 0.425.
Finally, u5 is set to 0 due to the overload detected. From Eq.
18, f = 40/(0.875+ 0.775+ 0.425+ 0) = 19.27. Then the
loads `∗k are given by Eq.19: `∗2 = 19.27 × 0.875 = 16.86,
`∗3 = 19.27 × 0.775 = 14.93, `∗4 = 19.27 × 0.425 = 8.19,
and `∗5 = 0. Thus, the four VMs are assigned 17, 15, 8, and
0 tasks, respectively.

The expected processing capacities after the distribution
will be (see Eq.20) µ2 = 35− 17 = 18, µ3 = 31− 15 = 16,
µ4 = 17 − 8 = 9, and µ5 = 5 − 0 = 5. The corresponding
b∗1k values are: b12 =

16.86
40 = 0.421, b13 = 16.86

40 = 0.373,
b14 = 8.19

40 = 0.204, and b15 = 0
40 = 0. By applying these

values to Eq.16, we get p2 = p3 = p4 = p5 = 0.465.
Finally, let us see how the load balancing analysis of

Section 4.3 applies in this example. In slot t0, we have (see
Eq.22) δ(t0) = 1 = (0.14 + 0.16 + 0.29 + 1)/4 = 0.399.
Then, from Eq. 26, we obtain that
After the task distribution, δ(t1) = (0.465+ 0.465+ 0.465+
0)/4 = 0.348, thus *(see Eq. 27) δ(t1) ≤ 3 (0.348)2

4 = 0.091
By Eq.24 we get:

Apparently, δ(t1) < 1. From the proof of Proposition 3,
it is clear that if we apply our scheme for a number of time
slots, this inequality will hold and balancing is guaranteed.

2) EXAMPLE 2
In the second example, because the task sizes are different,
we make some changes in the source distribution. Specifi-
cally, we setµ1 as the total workload (not the number of tasks
as in Example 1) that is to be distributed and we accordingly
set the maximum and processing capacities. In this example,
the total workload is 8(20000 + 16000 + 12000 + 8000 +
4000) = 48000. The maximum processing capacities are:
µ2 = 480000, µ3 = 480000/1.11 = 432000, µ4 =

480000/1.82 = 264000, and µ5 = 480000/4 = 120000.
The remaining computations are as in Example 1. The `∗k
values are expressed as a workload size. To find the number
of tasks, we use a change-making problem approach that
approximates the minimum number of tasks that correspond
to this workload. We start from the fastest VM, in order to
assign to it the majority of heavy tasks and proceed to the
next fastest, and so on. For this example, the distribution
(expressed in workload size) is `∗2 = 201169, `∗3 = 178713,
`∗4 = 100116, and `∗5 = 0. For `∗2, we need 8 tasks of size
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FIGURE 3. Comparison of makespan between our scheme and the
LBMPSO scheme [42].

FIGURE 4. Comparison of makespan between our scheme and the HBF
scheme [47].

20000 and another 3 of size 16000, for `∗3, we need 5 tasks of
size 16000, another 8 of size 12000 and one task of size 4000.
Finally, for `∗3 we need 8 tasks of size 8000, another 7 of size
4000 and one task of size 4000.

V. EXPERIMENTAL RESULTS
The proposed scheduling strategy is evaluated on GRNET’s
cloud service okeanos-knossos, which provides a wide range
of choices to develop, debug and evaluate an experimen-
tal system. We ran 3 experiments to compare strategy
with 3 newly proposed schemes: the Load Balancing Mod-

ified Particle Swarm Optimization (LBMPSO) [42], the
Honey bee foraging (HBF) with VM pre-selection [47], and
the community-based Particle Swarm Optimization (CPSO)
scheme introduced in [54]. These schemes are multi-
objective; the first aims at enhancing the makespan and
the resource utilization, the second aims at enhancing the
makespan, the degree of LB, and the response time, while the
third aims at reducing the processing costs and the response
time. Also, recall that the third strategy has been selected
among a many community-based dynamic task allocation
strategies, because of its large-scale capabilities. For each
experiment we ran 10 simulations and averaged the results.
Table 9 shows the basic simulation parameters.

The simulation system works in a manner quite similar to
what we have already described in our motivating examples.
However, we added the rule that, if the expected utilization
of a VM exceeds 0.9, it cannot accept any task requests,
that is, its uk value becomes 0. This VM can accept further
requests once it completes the execution of its tasks, so its
utilization drops below 0.9. Fig. 2 presents a flowchart of how
our simulator works.

In all the experiments, we initially (in the first time slot)
generated an imbalance situation by equally assigning a
small number of tasks among the heterogeneous VMs. In the
remaining time slots, we iteratively assigned tasks to the
available VMs using our strategy, to remove the imbalance.
For the first experiment, we have 2 VMs of 250 MIPS
and 3 VMs of 300 VMs. For the second experiment, we have
5 VMs of 500 MIPS, 5 VMs of 1000 MIPS, . . . , and 5 VMs
of 4000 MIPS. Finally, the tasks were generated randomly,
but their sizes were uniformly distributed.

A. MAKESPAN
The makespan is perhaps the most widely used and important
metric to evaluate a task scheduling algorithm. In Fig.3 we
compare the makespan of our scheme to the makespan of
the LBMPSO scheme. We have proved that our scheme can
balance the load under different task numbers and sizes that
may be produced during a time slot. This fact eliminates the
need for task migrations, which are necessary only in cases
where VMs are unavailable due to failures. The LBMPSO
scheme utilizes the task migration approach whenever the
VMs are overloaded, thus its makespan was found to be about
40% higher compared to our scheme. Fig. 4 compares the
makespan of our scheme to the efficiency of the HBF with
VM pre-selection. The HBF is highly based on assigning
the tasks to a group of underloaded, thus suitable, VMs. For

δ(t0) =
(0.399− 0.14)2 + (0.399− 0.16)2 + (0.399− 0.29)2 + (0.399− 1)2

4
= 0.12.

δ(t1) =
(0.348− 0.465)2 + (0.348− 0.465)2 + (0.348− 0.465)2 + (0.348)2

4
= 0.04.
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TABLE 9. Simulation parameters and scenaria.

FIGURE 5. Comparison of utilization between our scheme and LBMPSO [42]. (a) for larger number of VMs, (b) for smaller number of VMs.

small number of tasks, this strategy approaches ours as the
VMs are not heavily loaded and the makespan differences are
only about 2-3%. When the number of tasks increases, the
makespan difference rises to about 12%. Our scheme loads
all the VMs proportionally in every time slot. As a result,
the execution times of the VMs are approximate. On the
other hand, a policy like the one implemented in HBF can
increase the average response time and thus the makespan.
This justifies the makespan difference of 12%, when the task
numbers increase.

B. AVERAGE UTILIZATION
One of the objectives of the LBMPSO scheme is to enhance
the VMs’ utilization. Specifically, it uses the idea of distribut-
ing the tasks in such a way that, for each VMk that is assigned
N ′ tasks, the ratio

(
N ′∑
i=1

ETk )/Makespan

is the maximum possible. We experimented on two different
scenarios to compare our work to the LBMPSO strategy: in
the first scenario, the available VMs are 5. The average uti-
lization for LBMPSO approaches 0.65 (see Fig.5(a)). When
the number of VMs decreases, the LBMPSO increases the
utilization, which reaches values > 1 (see Fig. 5(b)). This
means that further task assignment can lead to long execution
times, large makespan values and imbalances. our scheme
maintains equal utilization values among the VMs for both
scenarios and the utilization values increased smoothly as we

kept adding new tasks. For 3 VMs, the utilization approached
0.9, but no over-utilization incurred because our scheme tem-
porarily excludes over-utilized VMs.

C. DEGREE OF IMBALANCE
The degree of imbalance is given by

DI =
Tmax − Tmin

Tavg
(29)

where Tmax and Tmin are the maximum and minimum exe-
cution times of all the tasks among all the VMs and Tavg is
their average value. We have compared our strategy against
the HBF scheme with VM pre-selection for 70 tasks. From
Fig. 6, it is clear that our scheme achieves very low values for
the degree of imbalance. The reason is that Tmax and Tmin
approximate each other, as a result of our load balancing
policy. The HBF strategy achieves good balancing, but there
are cases where the response times (see the next paragraph)
increase the maximum execution times, Tmax, thus the degree
of imbalance.

D. RESPONSE TIME
In the last set of experiments, we compared the response
times of our scheme, the HBF and the CPSO. Fig.7 shows
the average response time comparisons. The HBF scheme
is designed mainly to prevent overloading. As the number
of tasks increase, the overloaded or balanced VMs are not
assigned extra workload. Therefore, more tasks are waiting
in the queue of the underloaded VMs, resulting in higher
response times. The CPSO scheme employs a task allocation
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FIGURE 6. Comparison of the degree of imbalance between our scheme
and the HBF scheme [47].

FIGURE 7. Comparison of the response times between our scheme, the
HBF [47], and the CPSO [54] strategies.

algorithm which reduces the response time per task. The
tasks are assigned between selected co-workers, but it has the
drawback that, if there are no available workers to perform a
set of tasks, then, these tasks can be queued until the potential
workers are released from their current assigned task. This
increases the response time. Our work proportionally the
tasks to the VMs based on the expected processing capacity.
Thus, the waiting times in the queues are lower, compared to
the other schemes.

VI. CONCLUSION - FUTURE WORK
In this work we addressed the problem of load balanced
task scheduling. Our system model is based on the Markov
process model, which is combined with a simple fair task
distribution scheme. From the balance state probabilities,
we obtain the expected utilizations for the virtual machines
(VM). Our fair task allocation policy is implemented on a
time slot basis and in such a way, that the expected utiliza-
tions of all the VMs is equal. We proved that this scheme
always guarantees load balancing. The proposed scheme is
multi-objective in the sense that it enhances a number of
important metrics: makespan, average utilization, degree of
imbalance, and response time. Compared with three new
state-of-the art schemes like the Load Balancing Modi-
fied Particle Swarm Optimization (LBMPSO), the Honey
bee foraging (HBF) with VM pre-selection, and the and

the community-based Particle Swarm Optimization (CPSO)
scheme, our task allocation strategy was found to achieve
better results regarding the aforementioned metrics.

An issue that needs to be further investigated is opti-
mization. Our work was proven to guarantee load balancing,
it provides good results for a variety of metrics under different
distribution scenarios, but we still have not proved optimality.
Also, we need to embed a strategy for VM availability. Cur-
rently, when a VM is not functioning properly, its tasks are
transferred to the remaining VMs, using the fair distribution
scheme. However, such situations cause larger total comple-
tion times, thus larger makespans and degrade the overall
performance.
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