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BACKGROUND A lack of explainability in published machine
learning (ML) models limits clinicians’ understanding of how predic-
tions are made, in turn undermining uptake of the models into clin-
ical practice.

OBJECTIVE The purpose of this study was to develop explainable
ML models to predict in-hospital mortality in patients hospitalized
for myocardial infarction (MI).

METHODS Adult patients hospitalized for an MI were identified in
the National Inpatient Sample between January 1, 2012, and
September 30, 2015. The resulting cohort comprised 457,096 pa-
tients described by 64 predictor variables relating to demo-
graphic/comorbidity characteristics and in-hospital
complications. The gradient boosting algorithm eXtreme Gradient
Boosting (XGBoost) was used to develop explainable models for
in-hospital mortality prediction in the overall cohort and patient
subgroups based on MI type and/or sex.

RESULTS The resulting models exhibited an area under the receiver
operating characteristic curve (AUC) ranging from 0.876 to 0.942,
specificity 82% to 87%, and sensitivity 75% to 87%. All models ex-
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hibited high negative predictive value �0.974. The SHapley Addi-
tive exPlanation (SHAP) framework was applied to explain the
models. The top predictor variables of increasing and decreasing
mortality were age and undergoing percutaneous coronary interven-
tion, respectively. Other notable findings included a decreased mor-
tality risk associated with certain patient subpopulations with
hyperlipidemia and a comparatively greater risk of death among
women below age 55 years.

CONCLUSION The literature lacks explainable ML models predict-
ing in-hospital mortality after an MI. In a national registry, explain-
able ML models performed best in ruling out in-hospital death post-
MI, and their explanation illustrated their potential for guiding hy-
pothesis generation and future study design.

KEYWORDS Acute coronary syndrome; Explainable machine
learning; Myocardial infarction; In-hospital mortality, SHAP
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Introduction
Factors associated with mortality following a myocardial
infarction (MI) have been studied in the past. The Thrombol-
ysis in Myocardial Infarction (TIMI) risk score defined
mortality-predicting variables at presentation separately in
patients with unstable angina/non–ST-elevation myocardial
infarction (NSTEMI)1 and in fibrinolytic-eligible patients
with ST-elevation myocardial infarction (STEMI).2 Specif-
ically for in-hospital mortality post-MI, the Global Registry
of Acute Coronary Events (GRACE) score specified 8 risk
factors.3 These risk scores as well as those of subsequent vali-
dating studies were derived from conventional statistical
models, such as logistic regressions.4

A few examples of machine learning (ML) models for pre-
diction of post-MI in-hospital mortality have recently been
reported in the literature.5–10 Compared to their logistic
regression counterparts, these ML models have yielded
comparable6 or greater7 predictive accuracy. However, their
analysis is limited to certain patient subpopulations5,8 or to
comparison of the models’ area under the receiver operator
characteristic curve (AUC).6,7,9,10 The literature to date lacks
a comprehensive and explainable ML model for the predic-
tion of in-hospital mortality following an MI.

Models lacking explainability can hide potential biases,
including racially biased datasets11 and missed confounding
variables.12 A lack of explainability also limits our mechanistic
understanding of how a prediction was made. The ensuing
inability to justify clinical decisions derived from such ML
models has undermined their uptake into clinical practice.11

Indeed, studies have established that clinicians view explain-
ability instead of predictive accuracy alone as the limiting
step to incorporatingMLmodel outputs into their practices.13,14

The present study generates explainable ML prediction
models for in-hospital mortality after an MI, including
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Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:Constantine.tarabanis@nyulangone.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cvdhj.2023.06.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cvdhj.2023.06.001


KEY FINDINGS

� Extreme gradient boosting–based models for the pre-
diction of in-hospital mortality after myocardial infarc-
tion (MI) outperformed previously published models
and maintained predictive accuracy in previously unde-
scribed subpopulations.

� All models performed best for ruling out in-hospital
death post-MI with a high negative predictive value.

� The models’ explainability provided insights into the
relationship between post-MI in-hospital mortality
with age, sex, and hyperlipidemia.
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subgroups defined byMI type and/or sex.We aim to illustrate
how explainable ML models can guide both hypothesis gen-
eration and the design of subsequent statistical studies, as
well as expand population-wide predictions to specific pa-
tient subpopulations. To that end, we developed SHAP-
XGBoost models because they are explainable and previ-
ously exhibited the highest AUC on this topic.6,10
Methods
Data source
Data were obtained from the National Inpatient Sample
(NIS), a publicly available de-identified database of hospital
inpatient stays in the United States, sponsored by the Agency
for Healthcare Research and Quality as part of the Healthcare
Cost and Utilization Project.15 International Classification of
Diseases-Ninth Edition-Clinical Modification (ICD-9-CM)
codes were used to identify all patients aged 18 years or older
with a primary diagnosis of MI between January 1, 2012, and
September 30, 2015 (Supplemental Table 1). Baseline char-
acteristics of the study population were obtained using either
Elixhauser comorbidities16 or the corresponding ICD-9-CM
Table 1 Number of patients, testing set AUC scores, sensitivity, specifi
scores corresponding to the overall dataset of all MIs as well as 8 dataset s
and their in-between combinations

`Datasets No. of patients

Testing set

AUC (95% CI) Sensit

All MI cases 457,096 0.922 (0.918–0.926) 0.831
NSTEMI 322,966 0.903 (0.896–0.910) 0.810
STEMI 134,130 0.931 (0.925–0.938) 0.864
Male 281,221 0.932 (0.926–0.937) 0.830
Female 175,862 0.902 (0.895–0.909) 0.784
Male with STEMI 91,158 0.942 (0.934–0.949) 0.873
Female with STEMI 42,965 0.906 (0.895–0.917) 0.818
Male with NSTEMI 190,063 0.915 (0.907–0.924) 0.816
Female with NSTEMI 132,897 0.876 (0.865–0.887) 0.752

AUC5 area under the receiver operating characteristic curve; CI5 confidence i
infarction; STEMI 5 ST-elevation myocardial infarction.
codes (Supplemental Tables 1 and 2). Importantly, the sum-
mary statistics in Supplemental Table 2 apply only to the da-
taset used to train the ML models and do not represent
national trends in MI patient characteristics.17
Data preprocessing
The resulting dataset comprised 457,096 records described
using 65 variables, namely, 64 predictors and the response
variable, in-hospital death. The response variable was imbal-
anced, containing 434,355 “0” (alive) and 22,741 “1”
(deceased) values, resulting in a 19.1 imbalance ratio
(Supplemental Table 2). In turn, this dataset of patients
aged 18 years or older with a primary diagnosis of MI was
divided into 8 subgroups (Table 1).
Creation of predictive models
Each dataset was split into training (70%) and testing (30%)
sets. In turn, eXtreme Gradient Boosting (XGBoost) was
used to create the predictive model.18 XGBoost provides a
hyperparameter designed to tune the behavior of the algo-
rithm for imbalanced classification problems. In XGBoost,
several parameters need to be selected to maximize model
performance. We investigated the combined effect of 6 pa-
rameters by evaluating a grid of 3840 combinations using
Scikit-learn’s GridSearchCV function (Supplemental
Table 3). Because the dataset was imbalanced, stratified folds
were created to ensure the same distribution of negative and
positive classes was present in each fold. Five-fold stratified
cross-validation (CV) was used to finetune the models by
splitting the training set into 5 folds to estimate the risk asso-
ciated with each model. Each model was trained using data
from the training folds, and their associated risk was esti-
mated using data from the validation folds.19 The CV process
was iterated 100 times to decrease both variance and bias,
thus creating and evaluating 500 models in each round.
The testing set was not part of the training or validation
city, positive predictive value, negative predictive value, and F1
ubgroups based on MI type (NSTEMI vs STEMI), sex (male vs female),

ivity Specificity

Positive predictive
value
(Precision)

Negative
predictive
value F1 score

0.848 0.224 0.990 0.352
0.824 0.153 0.991 0.257
0.847 0.326 0.986 0.473
0.868 0.233 0.991 0.364
0.843 0.231 0.985 0.356
0.868 0.331 0.989 0.480
0.818 0.354 0.974 0.494
0.845 0.157 0.992 0.264
0.818 0.156 0.987 0.258

nterval; MI5 myocardial infarction; NSTEMI5 non–ST-elevation myocardial
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Figure 1 Determinants of in-hospital mortality after myocardial infarction.A: SHapley Additive exPlanation (SHAP) variable importance plot ranking the top
12 model variables in decreasing magnitude of contribution (decreasing mean |SHAP value|). B: SHAP summary plot, where dots represent distinct patient cases
color-coded according to the value of the corresponding variable on the y-axis and their associated Shapley value on the x-axis. Both the magnitude and direc-
tionality of contribution to mortality prediction are represented while maintaining the importance ranking order. NSTEMI5 non–ST-elevation myocardial infarc-
tion; PCI 5 percutaneous coronary intervention; STEMI 5 ST-elevation myocardial infarction.
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datasets and thus evaluated the model’s performance on pre-
viously unseen observations.
Model explainability
In this study, we used the SHapley Additive exPlanation
(SHAP) framework, a local explainability model based on
Shapley values.20,21 The Shapley value is the average mar-
ginal contribution of a feature value across all possible coali-
tions. The SHAP framework leverages the internal structure
of tree-based models to compute Shapley values in low-
order polynomial instead of exponential time, hence reducing
computational demands.20,22,23
Statistical analysis
Independent samples t test and c2 test of independence were
used for comparisons between continuous and categorical
variables, respectively (Supplemental Table 1). P ,.05 was
considered significant. Statistical analysis was performed us-
ing Python’s SciPy library.
Results
An in-hospital mortality prediction ML model was generated
as described in the Methods for the dataset of all MI cases.
The demographic characteristics, comorbidities, complica-
tions, and hospital characteristics are summarized in
Supplemental Table 2. This model was based on 457,096
inpatient admissions and achieved the following performance
metrics: AUC 0.922, sensitivity 0.831, and specificity 0.848
(Table 1). In turn, the dataset was divided into 8 subgroups
based on MI type (NSTEMI vs STEMI); sex (male vs fe-
male); and their in-between combinations (Table 1). Using
the same methodology, mortality prediction ML models
were generated for each subgroup dataset as well. All sub-
group models, except for female patients with NSTEMI
(AUC 0.876), achieved AUC.0.9 (Table 1). The model cor-
responding to male patients with STEMI achieved the highest
AUC 0.942, sensitivity 0.873, and specificity 0.868
(Table 1). All models achieved a high negative predictive
value �0.974 but low positive predictive value �0.354 and
corresponding F1 scores�0.494 (Table 1) in this imbalanced
dataset consisting of approximately 5% in-hospital mortality
rate.

From this point onward, we focused on theMLmodel cor-
responding to the overall dataset of all MIs and applied the
SHAP framework to explain it. Figure 1A shows a SHAP
variable importance plot—a bar chart ranking the top 12
model variables in decreasing magnitude of contribution
(mean |SHAP value|) to mortality prediction. The top 3model
variables included age, undergoing percutaneous coronary
intervention (PCI), and the development of cardiogenic
shock. Figure 1B shows a SHAP summary plot—a beeswarm
plot where dots represent distinct cases color-coded accord-
ing to the value of the corresponding variable on the y-axis
and with their associated Shapley value on the x-axis. In
this case, we obtain information on both the magnitude and
directionality of contribution to mortality prediction depend-
ing on the variable’s value, while maintaining the importance
ranking order established in Figure 1A. For example, when
the binary variable PCI has a value of 1, represented in red,
the corresponding patient cases exhibit negative SHAP
values (Figure 1B). In other words, patients who underwent
PCI following an MI had a lower inpatient mortality.

Overall, Figure 1 helps us gain global insights into ourML
model. To arrive at local model explanations, other outputs of
the SHAP framework focus on individual or pairs of vari-
ables. Figure 2A shows a SHAP dependence plot demon-
strating how a variable’s value on the x-axis (in this case
age) impacts the mortality prediction on the y-axis for every
patient case (each dot) in the dataset. In other words, it pre-
dicts the changing contribution to mortality prediction with
increasing age, notable for a change in directionality from
decreasing to increasing mortality between age 50 and 75
years. Figure 2B is the same as 2A, except individual patient



Figure 2 Effect of age and sex on in-hospital mortality after myocardial infarction. A: SHapley Additive exPlanation (SHAP) dependence plot showing how
increasing age on the x-axis impacts the mortality prediction on the y-axis for every patient case (each dot) in the dataset. B: The same SHAP dependence plot
color-coded based on the value of an additional variable, in this case sex (red: female; blue: male). C: SHAP interaction value dependence plots depicting the
interactive effect on mortality prediction between age and sex.
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cases are color-coded based on the value of an additional var-
iable, in this case sex (red: female; blue: male).

The cumulative predictive contribution of 2 variables can
be decomposed as the additive effect of 4 terms: a constant
term; a term for each variable; and a term for the interaction
between the 2 variables.23,24 By accounting for the individual
effect of each of 2 variables, our model can examine their
interaction effect alone. This is represented for age and sex
in Figure 2C, which show a SHAP interaction value depen-
dence plot. Similar to Figure 2A, Figure 3A shows a SHAP
dependence plot but for the binary variable hyperlipidemia,
depicting the magnitude of contribution to mortality predic-
tion depending on its presence or absence. Similar to
Figure 2C, Figures 3B–3I show SHAP interaction value
dependence plots. The interactive effect on mortality predic-
tion between hyperlipidemia and a variety of variables was
iteratively investigated to identify discernible trends, yielding
these figures.
Discussion
All presented ML models exhibited AUC .0.90, except for
that corresponding to female patients with NSTEMI
(Table 1). To our knowledge, we present the first published
ML models for MI in-hospital mortality prediction in the
following patient subpopulations: male, female, female pa-
tients with NSTEMI, and male patients with STEMI or
NSTEMI. Our remaining models for all MIs, STEMI,
NSTEMI, and female patients with STEMI (Table 1) outper-
formed previously publishedMLmodels (AUC range 0.80 to
0.91).6–10 All presentedMLmodels exhibited a high negative
predictive value (�0.974) and specificity (�0.818), but
comparatively much lower F1 scores and positive
predictive value (Table 1). This speaks to the imbalanced
(w5% in-hospital mortality) nature of the dataset rendering
the resulting ML models best for ruling out in-hospital death
post-MI rather than predicting its occurrence, similar to pre-
vious models.6,10
Outside of the traditionally reported metric of accuracy,
there is value in this ML approach in its explainability, which
is lacking in previous reports.6–10 The top-ranked variables
by magnitude of contribution to mortality prediction
(Figure 1A) included the majority of the GRACE score’s pre-
dictor variables,3 such as age, cardiac arrest, creatinine level
(represented by “AKI”), and ST-segment deviation. The NIS
database does not include systolic blood pressure and heart
rate values; however, their contribution to mortality can be
inferred from the variable “Cardiogenic shock”
(Figure 1A). The directional contributions to mortality pre-
diction by variable value (Figure 1B) are also consistent
with previous investigations of post-MI in-hospital mortality,
which illustrated statistically significant associations with
increasing age,1–4 cardiogenic shock,3,4 acute kidney
injury,3,4 electrolyte abnormalities (especially potas-
sium),25,26 ST-segment elevation,3,4 in-hospital cardiac ar-
rest,3,4,27 and ventricular fibrillation.28 The counterintuitive
association of decreased in-hospital mortality with hyperlip-
idemia often termed the “lipid paradox”3,29,30 and with smok-
ing termed the “smoker’s paradox”31–33 (Figure 1B) has also
been previously reported in the literature.

To illustrate themodel’s local explainability, we focused on
individual and pairwise variable effects (Figures 2A–2C).
More specifically, the inflection point in Figure 2A, repre-
sented by the change in directionality to mortality prediction
(dotted lines), gradually occurs between ages 50 and 75.
This is consistent with the TIMI risk score, which included
ages 65 and 75 years or older as statistically independent pre-
dictor variables for NSTEMI and STEMI mortality, respec-
tively.1,2 It is also important to underline the difference
between SHAP values (Figures 2A and 2B) and SHAP inter-
action values (Figure 2C). For example, 40-year-old female
patients who suffered an MI have negative SHAP values
(Figure 2B), meaning they exhibit lower in-hospital mortality
compared to the overall population. Yet the interactive effect
of age and sex illustrates a comparatively increased mortality
(positive SHAP interaction values) in female patients of that



Figure 3 Effect of hyperlipidemia (HLD) on in-hospital mortality after myocardial infarction.A: SHAP dependence plot showing how the presence or absence
of HLD impacts the mortality prediction on the y-axis for every patient case in the dataset.B–I: SHAP interaction value dependence plots depicting the interactive
effect on mortality prediction between HLD and age (B), percutaneous coronary intervention (PCI) (C), NSTEMI (D), STEMI (E), cardiogenic shock (CS) (F),
acute kidney injury (AKI) (G), in-hospital cardiac arrest (IHCA) (H), and smoking (I). Abbreviations as in Figure 1.
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age group (Figure 2C). Hence, the mortality benefit gained by
the individual contribution of age (,50 years) in that subpop-
ulation obscures the underlying mortality increasing effect of
female sex, which in turn is revealed by examining the inter-
action of the 2 variables (Figure 2C). These findings are
consistent with previous statistical studies showing a signifi-
cantly greater post-MI in-hospital mortality in female patients
when adjusting for age34–36 that is observed up to age 60,37,38

in line with SHAP values converging to 0 around age 55 years
(Figure 2C).

The previously described counterintuitive association of
decreased post-MI in-hospital mortality with hyperlipid-
emia3,29,30 persists even after accounting for previous statin
use (Figures 1B and 3A).29 We find that this “lipid paradox”
holds in 2 previously undescribed subgroups: ,80 years old
and patients undergoing PCI (Figures 3B and 3C). The
former finding of age dependence suggests that the risk
burden of hyperlipidemia needs to accumulate over time to
manifest as a measurable increase in early MI mortality. In
turn, the paradox does not hold in NSTEMI cases as previ-
ously reported,29 without a clear pattern emerging in the
case of STEMI (Figures 3D and 3E). The paradox does not
hold in previously undescribed subgroups, including those
developing complications such as cardiogenic shock, acute
kidney injury, or cardiac arrest, as well as among smokers
(Figures 3F–3I).

Such explainable models are a key first step in addressing
clinicians’ understandable hesitancy toward incorporating
ML outputs into clinical decision-making.11,13,14 Future
studies should focus on prospectively applying these models
in an external population to further characterize their predic-
tive performance.
Study limitation
A key limitation of the present study is its retrospective
design, which precludes any causal inferences. Instead, we
view this explainable ML approach as a tool for hypothesis
generation, especially given its output’s extensive concor-
dance with previous reports. This approach could also inform
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the design of future studies by suggesting the need for strat-
ification by certain subgroups.
Conclusion
The literature to date lacks explainable MLmodels predicting
in-hospital mortality after an MI, which limits its relevance to
clinical practice. In a large national registry, explainable ML
models performed best in ruling out in-hospital death post-
MI, and their explanation provided clinically relevant in-
sights. While recognizing the limitations to model explain-
ability, we sought to define its potential utility in
generating hypotheses and informing the design of future in-
vestigations.
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